椭圆组题练习
- 格式:doc
- 大小:1.02 MB
- 文档页数:47
1.2 椭圆的简单性质课后训练案巩固提升A组1.设椭圆=1(a>b>0)的离心率为e=,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)()A.必在圆x2+y2=2内B.必在圆x2+y2=2上C.必在圆x2+y2=2外D.以上三种情形都有解析:∵e=,∴.∵a2=b2+c2,∴b2=a2.∵x1+x2=-,x1·x2=-,∴=(x1+x2)2-2x1x2=+1=<2.∴P点在圆x2+y2=2内.答案:A2.已知对k∈R,直线y-kx-1=0与椭圆=1恒有公共点,则实数m的取值范围是()A.(0,1)B.(5,+∞)C.[1,5)∪(5,+∞)D.[1,5)解析:直线y-kx-1=0恒过点(0,1),仅当点(0,1)在椭圆上或椭圆内时,此直线才恒与椭圆有公共点,∴≤1,且m>0,得m≥1.又m≠5,故选C.答案:C3.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()A.B.C. -1 D.解析:由题意得|AF1|=,|AF2|=|BF2|.∵△ABF2是等腰直角三角形,∴|AF1|=|F1F2|,即=2c.∴b2=a2-c2=2ac.整理得e2+2e-1=0,∴e=-1.答案:C4.焦点在x轴上,右焦点到短轴端点的距离为2,到左顶点的距离为3的椭圆的标准方程是()A. =1B. +y2=1C. =1D.x2+=1解析:依题意,得a=2,a+c=3,故c=1,b=,故所求椭圆的标准方程是=1.答案:A5.若点O和点F分别为椭圆=1的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A.2B.3C.6D.8解析:由椭圆方程得F(-1,0),设P(x0,y0),则=(x0,y0)·(x0+1,y0)= +x0+.∵P为椭圆上一点,∴=1.∴+x0+3+x0+3= (x0+2)2+2.∵-2≤x0≤2,∴的最大值在x0=2时取得,且最大值等于6.答案:C6.已知椭圆中心在原点,一个焦点为F(-2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是.解析:由已知,得a=2b,c=2,又a2-b2=c2,故b2=4,a2=16,又焦点在x轴上,故椭圆方程为=1.答案: =17.导学号90074059已知椭圆=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在点P使,则该椭圆的离心率的取值范围为.解析:如图所示,e=-1.∵|PF2|<a+c,∴e=-1>-1,即e>-1,∴e2+2e-1>0.又∵0<e<1,∴-1<e<1.答案:( -1,1)8.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为.解析:由题设,知2a=12, ,∴a=6,c=3.∴b=3.答案: =19.求适合下列条件的椭圆的标准方程:(1)长轴长是短轴长的2倍,且过点(2,-6);(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.解(1)设椭圆的标准方程为=1或=1(a>b>0).由已知a=2b, ①且椭圆过点(2,-6),从而有=1或=1.②由①②,得a2=148,b2=37,或a2=52,b2=13.故所求椭圆的方程为=1或=1.(2)如图所示,△A1FA2为一等腰直角三角形,OF为斜边A1A2的中线(高),且OF=c,A1A2=2b,∴c=b=3.∴a2=b2+c2=18.故所求椭圆的方程为=1.10.已知椭圆=1(a>b>0)的左焦点F1(-c,0),A(-a,0),B(0,b)是椭圆的两个顶点.若焦点F1到直线AB的距离为,求椭圆的离心率.解(方法一)由题意,直线AB的方程为=1,即bx-ay+ab=0.∵焦点F1到直线AB的距离d=,∴.两边平方、整理,得8c2-14ac+5a2=0,两边同时除以a2,得8e2-14e+5=0,解得e=或e= (舍去).(方法二)在△AF1B中,由面积公式可得=(a-c)·b,将b2=a2-c2代入上式,整理得8c2-14ac+5a2=0.(以下解法同解法一)B组1.已知椭圆的长轴长为20,短轴长为16,则椭圆上的点到椭圆中心距离的取值范围是()A.[6,10]B.[6,8]C.[8,10]D.[16,20]解析:不妨设焦点在x轴上,由题意知a=10,b=8,设椭圆上的点M(x0,y0),由椭圆的范围知,|x0|≤a=10,|y0|≤b=8,点M到椭圆中心的距离d=.又因为=1,所以=64=64-,则d=.因为0≤≤100,所以64≤+64≤100,所以8≤d≤10.故选C.答案:C2.已知c是椭圆=1(a>b>0)的半焦距,则的取值范围是()A.(1,+∞)B.(,+∞)C.(1,)D.(1,]解析:如图,在△AFO中,令∠AFO=θ,其中θ为锐角,则=sin θ+cos θ=sin∈(1,].答案:D3.如图,把椭圆=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=.解析:设F1是椭圆的另一个焦点,则根据椭圆的对称性,知|P1F|+|P7F|=|P1F|+|P1F1|=2a,同理,|P2F|+|P6F|=|P3F|+|P5F|=2a.又|P4F|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35.答案:354.已知定点C(-1,0)及椭圆x2+3y2=5,过点C的直线与椭圆相交于A,B两点.若线段AB中点的横坐标是-,求直线AB的方程.解依题意,直线AB的斜率存在,设直线AB的方程为y=k(x+1)(k≠0),将y=k(x+1)代入x2+3y2=5,消去y整理,得(3k2+1)x2+6k2x+3k2-5=0.设A(x1,y1),B(x2,y2),则由线段AB中点的横坐标是-,得=-=-,解得k=±,适合①.所以直线AB的方程为x-y+1=0或x+y+1=0.5.已知椭圆长轴|A1A2|=6,焦距|F1F2|=4,过椭圆的左焦点F1作直线交椭圆于M,N两点,设∠MF1F2=α(0≤α≤180°),问α取何值时,|MN|等于椭圆短轴长?解(方法一)如图,建立平面直角坐标系,则a=3,c=2,b=1,∴椭圆方程为+y2=1.当直线MN斜率不存在时,得|MN|=,不合题意.故可设过F1的直线方程为y=k(x+2).∴①代入②,整理可得(1+9k2)x2+36k2x+72k2-9=0,∴x1+x2=,x1·x2=.代入|MN|=,可得|MN|=.∵=2,∴k=±,即tan α=±,∴α=或α=π.(方法二)如图所示建立平面直角坐标系,由已知可得a=3,c=2,b=1.令|F1M|=x,则|F2M|=6-x,|F1F2|=4,在△MF1F2中利用余弦定理得x=,若令|F1N|=y,则|F2N|=6-y,|F1F2|=4,在△NF1F2中利用余弦定理得y=,∴|MN|=x+y=,∴=2,cos α=±,∴α=或α=π.6.导学号90074060有一椭圆形溜冰场,长轴长100 m,短轴长60 m,现要在这个溜冰场上规定一个各顶点都在溜冰边界上的矩形区域,且使这个区域的面积最大,应把这个矩形的顶点定位在何处?这时矩形的周长是多少?解分别以椭圆的长轴、短轴各自所在的直线为x轴和y轴,以长轴的中点为坐标原点O,建立如图所示的平面直角坐标系xOy,设矩形ABCD的各顶点都在椭圆上.易知矩形ABCD关于原点O及x轴、y轴都是对称的.已知椭圆的长轴长2a=100 m,短轴长2b=60 m,则椭圆的方程为=1.设顶点A的坐标为(x0,y0),x0>0,y0>0,则=1,得 (502-)= (502-).根据矩形ABCD的对称性,可知它的面积S=4x0y0.由于 (502-)=.∴当时,取得最大值,此时S也取得最大值.此时x0=25,y0=15,矩形ABCD的周长为4(x0+y0)=4(25+15)=160 (m).因此,在椭圆形溜冰场的两侧分别画一条与短轴平行且与短轴相距25 m的直线,这两条直线与椭圆的交点就是所划定的矩形区域的顶点;这个矩形区域的周长为160 m.。
2.2.2 椭圆的简单几何性质第1课时 椭圆的简单几何性质及其应用基础过关练题组一 椭圆的性质及应用1.焦点在x 轴上,右焦点到短轴端点的距离为2,到左顶点的距离为3的椭圆的标准方程是( )A.x 24+y 23=1B.x 24+y 2=1 C.y 24+x 23=1 D.x 2+y24=1 2.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为()A.8,6B.4,3C.2,√3D.4,2√3 3.(2019陕西宝鸡高二上学期期末)把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线分别交椭圆的上半部分于点P 1,P 2,…,P 7,F 是左焦点,则|P 1F|+|P 2F|+…+|P 7F|等于( ) A.21 B.28 C.35 D.424.设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA=π4,若AB=4,BC=√2,则椭圆的两个焦点之间的距离为 .题组二 与椭圆离心率有关的问题5.已知椭圆的两个焦点和短轴的两个端点恰好是一个正方形的四个顶点,则该椭圆的离心率为( ) A.13 B.12C.√33D.√226.已知焦点在y 轴上的椭圆mx 2+y 2=1的离心率为√32,则m 的值为( )A.1B.2C.3D.4 7.已知焦点在x轴上的椭圆方程为x 2a2+y 2=1(a>0),过焦点作垂直于x轴的直线交椭圆于A,B 两点,且|AB|=1,则该椭圆的离心率为( ) A.√32B.12C.√154D.√338.已知椭圆x 2a 2+y 2b2=1(a>b>0)的左焦点为F 1,右顶点为A,点B 在椭圆上,且BF 1⊥x 轴,直线AB 与y 轴交于点P,其中AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则椭圆的离心率为 .题组三 与椭圆有关的范围问题 9.若点O 和点F分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ 的最大值为( ) A.2 B.3 C.6 D.8 10.已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a>b>0)的两个焦点,若椭圆上存在一点P,使得∠F 1PF 2=60°,则椭圆的离心率e 的取值范围是( ) A.[√22,1) B.(0,√22)C.[12,1) D.[12,√22) 11.已知点P 为椭圆x 2+2y 2=98上的一个动点,点A 的坐标为(0,5),则|PA|的最小值为 .12.已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,离心率e=√22,连接椭圆的四个顶点所得四边形的面积为4√2. (1)求椭圆C 的标准方程;(2)设A,B 是直线l:x=2√2上的不同两点,若AF 1⃗⃗⃗⃗⃗⃗⃗ ·BF 2⃗⃗⃗⃗⃗⃗⃗ =0,求|AB|的最小值.能力提升练一、选择题1.(2019辽宁抚顺六校期末联考,★★☆)已知椭圆x 2+y 2b 2+1=1(b>0)的离心率为√1010,则b 等于( )A.3B.13C.910D.3√10102.(2019山西大同高三开学考试,★★☆)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为√22,过F 1的直线l交C 于A,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为( )A.x 236+y 218=1B.x 216+y 210=1 C.x 24+y 22=1 D.x 216+y 28=1 3.(2020重庆沙坪坝高二期末,★★☆)已知F 是椭圆E:x 2a 2+y 2b2=1(a>b>0)的左焦点,经过原点的直线l 与椭圆E 交于P,Q 两点,若|PF|=2|QF|,且∠PFQ=120°,则椭圆E 的离心率为( ) A.√33 B.12C.13D.√224.(2019黑龙江大庆四中高二上学期期中,★★★)已知点P(x,y)(x≠0,y≠0)是椭圆x 216+y 28=1上的一个动点,F 1,F 2分别为椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上的一点,且F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ·PM ⃗⃗⃗⃗⃗⃗ =0,则|OM ⃗⃗⃗⃗⃗⃗ |的取值范围为( ) A.[0,3) B.(0,2√2) C.[2√2,3) D.[0,4]二、填空题5.(2019皖西南联盟高二期末联考,★★☆)阿基米德不仅是著名的物理学家,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C 的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为35,面积为20π,则椭圆C的标准方程为.6.(2019河北石家庄二中高二月考,★★☆)已知椭圆x 2a2+y2b2=1(a>b>0),点P是椭圆上且在第一象限的点,F1,F2分别为椭圆的左、右焦点,O是坐标原点,过F2作∠F1PF2的外角的平分线的垂线,垂足为A,若|OA|=2b,则椭圆的离心率为.三、解答题7.(2019河北张家口高三开学考试,★★☆)设F1,F2分别是椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点,M是C上且在第一象限内的一点,且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为34,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b的值.8.(★★★)如图,F1,F2分别是椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,AF1=F1F2.(1)求椭圆C的离心率;(2)已知△AF1B的面积为40√3,求a,b的值.答案全解全析 基础过关练1.A 依题意得a=2,a+c=3,故c=1,b=√22-12=√3,故所求椭圆的标准方程是x 24+y 23=1.2.B 过椭圆焦点的最长弦为长轴,其长度为4,最短弦为垂直于长轴的弦.易知c=1,将x=1代入x 24+y 23=1,得124+y 23=1,解得y 2=94,即y=±32,所以最短弦的长为2×32=3.故选B.3.C 设椭圆的右焦点为F',则由椭圆的定义得|P 1F|+|P 1F'|=10,由椭圆的对称性,知|P 1F'|=|P 7F|,∴|P 1F|+|P 7F|=10.同理,|P 2F|+|P 6F|=10,|P 3F|+|P 5F|=10.又|P 4F|=5,∴|P 1F|+|P 2F|+…+|P 7F|=35. 4.答案4√63解析 不妨设椭圆的标准方程为x 2a 2+y 2b 2=1(a>b>0),由题意知2a=4,∴a=2. ∵∠CBA=π4,BC=√2,∴不妨设点C 的坐标为(-1,1). ∵点C 在椭圆上,∴14+1b 2=1,∴b 2=43,∴c 2=a 2-b 2=4-43=83,c=2√63,则椭圆的两个焦点之间的距离为4√63. 5.D 依题意得椭圆的焦距和短轴长相等,故b=c,∴a 2-c 2=c 2,∴e=√22. 6.D 将椭圆的方程化为标准形式为y 2+x 21m=1,由题意得a 2=1,b 2=1m ,∴c 2=a 2-b 2=1-1m ,∴离心率e=ca =√1-1m =√32,∴m=4.7.A 易知椭圆的焦点坐标为(±√a 2-1,0),∵|AB|=1,∴当x=±√a 2-1时,y=±12.不妨设A (√a 2-1,12),则a 2-1a 2+14=1,解得a=2,∴椭圆的离心率为e=√a 2-1a=√32.故选A.8.答案 12解析 如图,易知△ABF 1∽△APO, 则|AP ||AB |=|AO ||AF 1|,即23=aa+c ,所以a=2c,所以e=c a =12.9.C 由题意得F(-1,0),设点P(x 0,y 0),则y 02=3(1-x 024)(-2≤x 0≤2),OP ⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ =x 0(x 0+1)+y 02=x 02+x 0+y 02=x 02+x 0+3(1-x 024)=14(x 0+2)2+2,当x 0=2时,OP⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ 取得最大值,最大值为6. 10. C 在△PF 1F 2中,设|PF 1|=m,|PF 2|=n,则m+n=2a,根据余弦定理,得(2c)2=m 2+n 2-2mncos 60°,整理得(m+n)2-3mn=4c 2,所以3mn=4a 2-4c 2, 所以4a 2-4c 2=3mn≤3(m+n 2)2=3a 2(当且仅当m=n 时,等号成立),即a 2≤4c 2,故e 2=c 2a 2≥14,又0<e<1, 所以12≤e<1.11.答案 2解析 设P(x,y),则|PA|=√x 2+(y -5)2=√x 2+y 2-10y +25. 因为点P 为椭圆x 2+2y 2=98上的一点,所以x 2=98-2y 2,-7≤y≤7,则|PA|=√98-2y 2+y 2-10y +25 =√-(y +5)2+148, 因为-7≤y≤7,所以当y=7时,|PA|min =2. 12.解析 (1)由题意得{ e =c a =√22,a 2=b 2+c 2,12×2a ×2b =4√2,解得{a =2,b =√2,c =√2.所以椭圆的标准方程为x 24+y 22=1.(2)由(1)知,F 1(-√2,0),F 2(√2,0),设直线l:x=2√2上的不同两点A,B 的坐标分别为(2√2,y 1),(2√2,y 2),则AF 1⃗⃗⃗⃗⃗⃗⃗ =(-3√2,-y 1),BF 2⃗⃗⃗⃗⃗⃗⃗ =(-√2,-y 2),由AF 1⃗⃗⃗⃗⃗⃗⃗ ·BF 2⃗⃗⃗⃗⃗⃗⃗ =0,得y 1y 2+6=0, 即y 2=-6y 1,不妨设y 1>0,则|AB|=|y 1-y 2|=y 1+6y 1≥2√6,当且仅当y 1=√6,y 2=-√6时等号成立,所以|AB|的最小值是2√6.能力提升练一、选择题1.B 易知b 2+1>1,由题意得(b 2+1)-1b 2+1=b 2b 2+1=110,解得b=13或b=-13(舍去),故选B.2.D 由△ABF 2的周长为16,得|BF 2|+|AF 2|+|BF 1|+|AF 1|=16,根据椭圆的性质,得4a=16,即a=4.又椭圆的离心率为√22,即c a =√22,所以c=2√2,b 2=a 2-c 2=8,则椭圆C 的方程为x 216+y 28=1.3.A 如图,设椭圆的右焦点为F',连接PF',QF',根据椭圆的对称性知,线段FF'与线段PQ 在点O 处互相平分,所以四边形PFQF'为平行四边形,∴|FQ|=|PF'|,∠FPF'=60°.根据椭圆的定义,得|PF|+|PF'|=2a,又|PF|=2|QF|,∴|PF'|=23a,|PF|=43a,而|FF'|=2c.在△F'PF 中,由余弦定理,得(2c)2=(23a)2+(43a)2-2×23a×43a×cos 60°,即c 2a2=13,∴椭圆的离心率e=c a =√33.4.B 如图,延长PF 2,F 1M 交于点N,则△PF 1N 为等腰三角形,M 为F 1N 的中点,|OM ⃗⃗⃗⃗⃗⃗ |=12|F 2N ⃗⃗⃗⃗⃗⃗⃗ |=12(|PN ⃗⃗⃗⃗⃗⃗ |-|PF 2⃗⃗⃗⃗⃗⃗⃗ |)=12·||PF 1⃗⃗⃗⃗⃗⃗⃗ |-|PF 2⃗⃗⃗⃗⃗⃗⃗ ||.由图可知,当P 在短轴端点时,|OM ⃗⃗⃗⃗⃗⃗ |取得最小值,此时|OM⃗⃗⃗⃗⃗⃗ |=0,当P 在长轴端点时,|OM ⃗⃗⃗⃗⃗⃗ |取得最大值,此时|OM ⃗⃗⃗⃗⃗⃗ |=2√2,但点P 不能在坐标轴上,所以|OM⃗⃗⃗⃗⃗⃗ |的取值范围为(0,2√2).二、填空题 5.答案y 225+x 216=1解析 设椭圆C 的标准方程为y 2a 2+x 2b 2=1(a>b>0),则椭圆C 的面积为S=πab=20π,又e=√1-b 2a 2=35,解得a 2=25,b 2=16.所以椭圆C 的标准方程为y 225+x 216=1.6.答案√32解析 如图,延长F 2A 交F 1P 的延长线于点M.由题意可知|PM|=|PF 2|,由椭圆的定义可知|PF 1|+|PF 2|=2a, 则|PF 1|+|PM|=|MF 1|=2a. 易知OA 是△F 1F 2M 的中位线, ∴|OA|=12|MF 1|=a. 又|OA|=2b,∴2b=a,则a 2=4b 2=4(a 2-c 2), 即c 2=34a 2,∴e 2=34,又e∈(0,1),∴e=√32.三、解答题 7.解析 (1)根据c=√a 2-b 2及题设知M (c ,b 2a ),由k MN =k MF 1=34,得b 2a-0c -(-c )=34,即2b 2=3ac.将b 2=a 2-c 2代入,得2c 2+3ac-2a 2=0,即2e 2+3e-2=0,解得e=12或e=-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,设直线MF 1与y 轴的交点为D,则D(0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a.①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|, 则F 1D ⃗⃗⃗⃗⃗⃗⃗ =2NF 1⃗⃗⃗⃗⃗⃗⃗ .设N(x 1,y 1),由题意知y 1<0,则{2(-c -x 1)=c ,-2y 1=2,即{x 1=-32c ,y 1=-1, 代入C 的方程,得9c 24a 2+1b 2=1.② 由①②及a 2=b 2+c 2得9(a 2-4a )4a 2+14a =1,解得a=7,则b=√4a =2√7. 8.解析 (1)∵AF 1=F 1F 2, ∴a=2c,∴e=c a =12.(2)设|BF 2|=m,则|BF 1|=2a-m.∵AF 1=F 1F 2=AF 2,∴△AF 1F 2是等边三角形, ∴∠F 1F 2B=180°-∠F 1F 2A=180°-60°=120°.在△BF 1F 2中,|BF 1|2=|BF 2|2+|F 1F 2|2-2|BF 2||F 1F 2|cos∠F 1F 2B,即(2a-m)2=m 2+a 2-2am×(-12), ∴m=35a. ∵△AF 1B 的面积S=12|BA||F 1A|sin 60° =12×(a +35a)×a×√32=40√3,∴a=10,∴c=5,b=5√3.。
椭圆复习题组(收集待修改)一.复习目标:熟练掌握椭圆的定义、标准方程、简单的几何性质. 二.知识要点:1.椭圆的定义: .图形: ; 。
2.标准方程: ;统一方程: ;3.几何性质:(1)范围: .(2)对称轴: (3)顶点、焦点: (4)离心率: 4.通径:5.焦点三角形:6.相交弦长公式:7.相交弦中点问题(点差法): 题型一:方程特征及性质1、 已知椭圆22169x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为A.2B.3C.4D.52、 椭圆2212516x y +=的一个焦点为F,O 是坐标原点,点P 在椭圆上,且||4PF =,M 是线段PF 的中点,则||OM =___________;3、 在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆221259x y+=上,则sin sin sin A C B+=____.4、 椭圆2214x y m +=的焦距为2,则m 的值等于( )A.5或5、 已知方程22212x y m m+=+表示焦点在x 轴上的椭圆,则m 的取值范围是 ( ) A.2m >或1m <- B. 2m >- C.12m -<< D. 2m >或21m -<<- 6、 “0m n >>”是“方程221mx ny +=表示焦点在y 轴上的椭圆”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D) 既不充分也不必要条件7、 椭圆12222=+ny m x )0,0(>>n m 的一个焦点坐标是(2,0), 且椭圆的离心率21=e , 则椭圆的标准方程为( ) A.1161222=+y x B.1121622=+y x C.1644822=+y x D.1486422=+y x8、已知椭圆22221x y a b+=有两个顶点在直线22x y +=上,则此椭圆的焦点坐标是( )A.(B.(0,C.(D.(0,9、椭圆的中心在原点,焦点在x 轴上,焦距为2,且经过点A )23,1(-; (1)求满足条件的椭圆方程;(2)求该椭圆的顶点坐标,长轴长,短轴长,离心率.10、椭圆221169x y +=的左、右焦点分别为1F 、2F , 过焦点F 1的直线交椭圆于,A B 两点 ,则2ABF ∆的周长是_____;若2ABF ∆的内切圆的面积为π,A ,B 两点的坐标分别为11(,)x y 和22(,)x y ,则21y y -的值为______.11、 点),(y x P 是椭圆)20(14222<<=+b by x 上的动点,则y x 22+的最大值为( )A .442b + B .42b C .4 D .2b12、 P 为椭圆22143x y +=上的一点,M 、N 分别是圆22(1)4x y ++=和22(1)1x y -+=上的点,则|PM | + |PN |的最大值为_____________ .13、已知(4,0),(A B -是椭圆221259x y +=内的点,M 是椭圆上的动点,则MA MB +的最大值是_______. 14、 如图把椭圆2212516x y +=的长轴AB 分成8等 分,过每个分点作x 轴的垂线交椭圆的上半部分于P 1,P 2,…,P 7七个点,F 是椭圆的 焦点,则|P 1F|+|P 2F|+…+|P 7F|=题型二:离心率15、 如图,用与底面成30︒角的平面截圆柱得一椭圆截线,则该椭圆的离心率为 ( )A .12 BCD .非上述结论 16、 若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A.54 B.53 C.52 D.51 17、 椭圆)0(12222>>=+b a by a x 的四个顶点为A 、B 、C 、D,若菱形ABCD 的内切圆恰好过焦点,则椭圆的离心率是( )A. 253- B. 853+ C.215- D.815+18、 椭圆的两个焦点为1F 、2F ,短轴的一个端点为A ,且三角形12F AF 是顶角为120º的等腰三角形形,则此椭圆的离心率为_____________.19、 如图,正六边形ABCDEF 的两个顶点,A D 为 椭圆的两个焦点,其余四个顶点在椭圆上,则该椭圆 的离心率的值是___________________.20、 过椭圆)0(12222>>=+b a by a x 的左焦点1F 做x 轴的垂线交椭圆于点P ,2F 为右焦点,若21PF F ∠=60°,则椭圆的离心率为( ) A.22 B.33C.21D.3121、已知椭圆22221(0)x y a b a b+=>>,,M N 是椭圆上关于原点对称的两点,P 是椭圆上任意一点,且直线PM PN 、的斜率分别为12k k 、,若1214k k =,则椭圆的离心率为( )A.12B.2D.322、在平面直角坐标系xOy 中,设椭圆12222=+b y a x )0(>>b a 的焦距为2c ,以点O 为圆心,a 为半径作圆M ,若过点P )0,(2c a 作圆M 的两条切线互相垂直,且切点为A , B , 则|AB |=_____,该椭圆的离心率为____.23、 已知椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P .若2AP PB = ,则椭圆的离心率是( ) A.2B.2C.13D.1224、 椭圆22221x y a b+=上一点P ,1F 、2F 为焦点,若1275PF F ∠=,2115PF F ∠= ,则椭圆的离心率为25、 已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a c PF F PF F =,则该椭圆的离心率的取值范围为___________.题型三:焦点三角形26、 以1F 、2F 为焦点的椭圆2222x y a b+=1(0a b >>)上一动点P ,当12F PF ∠最大时12PF F ∠的正切值为2,则此椭圆离心率e 的大小为______。27、 已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B .1(0,]2 C .2 D .[228、 已知12F 、F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,p 为椭圆C 上的一点,且12PF PF ⊥。若12PF F ∆的面积为9,则b =____________.29、 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是21 30、已知点P 在椭圆1204022=+y x 上, 21,F F 是椭圆的两个焦点,21PF F ∆是直角三角形,则这样的点P 有 A 2个 B4个 C 6个 D8个31、 椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为__________ . 32、 已知椭圆方程为13422=+y x ,1F 、2F 为椭圆的左右焦点,若点P 在椭圆上,且6021=∠PF F ,求21F PF ∆的面积。
3.1.2 椭圆【题组一 直线与椭圆的位置关系】1.(2020·全国高二课时练习)若直线2244mx ny x y +=+=和圆没有交点,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为( )A .2个B .至多一个C .1个D .0个【答案】A【解析】直线2244mx ny x y +=+=和圆22202m n >∴<+<点P(m,n)在以原点为圆心,半径为2的圆内,故圆22m n +=2内切于椭圆,,故点P(m,n)在椭圆内,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为2个2.(2018·全国高二课时练习)如果过点M(-2,0)的直线l 与椭圆2x 2+y 2=1有公共点,那么直线l 的斜率k 的取值范围是( )A .-∞⎛ ⎝⎦B .∞⎫+⎪⎪⎣⎭C .11-,22⎡⎤⎢⎥⎣⎦D .⎡⎢⎣⎦【答案】D【解析】设过点M (-2,0)的直线l 的方程为y=k (x+2),联立()22212y k x x y ⎧+⎪⎨+=⎪⎩= ,得(2k 2+1)x 2+8k 2x+8k 2-2=0, ∵过点M (-2,0)的直线l 与椭圆2212x y +=有公共点,∴△=64k 4-4(2k 2+1)(8k 2-2)≥0,整理,得k 2≤12解得-k 22≤≤∴直线l 的斜率k的取值范围是⎡⎢⎣⎦ 故选:D 3.(2020·全国高二课时练习)已知椭圆2244x y +=与直线y x m =+有公共点,则实数m 的取值范围是____________.【答案】2525≤≤-m 【解析】由2241{x y y x m+==+,得225210x mx m ++-=.因为直线与椭圆有公共点,所以()2242010m m ∆=--≥,即254m ≤,解得2525≤≤-m . 4.当m 取何值时,直线:L y x m =+与椭圆22916144x y +=相切、相交、相离. 【答案】详见解析【解析】将y x m =+代入22916144x y +=中,化简得222532161440x mx m ++-=,其判别式257614400m ∆=-+.当>0∆,即55m -<<时,直线和椭圆相交,当0∆=,即5m =±时,直线和椭圆相切.当∆<0,即5m >或5m <-时,直线和椭圆相离. 【题组二 弦长】1.(2019·广西百色田东中学高二期中(文))椭圆22416+=x y 被直线112y x =+截得的弦长为________.【解析】由22416112x y y x ⎧+=⎪⎨=+⎪⎩消去y 并化简得2260,x x +-= 设直线与椭圆的交点为M(x 1,y 1),N(x 2,y 2),则1212x 2,6,x x x +=-=-所以弦长12MN x =-=.2.(2020·辽宁葫芦岛高二期中(文))已知椭圆2241x y +=及直线:l y x m =+.(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦长及此时直线l 的方程.【答案】(1),22⎡-⎢⎣⎦;(2;此时:l y x = 【解析】(1)将直线方程与椭圆方程联立得:()2241x x m ++=即:225210x mx m ++-=直线和椭圆有公共点 ()2242010m m ∴∆=--≥,解得:m ⎡∈⎢⎣⎦(2)由(1)可知,直线与圆相交时,>0∆,即22m ⎛∈- ⎝⎭设直线与椭圆交于()11,A x y ,()22,B x y则1225m x x +=-,21215m x x -=AB ∴==当0m =时,()2max545m-=,则max5AB= ∴直线被椭圆截得的最长弦长为5;此时:l y x =3(2020·武威市第六中学高二月考(理))点P 是椭圆2222:1(0)x y C a b a b+=>>一点,F 为椭圆C 的一个焦点,||PF1-1.(1)求椭圆C 的方程;(2)直线y x m =+被椭圆C ,求m 的值 【答案】(1)2212x y +=;(2)1m =±【解析】(1)由点P 是椭圆2222:?1(0)x y C a b a b+=>>一点,F 为椭圆C 的一个焦点,||PF 的11.可得11a c a c ⎧-=-⎪⎨+=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩1b =,所以椭圆方程为:2212x y +=.(2)设直线y x m =+与曲线C 的交点分别为()()1122M x ,y ,N x ,y联立2212y x m x y =+⎧⎪⎨+=⎪⎩得2234220x mx m ++-=, ()222Δ1612222480m m m =--=->,即m << 又21212422,33m m x x x x --+==,MN ==22242244333m m --⎛⎫⎛⎫-⨯= ⎪ ⎪⎝⎭⎝⎭, 整理得2880m -=,∴1m =±,符合题意.综上,1m =±.4.(2020·四川双流中学)在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上短轴长为2,过左顶点A 的直线l 与椭圆交于另一点B . (1)求椭圆C 的方程; (2)若43AB =,求直线l 的倾斜角. 【答案】(1)2212x y +=;(2)45或135.【解析】(1)由题意的222222b c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩,则1b a =⎧⎪⎨=⎪⎩2212x y +=.(2)由题意直线的斜率存在,因为左顶点为1sin 62x π⎛⎫=-+ ⎪⎝⎭, 设直线l 的方程为()2y k x =+,代入椭圆方程,得到()222221420kx x k +++-=,因为一个根为1x =2x =,则1243AB x =-==, 化简2870k k --=,即21k =,1k =±,则倾斜角45或135.5.(2019·四川高二期末(文))已知椭圆()222:220C x y b b +=>.(1)求椭圆C 的离心率e ;(2)若1b =,斜率为1的直线与椭圆交于A 、B 两点,且3AB =,求AOB ∆的面积.【答案】(1)e =;(2.【解析】(1)椭圆()2222:102x y C b b b+=>,∴椭圆长半轴长为a =,短半轴长为b ,2c e a ∴====;(2)设斜率为1的直线l 的方程为y x m =+,且()11,A x y 、()22,B x y ,1b =,∴椭圆C 的方程为22:22x y +=,由2222y x m x y =+⎧⎨+=⎩,.消去y 得2234220x mx m ++-=,又有1221243223m x x m x x -⎧+=⎪⎪⎨-⎪⋅=⎪⎩.12AB x ∴=-===3=,解得:214m =满足>0∆,∴直线l 的方程为102x y -±=. 故O到直线的距离14d ==,11223412AOE S AB d ∆∴=⋅=⨯=. 【题组三 点差法】1.(2018·海林市朝鲜族中学高二课时练习)椭圆221369x y +=的一条弦被点(4,2)平分,则此弦所在的直线方程是( ) A .20x y -= B .24x y += C .2314x y += D .28x y +=【答案】D【解析】设过点A 的直线与椭圆相交于两点,E (x 1,y 1),F (x 2,y 2),则有22111369x y +=①,22221369x y +=②,①﹣②式可得:()()()()121212120369x x x x y y y y -+-++=又点A 为弦EF 的中点,且A (4,2),∴x 1+x 2=8,y 1+y 2=4,∴836(x 1﹣x 2)﹣49(y 1﹣y 2)=0 即得k EF =121212y y x x -=--∴过点A 且被该点平分的弦所在直线的方程是y ﹣2=﹣12(x ﹣4),即x+2y ﹣8=0.故选:D . 2.(2020·湖北宜都二中高二期末(理))椭圆221169x y +=中以点M(1,2)为中点的弦所在直线斜率为( ) A .932-B .9 32C .9 64D .9 16【答案】A【解析】设弦的两端点为()11,A x y ,()22,B x y ,代入椭圆得2211222211691169x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得()()()()121212120169x x x x y y y y +-+-+=,即()()()()12121212 169x x x x y y y y +-+-=-,即()()()()12121212916x x y y y y x x +--=+-,即121292164y y x x -⨯-=⨯-,即12129 32y y x x -=--,∴弦所在的直线的斜率为932-,故选A.3.(2019·内蒙古一机一中高二期中(文))斜率为13-的直线l 被椭圆:C 22221(0)x y a b a b+=>>截得的弦恰被点(1,1)M 平分,则C 的离心率是______.. 【解析】设直线l 与椭圆的交点为1122(,),(,)A x y B x y因为弦恰被点(1,1)M 平分,所以12122,2x x y y +=+=由2222112222221,1x y x y a b a b+=+=,两式相减可得:1212121222()()()()0x x x x y y y y a b +-+-+= 化简可得:212212y y b x x a -=--,因为直线l 的斜率为13-,所以21221213y y b x x a -=-=-- 即2213b a =所以离心率e ==4.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,线段P 1P 2中点为P ,设直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2(O 为原点),则k 1·k 2的值为________. 【答案】-12【解析】设直线l 的方程为:1(2)y k x =+,由122(2)21y k x x y =+⎧⎨+=⎩,整理得 :2222111(12)8810k x k x k +++-=,所以211221812k x x k -+=+,2112218112k x x k -=+,所以1121112112214(2)(2)(4)12k y y k x k x k x x k +=+++=++=+,所以211221142(,)1212k k P k k -++,12122112121214212k k k k k k -+==--+,所以1212k k =-5.(2019·甘肃兰州一中高二期末(理))椭圆221(0,0)ax by a b +=>>与直线1y x =-交于A ,B 两点,过原点与线段ABb a 的值为( )【答案】A【解析】把y =1﹣x 代入椭圆ax 2+by 2=1得ax 2+b (1﹣x )2=1, 整理得(a +b )x 2﹣2bx +b ﹣1=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 22b a b =+,y 1+y 2=22ba b-+, ∴线段AB 的中点坐标为(b a b +,aa b+), ∴过原点与线段AB 中点的直线的斜率k 2aa ab b b a b+===+.∴b a =.故选:A . 6.(2019·山东高考模拟(理))已知椭圆(22212x y a a +=>的左、右焦点分别为12,F F ,过左焦点1F 作斜率为-2的直线与椭圆交于A ,B 两点,P 是AB 的中点,O 为坐标原点,若直线OP 的斜率为14,则a 的值是______. 【答案】2【解析】椭圆(22212x y a a +=>,所以焦点在x 轴上11 / 11 因为过左焦点1F 作的直线斜率为-2, P 是AB 的中点,设00(,)P x y ,1122(,),(,)A x y B x y将A 、B 坐标代入椭圆方程,可得22112222221212x y a x y a ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减,化简得 ()()1212212122x x y y a y y x x +--=+-,即0202x k a y -= 进一步化简得0202y k a x -=⨯,代入22124a -=-⨯解得a=2。
高中数学-椭圆常考题型汇总及练习高中数学-椭圆常考题型汇总及练第一部分:复运用的知识一)椭圆几何性质椭圆的第一定义是:平面内与两定点F1、F2距离和等于常数(大于F1F2)的点的轨迹叫做椭圆。
两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2c)。
椭圆的几何性质以x^2/a^2 + y^2/b^2 = 1为例:范围由标准方程可知,椭圆上点的坐标(x,y)都适合不等式2≤x^2/a^2 + y^2/b^2 ≤1,即abx≤a,y≤b。
这说明椭圆位于直线x=±a和y=±b所围成的矩形里(封闭曲线)。
该性质主要用于求最值、轨迹检验等问题。
椭圆还有以下对称性:关于原点、x轴、y轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
椭圆的顶点(椭圆和它的对称轴的交点)有四个:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)。
长轴为A1A2,长度为2a;短轴为B1B2,长度为2b。
椭圆的离心率e有以下几个性质:(1)椭圆焦距与长轴的比e=c/a,其中c为焦距;(2)a^2=b^2+c^2,即a是长半轴长,b是短半轴长;(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关。
当e接近于1时,椭圆越扁;当e接近于0时,椭圆越接近圆。
椭圆还有通径(过椭圆的焦点且垂直于长轴的弦)和焦点三角形等性质。
二)运用的知识点及公式在解题过程中,我们需要掌握以下知识点和公式:1、两条直线.2、XXX定理:若一元二次方程ax^2+bx+c=0(a≠0)有两个不同的根x1,x2,则2bc/(a(x1+x2))=-1,x1+x2=-b/a。
1.中点坐标公式:对于点A(x1,y1)和点B(x2,y2),它们的中点坐标为(x,y),其中x=(x1+x2)/2,y=(y1+y2)/2.2.弦长公式:如果点A(x1,y1)和点B(x2,y2)在直线y=kx+b(k≠0)上,则y1=kx1+b,y2=kx2+b。
与椭圆有关的轨迹问题1. 已知ABC ∆的一边BC 长为6,周长为16,建立合适的平面直角坐标系,并求出定点A 的轨迹方程。
2. ABC ∆的顶点B,C 坐标分别为()()2,0,2,0-,且,,AB BC AC 成等差数列,求动点A 的轨迹方程。
3. 动圆M 与定圆221:60C x y x ++=外切,且内切于定圆222:640C x y x +-=,求动圆圆心M 的轨迹方程。
4. 一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心的轨迹方程。
5. 已知圆221:4120C x y x ++-=,与圆222:40C x y x +-=,动圆C 与1C 相内切,且与圆2C 相外切,求动圆圆心的轨迹方程。
6. 在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?7. 在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,直线PD 上有一点M ,且32DM DP =,当点P 在圆上运动时,点M 的轨迹是什么? 8. 点(),M x y 与定点()4,0F 的距离与它到直线25:4l x =的距离之比是定值45,(1)求点M 的轨迹方程; (2) 在(1)的前提下,0为坐标原点,求OM 的中点P 的轨迹方程。
9. 点P 与定点()5,0F 的距离与它到定直线20x =的距离的比为1:2,求点P 的轨迹方程。
10. 点,A B 的坐标分别为()()5,0,5,0-,直线,AM BM相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程。
11. 已知椭圆22149x y +=,一组平行线的斜率是32(1)这组直线何时与椭圆相交? (2) 当它们与椭圆相交的时候,证明这些直线被椭圆截得的线段的中点在一条直线上。
12. 已知椭圆2212x y += (1)求斜率为2的平行弦的中点的轨迹方程。
椭圆练习题及答案
椭圆练习题及答案
椭圆是数学中的一个重要概念,它在几何学、物理学和工程学等领域都有着重要的应用。
为了帮助大家更好地理解和掌握椭圆的相关知识,我们准备了一些椭圆的练习题及答案,希望能够帮助大家更好地学习和理解椭圆。
1. 椭圆的定义是什么?
答:椭圆是一个平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
2. 椭圆的离心率是多少?
答:椭圆的离心率e满足0<e<1。
3. 椭圆的焦点在坐标系中的位置是怎样的?
答:椭圆的焦点位于椭圆的长轴上。
4. 椭圆的长轴和短轴之间有什么关系?
答:椭圆的长轴是短轴的两倍。
5. 椭圆的面积公式是什么?
答:椭圆的面积为πab,其中a为长轴的一半,b为短轴的一半。
通过以上的练习题及答案,我们可以更好地理解和掌握椭圆的相关知识。
希望大家能够通过不断地练习和思考,更好地理解和应用椭圆的知识,为将来的学习和工作打下坚实的基础。
完整版)椭圆经典练习题两套(带答案)A组基础过关1.选择题1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于多少?A。
2B。
2/3C。
1/2D。
1/3解析:由题意得2a=2b,所以a=b,又a²=b²+c²,所以b=c,所以a=2c,e=c/a=1/2,答案为C。
2.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是什么?A。
(x²/81)+(y²/72)=1B。
(x²/81)+(y²/9)=1C。
(x²/81)+(y²/45)=1D。
(x²/81)+(y²/36)=1解析:依题意知2a=18,所以a=9,2c=3×2a,所以c=3,所以b=a-c=81-9=72,所以椭圆方程为(x²/81)+(y²/72)=1,答案为A。
3.椭圆x²+4y²=1的离心率是多少?A。
2/3B。
2C。
1/2D。
3解析:先将x²+4y²=1化为标准方程,得(x/1)²+(y/(1/2))²=1,所以a=1,b=1/2,所以c=√(a²-b²)=√(3)/2,所以e=c/a=√(3)/2,答案为A。
2.解答题1.设F₁、F₂分别是椭圆4x²+y²=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF₁⊥PF₂,则点P的横坐标为多少?解析:由题意知,点P即为圆x²+y²=3与椭圆4x²+y²=1在第一象限的交点,解方程组x²+y²=3和4x²+y²=1,得点P的横坐标为√(2/3),答案为√(2/3)。
2.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为2,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程是什么?解析:依题意设椭圆G的方程为a²x²+b²y²=1(a>b>0),因为椭圆上一点到其两个焦点的距离之和为12,所以2a=12,所以a=6,又因为椭圆的离心率为2,所以c=a/2=3,所以b=√(a²-c²)=3√5,所以椭圆G的方程为36x²+45y²=1,答案为C。
解析几何中的椭圆是高考中的热点,常见的有求最值、过定点、定值等,这类题型中以直线与椭圆相交为基本模型,处理问题的方法可以是设直线,运用韦达定理求出坐标之间的关系,过椭圆上一点的直线与椭圆相交是可以解出另一个交点的,而过椭圆外一点的直线与椭圆相交只能找到两个交点坐标的关系,不适宜解,再运用题目中的条件整体化简。
也可以是设点的坐标,运用坐标在椭圆上或直线上整体代入化简,到底设什么需要根据题目的条件,因题而异。
例1、(2017盐城高三三模18)已知A 、F 分别是椭圆2222:1(0)x y C a b a b +=>>的左顶点、右焦点,点P 为椭圆C 上一动点,当PF x ⊥轴时,2AF PF =.(1)求椭圆C 的离心率;(2)若椭圆C 存在点Q ,使得四边形AOPQ 是平行四边形(点P 在第一象限),求直线AP 与OQ 的斜率之积;(3)记圆2222:abO x y a b+=+为椭圆C 的“关联圆”.若b =P 作椭圆C 的“关联圆”的两条切线,切点为M 、N ,直线MN 的横、纵截距分别为m 、n ,求证:2234m n+为定值.学科*网解:(1)由PF x ⊥轴,知P x c =,代入椭圆C 的方程,得22221P y c a b +=,解得2P b y a=±. 又2AF PF =,所以22b a c a +=,解得12e =.(2)因为四边形AOPQ 是平行四边形,所以PQ a =且//PF x 轴,所以2P a x =,代入椭圆C的方程,解得P y =, 因为点P在第一象限,所以2P y =,同理可得2Q a x =-,2Q y b =所以2222()22AP OQbk k a a a a =⋅=----,由(1)知12c e a ==,得2234b a =,所以34AP OQ k k =-. (3)由(1)知12c e a ==,又b =2a =,所以椭圆C 方程为22143x y +=, 圆O的方程为22x y +=①. 连接,OM ON ,由题意可知,OM PM ⊥, ON PN ⊥, 所以四边形OMPN 的外接圆是以OP 为直径的圆,设00(,)P x y ,则四边形OMPN 的外接圆方程为222200001()()()224x y x y x y -+-=+, 即22000x xx y yy -+-= ②.(注:以OP 为直径的圆的方程可以直接写出0))(0())(0(00=--+--y y y x x x )由①-②,得直线MN的方程为00xx yy +=, 令0y =,则0m =;令0x =,则0n =所以2200223449()43x y m n +=+, 因为点P 在椭圆C 上,所以2200143x y +=,所以223449m n +=. 例2、(2018苏锡常镇高三二模)如图,椭圆22221(0)x y a b a b +=>>的离心率为2,焦点到相应准线的距离为1,点A ,B ,C 分别为椭圆的左顶点、右顶点和上顶点,过点C 的直线l 交椭圆于点D ,交x 轴于点1(0)M x ,,直线AC 与直线BD 交于点22()N x y ,. (1)求椭圆的标准方程;(2)若2CM MD =,求直线l 的方程; (3)求证:12x x ⋅为定值.解:(1)由椭圆的离心率为2得 21c a a c c⎧=⎪⎪⎨⎪-=⎪⎩,解得1a c ⎧⎪⎨=⎪⎩,所以,椭圆的标准方程为2212x y +=.(3)设D 坐标为(x 3,y 3),由(0,1)C ,M (x 1,0)可得直线CM 的方程111y x x =-+,联立椭圆方程得:1221112y x x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,,解得132142x x x =+,2132122x y x -=+由B ,得直线BD的方程:2y x =- ①直线AC方程为1y =+ ② 联立①②得212x x =, 即12x x =2 法2:设D 坐标为(x 3,y 3), 由C ,M ,D 三点共线得31311y x x x =--,所以3131x x y =- ① 由B ,D ,N221y x =+代入可得2x = ②①和②相乘得,231231x x x y =-2333323333222)2x y x xx y x +-==-+-. 例3、(2018苏北四市高三一模18)如图,在平面直角坐标系xOy 中,已知椭圆)0(12222>>=+b a by a x 的离心率为12,且过点312(,).F 为椭圆的右焦点,,A B 为椭圆上关于原点对称的两点,连接,AF BF 分别交椭圆于,C D 两点.(1)求椭圆的标准方程; (2)若AF FC =,求BFFD的值; (3)设直线AB ,CD 的斜率分别为21,k k ,是否存在实数m ,使得12mk k =,若存在,求出m 的值;若不存在,请说明理由.解:(1)设椭圆方程为22221(0)x ya b a b +=>>, 由题意知:22121914c a a b ⎧=⎪⎪⎨⎪+=⎪⎩解得:2a b =⎧⎪⎨⎪⎩,所以椭圆方程为:2243x y +=(2)若AF FC =,由椭圆对称性,知3(1,)2 A ,所以3(1,)2B --, 此时直线BF 方程为3430x y --=由223430,1,43x y x y --=⎧⎪⎨+=⎪⎩,得276130x x --=,解得137x =(1x =-舍去)故1(1)713317BF FD --==-(3)设00,)A x y (,则00(,)B x y --,直线AF 的方程为00(1)1y y x x =--,代入椭圆方程22143x y +=,得 2220000(156)815240x x y x x ---+=,因为0x x =是该方程的一个解,所以C 点的横坐标08552C x x x -=-,又(,)c C C x y 在直线00(1)1y y x x =--上,所以00003(1)152C c y y y x x x -=-=--, 同理,D 点坐标为0085(52x x ++,003)52y x +, 所以000002100000335552528585335252y y y x x k k x x x x x --+-===+--+-,即存在53m =,使得2153k k =. 例4、(2016泰州高三期末19)如图,在平面直角坐标系xOy 中, 已知圆:O 224x y +=,椭圆:C 2214x y +=, A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于,B C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中6(,0)5D -.设直线,AB AC 的斜率分别为12,k k .(1)求12k k 的值;(2)记直线,PQ BC 的斜率分别为,PQ BC k k ,是否存在常数λ,使得PQ BC k k λ=?若存在,求λ值;若不存在,说明理由;(3)求证:直线AC 必过点Q .解:(1)设00(,)B x y ,则00(,)C x y --,220014x y += 所以22000012220000111422424x y y y k k x x x x -=⋅===--+--.(2)联立122(2)4y k x x y =-⎧⎨+=⎩得2222111(1)44(1)0k x k x k +-+-=,解得211122112(1)4,(2)11P P P k k x y k x k k --==-=++,联立122(14y k x x y ⎧=⎪⎨+=⎪⎩得2222111(14)164(41)0k x k x k +-+-=, 解得211122112(41)4,(1414B B Bk k x y k x k k --===++, 所以121241B BC B y kk x k -==-,121122112141562(1)641515P PQP k y k k k k k x k -+-===--+++,所以52P Q B Ck k =,故存在常数52λ=,使得52P Q B C k k =.法二:设直线AC 方程:)2(411--=x k y 与圆:O 224x y +=联立方程组,运用韦达定理解出'Q 坐标,证明'Q 在直线PD 上,即可说明AC 必过点Q (请同学们自己去尝试)注:对于任意的椭圆 2222:1(0)x y C a b a b+=>>,过原点的任意一直线与椭圆交于B A ,两点,P 为椭圆上任意一动点,假设直线PB PA ,斜率都存在,则有22ab k k BPAP -=⋅证明:设),(11y x A ,则),(11y x B --,),(00y x P ,因为P B A 、、在椭圆上所以1221221=+b ya x ① ,1220220=+by a x ②由①-②得0))(())((2010120101=+-++-b y y y y a x x x x ,化简得22a b k k BPAP -=⋅例5、(2017苏锡常镇高三一模18)已知椭圆1222=+y x 右顶点为A .过点)2,2(-D 作直线PQ 交椭圆于两个不同点Q P 、求证:直线AQ AP ,的斜率之和为定值.分析:法一:先考虑过D 的直线斜率不存在满不满足题意。
第2课时 直线与椭圆的位置关系及其应用基础过关练题组一 直线与椭圆的位置关系 1.直线y=x+1与椭圆x 25+y 24=1的位置关系是()A.相交B.相切C.相离D.无法判断2.(2020江西南昌二中高二上第一次月考)直线y=kx-k+1与椭圆x 29+y 24=1的位置关系为( ) A.相交 B.相切 C.相离 D.不确定3.若直线y=kx+2与椭圆x 23+y 22=1有且只有一个交点,则斜率k 的值是 ( )A.√63B.-√63C.±√63D.±√334.已知直线y=kx+1和椭圆x 2+2y 2=1有公共点,则k 的取值范围是( ) A.k<-√22或k>√22 B.-√22<k<√22C.k ≤-√22或k ≥√22D.-√22≤k ≤√22题组二 直线与椭圆的相交弦问题 5.过椭圆x 2+2y2=4的左焦点作倾斜角为π3的弦AB,则弦AB 的长为( )A.67B.167C.716D.766.直线y=x+1被椭圆x 24+y 22=1所截得线段的中点的坐标是()A.(23,53)B.(43,73)C.(-23,13)D.(-132,-172)7.经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l,交椭圆于A,B 两点.设O 为坐标原点,则OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ 等于( ) A.-3 B.-13C.-13或-3D.±138.(2019广东深圳中学高二上期中)若椭圆x 236+y 29=1的弦被点(4,2)平分,则此弦所在直线的斜率为 .9.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A,B 两点,O 为坐标原点,则△OAB 的面积为 .10.(2020河北唐山一中高二上期中)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的离心率e 为√32,短轴长为4.(1)求椭圆的标准方程;(2)过P(2,1)作弦且弦被P 平分,求此弦所在的直线方程及弦长.题组三 直线与椭圆位置关系的综合运用 11.设椭圆C:x 29+y 24=1的左,右焦点分别为F 1,F 2,以F 1F 2为直径的圆与C 在第一象限的交点为P,则直线PF 1的斜率为( ) A.13B.12C.√33D.√3212.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ⃗⃗⃗⃗⃗ ·FP⃗⃗⃗⃗⃗ 的最大值为 .13.已知P(m,n)(m>0,n>0)为椭圆x 28+y 22=1上一点,Q,R,S 分别为P 关于y 轴,原点,x 轴的对称点.(1)求四边形PQRS 面积的最大值;(2)当四边形PQRS 面积最大时,在线段PQ 上任取一点M(不与端点重合),若过M 的直线与椭圆相交于A,B 两点,且AB 中点恰为M,求直线AB 斜率k 的取值范围.能力提升练题组一 直线与椭圆的相交弦问题 1.()已知椭圆x 2+y24=1 和点A (12,12),B (12,1),若椭圆的某弦的中点在线段AB 上,且此弦所在直线的斜率为k,则k 的取值范围为( ) A.[-4,-2] B.[-2,-1]C.[-4,-1]D.[-1,-12]2.(多选)()已知直线l:y=2x+3被椭圆C:x 2a 2+y 2b2=1(a>b>0)截得的弦长为7,则下列直线中被椭圆C 截得的弦长一定为7的有( ) A.y=2x-3 B.y=2x+1 C.y=-2x-3 D.y=-2x+33.(2020吉林长春实验中学高二上期中,)已知中心在原点,焦点坐标为(0,±5√2)的椭圆截直线3x-y-2=0所得的弦的中点的横坐标为12,则该椭圆的方程为 .4.(2020山东师大附中高二上第五次学分认定,)设椭圆x 2a2+y2b2=1(a>b>0)的短轴长为4,离心率为√32.(1)当直线y=x+m与椭圆有公共点时,求实数m的取值范围;(2)设点M(2,1)是直线l被椭圆所截得的线段AB的中点,求直线l的方程.5.(2020辽宁大连高二上期中,)如图,设P是圆x2+y2=25上的动点,点D是P在x 轴上的射影,M为PD上一点,且|MD|=45|PD|.(1)当P在圆上运动时,求点M的轨迹C的方程;(2)求过点(3,0)且斜率为45的直线被C所截线段的长度.题组二直线与椭圆位置关系的综合运用6.(2019黑龙江牡丹江一中高二上期中,)若直线mx+ny=4和圆x2+y2=4没有交点,则过点(m,n)的直线与椭圆x 29+y24=1的交点的个数为()A.0或1B.2C.1D.07.(2018吉林省实验中学期末,)已知椭圆x 2a2+y2b2=1(a>b>0)的左,右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C,若S△ABC=3S△BCF2,则椭圆的离心率为()A.√55B.√33C.√105D.3√3108.(多选)()已知椭圆C:x 24+y 22=1的左,右两个焦点分别为F 1,F 2,直线y=kx(k ≠0)与C交于A,B 两点,AE ⊥x 轴,垂足为E,直线BE 与C 的另一个交点为P,则下列结论正确的是( )A.四边形AF 1BF 2为平行四边形B.∠F 1PF 2<90°C.直线BE 的斜率为12k D.∠PAB>90°9.(2020海南海口海南中学高二上期中,)已知点P 是椭圆x 225+y 29=1上任意一点,则当点P 到直线4x-5y+40=0的距离达到最小值时,点P 的坐标为 . 10.(2020山东烟台高二上期末,)过椭圆C:x 2a 2+y 2b2=1(a>b>0)的左焦点F 1作斜率为12的直线l 与C 交于A,B 两点,若|OF 1|=|OA|,则椭圆C 的离心率为 . 11.(2020辽宁省实验中学高二上期中,)已知椭圆x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1、F 2,且过点(1,√22)和(√22,√32).(1)求椭圆的标准方程;(2)如图,点A 为椭圆上一位于x 轴上方的动点,AF 2的延长线与椭圆交于点B,AO 的延长线与椭圆交于点C,求△ABC 面积的最大值,并写出取到最大值时直线BC 的方程.12.(2020北京通州高二上期末,)已知椭圆x 2a 2+y 2b2=1(a>b>0)的焦点是F 1,F 2,且|F 1F 2|=2,离心率为√22.(1)求椭圆的方程;(2)过椭圆右焦点F 2的直线l 交椭圆于A(x 1,y 1),B(x 2,y 2)(x 1≥x 2)两点. (i)求|AF 2|·|BF 2|的最小值;(ii)点Q 是直线l 上异于F 2的一点,且满足|QA||QB|=|F 2A||F 2B|,求证:点Q 在一条定直线上.13.()已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的离心率e=√22,过椭圆的左焦点F 且倾斜角为30°的直线m 与圆x 2+y 2=b 2相交所得弦长为√3. (1)求椭圆C 的方程;(2)是否存在过点P(0,3)的直线l 与椭圆C 交于A 、B 两点,且|PA|=2|AB|?若存在,求直线l 的方程;若不存在,说明理由.答案全解全析 基础过关练1.A 解法一:直线y=x+1过点(0,1),将(0,1)代入x 25+y 24=1得,0+14<1,即点(0,1)在椭圆内部,所以直线与椭圆相交.解法二:联立直线与椭圆的方程,得{y =x +1,x 25+y 24=1,消去y 得,9x 2+10x-15=0,Δ=100-4×9×(-15)=640>0,所以直线与椭圆相交.2.A 直线y=kx-k+1=k(x-1)+1恒过定点(1,1),因为19+14<1,所以点(1,1)在椭圆内部,故直线与椭圆相交.3.C 由{y =kx +2,x 23+y 22=1,消去y 并整理,得(2+3k 2)x 2+12kx+6=0, 由题意知Δ=(12k)2-4×6×(2+3k 2)=0, 解得k=±√63,故选C.4.C 由{y =kx +1,x 2+2y 2=1,得(2k 2+1)x 2+4kx+1=0. ∵直线与椭圆有公共点, ∴Δ=16k 2-4(2k 2+1)≥0, 解得k ≤-√22或k ≥√22.5.B 设直线AB 的方程为y=kx+b(k ≠0),易求直线AB 的方程为y=√3(x+√2).由{y =√3(x +√2),x 2+2y 2=4,消去y 并整理,得7x 2+12√2x+8=0. 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-12√27,x 1x 2=87.由弦长公式,得|AB|=√1+k 2·|x 1-x 2|=2√(x 1+x 2)2-4x 1x 2=√1+(√3)2×√(-12√27)2-4×87=167.6.C 联立方程,得{y =x +1,x 24+y 22=1,消去y 并整理,得3x 2+4x-2=0.设直线与椭圆的交点A(x 1,y 1),B(x 2,y 2),中点M(x 0,y 0). ∴x 1+x 2=-43,x 0=x 1+x 22=-23,y 0=x 0+1=13,∴中点坐标为(-23,13). 7.B 由x 22+y 2=1,得a 2=2,b 2=1,c 2=a 2-b 2=1,则焦点坐标为(±1,0). 不妨设直线l 过右焦点,又倾斜角为45°,则直线l 的方程为y=x-1. 代入x 22+y 2=1得x 2+2(x-1)2-2=0,即3x 2-4x=0.设交点A(x 1,y 1),B(x 2,y 2),则x 1x 2=0,x 1+x 2=43,y 1y 2=(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=1-43=-13,所以OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=0-13=-13.8.答案 -12解析 设弦两端点分别为A(x 1,y 1),B(x 2,y 2).因为(4,2)是线段AB 的中点,所以x 1+x 2=8,y 1+y 2=4,将A,B 两点代入椭圆方程,得{x 1236+y 129=1,x 2236+y 229=1,两式相减得x 22-x 1236+y 22-y 129=0,整理得y 2-y 1x 2-x 1=-x 2+x 14(y 2+y 1),即k AB =y 2-y 1x 2-x 1=-12.9.答案 53解析 由题意知,右焦点的坐标为(1,0),直线的斜率k=2,所以直线的方程为y=2(x-1),将其与x 25+y 24=1联立,消去y,得3x 2-5x=0.设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=53,x 1x 2=0,所以|AB|=√1+k 2·|x1-x 2|=√1+k 2×√(x 1+x 2)2-4x 1x 2=√1+22×√(53)2-4×0=5√53.设原点到直线的距离为d,则d=2=2√55.所以S △OAB =12|AB|·d=12×5√53×2√55=53.10.解析 (1)由e=ca=√32可设,a=2t,c=√3t(t>0),则b=t=2,因此a=4,所以椭圆的标准方程为x 216+y 24=1.(2)设以点P(2,1)为中点的弦与椭圆交于A(x 1,y 1),B(x 2,y 2),则x 1+x 2=4,y 1+y 2=2,将A,B 两点坐标分别代入椭圆的方程得{x 1216+y 124=1,x 2216+y 224=1,两式相减可得,(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0, ∴4(x 1-x 2)+8(y 1-y 2)=0, ∴弦所在直线的斜率k=y 2-y 1x 2-x 1=-12,∴以点P(2,1)为中点的弦所在直线的方程为x+2y-4=0, 联立椭圆的方程得x 2-4x=0,解得x=0或x=4, 因此弦长|AB|=√1+k 2·|x 1-x 2|=2√5. 11.B 依题意得,a 2=9,b 2=4,∴c 2=5,因此以F 1F 2为直径的圆的方程为x 2+y 2=5.由{x 2+y 2=5,x 29+y 24=1,得{x 2=95,y 2=165, 又点P 在第一象限,∴P (3√55,4√55),又F 1(-√5,0), ∴斜率k PF 1=4√55-03√55+√5=12,故选B.12.答案 6解析 由x 24+y 23=1,可得F(-1,0).设P(x,y),-2≤x ≤2,则OP ⃗⃗⃗⃗⃗ =(x,y),FP⃗⃗⃗⃗⃗ =(x+1,y), 所以OP ⃗⃗⃗⃗⃗ ·FP⃗⃗⃗⃗⃗ =x 2+x+y 2=x 2+x+3·(1−x 24)=14x 2+x+3=14(x+2)2+2, 当且仅当x=2时,OP ⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ 取得最大值,最大值为6. 13.解析 (1)由P 在椭圆上得m 28+n 22=1,∵m>0,n>0,∴利用基本不等式得1=m 28+n 22≥2×√×√=mn 2,当且仅当m 28=n 22=12,即m=2,n=1时,等号成立,易知S 四边形PQRS =2m×2n=4mn ≤8,当m=2,n=1时取等号,故当m=2,n=1时,四边形PQRS 的面积取最大值,最大值为8.(2)由(1)得P(2,1),则Q(-2,1),设M 的坐标为(t,1),其中-2<t<2,A(x 1,y 1),B(x 2,y 2),则有{x 128+y 122=1,x 228+y 222=1,两式相减得(x 1-x 2)(x 1+x 2)8=-(y 1-y 2)(y 1+y 2)2(*),∵M 为线段AB 的中点, ∴x 1+x 22=t,y 1+y 22=1, ∴(*)化为(x 1-x 2)t 4=-(y 1-y 2),∴k=-t4,故k ∈(-12,12).能力提升练1.A 设椭圆x 2+y24=1的某弦的两个端点分别为P(x 1,y 1),Q(x 2,y 2),中点为M(x 0,y 0),则{x 12+y 124=1,①x 22+y 224=1,②①-②,得(x 12-x 22)+14(y 12-y 22)=0,即k=y 1-y 2x 1-x 2=-4(x 1+x 2)y 1+y 2=-4x0y 0.∵点M 在线段AB 上, ∴x 0=12,12≤y 0≤1,∴k=-4x 0y 0=-2y 0,2≤2y 0≤4,故-4≤-2y 0≤-2,则k ∈[-4,-2],故选A.2.ACD 直线y=2x-3与直线l 关于原点对称,直线y=-2x-3与直线l 关于x 轴对称,直线y=-2x+3与直线l 关于y 轴对称,因此A 、C 、D 中的直线被椭圆C 截得的弦长一定为7,而直线y=2x+1被椭圆C 截得的弦长大于7.故选ACD.3.答案y 275+x 225=1解析 设椭圆方程为y 2a2+x 2b2=1(a>b>0),则a 2=b 2+c 2=b 2+50.① 设直线3x-y-2=0与椭圆相交的弦的端点为A(x 1,y 1),B(x 2,y 2),则{b 2y 12+a 2x 12=a 2b 2,b 2y 22+a 2x 22=a 2b 2,∴b 2(y 1-y 2)(y 1+y 2)+a 2(x 1-x 2)(x 1+x 2)=0. 又x 1+x 2=2×12=1,y 1+y 2=2×(-12)=-1,y 1-y2x 1-x2=3, ∴b 2×3×(-1)+a 2×1=0,即a 2=3b 2.② 联立①②得,a 2=75,b 2=25. 故该椭圆的方程为y 275+x 225=1.4.解析 (1)因为离心率e=ca=√32,所以c 2=34a 2,又因为椭圆的短半轴长b=2,a 2-b 2=c 2,所以a 2=16,b 2=4, 即椭圆方程为x 216+y 24=1,因此, {x 216+y 24=1,y =x +m ⇒5x 2+8mx+4m 2-16=0,因为直线y=x+m 与椭圆有公共点,所以Δ=64m 2-4×5×(4m 2-16)≥0,即m 2≤20,解得-2√5≤m ≤2√5.(2)设A(x 1,y 1),B(x 2,y 2).解法一:当斜率不存在时,不符合题意;当斜率存在时,设直线方程为y-1=k(x-2),联立方程{y -1=k(x -2),x 216+y 24=1⇒(4k 2+1)x 2+8k ·(1-2k)x+16k 2-16k-12=0,所以x 1+x 22=4k(2k -1)4k 2+1=2,解得k=-12,所以直线l 的方程为x+2y-4=0.解法二:x 216+y 24=1⇒x 2+4y 2=16,{x 12+4y 12=16,x 22+4y 22=16⇒(x 1-x 2)(x 1+x 2)+4(y 1-y 2)·(y 1+y 2)=0⇒y 1-y 2x 1-x 2=x 1+x 2-4(y 1+y 2)=-12, 所以斜率k=-12,所以直线l 的方程为x+2y-4=0.5.解析 (1)设M 的坐标为(x,y),P 的坐标为(x p ,y p ),由已知得{x p =x,y p =54y,因为P 在圆上,所以x 2+(54y)2=25,即点M 的轨迹C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y=45(x-3),设直线与C 的交点为A(x 1,y 1),B(x 2,y 2),将直线方程y=45(x-3)代入C 的方程,得x 225+(x -3)225=1,整理得x 2-3x-8=0,所以x 1+x 2=3,x 1x 2=-8,所以|AB|=√1+(45)2·√(x 1+x 2)2-4x 1x 2=415.6.B 因为直线mx+ny=4和圆x 2+y 2=4没有交点,所以√22>2,所以m 2+n 2<4,而m 29+n 24≤m 24+n 24<1,因此点(m,n)在椭圆内部,从而过点(m,n)的直线与椭圆x 29+y 24=1必有两个交点,故选B.7.A 设F 1的坐标为(-c,0),F 2的坐标为(c,0),故过F 1且与x 轴垂直的直线方程为x=-c,代入椭圆方程可得y=±b 2a .可设A (-c,b 2a),C(x,y),由题意可得△ABF 2的面积是△BCF 2的面积的2倍,故AF 2⃗⃗⃗⃗⃗⃗⃗ =2F 2C ⃗⃗⃗⃗⃗⃗ ,即有(2c,-b 2a )=2(x-c,y),即{2c =2x -2c,-b2a=2y,则{x =2c,y =−b 22a,代入椭圆方程可得4c 2a2+b 24a2=1,即4c 2a2+a 2-c 24a 2=1,∴4e 2+14-14e 2=1,解得e=√55(负值舍去).故选A.8.ABC 由椭圆的对称性知,四边形AF 1BF 2是平行四边形,故A 正确;∵a 2=4,b 2=2,∴c 2=2, ∴∠F 1AF 2<90°,又∠F 1PF 2<∠F 1AF 2<90°, 故B 正确;由{x 2+2y 2=4,y =kx 得{x 2=41+2k 2,y 2=4k 21+2k2, 结合图形,不妨设k>0,则A (√2√2),B (2√2,2k√2),E (2√2,0),∴k BE =√1+2k 222+22=12k,故C 正确;取k=2,则A (23,43),B (-23,-43),E (23,0),∴直线BE 的方程为y=x-23,与椭圆方程联立得,P (149,89),∴PA ⃗⃗⃗⃗⃗ =(-89,49),PB⃗⃗⃗⃗⃗ =(-209,-209), ∴PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =1609-809>0,∴∠PAB>90°错误.故选ABC.9.答案 (-4,95)解析 设平行于4x-5y+40=0,且与椭圆相切的直线方程为4x-5y+c=0(c ≠40). 由{9x 2+25y 2=225,4x -5y +c =0,得25x 2+8cx+c 2-225=0, 令Δ=(8c)2-4×25×(c 2-225)=0得, c 2=625,解得c=±25.结合图形(图略)取c=25,此时,x 2+8x+16=0⇒x=-4.代入4x-5y+25=0得,y=95,∴P (-4,95).10.答案√53解析 如图所示,设右焦点为F 2,则|OF 1|=|OA|=|OF 2|,∴AF 1⊥AF 2, 又tan ∠AF 1F 2=12,∴|AF 1|=4√55c,|AF 2|=2√55c.因此,2a=|AF 1|+|AF 2|=6√55c ⇒e=ca=√53.11.解析 (1)将两点代入椭圆方程,得{1a 2+12b 2=1,12a 2+34b 2=1,解得{a 2=2,b 2=1,所以椭圆的标准方程为x 22+y 2=1.(2)设A(x 1,y 1),B(x 2,y 2).由A 在x 轴上方,可知直线AF 2的斜率不为0,所以设直线AF 2的方程为x=ty+1,联立{x 22+y 2=1,x =ty +1⇒(t 2+2)y 2+2ty-1=0,得{y 1+y 2=-2tt 2+2,y 1y 2=-1t 2+2,所以|AB|=√1+t 2·|y 1-y 2|=2√2(1+t 2)t 2+2. 设原点到直线AF 2的距离为d,则d=√2,所以S △ABC =2S △OAB =2×12×|AB|×d=2√2(1+t 2)t 2+2=2√2√1+t 2+12≤√2,当且仅当2=1√2,即t=0时,等号成立,此时直线AB 的方程为x=1,所以A (1,√22),B (1,−√22),C (-1,-√22),所以此时直线BC 的方程为y=-√22.12.解析 (1)因为椭圆的焦点是F 1,F 2,且|F 1F 2|=2,所以半焦距c=1. 因为离心率为√22,所以a=√2,所以b=1.所以椭圆的方程是x 22+y 2=1.(2)(i)由(1)知F 2(1,0),当直线l 的斜率不存在时,不妨设A (1,√22),B (1,−√22),所以|AF 2|·|BF 2|=12.当直线l 的斜率存在时,直线l 的方程可设为y=k(x-1).联立方程{x 22+y 2=1,y =k(x -1),消去y,整理得(1+2k 2)x 2-4k 2x+2k 2-2=0.所以x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.所以|AF 2|=√(x 1-1)2+y 12=√1+k 2|x 1-1|,|BF 2|=√(x 2-1)2+y 22=√1+k 2|x 2-1|.所以|AF 2|·|BF 2|=(1+k 2)|x 1x 2-(x 1+x 2)+1| =(1+k 2)|2k 2-21+2k2-4k 21+2k2+1|=1+k 21+2k 2 =12(1+11+2k 2). 因为11+2k 2∈(0,1],所以|AF 2|·|BF 2|的取值范围是(12,1]. 因为当直线l 的斜率不存在时,|AF 2|·|BF 2|=12,所以|AF 2|·|BF 2|的最小值是12.(ii)证明:由题意得,直线l 的斜率一定存在.因为点Q 在直线l 上,所以设点Q 的坐标是(m,k(m-1)). 因为|QA||QB|=|F 2A||F 2B|,所以点Q 一定在BA 的延长线上, 所以m -x 1m -x 2=x 1-11−x 2,即(m+1)(x 1+x 2)-2x 1x 2-2m=0. 所以4k 2(m+1)1+2k 2-2(2k 2-2)1+2k 2-2m=0.化简得m=2.所以点Q 的坐标是(2,k). 因此点Q 在定直线x=2上.13.解析 (1)由题易得,圆心(0,0)到直线m 的距离为√b 2-(√32)2,由直线m 的倾斜角为30°得√b 2-(√32)2=c 2,由e=ca=√22得a 2=2c 2,即b 2+c 2=2c 2,∴b 2=c 2,将其与√b 2-(√32)2=c2联立,得b=c=1,∴a=√2,∴椭圆方程为x 22+y 2=1.(2)存在.设A(x 1,y 1),B(x 2,y 2).①若直线l 垂直于x 轴,l 与椭圆交于(0,1),(0,-1), 取A(0,-1),B(0,1),满足|PA|=2|AB|.②若直线l 不垂直于x 轴,设方程为y=kx+3,代入椭圆方程x 22+y 2=1整理得,(2k 2+1)x 2+12kx+16=0,令Δ=16k 2-64>0,则k<-2或k>2,x 1+x 2=-12k2k 2+1(*),x 1x 2=162k 2+1(**),对于|PA|=2|AB|,包含两种情况: (i)PA ⃗⃗⃗⃗⃗ =2AB ⃗⃗⃗⃗⃗ ,即(x 1-0,y 1-3)=2(x 2-x 1,y 2-y 1), ∴x 1=2(x 2-x 1),即x 2=32x 1,代入(*)(**)得{52x 1=-12k 2k 2+1,32x 12=162k 2+1,消去x 1得32(25×-12k2k 2+1)2=162k 2+1,解得k=±52,∴l 的方程为y=52x+3或y=-52x+3.(ii)PA ⃗⃗⃗⃗⃗ =2BA ⃗⃗⃗⃗⃗ ,即(x 1-0,y 1-3)=2(x 1-x 2,y 1-y 2),∴x 1=2x 2, 代入(*)(**)得{3x 2=-12k 2k 2+1,2x 22=162k 2+1,消去x 2得,2(13×-12k2k 2+1)2=162k 2+1,有2k 2=2k 2+1,无解. 综上,l 的方程为x=0或5x-2y+6=0或5x+2y-6=0.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
完整版)椭圆大题题型汇总例题+练习解决直线和圆锥曲线的位置关系的步骤如下:1.判断直线的斜率是否存在,如果存在,求出斜率。
2.联立直线和曲线的方程组。
3.讨论一元二次方程的情况。
4.计算一元二次方程的判别式。
5.运用韦达定理、同类坐标变换等技巧。
6.计算弦长、中点、垂直、角度、向量、面积、范围等。
在解题过程中需要掌握中点坐标公式和弦长公式,同时还需要了解两条直线垂直的判定方法和XXX定理的应用。
常见的题型包括数形结合确定直线和圆锥曲线的位置关系以及弦的垂直平分线问题。
对于后者,需要掌握垂直和平分的相关知识。
举例来说,对于题型一,可以给定一个点T和一条直线l,要求找到与曲线N相交的点A、B,并判断是否存在一点E使得三角形ABE是等边三角形。
对于题型二,可以给定一个椭圆和一些已知点,要求求出过这些点且与给定直线相切的圆的方程。
在解题过程中,需要注意排除格式错误和明显有问题的段落,同时对每段话进行小幅度的改写,使其更加通顺和易懂。
练1:Ⅰ)椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
Ⅱ)设直线 $l:y=kx+m(k\neq0)$ 与椭圆C交于不同的两点M、N,线段MN的垂直平分线过定点G$(x_G,y_G)$。
根据对称性可知,$G$ 在$x$轴上,即$y_G=0$。
由于线段MN的垂直平分线过点$G$,所以$G$ 是线段MN的中点。
又因为MN是直线$l$的斜率为$k$的两点之间的线段,所以MN的中点的横坐标为$-\frac{m}{k}$。
因此,$x_G=-\frac{m}{k}$。
又因为$M$、$N$ 在椭圆上,所以它们满足椭圆的方程,代入直线方程可得关于$k$的二次方程。
由于线段MN不垂直于$x$轴,所以$k\neq0$。
根据二次方程的判别式,当判别式大于等于$0$时,线段MN存在,$k$的取值范围为$\left(-\infty,-\frac{a}{b}\right)\cup\left(\frac{a}{b},+\infty\right)$。
(一)椭圆的定义:1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。
这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。
对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面);(2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。
若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。
这两种特殊情况,同学们必须注意。
(4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。
同学们想一想其中的道理。
(5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为:22222222x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,222a cb =+。
不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。
椭圆的焦点在 x 轴上⇔标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上⇔标准方程中y 2项的分母较大。
(二)椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只要2222x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222y x 1(a b 0)a b +=>>的有关性质。
第三章 3.13.1.1请同学们认真完成练案 [21]A 组·素养自测一、选择题1.(2020·山西太原市高二期末)椭圆x 225+y 216=1的焦距为( C )A .4B .5C .6D .9[解析] 因为椭圆的方程为x 225+y 216=1,所以a 2=25,b 2=16,因此c 2=a 2-b 2=9,所以c =3,所以焦距为2c =6.故选C .2.已知椭圆x 29+y 24=1的两个焦点是F 1,F 2,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是8,则第三边的长度为( B )A .3B .4C .5D .6[解析] 由椭圆的定义得⎩⎪⎨⎪⎧|AF 1|+|AF 2|=6,|BF 1|+|BF 2|=6,两式相加得|AB |+|AF 1|+|BF 1|=12,因为在△AF 1B 中,有两边之和是8,所以第三边的长度为12-8=4. 3.中心在原点,焦点在坐标轴上,且过两点(4,0)、(0,2)的椭圆方程为( D ) A .x 24+y 22=1B .y 24+x 22=1C .y 216+x 24=1D .x 216+y 24=1[解析] 解法一:验证排除:将点(4,0)代入验证可排除A 、B 、C ,故选D . 解法二:设椭圆方程为mx 2+ny 2=1(m >0,n >0),∴⎩⎪⎨⎪⎧16m =14n =1,∴⎩⎨⎧m =116n =14,故选D .4.已知椭圆x 225+y 29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O为坐标原点,那么线段ON 的长是( B )A .2B .4C .8D .32[解析] 设椭圆左焦点F ,右焦点F 1,∵2a =10,|MF |=2,∴|MF 1|=8,∵N 为MF 中点,O 为FF 1中点,∴|ON |=12|MF 1|=4.5.(2020·房山区期末检测)“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的充要条件是( A )A .m >n >0B .n >m >0C .mn >0D .mn <0[解析] 若方程表示椭圆,则m ,n ≠0,则方程等价为x 21m +y 21n =1,若方程表示焦点在y 轴上椭圆,则等价为1n >1m>0,解得:m >n >0,故选A .二、填空题6.若椭圆x 225+y 216=1上一点P 到焦点F 1的距离为6,则点P 到另一个焦点F 2的距离是__4__.[解析] 由椭圆定义知,|PF 1|+|PF 2|=2a =10, ∴|PF 2|=10-|PF 1|=10-6=4.7.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为__x 24+y 23=1__.[解析] 由题意可得⎩⎪⎨⎪⎧ a +c =3a -c =1,∴⎩⎪⎨⎪⎧a =2c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.8.(2020·福州市高二期末)若以椭圆上一点和椭圆的两个焦点为顶点的三角形面积的最大值为1,则该椭圆长轴长的最小值为__22__.[解析] 由题意可知,因为椭圆上一点和两个焦点为顶点的三角形的最大面积为1,即可知bc =1,因为a 2=b 2+c 2=b 2+1b2≥2,所以a ≥2,故长轴长的最小值为22,答案为22.三、解答题9.求满足下列条件的椭圆的标准方程: (1)焦点在y 轴上,焦距是4,且经过点M (3,2); (2)ac =135,且椭圆上一点到两焦点的距离的和为26.[解析] (1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,2a =32+(2+2)2+32+(2-2)2=8,所以a =4,所以b 2=a 2-c 2=16-4=12. 又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1.(2)由题意知,2a =26,即a =13,又a c =135,所以c =5,所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1.10.已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过B 且与圆A 内切(如图所示),求圆心P 的轨迹方程.[解析] 设圆P 的半径为r , 又圆P 过点B ,∴|PB |=r ,又∵圆P 与圆A 内切,圆A 的半径为10. ∴两圆的圆心距|P A |=10-r , 即|P A |+|PB |=10(大于|AB |).∴点P 的轨迹是以A 、B 为焦点的椭圆. ∴2a =10,2c =|AB |=6,∴a =5,c =3.∴b 2=a 2-c 2=25-9=16. 即点P 的轨迹方程为x 225+y 216=1.B 组·素养提升一、选择题1.椭圆x 29+y 2m 2=1(0<m <3)的左、右焦点分别为F 1、F 2,过F 2的直线与椭圆交于A ,B两点,点B 关于y 轴的对称点为点C ,则四边形AF 1CF 2的周长为( C )A .6B .4mC .12D .49-m 2[解析] ∵过F 2的直线与椭圆交于A 、B 两点,点B 关于y 轴的对称点为点C , ∴四边形AF 1CF 2的周长为|AF 1|+|AF 2|+|CF 1|+|CF 2|=4a . ∵椭圆x 29+y 2m 2=1(0<m <3),∴a =3,∴四边形AF 1CF 2的周长为12.故选C .2.(多选题)若方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围可以是( AD )A .a >3B .a <-2C .-2<a <3D .-6<a <-2[解析] 由题意得a 2>a +6>0, 解得a >3或-6<a <-2,故选AD .3.(多选题)直线2x +by +3=0过椭圆10x 2+y 2=10的一个焦点,则b 的值可以为( AB ) A .-1 B .1 C .-12D .12[解析] 椭圆方程化为标准形式为x 2+y 210=1,∴焦点坐标为(0,±3),当直线过焦点(0,3)时,b =-1;当直线过焦点(0,-3)时,b =1.故选AB .4.(2020·湖南省长沙市湖南师大附中高二期中)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限,若△MF 1F 2为等腰三角形,则△MF 1F 2的面积为( D )A .5 3B .10 3C .215D . 415[解析] 设M (m ,n ),m ,n >0,则m ∈(0,6),n ∈(0,25), 椭圆C :x 236+y 220=1的a =6,b =25,c =4.设F 1,F 2分别为椭圆C 的左右焦点,由于M 为C 上一点且在第一象限,可得|MF 1|>|MF 2|,|F 1F 2|=2c =8, 因为|MF 1|+|MF 2|=2a =12,所以|MF 1|>6,|MF 2|<6, △MF 1F 2为等腰三角形,只能|MF 1|=2c =8,则|MF 2|=4, 由勾股定理得|MF 2|2=(4-m )2+n 2=16, 又m 236+n 220=1,联立并消去n 得 m 2-18m +45=0,且m ∈(0,6),解得m =3,则n =15. 则△MF 1F 2的面积为12×8×15=415.故选D .二、填空题5.已知椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=__2__,∠F 1PF 2的大小为__120°__.[解析] 由|PF 1|+|PF 2|=6,且|PF 1|=4,知|PF 2|=2. 在△PF 1F 2中,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=-12.故∠F 1PF 2=120°.6.下列命题是真命题的是__③__.①已知定点F 1(-1,0),F 2(1,0),则满足|PF 1|+|PF 2|=2的点P 的轨迹为椭圆;②到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹为椭圆;③若点P 到定点F 1(-4,0),F 2(4,0)的距离之和等于点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离之和,则点P 的轨迹为椭圆.[解析] ①2<2,故点P 的轨迹不存在;②到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹是线段F1F2的垂直平分线(y轴);③点M(5,3)到定点F1(-4,0),F2(4,0)的距离之和为410>8,故点P的轨迹为椭圆.故填③.7.设F1、F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为__15__.[解析]由椭圆的方程可得a=5,b=4,c=3.∴F1(-3,0),F2(3,0),如图所示,由椭圆的定义可得,|PF1|+|PF2|=2a=10,∴|PM|+|PF1|=|PM|+2a-|PF2|=10+(|PM|-|PF2|)≤10+|MF2|=10+32+42=15,∴|PM|+|PF1|的最大值为15.三、解答题8.已知椭圆的中心在原点,且经过点P(3,0),a=3b,求椭圆的标准方程.[解析]当焦点在x轴上时,设其方程为x2a2+y2b2=1(a>b>0).由椭圆过点P(3,0),知9a2+0 b2=1,又a=3b,解得b2=1,a2=9,故椭圆的方程为x29+y2=1.当焦点在y轴上时,设其方程为y2a2+x2b2=1(a>b>0).由椭圆过点P(3,0),知0a2+9b2=1,又a=3b,联立解得a2=81,b2=9,故椭圆的方程为y281+x29=1.故椭圆的标准方程为y281+x29=1或x29+y2=1.9.如图所示,在圆C:(x+1)2+y2=25内有一点A(1,0).Q为圆C上一点,AQ的垂直平分线与C,Q的连线交于点M,求点M的轨迹方程.[解析]如图所示,连接MA,由题知点M在线段CQ上,从而有|CQ|=|MQ|+|MC|.又点M在AQ的垂直平分线上,所以|MA|=|MQ|,故|MA|+|MC|=|CQ|=5.又A(1,0),C(-1,0),故点M的轨迹是以(1,0),(-1,0)为焦点的椭圆,且2a=5,c=1,故a=52,b2=a2-c2=254-1=214.故点M的轨迹方程为x2254+y2214=1.。
椭圆练习及参考答案一、单选题(共 50 分)1.椭圆x 29+y28=1的左右焦点为F1,F2,P为椭圆上第一象限内任意一点,F1关于P的对称点为M,关于F2的对称点为N,则ΔMF1N的周长为()A.8B.10C.16D.22【详解】因为F1关于P的对称点为M,关于F2的对称点为N,所以PF2为△F1MN的中位线,所以MF1+MN=2PF1+2PF2=2(PF1+PF2)=2×2a=12,F1N=2F1F2=4c=4√9−8=4,所以ΔMF1N的周长为12+4=16.【点睛】本题考查了点与点的对称性,椭圆的定义,属于基础题.2.已知定圆C1:(x+5)2+y2=1,C2:(x−5)2+y2=225,动圆C满足与C1外切且与C2内切,则动圆圆心C的轨迹方程为()A.x 264+y239=1 B.x239+y264=1 C.x2256+y2241=1 D.x2241+y2256=1【详解】解:设动圆圆心C的坐标为(x,y),半径为r,则|CC1|=r+1,|CC2|=15−r,∴|CC1|+|CC2|=r+1+15−r=16>|C1C2|=10,由椭圆的定义知,点C的轨迹是以C1,C2为焦点的椭圆,则2a=16,a=8,c=5,b2=82−52=39,椭圆的方程为:x264+y239=1【点睛】考查圆与圆的位置关系,考查椭圆的定义,考查学生分析解决问题的能力,中档题.3.设F1、F2是椭圆E:x 2a2+y2b2=1(a>b>0)的左、右焦点,P为直线x=3a2上一点,ΔF2PF1是底角为30∘的等腰三角形,则E的离心率为()A.12B.23C.34D.45试题分析:如下图所示,ΔF2PF1是底角为30∘的等腰三角形,则有|F1F2|=|PF2|,∠PF1F2=∠F2PF1=30∘所以∠PF2A=60∘,∠F2PA=30∘,所以|PF2|=2|AF2|=2(32a−c)=3a−2c又因为|F1F2|=2c,所以,2c=3a−2c,所以e=ca =34所以答案选C.考点:椭圆的简单几何性质.4.椭圆x 29+y26=1的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则ΔPF1F2的面积为()A.2√3B.3√2C.√32D.√23【详解】解:∵椭圆x29+y26=1的焦点为F1、F2,点P在椭圆上,|PF1|=4,∴F1(−√3,0),F2(√3,0),|PF2|=6﹣4=2,|F1F2|=2√3,则△PF1F2是直角三角形,∴△PF1F2的面积为S=12×2×2√3=2√3.【点睛】本题考查椭圆的简单性质,三角形的面积的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.5.已知椭圆x 24+y2=1的焦点分别是F1,F2,点M在该椭圆上,如果F1M⃑⃑⃑⃑⃑⃑⃑⃑ ⋅F2M⃑⃑⃑⃑⃑⃑⃑⃑ =0,那么点M到y轴的距离是()A.√2B.2√63C.3√22D.1【详解】设M(x,y),则椭圆x24+y2=1…①,∵椭圆x24+y2=1的焦点分别是F1,F2,∴F1(−√3,0),F2(√3,0)∵F 1M ⃑⃑⃑⃑⃑⃑⃑⃑ =(x −√3,y),F 2M ⃑⃑⃑⃑⃑⃑⃑⃑ =(x +√3,y), F 1M ⃑⃑⃑⃑⃑⃑⃑⃑ ⋅F 2M ⃑⃑⃑⃑⃑⃑⃑⃑ =0,∴x 2+y 2=3…②由①②得x 2=83,x =±2√63, ∴点M 到y 轴的距离为2√63,故选B .【点睛】本题考查了椭圆的方程及向量运算,属于中档题. 7.已知直线l 与椭圆x 216+y 22=1交于A,B 两点,AB 中点是M (−2,1),则直线l 的斜率为( )A.-4B.-14C.14D.4【详解】设交点坐标A (x 1,y 1),B (x 2,y 2),则{x 1216+y 122=1x 2216+y 222=1,两式相减得,(x 1+x 2)(x 1−x 2)16+(y 1+y 2)(y 1−y 2)2=0 ,故y 1−y2x 1−x 2=−2(x 1+x 2)16(y 1+y 2)=−2×(−2×2)16×(1×2)=14 ,故选C【点睛】本题考查了直线与椭圆的相交弦问题,一般涉及弦的中点和直线斜率问题时,可采用“点差法”,建立中点坐标与斜率的关系求解.8.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B,C 两点,且∠BFC =90°,则该椭圆的离心率为( )A.√63B.2√33C.12D.√22【详解】将y =b2代入椭圆方程得:B (−√32a,b2),C (√32a,b2)又椭圆焦点F (c,0) ∴BF ⃑⃑⃑⃑⃑ =(c +√32a,−b 2),CF ⃑⃑⃑⃑⃑ =(c −√32a,−b 2) ∵∠BFC =90∘∴BF ⃑⃑⃑⃑⃑ ⋅CF⃑⃑⃑⃑⃑ =c 2−34a 2+b 24=c 2−34a 2+a 2−c 24=34c 2−12a 2=0∴e 2=c 2a 2=23 ∴e =√63,故选A 【点睛】本题考查椭圆离心率的求解问题,关键是能够利用垂直关系构造出关于a,c 的齐次方程,从而根据e =ca 求得离心率.9.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为() A.13B.15C.16D.25【详解】如图所示,由椭圆x 225+y 216=1,可得a =5,b =4,c =√a 2−b 2=3,所以F 1(−3,0),F 2(3,0),由椭圆的定义可得|PF 1|+|PF 2|=2a =10,所以|PM |+|PF 1|=|PM |+2a −|PF 2|=10+(|PM |−|PF 2|)≤10+|MF 2|=10+√32+42=15,则|PM |+|PF 1|的最大值15.故选B . 【点睛】本题主要考查了椭圆的定义及标准方程的应用,以及三角形三边大小关系的应用,其中解答中熟练应用椭圆的定义转化是解答的关键,着重考查了推理与运算能力,属于基础题.10.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长、短轴长和焦距成等差数列,若点P 为椭圆C 上的任意一点,且P 在第一象限,O 为坐标原点,F (3,0)为椭圆C 的右焦点,则OP ⃑⃑⃑⃑⃑ •PF ⃑⃑⃑⃑⃑ 的取值范围为( ) A.(−16,−10)B.(−10,−394)C.(−16,−394]D.(−∞,−394]【详解】因为椭圆C 的长轴长、短轴长和焦距成等差数列 所以2a +2c =4b ,即a +c =2b F(3,0)为椭圆C 的右焦点,所以c=3 在椭圆中,a 2=c 2+b 2所以{a 2=c 2+b 2a +c =2bc =3 ,解方程组得{a =5b =4c =3所以椭圆方程为x 225+y 216=1设P(m,n) (0<m <5)则m 225+n 216=1,则n 2=16−1625m 2 OP ⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ =(m,n )(3−m,−n ) =3m −m 2−n 2=3m −m 2−(16−1625m 2) =−925m 2+3m −16=−925(m −256)2−394因为0<m <5,所以当m =256时,OP ⃑⃑⃑⃑⃑ ⋅PF⃑⃑⃑⃑⃑ 取得最大值为−394当m 趋近于0时,OP ⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ 的值趋近于-16 ,所以OP ⃑⃑⃑⃑⃑ ⋅PF⃑⃑⃑⃑⃑ 的取值范围为(-16,-394] 【点睛】本题考查了椭圆性质的综合应用,向量在解析几何中的用法,属于中档题. 二、填空题(共 25 分) 11.已知椭圆x 24+y 23=1的左、右焦点为F 1,F 2,则椭圆的离心率为_____,过F 2且垂直于长轴的直线与椭圆交于点A ,则|F 1A |=_____. 【详解】椭圆x 24+y 23=1,可得a =2,b =√3,则c =1,所以椭圆的离心率为:e =c a =12.过F 2且垂直于长轴的直线与椭圆交于点A ,所以|AF 2|=b 2a=32,由椭圆的定义可知:|F 1A |=2a ﹣|AF 2|=4−32=52.故答案为12;52.【点睛】本题考查椭圆的离心率和椭圆的定义,解题时由椭圆标准方程确定出a,b 再计算出c ,可求离心率,而求椭圆上的点到焦点的距离时,可以与椭圆定义联系起来.12.如果椭圆x 2144+y 236=1上一点P 到焦点F 1的距离等于10,那么点P 到另一个焦点F 2的距离是______. 【详解】由椭圆x 2144+y 236=1,可得a =12,由椭圆的定义可知:|PF 1|+|PF 2|=2a =24,因为椭圆x 2144+y 236=1上一点P 到焦点F 1的距离等于10,那么点P 到另一个焦点F 2的距离是:24-10=14.故答案为14.【点睛】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.属于基础题. 13.已知椭圆中心在原点,一个焦点为F(−2√3,0),且长轴长是短轴长的2倍.则该椭圆的长轴长为______;其标准方程是________. 【详解】解:已知{a =2b,c =2√3a 2−b 2=c 2∴{b 2=4a 2=162a =8则该椭圆的长轴长为8;其标准方程是x 216+y 24=1.故答案为椭圆的长轴长为8;其标准方程是x 216+y 24=1.【点睛】本题主要考查椭圆的标准方程.属基础题.14.已知P 是椭圆x 210+y 2=1上的一点,F 1,F 2是椭圆的两个焦点,当∠F 1PF 2=2π3时,则ΔPF 1F 2的面积为_____.【详解】设|PF 1|=m ,|PF 2|=n ,则m +n =2a =2√10在ΔPF 1F 2中,由余弦定理得:F 1F 22=m 2+n 2−2mncos∠F 1PF 2即:36=(m +n )2−2mn −2mncos2π3=40−mn ,解得:mn =4∴S ΔPF 1F 2=12mnsin 2π3=√3 【点睛】本题考查焦点三角形面积的求解,关键是能够利用余弦定理构造出关于焦半径之积的方程,属于常考题型.15.已知P 是椭圆E:x 2a 2+y 2b 2=1(a >b >0)上异于点A(−a,0),B(a,0)的一点,E 的离心率为√32,则直线AP 与BP 的斜率之积为__________.【解析】设P (x 0,y 0),有x 02a 2+y 02b 2=1,且c a =√32,得b a =12,k AP k BP =y 0x+a ⋅y 0x−a=y 02x 02−a 2=y 02(1−y 02b 2)a 2−a 2=−14.点睛:本题考查椭圆的几何性质.由离心率,得到a,b,c 的比例关系.本题中由题意可知,题目由点P 的位置决定,所以设P (x 0,y 0),得到斜率关系k AP k BP =y 0x 0+a ⋅y 0x0−a=y 02x02−a 2=y 02(1−y 02b 2)a 2−a 2=−14,为定值.三、解答题(共 34 分)16.已知点A(0,−2),椭圆E:x 2a2+y2b2=1(a>b>0)的离心率为√22,F是椭圆E的右焦点,直线AF的斜率为2,O为坐标原点.(1)求E的方程;(2)设过点P(0,√3)且斜率为k的直线l与椭圆E交于不同的两M、N,且|MN|=8√27,求k的值.【详解】解:(1)由离心率e=ca =√22,则a=√2c,直线AF的斜率k=0−(−2)c−0=2,则c=1,a=√2,b2=a2﹣c2=1,∴椭圆E的方程为x 22+y2=1;(2)设直线l:y=kx﹣√3,设M(x1,y1),N(x2,y2),则{y=kx−√3x22+y2=1,整理得:(1+2k2)x2﹣4√3kx+4=0,△=(﹣4√3k)2﹣4×4×(1+2k2)>0,即k2>1,∴x1+x2=4√3k1+2k2,x1x2=41+2k2,∴|MN|=√1+k2|x1−x2|=√1+k2√(x1+x2)2−4x1x2=4√(1+k2)(k2−1)1+2k2=8√27,即17k4−32k2−57=0,解得:k2=3或−1917(舍去)∴k=±√3,【点睛】考查直线与椭圆的位置关系,椭圆的求法,弦长的计算,考查转化思想以及计算能力.17.设O为坐标原点,动点M在椭圆E:x 24+y22=1上,过点M作x轴的垂线,垂足为N,点P满足NP⃑⃑⃑⃑⃑⃑ =√2NM⃑⃑⃑⃑⃑⃑⃑ .(1)求点P的轨迹方程;(2)设A(1,0),在x轴上是否存在一定点B,使|BP|=2|AP|总成立?若存在,求出B点坐标;若不存在,说明理由.【详解】(1)设P(x,y),M(x1,y1),则N(x1,0)∵M 在椭圆E 上 ∴x 124+y 122=1…①由NP ⃑⃑⃑⃑⃑⃑ =√2NM ⃑⃑⃑⃑⃑⃑⃑ 知:{x =x 1y =√2y 1 ,即:{x 1=x y 1=√22y ,代入①得:x 2+y 2=4即点P 的轨迹方程为:x 2+y 2=4…② (2)假设存在点B (m,0)满足条件,设P (x,y )由|BP |=2|AP |得:√(x −m )2+y 2=2√(x −1)2+y 2 即:3x 2+3y 2+(2m −8)x =m 2−4此方程与(1)中②表示同一方程,故:{2m −8=0m 2−4=12,解得:m =4∴存在点B (4,0)满足条件【点睛】本题考查椭圆的综合应用问题,涉及到动点轨迹的求解、定点问题的求解等知识;求解定点问题的关键是能够通过假设存在的方式,利用已知中的等量关系建立起关于变量的方程,通过求解方程确定变量的取值,从而得到定点是否存在.18.已知点M (2√33,√33)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且点M 到C 的左、右焦点的距离之和为2√2.(1)求C 的方程;(2)设O 为坐标原点,若C 的弦AB 的中点在线段OM (不含端点O ,M )上,求OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ 的取值范围.【详解】(1)由条件知43a 2+13b 2=1,2a =2√2,所以a =√2,b =1, ∴椭圆C 的方程为x 22+y 2=1.(2)设点A 、B 的坐标为A (x 1,y 1),B (x 2,y 2),则AB 中点(x 1+x 22,y 1+y 22)在线段OM 上,且k OM =12,∴x 1+x 2=2(y 1+y 2),又x 122+y 12=1,x 222+y 22=1,两式相减得(x 1−x 2)(x 1+x 2)2+(y 1−y 2)(y 1+y 2)=0,易知x 1−x 2≠0,y 1+y 2≠0,所以y 1−y 2x 1−x 2=−x 1+x22(y 1+y 2)=−1,即k AB =−1. 设AB 方程为y =−x +m ,代入x 22+y 2=1并整理得3x 2−4mx +2m 2−2=0.由Δ=8(3−m 2)>0解得m 2<3,又由x 1+x 22=2m 3∈√3),∴0<m <√3.由韦达定理得x 1+x 2=4m 3,x 1x 2=2(m 2−1)3,故OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2=x 1x 2+(−x 1+m )(−x 2+m ) =2x 1x 2−m (x 1+x 2)+m 2=4(m 2−1)3−4m 23+m 2 =m 2−43.而0<m <√3,所以OA ⃑⃑⃑⃑⃑ ⋅OB⃑⃑⃑⃑⃑ 的取值范围是(−43,53). 【点睛】本小题主要考查椭圆的定义和标准方程,考查直线和椭圆的位置关系,考查点差法,考查向量数量积的坐标运算,考查运算求解能力,属于中档题.19.已知Q 为圆x 2+y 2=1上一动点,Q 在x 轴,y 轴上的射影分别为点A ,B ,动点P 满足BA ⃑⃑⃑⃑⃑ =AP ⃑⃑⃑⃑⃑ ,记动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(0,−35)的直线与曲线C 交于M ,N 两点,判断以MN 为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.【详解】(1)设Q(x 0,y 0),P (x,y),则x 02+y 02=1,由BA ⃑⃑⃑⃑⃑ =AP ⃑⃑⃑⃑⃑ ,可得{x 0=x2y 0=−y,代入x 02+y 02=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1; (2)假设存在满足条件的定点,由对称性可知该定点必在y 轴上,设定点为H(0,m), 当直线l 的斜率存在时,设直线l 的方程为y =kx −35,联立{y =kx −35x 24+y 2=1得(1+4k 2)x 2−245kx −6425=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=24k5(1+4k 2),x 1x 2=−6425(1+4k 2),所以y 1+y 2=k(x 1+x 2)−65=−65(1+4k 2),y 1y 2=(kx 1−35)(kx 2−35)=k 2x 1x 2−35k(x 1+x 2)+925=9−100k 225(1+4k 2), 因为HM ⃑⃑⃑⃑⃑⃑⃑ =(x 1,y 1−m),HN ⃑⃑⃑⃑⃑⃑ =(x 2,y 2−m),所以HM ⃑⃑⃑⃑⃑⃑⃑ ⋅HN ⃑⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2−m(y 1+y 2)+m 2=100(m 2−1)k 2+25m 2+30m−5525(1+4k 2)=0,对任意的k 恒成立,所以{100(m 2−1)=025m 2+30m −55=0 ,解得m =1,即定点为H(0,1), 当直线l 的斜率不存在时,以MN 为直径的圆也过点(0,1), 故以MN 为直径的圆过定点(0,1).【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,直线bx −y +√2a =0经过椭圆C 的左焦点. (1)求椭圆C 的标准方程;(2)若直线bx −y +4=0与y 轴交于点P ,A 、B 是椭圆C 上的两个动点,且它们在y 轴的两侧,∠APB的平分线在y 轴上,|PA |≠|PB ||,则直线AB 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【详解】(1)在直线方程bx −y +√2a =0中令y =0,则x =−√2ab ,故c =√2ab ,又c a=√22,故b =2,所以a =4,所以椭圆标准方程为:x 28+y 24=1.(2)因为A 、B 在在y 轴的两侧,故AB 的斜率必存在, 设AB 的方程为y =kx +b ,A (x 1,y 1),B (x 2,y 2), 因为P 在y 轴上且P 在直线2x −y +4=0,故P (0,4). 因为∠APB 的平分线在y 轴上,所以y 1−4x 1+y 2−4x 2=0,而y 1=kx 1+b,y 2=kx 2+b ,代入整理得到:2kx 1x 2+(b −4)(x 1+x 2)=0. 由{y =kx +b x 2+2y 2=8可得(1+2k 2)x 2+4kbx +2b 2−8=0,所以x1+x2=−4kb1+2k2,x1x2=2b2−81+2k2,所以2k×2b 2−81+2k2+(b−4)(−4kb1+2k2)=0,化简得到k(b−1)=0,所以对任意的k,总有b=1,故直线AB过定点(0,1).【点睛】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等. 直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于x或y的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有x1x2,x1+x2或y1y2,y1+y2,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.21.已知椭圆的离心率为√32,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由试题解析:(1)设椭圆的焦半距为c,则由题设,得{a=2ca=√32,解得{a=2c=√3,………2分所以b2=a2−c2=4−3=1,故所求椭圆C的方程为.…………..4分(2)存在实数k使得以线段AB为直径的圆恰好经过坐标原点O.理由如下:设点A(x1,y1),B(x2,y2),将直线l的方程代入,并整理,得.(*)………………………………….6分则,.………………………………………8分因为以线段AB 为直径的圆恰好经过坐标原点O ,所以OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =0,即.又,于是,…………….10分解得k =±√112,………………………………..11分经检验知:此时(*)式的Δ>0,符合题意.所以当k =±√112时,以线段AB 为直径的圆恰好经过坐标原点O .………………12分考点:直线与圆锥曲线的综合问题;椭圆的标准方程22.设曲线E 是焦点在x 轴上的椭圆,两个焦点分别是是F 1,F 2,且|F 1F 2|=2,M 是曲线上的任意一点,且点M 到两个焦点距离之和为4.(1)求E 的标准方程;(2)设E 的左顶点为D ,若直线l :y =kx +m 与曲线E 交于两点A ,B (A ,B 不是左右顶点),且满足|DA ⃑⃑⃑⃑⃑ +DB ⃑⃑⃑⃑⃑⃑ |=|DA ⃑⃑⃑⃑⃑ −DB⃑⃑⃑⃑⃑⃑ |,求证:直线l 恒过定点,并求出该定点的坐标. 【详解】(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 由题意{2a =42c =2 ,即{a =2c =1,∴b =√a 2−c 2=√3, ∴椭圆E 的方程是x 24+y 23=1.(2)由(1)可知D (−2,0),设A (x 1,y 1),B (x 2,y 2),联立{y =kx +m x 24+y 23=1 ,得(3+4k 2)x 2+8mkx +4(m 2−3)=0,Δ=(8mk)2−4(3+4k 2)(4m 2−12)=16(12k 2−3m 2+9)>0,即3+4k 2−m 2>0,∴x 1+x 2=−8mk 3+4k 2,x 1x 2=4(m 2−3)3+4k 2,又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2 =3m 2−12k 23+4k 2,∵|DA ⃑⃑⃑⃑⃑ +DB ⃑⃑⃑⃑⃑⃑ |=|DA ⃑⃑⃑⃑⃑ −DB ⃑⃑⃑⃑⃑⃑ |,∴DA ⃑⃑⃑⃑⃑ ⊥DB ⃑⃑⃑⃑⃑⃑ ,即DA ⃑⃑⃑⃑⃑ ⋅DB⃑⃑⃑⃑⃑⃑ =0, 即(x 1+2,y 1)⋅(x 2+2,y 2)=x 1x 2+2(x 1+x 2)+4+y 1y 2=0, ∴4m 2−123+4k 2+2×−8mk 3+4k 2+4+3m 2−12k 23+4k 2=0,∴7m 2−16mk +4k 2=0, 解得m 1=2k ,m 2=27k ,且均满足即3+4k 2−m 2>0,当m 1=2k 时,l 的方程为y =kx +2k =k (x +2),直线恒过(−2,0),与已知矛盾;当m 2=27k ,l 的方程为y =kx +27k =k (x +27),直线恒过(−27,0).【点睛】考查求椭圆的标准方程,直线与椭圆相交问题、椭圆中直线过定点问题.对直线与椭圆相交问题,一般设交点为A (x 1,y 1),B (x 2,y 2),由直线方程与椭圆方程联立消元用韦达定理得x 1+x 2,x 1x 2,再把这个结论代入题中另一条件可得参数k,m 的关系,求得定点.23.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,M 为椭圆上一动点,当ΔMF 1F 2的面积最大时,其内切圆半径为b 3,设过点F 2的直线l 被椭圆C 截得线段RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)若点A 为椭圆C 的左顶点,P,Q 是椭圆上异于左、右顶点的两点,设直线AP,AQ 的斜率分别为k 1,k 2,若k 1k 2=−14,试问直线PQ 是否过定点?若过定点,求该定点的坐标;若不过定点,请说明理由.【详解】解:(1)由题意及三角形内切圆的性质可得12⋅2c ⋅b =12(2a +2c)⋅b 3,得c a =12① 将x =c 代入x 2a 2+y 2b 2=1,结合a 2=b 2+c 2②,得y =±b 2a ,所以2b 2a =3③,由①②③得a =2,b =√3故椭圆C 的标准方程为x 24+y 23=1(2)设点P,Q 的坐标分别为(x 1,y 1),(x 2,y 2).①当直线PQ 的斜率不存在时,由题意得P (1,32),Q (1,−32)或P (1,−32),Q (1,32), 直线PQ 的方程为x =1②当直线PQ的斜率存在时,设直线PQ的方程为y=kx+m,联立得{x24+y23=1y=kx+m,消去y得(4k2+3)x2+8kmx+4m2−12=0,由Δ=64k2m2−4(4k2+3)(4m2−12)=48(4k2−m2+3)>0,得4k2+3>m2x1+x2=−8km4k2+3,x1x2=4m2−124k2+3.(1))由k1k2=y1y2(x1+2)(x2+2)=−14,可得4y1y2+(x1+2)(x2+2)=0,得4(kx1+m)(kx2+m)+(x1+2)(x2+2)=0,整理得(4k2+1)x1x2+(4km+2)(x1+x2)+4m2+4=0,(2)由(1)和(2)得m2−km−2k2=0,解得m=2k或m=−k当m=2k时,直线PQ的方程为y=kx+2k,过定点(−2,0),不合题意;当m=−k时,直线PQ的方程为y=kx−k,过定点(1,0),综上直线PQ过定点,定点坐标为(1,0).【点睛】本题考查求椭圆的标准方程,直线与椭圆的综合问题以及直线过定点问题,属于综合题.。
北师大版2021版高考数学(理)一轮复习第九章平面解析几何第5讲椭圆第1课时椭圆及其性质练习[基础题组练]1.(2020·河北衡水二模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为13,则ab=( )A.98 B .322C.43D .324解析:选D.因为e =ca =a 2-b 2a 2=13,所以8a 2=9b 2,所以a b =324.故选D. 2.已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是( )A.x 216+y 27=1 B.x 216+y 27=1或x 27+y 216=1 C.x 216+y 225=1 D.x 216+y 225=1或x 225+y 216=1 解析:选B.因为a =4,e =34,所以c =3,所以b 2=a 2-c 2=16-9=7. 因为焦点的位置不确定,所以椭圆的标准方程是x 216+y 27=1或x 27+y 216=1.3.已知点F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,若点P 在椭圆C 上,且∠F 1PF 2=60°,则|PF 1|·|PF 2|=( )A .4B .6C .8D .12解析:选A.由|PF 1|+|PF 2|=4,|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 60°=|F 1F 2|2,得3|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=4,故选A.4.设椭圆E 的两焦点分别为F 1,F 2,以F 1为圆心,|F 1F 2|为半径的圆与E 交于P ,Q 两点,若△PF 1F 2为直角三角形,则E 的离心率为( )A.2-1 B .5-12C.22D .2+1解析:选A.不妨设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),如图所示,因为△PF 1F 2为直角三角形,所以PF 1⊥F 1F 2,又|PF 1|=|F 1F 2|=2c ,所以|PF 2|=22c ,所以|PF 1|+|PF 2|=2c +22c =2a ,所以椭圆E 的离心率e =2-1.故选A.5.(2020·江西赣州模拟)已知A ,B 是椭圆E :x 2a 2+y 2b2=1(a >b >0)上的两点,且A ,B 关于坐标原点对称,F 是椭圆的一个焦点,若△ABF 面积的最大值恰为2,则椭圆E 的长轴长的最小值为( )A .1B .2C .3D .4解析:选D.如图所示,设直线AB 的方程为ty =x ,F (c ,0),A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧ty =x ,x 2a 2+y 2b2=1可得y 2=a 2b 2b 2t 2+a 2=-y 1y 2,所以△ABF 的面积S =12c |y 1-y 2|=12c (y 1+y 2)2-4y 1y 2=c a 2b 2b 2t 2+a 2≤cb ,当t =0时取等号.所以bc =2.所以a 2=b 2+c 2≥2bc =4,a ≥2.所以椭圆E 的长轴长的最小值为4.故选D.6.(2019·高考全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20=4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y 220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15). 答案:(3,15)7.(2020·河北衡水三模)“九天揽月”是中华民族的伟大梦想,我国探月工程的进展与实力举世瞩目.近期,“嫦娥四号”探测器实现历史上的首次月背着陆,月球上“嫦娥四号”的着陆点,被命名为天河基地,如图是“嫦娥四号”运行轨道示意图,圆形轨道距月球表面100千米,椭圆形轨道的一个焦点是月球球心,一个长轴顶点位于两轨道相切的变轨处,另一个长轴顶点距月球表面15千米,则椭圆形轨道的焦距为________千米.解析:设椭圆的长半轴长为a 千米,半焦距为c 千米,月球半径为r 千米.由题意知⎩⎪⎨⎪⎧a +c =100+r ,a -c =15+r ,解得2c =85.即椭圆形轨道的焦距为85千米. 答案:858.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是________.解析:根据椭圆的对称性及椭圆的定义可得,A ,B 两点到椭圆左、右焦点的距离为4a =2(|AF |+|BF |)=8,所以a =2.又d =|3×0-4×b |32+(-4)2≥45,所以1≤b <2.又e =c a =1-b 2a2=1-b 24,所以0<e ≤32.答案:⎝ ⎛⎦⎥⎤0,32 9.已知F 1,F 2分别为椭圆x 22+y 2=1的左、右焦点,过F 1的直线l 与椭圆交于不同的两点A ,B ,连接AF 2和BF 2.(1)求△ABF 2的周长;(2)若AF 2⊥BF 2,求△ABF 2的面积.解:(1)因为F 1,F 2分别为椭圆x 22+y 2=1的左、右焦点,过F 1的直线l 与椭圆交于不同的两点A ,B ,连接AF 2和BF 2. 所以△ABF 2的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =4 2. (2)设直线l 的方程为x =my -1,由⎩⎪⎨⎪⎧x =my -1x 2+2y 2=2,得(m 2+2)y 2-2my -1=0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2, 因为AF 2⊥BF 2,所以F 2A →·F 2B →=0, 所以F 2A →·F 2B →=(x 1-1)(x 2-1)+y 1y 2 =(my 1-2)(my 2-2)+y 1y 2 =(m 2+1)y 1y 2-2m (y 1+y 2)+4 =-m 2-1m 2+2-2m ×2m m 2+2+4 =-m 2+7m 2+2=0. 所以m 2=7.所以△ABF 2的面积S =12×|F 1F 2|×(y 1+y 2)2-4y 1y 2=89.10.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 2(3,0),离心率为e .(1)若e =32,求椭圆的方程; (2)设直线y =kx 与椭圆相交于A ,B 两点,M ,N 分别为线段AF 2,BF 2的中点,若坐标原点O 在以MN 为直径的圆上,且22<e ≤32,求k 的取值范围. 解:(1)由题意得c =3,c a =32,所以a =2 3.又因为a 2=b 2+c 2,所以b 2=3.所以椭圆的方程为x 212+y 23=1.(2)由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =kx得(b 2+a 2k 2)x 2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+a 2k 2,依题意易知,OM ⊥ON ,四边形OMF 2N 为矩形,所以AF 2⊥BF 2.因为F 2A →=(x 1-3,y 1),F 2B →=(x 2-3,y 2), 所以F 2A →·F 2B →=(x 1-3)(x 2-3)+y 1y 2 =(1+k 2)x 1x 2+9=0.即-a 2(a 2-9)(1+k 2)a 2k 2+(a 2-9)+9=0,将其整理为k 2=a 4-18a 2+81-a 4+18a 2=-1-81a 4-18a 2. 因为22<e ≤32,所以23≤a <32,12≤a 2<18. 所以k 2≥18,即k ∈⎝ ⎛⎦⎥⎤-∞,-24∪⎣⎢⎡⎭⎪⎫24,+∞.[综合题组练]1.设椭圆:x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,右焦点为F ,B 为椭圆在第二象限内的点,直线BO 交椭圆于点C ,O 为原点,若直线BF 平分线段AC ,则椭圆的离心率为( )A.12 B .13 C.14 D .15解析:选B.如图,设点M 为AC 的中点,连接OM ,则OM 为△ABC 的中位线,于是△OFM ∽△AFB ,且|OF ||FA |=|OM ||AB |=12,即c a -c =12,解得e =c a =13.故选B. 2.(2020·福建福州一模)已知F 1,F 2为椭圆x 24+y 2=1的左、右焦点,P 是椭圆上异于顶点的任意一点,K 点是△F 1PF 2内切圆的圆心,过F 1作F 1M ⊥PK 于点M ,O 是坐标原点,则|OM |的取值范围为( )A .(0,1)B .(0,2)C .(0,3)D .(0,23)解析:选C.如图,延长PF 2,F 1M 相交于N 点,因为K 点是△F 1PF 2内切圆的圆心,所以PK 平分∠F 1PF 2, 因为F 1M ⊥PK ,所以|PN |=|PF 1|,M 为F 1N 的中点, 因为O 为F 1F 2的中点,M 为F 1N 的中点,所以|OM |=12|F 2N |=12||PN |-|PF 2||=12||PF 1|-|PF 2||<12|F 1F 2|=c =3,所以|OM |的取值范围是(0,3). 故选C.3.已知F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过原点O 且倾斜角为30°的直线l 与椭圆C 的一个交点为A ,若AF 1⊥AF 2,S △F 1AF 2=2,则椭圆C 的方程为________.解析:因为点A 在椭圆上,所以|AF 1|+|AF 2|=2a ,对其平方,得|AF 1|2+|AF 2|2+2|AF 1||AF 2|=4a 2,又AF 1⊥AF 2,所以|AF 1|2+|AF 2|2=4c 2,则2|AF 1||AF 2|=4a 2-4c 2=4b 2,即|AF 1||AF 2|=2b 2,所以S △F 1AF 2=12|AF 1||AF 2|=b 2=2.又△AF 1F 2是直角三角形,∠F 1AF 2=90°,且O 为F 1F 2的中点,所以|OA |=12|F 1F 2|=c ,由已知不妨设A 在第一象限,则∠AOF 2=30°,所以A ⎝ ⎛⎭⎪⎫32c ,12c ,则S △AF 1F 2=12|F 1F 2|·12c =12c 2=2,c 2=4,故a 2=b 2+c 2=6,所以椭圆方程为x 26+y 22=1.答案:x 26+y 22=14.正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b2=1(a >b >0)上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是________.解析:设正方形的边长为2m ,因为椭圆的焦点在正方形的内部,所以m >c ,又正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1(a >b >0)上,所以m 2a 2+m 2b 2=1>c 2a 2+c 2b 2=e 2+e 21-e 2,整理得e 4-3e 2+1>0,e 2<3-52=(5-1)24,所以0<e <5-12. 答案:⎝ ⎛⎭⎪⎫0,5-12 5.已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点.若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值. 解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22. (2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0, 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎪⎫x 0+2y 0x 02+(y 0-2)2=x 2+y 20+4y 20x 20+4=x 20+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立,所以|AB |2≥8.故线段AB 长度的最小值为2 2.6.(2020·江西八校联考)已知椭圆E :x 2a 2+y 2b2=1(a >b >0),F 1,F 2为其左、右焦点,B 1,B 2为其上、下顶点,四边形F 1B 1F 2B 2的面积为2,点P 为椭圆E 上任意一点,以P 为圆心的圆(记为圆P )总经过坐标原点O .(1)求椭圆E 的长轴A 1A 2的长的最小值,并确定此时椭圆E 的方程;(2)对于(1)中确定的椭圆E ,若给定圆F 1:(x +1)2+y 2=3,则圆P 和圆F 1的公共弦MN 的长是不是定值?如果是,求|MN |的值;如果不是,请说明理由.解:(1)依题意四边形F 1B 1F 2B 2的面积为2bc , 所以2bc =2.因为|A 1A 2|=2a =2b 2+c 2≥22bc =22,当且仅当b =c =1时取“=”,此时a =2, 所以长轴A 1A 2的长的最小值为22,此时椭圆E 的方程为x 22+y 2=1.(2)是定值.设点P (x 0,y 0),则x 202+y 20=1⇒y 20=1-x 202.圆P 的方程为(x -x 0)2+(y -y 0)2=x 20+y 20,即x 2+y 2-2x 0x -2y 0y =0,① 圆F 1的方程为(x +1)2+y 2=3,即x 2+y 2+2x -2=0,②①-②得公共弦MN所在直线的方程为(x0+1)x+y0y-1=0,所以点F1到公共弦MN所在直线的距离d=|x0+2|(x0+1)2+y20=|x0+2|(x0+1)2+1-12x20=|x0+2|12x20+2x0+2=2,则|MN|=23-d2=2,所以圆P和圆F1的公共弦MN的长为定值2.。
椭圆常考题型汇总及练习 第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()012222>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5. 离心率(1)椭圆焦距与长轴的比ace =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆。
6.通径(过椭圆的焦点且垂直于长轴的弦),ab 22.7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.(二)运用的知识点及公式1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。
椭圆练习:+B=,求椭圆的离心率为的距离为,转到某一位置时,有成立?若存在,求出所有的:+)•y+2,的面积为:+)的离心率为x=面的两焦点分别为+y=+)的离心率为﹣:=1(的一个方向向量为的左、右焦点分别为.证明:,使得λ;:=1,﹣+,(,||=||+)的离心率为++.求证:直线:(,以原点为圆心,椭圆的短半轴为半径的圆与直线两点,求天津)设椭圆,离心率为:经过点.过点:,且=德阳三模)已知离心率为的椭圆过点相切的直线为坐标原点,求+且过点(,求的取值范围.C+2015年03月03日1586639004的高中数学组卷参考答案与试题解析一.解答题(共30小题)1.(2014•北京)已知椭圆C:x2+2y2=4.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.化为标准方程为,求出化为标准方程为,,,=∴,∵当且仅当.2.(2014•安徽)设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(Ⅰ)若|AB|=4,△ABF2的周长为16,求|AF2|;(Ⅱ)若cos∠AF2B=,求椭圆E的离心率.B=B=,(c=e==3.(2014•黄冈模拟)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l 的方程;若不存在,说明理由.成立,则其充要条件为:点的距离为,∴)知椭圆的方程为,,使在椭圆上,即解得∴,即4.(2015•南充二模)已知椭圆T:+=1(a>b>0)经过点P(2,),一个焦点F的坐标是(2,0).(Ⅰ)求椭圆T的方程;(Ⅱ)设直线l:y=kx+m与椭圆T交于A、B两点,O为坐标原点,椭圆T的离心率为e,若k OA•k OB=e2﹣1.①求•的取值范围;②求证:△AOB的面积为定值.,从而有+根据根与系数的关系表示出•∴=1,=1椭圆的方程是:+=1+,=•=,,得:∴==,时,•时,••<S=5.(2014•惠州模拟)已知椭圆的一个顶点为A(0,﹣1),焦点在x轴上.若右焦点到直线x﹣y+2=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M、N.当|AM|=|AN|时,求m的取值范围.)依题意可设椭圆方程为,由题设得()依题意可设椭圆方程为,)由题设故所求椭圆的方程为∴从而∴解得的取范围是(6.(2015•甘肃一模)已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程.,b=求得)设椭圆的方程为,由题意可得:∴.的半径,,7.(2014•广州模拟)已知椭圆C:+=1(a>b>0)的离心率为,F1、F2分别为椭圆C的左、右焦点,若椭圆C的焦距为2.(1)求椭圆C的方程;(2)设M为椭圆上任意一点,以M为圆心,MF1为半径作圆M,当圆M与直线l:x=有公共点时,求△MF1F2面积的最大值.的值,再由离心率为)根据题意满足,再表示出直线,再由则,且的方程为..,,.又,∴,8.(2014•上海模拟)已知椭圆的两焦点分别为F1,F2,P是椭圆在第一象限内的一点,并满足,过P作倾斜角互补的两条直线PA,PB分别交椭圆于A,B两点.(Ⅰ)求P点坐标;(Ⅱ)当直线PA经过点(1,)时,求直线AB的方程;(Ⅲ)求证直线AB的斜率为定值.,由题意可得由向量计算公式可得,,的方程为:)由椭圆可得c=两焦点分别为,由题意可得解得P)∵,的方程分别为,解得,A..=的方程为,化为的方程为,解得A.B,.9.(2014•安徽模拟)已知椭圆+y2=1,O为坐标原点,椭圆的右准线与x轴的交点是A.(Ⅰ)点P在已知椭圆上,动点Q满足=+,求动点Q的轨迹方程;(Ⅱ)过椭圆右焦点F的直线与椭圆交于点M,N,求△AMN的面积的最大值.的坐标,利用=,可得坐标之间的关系,即可求动点,与)由椭圆+y,在已知椭圆上,故为动点,与.的距离的面积,当且仅当,即的面积的最大值是.10.(2014•天津一模)已知椭圆C:=1(a>b>0)的离心率为,椭圆的四个顶点所围成菱形的面积为8.(1)求椭圆的方程;(2)四边形ABCD的顶点在椭圆C上,且对角线AC,BD均过坐标原点O,若k AC•k BD=﹣.①求的范围;②求四边形ABCD的面积.)由已知可得:椭圆的方程为.的斜率不存在时,,∴,得(∴∵,∴,∴=∴∴=∴因此,综上可得:,则.==2=11.(2015•南充二模)已知椭圆T:+=1(a>b>0)经过点P(2,),一个焦点F的坐标是(2,0).(1)求椭圆T的方程;(2)设直线l:y=kx+m与椭圆T交于A、B两点,O为坐标原点,椭圆T的离心率为e,若k OA•k OB=e2﹣1,求证:△AOB的面积为定值.,的方程为+=,代入=1,,∴﹣|AB|=.=•=•12.(2015•嘉定区一模)已知点A(0,﹣2),椭圆E:(a>b>0)的长轴长为4,F是椭圆的右焦点,直线AF的一个方向向量为,O为坐标原点.(1)求椭圆E的方程;(2)设过点A的动直线l与椭圆E相交于P、Q两点,当△OPQ的面积S最大时,求l的方程.的方程为,得,即的方程为.代入,的距离,所以的面积.,则,,即的方程为13.(2014•福建模拟)已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.(1)求椭圆的方程;(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:为定值.(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由..,代入椭圆方程x2+2y2=4,得,然后,椭圆方程为(:,∴,∴,∴(∴14.(2014•泰州模拟)如图,过椭圆L的左顶点A(﹣3,0)和下顶点B且斜率均为k的两直线l1,l2分别交椭圆于C,D,又l1交y轴于M,l2交x轴于N,且CD与MN相交于点P,当k=3时,△ABM是直角三角形.(Ⅰ)求椭圆L的标准方程;(Ⅱ)(i)证明:存在实数λ,使得=λ;(ii)求|OP|的取值范围.,使得λ;∴;,,则由韦达定理可得另一根为,,可设=t=t,)∴(,∵,使得λ;)∵=,)d==[15.(2014•保定二模)设椭圆E:+=1(a>b>0)的离心率为e=,且过点(﹣1,﹣).(Ⅰ)求椭圆E的方程;(Ⅱ)设椭圆E的左顶点是A,若直线l:x﹣my﹣t=0与椭圆E相交于不同的两点M、N(M、N与A均不重合),若以MN为直径的圆过点A,试判定直线l是否过定点,若过定点,求出该定点的坐标.,得到,﹣所以,得到,可得椭圆方程为,代入点的方程为,,所以所以,的方程是16.(2014•丰台区二模)已知椭圆E:+=1与直线l:y=kx+m交于A,B两点,O为坐标原点.(Ⅰ)若直线l经过椭圆E的左焦点,且k=1,求△AOB的面积;(Ⅱ)若OA⊥OB,且直线l与圆O:x2+y2=r2相切,求圆O的半径r的值.++=1﹣S==+,17.(2014•宝鸡二模)已知椭圆C的两个焦点是F1(﹣,0),F2(,0),点B(,)在椭圆C上.(1)求椭圆C的方程;(2)椭圆C的下顶点为A,直线y=kx+m(k≠0,m≠0)与椭圆C交于不同两点M,N,当||=||时,求m的取值范围.(﹣((,的方程为(c=,∴的方程.,﹣,即>∴18.(2014•甘肃一模)已知椭圆C:+=1(a>b>0)的离心率为,其中左焦点F(﹣2,0).(Ⅰ)求椭圆C的方程;(Ⅱ)若直线y=x+m与椭圆C交于两个不同的两点A,B,且线段的中点M总在圆x2+y2=1的内部,求实数m的取值范围.:=1)的离心率为,其中左焦点椭圆的离心率为,其中左焦点∴a=2的方程为<,+m=(﹣))﹣19.(2014•达州二模)已知椭圆C:+=1(a>b>0)的左顶点A(﹣2,0),过右焦点F且垂直于长轴的弦长为3.(Ⅰ)求椭圆C的方程;(Ⅱ)已知直线y=kx+m(k<0,m>0)与y轴交于点P,与x轴交于点Q,与椭圆C交于M,N两点,若+=.求证:直线y=kx+m过定点,并求出这个定点坐标.,+=,﹣∴的方程为(﹣,|PN|=,∵=,∴=•∴,∴,20.(2014•西城区一模)已知椭圆W:=1(a>b>0)的焦距为2,过右焦点和短轴一个端点的直线的斜率为﹣1,O为坐标原点.(Ⅰ)求椭圆W的方程.(Ⅱ)设斜率为k的直线l与W相交于A,B两点,记△AOB面积的最大值为S k,证明:S1=S2.的方程为.由方程组,∴的距离,∴≤=21.(2014•仁寿县模拟)已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.(Ⅰ)求椭圆C的方程;(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q;(Ⅲ)在(Ⅱ)的条件下,过点Q的直线与椭圆C交于M,N两点,求的取值范围.,能够导出.再由的方程为得(上.由.再由根据判别式和根与系数的关系求解的坐标,进而可得..,的方程为.的方程为.,得整理,得,.,所以.,,,﹣).的取值范围是22.(2013•天津)设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若=8,求k的值.,再由离心率为,可求出消去,再由韦达定理进行求解.求得,利用)根据椭圆方程为.轴的直线被椭圆截得的线段长为∴离心率为,∴=,,a=椭圆的方程为;,,,∴,((23.(2013•北京)已知A,B,C是椭圆W:上的三个点,O是坐标原点.(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.的长等于的横坐标满足=r,解之得t=(舍负)),可得菱形S=|B0|=的公共点,解之得••••24.(2012•吉安二模)已知椭圆经过点M(﹣2,﹣1),离心率为.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.(I)求椭圆C的方程;(II)∠PMQ能否为直角?证明你的结论;(III)证明:直线PQ的斜率为定值,并求这个定值.经过点)解:由题设,得,①=,②的方程为.==125.(2014•江西一模)设椭圆C:=1(a>b>0)的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且=.(1)求椭圆C的离心率;(2)若过A、Q、F三点的圆恰好与直线l:x相切,求椭圆C的方程.的坐标表示出和根据⊥,•=0=,求得的外接圆圆心和半径,进而根据==∵⊥,∴=0,解得,由于=,,,∴e=.,得到,得到(﹣的外接圆圆心为(a r=|FQ|=ab=故所求椭圆方程为26.(2014•滨州一模)已知椭圆C:=1(a>b>0)的右焦点为(,0),离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l与椭圆C相交于A,B两点,且以AB为直径的圆经过原点O,求证:点O到直线AB的距离为定值;(Ⅲ)在(Ⅱ)的条件下,求△OAB面积的最大值.)根据椭圆的右焦点为(,离心率为椭圆的右焦点为(,离心率为∴a=的方程为,经过坐标原点,∴)×经过坐标原点,∴|==2±<|AB|d面积的最大值为.27.(2012•德阳三模)已知离心率为的椭圆过点.(1)求椭圆C的方程;(2)已知与圆相切的直线l与椭圆C相交于不同两点A、B,O为坐标原点,求的值.)根据离心率为的椭圆过点x=,此时离心率为的椭圆过点∴的方程为x==∴于圆相切得:,∴=28.(2014•北京模拟)已知椭圆C:+=1(a>b>0)的过点(0,1),且离心率等于.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为坐标原点,椭圆C与直线y=kx+1相交于两个不同的点A,B,求△OAB面积的最大值.+椭圆的离心率等于a=,代入中,+kd=|AB|d=||=||的最大值为29.(2013•曲靖二模)已知椭圆C:+=1(a>b>0)的焦距为4且过点(,﹣2).(1)求椭圆C方程;(2)过椭圆上焦点的直线与椭圆C分别交于点E,F,求•的取值范围.,根据椭圆的定义点(,从而求得.)椭圆焦距是∴,所以的方程是;则点,=,所以30.(2015•洛阳一模)已知F1,F2是椭圆C+=1的左,右焦点,以线段F1F2为直径的圆与圆C关于直线x+y﹣2=0对称.(l)求圆C的方程;(2)过点P(m,0)作圆C的切线,求切线长的最小值以及相应的点P的坐标.=1,此时切线长取最小值。