9蓄热式加热炉燃烧系统的结构和布置
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
一、引言蓄热式加热炉是用于轧钢厂的一种新型的加热炉,具有高效燃烧、回收利用烟气及低二氧化碳排放等优点。
在工业企业中广泛应用,对节能减排工作起着重要的促进作用。
二、蓄热式加热炉的工作原理及其特点蓄热式加热炉的高效蓄热式燃烧系统主要由蓄热式烧嘴和换向系统组成。
它分为预热段、加热段和均热段三个主体。
其原理是采用蓄热室预蓄热全,达到在最大程度上回收调温烟气的湿热,提高助燃空气温度的效果。
新型蓄热式加热炉的蓄热室现在普遍采用陶瓷小球或蜂窝体作为蓄热体,其表面积大,极大的提高了传热系统,使蓄热室内的体积大大缩小。
再加上新型可靠的自动控制技术及预热介质预热温度高,废气预热得到接近极限的回收。
是一种新型的高效、节能的加热炉。
参与控制的主要现场设备有:各段炉温测量热电偶;煤气预热器前后烟气温度测量热电偶;各段烟气及排烟机前烟气温度测量热电偶;各段煤气、空气及烟气流量测量孔板及差压变送器;各段煤气、空气及烟气流量调节阀;各段两侧烧嘴前煤气切断阀及空气/烟气三通换向阀;炉压测量微差压变送器及用于炉压调节的烟道闸板;用于风压调节的风机入口进风阀;煤气总管切断阀及压力调节阀;其它安全保护连锁设备等。
三、换向原理换向装置是加热炉的重要部件,整个燃烧过程都是靠抽象向装置完成的。
可以说它是整个加热炉的心脏。
它的换向原理是:初始状态下,换向装置处于某一固定状态时,向炉子一侧的燃烧器输送煤气、空气,在炉内实现混合燃烧,同时从炉子另一侧的燃烧器排出烟气,经过一个周期(120s-180s)改变方向,实现周期换向。
换向装置一般采用双气缸、二位四通换向阀,它内有四个通道,每次动作开启两具通道,同时关闭两个通道以实现供气和排水气的周期性换向。
四、自动控制系统蓄热式加热炉控制系统一般有:⑴换向控制系统;⑵炉温控制系统;⑶炉内压力控制系统;⑷安全保护控制系统;⑸烟空比控制;⑹HMI人机对话界面的功能。
1、换向控制系统设备的选型换向控制是整个加热炉燃烧、控制系统的重中之重,是燃烧控制的关键控制系统。
管理及其他M anagement and other 蓄热式加热炉的蓄热燃烧技术应用及操作优化探析高 阳摘要:当前许多钢厂的轧钢产线加热炉仍使用的是三段式步进蓄热加热炉,与其他类型加热炉相比,三段式步进蓄热加热炉具有加热均匀,温度可控,余热可回收,废气排放量低、燃料选择面广等优点,适合高炉煤气、转炉煤气、焦炉煤气、天然气等各种燃料,并且可以有效利用本厂产生的高炉煤气、焦炉煤气或者转炉煤气等作为燃料,既保证了加热质量,有效降低钢坯的氧化烧损,又实现了节能减排,降本创效,受到了国内许多钢厂的青睐。
本文主要介绍了蓄热式加热炉及蓄热燃烧技术的原理,并简述了蓄热式加热炉蓄热燃烧技术在河钢张宣科技型材作业区的应用效果及操作优化相关情况。
蓄热式加热炉及其蓄热燃烧技术的广泛应用不仅仅给大多数钢铁企业带来了巨大的经济效益,更重要的是其技术的应用在节能环保方面也起到了巨大的作用。
关键词:蓄热式加热炉;蓄热燃烧;蓄热体;技术应用;节能;环保;操作优化1 概述河钢张宣科技型材作业区设计产能为70万吨/年,生产钢种为碳素结构钢、优质碳素结构钢、低合金钢等,为适应轧线工艺和燃气条件的要求、提高钢坯加热质量、降低钢坯氧化烧损及控制脱碳,河钢张宣科技型材作业区选用的是三段式步进梁式蓄热加热炉,自投产以来,本加热炉生产运行安全稳定,有效利用了本单位炼钢厂产生的转炉煤气,加热质量指标优良,生产运行成本低,节能环保,但是在实际操作使用管理当中仍然存在一些例如操作不当、管理不到位问题,这些问题的存在直接影响了加热炉的炉况寿命、经济指标、节能降耗和使用效率。
下面就以上问题重点对蓄热式加热炉、蓄热燃烧技术应用和操作优化及节能环保进行探析。
2 蓄热式加热炉首先,对蓄热式加热炉进行一个简单的介绍,蓄热式加热炉主要由加热炉炉体本身、换向系统、蓄热室蓄热体、供风系统、燃料、汽化冷却、液压润滑和排烟及各种管路等系统构成。
实质上就是蓄热式换热器与常规加热炉的结合体。
蓄热式加热炉的工作原理节约能源是我国能源战略的重要目标。
在轧钢生产中,加热炉是主要的耗能设备之一。
合理选用加热炉,提高燃料利用率,对于降低能源消耗,减少钢坯氧化烧损,提高加热质量,从而充分创造整个轧线生产过程的经济效益,具有非常重要的意义。
宣钢基于2000年建成投产的第一条线材生产线加热炉的状况,并且对国内外大中型线材生产线加热炉在节能降耗、环境保护等方面进行调研对比,在新建的第二条高速线材生产线中采用了双蓄热式步进梁加热炉。
宣钢二高线厂步进梁加热炉的作用是将大于500℃的热装或常温下冷装的连铸坯加热到轧制所需要的温度,以提高金属的塑性,减少轧制变形抗力和机械电气负荷,节约能源和能耗。
蓄热式加热炉的工作原理1 蓄热式加热炉的理论基础蓄热式燃烧技术,19世纪中期就开始用于高炉热风炉、平炉、焦炉、玻璃熔炉等规模大且温度高的炉子。
其原理是采用蓄热室余热回收装置,交替切换烟气和空气,使之流经蓄热体,达到在最大程度上回收高温烟气的显热,提高助燃空气温度的效果。
但传统的蓄热室采用格子砖作蓄热体,传热效率低,蓄热室体积庞大,换向周期长,限制了它在其他工业炉上的应用。
新型蓄热室,采用陶瓷小球或蜂窝体作蓄热体,其比表面积高达200~1000m2/m3,比老式的格子砖大几十倍至几百倍,因此极大地提高了传热系数,使蓄热室的体积可以大为缩小。
另外,由于换向装置和控制技术的提高,使换向时间大为缩短,传统蓄热室的换向时间一般为20~30min,而新型蓄热室的换向时间仅为0.5~3min。
新型蓄热室传热效率高和换向时间短,带来的效果是排烟温度低(200℃以下),被预热介质的预热温度高(只比炉温低100~150℃)。
因此,废气余热得到接近极限的回收,蓄热室的温度效率可达到85%以上,热回收率达80%以上。
2 蓄热式加热炉的工作原理宣钢二高线步进梁蓄热式加热炉是将助燃空气和高炉煤气经换向系统后经各自的管道送至炉子左侧各自的蓄热式燃烧器,自下而上流经其中的蓄热体,分别被预热到950℃以上,然后通过各自的喷口喷入炉膛,燃烧后产生高温火焰加热炉内钢坯,火焰温度较同种煤气做燃料的常规加热炉高400~500℃,90%以上的热量被蓄热体回收,最后以150℃以下的温度排放到大气中,比常规加热炉节能30%~50%。
蓄热式加热炉一、蓄热式加热炉的分类和特点:1、分类蓄热式加热炉按预热介质种类分为如下两种方式:同时预热空气和煤气式和空气单预热方式。
按结构型式来分,则蓄热式加热炉分为烧嘴式和通道式。
其中烧嘴式又分为全分散换向和群组换向两种;通道式也可分为单通道和双通道两种方式。
按运料方式来分,蓄热式加热炉分为推钢式和步进式。
全分散换向烧嘴式蓄热式加热炉能够实现单个烧嘴自动控制,与常规加热炉操作类似,能够满足各钢种对炉温的不同要求,实现炉温的灵活控制;群组换向蓄热式加热炉一般将某一段的烧嘴作为一个整体进行集中控制,这种控制方式能够实现各段炉温的灵活控制,也能满足大多数钢种对炉温的不同要求;通道式蓄热式加热炉一般是全通道整体控制,不能实现炉温的灵活调整,只能满足少数钢种(如普碳钢)的加热要求,而不能满足大多数钢种(如合金钢)加热的需求。
2、蓄热式加热炉的优点蓄热式加热炉有如下优点:①能将空气、煤气预热到800~1000℃的高温,有利于低热值燃料的利用;②充分利用烟气余热,节约燃料;③排烟温度低,氮氧化物含量少,环境污染少;④每对烧嘴交替燃烧,炉内温度均匀,可提高钢坯加热质量。
二、蓄热式加热炉燃烧系统简介1、蓄热式加热炉的蓄热体蓄热式加热炉的蓄热体有两种型式,一种是陶瓷小球,另一种是陶瓷蜂窝体。
蜂窝体单位体积的换热面积大,在相同条件下,蜂窝体的传热能力是陶瓷小球的4~5倍。
同样换热能力时,蜂窝状蓄热体的体积只需陶瓷小球蓄热体1/3~1/4。
采用蜂窝体的烧嘴结构紧凑轻巧。
蜂窝体体内气流通道是直通道,而陶瓷小球蓄热体的通道是迷宫式的,因此蜂窝体的阻力较小,陶瓷小球蓄热体阻力较大,前者仅为后者的1/3左右。
蜂窝体壁薄,仅为0.5~1.2mm,透热深度小,蓄热放热速度快,换向时间仅需40~80秒,换向时间短,被预热介质的平均温度高,热回收效率高。
由于换向时间短,因此换热周期内的炉温波动小,有利于炉温和钢坯加热温度的控制。
蜂窝体内部是直通道,在高速气流的正吹反吹的频繁作用下,通道不容易积灰和堵塞。
蓄热式步进加热炉1、技术来源蓄热式步进加热炉的确定是本公司经过技改淘汰两台耗能高的斜底加热炉。
顺应国家“十二五”节能减排规划中提出的推广应用蓄热式加热炉的政策落实的。
其技术来源采用济钢设计院和首钢设计院及北京蓄之杰公司在轧钢坯加热炉的基础进行现代化改造应用在热轧无缝钢管管坯加热系统而设计制作的。
2、基本结构主要由以下部分组成(1)炉底传动系统:由液压系统来完成的,使炉的活动梁进行升降及直线运动来完成矩形运动,完成管坯向前平行运动的全过程。
(2)钢结构炉体:主要是加热炉寿命的延长,斜底加热炉采用砖混结构最多用2-3年要进行大修,改造后加热炉可以使用3-5年,只需要进行维护保养即可。
(3)炉膛:这是决定加热管坯所使用加热介质比较关键的一个重要部位,其截面积的大小决定着用能的多少。
(4)蓄热式烧嘴:是炉子的核心所在,既要把炉膛内多余温度蓄存起来,又要把排烟温度从480℃-560℃降到100℃以下,而且还要把吹入的冷风加热到1100℃,减少氮氧化物进入炉膛减少管坯的氧化,增加产量。
(5)蓄热式烧嘴是在炉体两侧对称安装和使用的,是由蓄热箱、蓄热体及管道和换向阀组成的一个关键装置。
蓄热箱的大小和蓄热体的多少直接影响加热效果和用能量及排烟温度的高低。
换向阀每三分钟换向一次,即蓄热式烧嘴每三分钟正向切换进行燃烧对管坯加热,后三分钟反向切换,将炉膛内多余热量吸入蓄热箱由蓄热体将热量蓄集待下一个三分钟与天然气和热风一齐吹入炉膛完成一个加热循环,达到节能的目的。
(6)燃烧系统的控制:该炉子是由三段加热组成的。
分别是预热段(700℃上下)、加热段(1200℃-1300℃上下)、均热段(1250℃-1280℃).该炉子可根据钢种及直径设定最高加温极限值,到设定温度就不再燃烧不送风送气而且照常生产。
排烟温度在线测定、随时检测、自动控制,风机、引风机燃气均采用工业自动化PLC控制。
3、高效节能特点(1)热效率得到充分利用.一是传统炉子均用耐火砖保温砖砌筑而成,在使用过程中各加温区的温度不一样而造成砖的膨胀不一,容易造成炉顶掉砖、炉墙裂,平均3-6个月要进行修理,而该炉子1-2年只对炉底砖的磨损大小少量更换,炉顶2-3年只对外顶进行保温处理,炉墙基本不用处理,不用停产。
蓄热式加热炉的工作原理1 蓄热式加热炉的理论基础蓄热式燃烧技术,19世纪中期就开始用于高炉热风炉、平炉、焦炉、玻璃熔炉等规模大且温度高的炉子。
其原理是采用蓄热室余热回收装置,交替切换烟气和空气,使之流经蓄热体,达到在最大程度上回收高温烟气的显热,提高助燃空气温度的效果。
但传统的蓄热室采用格子砖作蓄热体,传热效率低,蓄热室体积庞大,换向周期长,限制了它在其他工业炉上的应用。
新型蓄热室,采用陶瓷小球或蜂窝体作蓄热体,其比表面积高达200~1000m2/m3,比老式的格子砖大几十倍至几百倍,因此极大地提高了传热系数,使蓄热室的体积可以大为缩小。
另外,由于换向装置和控制技术的提高,使换向时间大为缩短,传统蓄热室的换向时间一般为20~30min,而新型蓄热室的换向时间仅为0.5~3min。
新型蓄热室传热效率高和换向时间短,带来的效果是排烟温度低(200℃以下),被预热介质的预热温度高(只比炉温低100~150℃)。
因此,废气余热得到接近极限的回收,蓄热室的温度效率可达到85%以上,热回收率达80%以上。
2 蓄热式加热炉的工作原理宣钢二高线步进梁蓄热式加热炉是将助燃空气和高炉煤气经换向系统后经各自的管道送至炉子左侧各自的蓄热式燃烧器,自下而上流经其中的蓄热体,分别被预热到950℃以上,然后通过各自的喷口喷入炉膛,燃烧后产生高温火焰加热炉内钢坯,火焰温度较同种煤气做燃料的常规加热炉高400~500℃,90%以上的热量被蓄热体回收,最后以150℃以下的温度排放到大气中,比常规加热炉节能30%~50%。
同时,高温烟气进入右侧通道,在蓄热室进行热交换,将大部分余热留给蓄热体后,烟温降到150℃左右进入换向机构,然后经排烟机排入大气。
几分钟后控制系统发出指令,换向机构动作,空气、高炉煤气、烟气同时换向将系统变为下一个状态,此时空气和高炉煤气从右侧喷口喷出并混合燃烧,左侧喷口作为烟道,在排烟机的作用下,高温烟气通过蓄热体后排出,一个换向周期完成。
一,设备简介蓄热式燃烧器是在极短时间内把常温空气加热,被加热的高温空气进入炉膛后,卷吸周围炉内的烟气形成一股含氧量大大低于21%的稀薄贫氧高温气流,同时往稀薄高温空气附近注入燃料,燃料在贫氧(2%~20%)状态下实现燃烧。
同时,炉膛内燃烧后的热烟气经过另一个蓄热式燃烧器排空,将高温烟气显热储存在另一个蓄热式燃烧器内。
工作温度不高的换向阀以一定的频率进行切换,常用的切换周期为30~200秒。
两个蓄热式燃烧器处于蓄热与放热交替工作状态,从而达到节能目的。
1.实现了蓄热体温度效率、热回收率和炉子热效率三高作为一个回收烟气余热的燃烧系统,温度效率、热回收率和炉子热效率可以说是衡量它热工性能优劣的主要指标。
国内外大量生产实际的测试数据表明,在适当的换向周期下,经过蓄热体后的高温空气温度和进入蓄热体的烟气温度十分接近,仅差100℃左右,温度效率高达95%左右,热回收率为80%左右。
炉子热效率得到了较大的提高。
2 . 加热质量好,氧化烧损小由于高温空气燃烧技术是属于低氧空气燃烧范畴,而且助燃空气的切入点和燃料切入点与传统的燃烧方法不一样,从而避免了高温火焰过分集中造成的炉内各区域温差大的弊病,同时也减少了高温氧化烧损的可能性。
由于炉温的均匀程度大大提高,被冶炼的物料加热质量得到了充分保证。
3.节能效果显著蓄热式燃烧系统与传统燃烧系统比,热回收率大大提高,节能效果特别明显,其节能率往往达到40~50%。
这对于传统燃烧系统来说几乎是不可能的。
4.适用性较强,能用于多种不同工艺要求的工业炉由于蓄热式燃烧系统的炉温均匀性好,炉温波动小,不存在高温区过分集中及火焰对工件的冲刷等问题,所以它的适用范畴较宽。
目前己在大中型推钢式及步进式轧钢加热炉、均热炉、罩式热处理炉、辐射管气体渗碳炉、钢包烘烤炉、玻璃熔化炉、熔铝炉、锻造炉等工业炉上使用。
不论是采用蓄热式燃烧器的炉子或蓄热式工业炉,在实际运行中都比较稳定可靠,取得了比较好的经济效益和社会效益。
机械化工255蓄热式加热炉设计及运行简析王 帅1,毕仕辉2(1.鞍钢集团工程技术有限公司,辽宁 鞍山 114000;2.中钢集团热能鞍山研究院有限公司,辽宁 鞍山 114000)摘要:从氧化烧损率、炉压、密封性、钢坯黑印、烧嘴形式等方面介绍了蓄热推钢加热炉的设计特点,对工程建设改造前后的设备运行情况对比分析。
根据加热炉投产后使用情况表明,加热炉的整体设计合理,运行情况较为理想,各项指标均达到要求。
关键词:推钢加热炉;蓄热式;炉压;氧化烧损;密封性;钢坯黑印鞍钢某厂蓄热式加热炉改造工程按期完成,解决了炉体冒火、CO 超标报警、高能耗、烧钢质量差等一系列问题。
加热炉投产至今,设备运行情况良好,钢坯黑印影响消除,钢坯加热均匀性得以提高,煤气单耗降低至0.70GJ/t(额定产量),氧化烧损率降低,达到了预期效果。
1 加热炉主要技术性能 该推钢式、空煤气双蓄热式连续加热炉生产规模为550万t/a,用于轧前方坯加热,能实现冷装和热装。
加热炉的设计遵循高产、优质、低耗、无公害以及生产操作自动化的工艺要求[1],旨在消除原有加热炉生产缺陷,挖掘蓄热式加热炉节能低耗等优势。
2 加热炉改造关键技术与探讨 2.1 氧化烧损率 改造前,通过对现场氧化铁皮取样分析得到氧化烧损率为1.213%,高出设计值(0-1%),同时也高于行业值(0.6-1.1%)[2]。
以上问题主要从以下两方面入手。
在保证燃烧效率的情况下,降低空气过剩系数,减少通入的空气量。
参与燃烧反应的空煤气按一定比例通入到炉膛中,由于有大量煤气泄露到烟道中,造成实际参与燃烧的煤气量减少,大量空气过剩,过剩空气中的氧气和钢坯表面反应,增大了氧化烧损量。
本改造通过理论计算与实际调试校核,适度降低空气过剩系数。
优化设计烧嘴,达到空燃比最佳值,准确控制炉膛内气氛,保证空、煤气的充分混合燃烧。
合理把握加热温度和加热时间两大要素,强化高温加热,减少待温及钢坯在高温区停滞时间。
蓄热式加热炉、蓄热式加热炉的分类和特点:1、分类蓄热式加热炉按预热介质种类分为如下两种方式:同时预热空热方式。
按结构型式来分,则蓄热式加热炉分为烧嘴式和通道式。
其中向和群组换向两种;通道式也可分为单通道和双通道两种方式按运料方式来分,蓄热式加热炉分为推钢式和步进式。
全分散换向烧嘴式蓄热式加热炉能够实现单个烧嘴自动控制,能够满足各钢种对炉温的不同要求,实现炉温的灵活控制;群组换向蓄热式加热炉一般将某一段的烧嘴作为一个整体进行集中控制,这种控制方式能够实现各段炉温的灵活控制,也能满足大多数钢种对炉温的不同要求;通道式蓄热式加热炉一般是全通道整体控制,不能实现炉温的灵活调整,只能满足少数钢种(如普碳钢)的加热要求,而不能满足大多数钢种(如合金钢)加热的需求。
2、蓄热式加热炉的优点蓄热式加热炉有如下优点:①能将空气、煤气预热②充分利用烟气余热,③排烟温度低,氮氧化④每对烧嘴交替燃烧,到800~1000C的高温,有利于低热值燃料的利用; 节约燃料;物含量少,环境污染少; 炉内温度均匀,可提高钢坯加热质量。
二、蓄热式加热炉燃烧系统简介1、蓄热式加热炉的蓄热体蓄热式加热炉的蓄热体有两种型式,一种是陶瓷小球,另一种是陶瓷蜂窝体。
蜂窝体单位体积的换热面积大,在相同条件下,蜂窝体的传热能力是陶瓷小球的4〜5倍。
同样换热能力时,蜂窝状蓄热体的体积只需陶瓷小球蓄热体1/3〜1/4。
采用蜂窝体的烧嘴结构紧凑轻巧。
蜂窝体体内气流通道是直通道,而陶瓷小球蓄热体的通道是迷宫式的,因此蜂窝体的阻力较小,陶瓷小球蓄热体阻力较大,前者仅为后者的1/3 左右。
蜂窝体壁薄,仅为0.5〜1.2mm,透热深度小,蓄热放热速度快,换向时间仅需40〜80 秒,换向时间短,被预热介质的平均温度高,热回收效率高。
气和煤气式和空气单预烧嘴式又分为全分散换与常规加热炉操作类似,由于换向时间短,因此换热周期内的炉温波动小,有利于炉温和钢坯加热温度的控制。
蓄热式钢包烘烤装器操作技术规程北京恒拓迅达高科技发展公司2010年08月目录1.HITAC高效蓄热烤包器概述 (3)1.1系统原理和特点 (3)1.2性能指标 (4)2. 烤包器基本操作要点 (4)2.2烤包器生产操作 (5)2.3冷热包启动过程 (6)2.4烤包器关停操作 (7)3. 煤气管网吹扫要点 (7)4. 煤气管网试压、空气管网检漏要点 (7)4.1管网试压 (7)4.2空气管网检漏 (8)5. 蓄热式烧嘴及其气密性的检查 (8)6. 一般故障的处理 (8)7. 换向系统的维护和故障处理 (9)8. 安全注意事项 (10)9. 双预热烤包器系统设备图和参数表 (10)高效蓄热式烤包器安全操作规程1.HiTAC高效蓄热烤包器概述1.1系统原理和特点HTAC高效陶瓷蓄热式烤包器系统采用封闭式烘烤方式,利用高频换向阀,使得高温废气与助燃空气和煤气在陶瓷蓄热体内交替通过,相互间进行充分的热交换,使助燃空气和煤气预热到1000℃左右,增加其热焓,实现稳定、高效、节能燃烧。
整个烘烤系统原理图如图1所示:该系统烧嘴与蓄热体做成一体,成对布置在钢包盖上,并且蓄热体的高温段埋藏于包盖内,以降低热损失,提高热效率。
当两个烧嘴中一个处于燃烧状态时,另一个烧嘴处于蓄热状态。
高温烟气经处于蓄热状态的烧嘴喷口流过蓄热体,将蓄热体加热后以100~150℃的温度经换向阀及排烟系统排入大气,达到设定时间或设定温度后,两组烧嘴交换其工作状态,空气(煤气)流过被加热了的蓄热体,被蓄热体加热至接近钢包内燃烧产物温度后,经烧嘴喷口喷入包内完成燃烧过程,实现对钢包的加热。
钢包盖上,地方较小,重量要求较轻,所使用的蓄热式燃烧器必须是小型化和轻重量的。
为此目的,选择比表面积1000-1500m2/m3的蜂窝状陶瓷蓄热体作为蓄热元件,以求最大限度地减小蓄热式燃烧器的重量与体积。
并将燃烧器的前部与包盖做成一体,使蓄热体的高温段埋在钢包盖的保温料中,以减小蓄热式燃烧器的保温材料。
蓄热式加热路燃烧系统的结构与布置
一、加热炉的燃烧系统
炉子燃烧系统是燃烧装置、助燃空气和燃料的供给设备及烟气的排放和余热利用设备的总称。
了解加热炉燃烧系统的目的是保证实现加热炉最佳工艺过程所必须的温度制度、加热制度以及气体动力学制度,并使炉子工作经济,操作简便。
考虑供热能力主要是上下供热的分配,一般上下比例是4:6,是各段供热量的分配。
以某加热炉为例简单要说明燃烧系统的供热设计:
加热炉分段控制燃料的供应,即均热上部左、右以及均热下部左、右;第二加热炉段上部左右、下部加热左右和第一加热段上部和下部加热。
对炉子的供热既要照顾到冷装料时加热的需要,也要考虑到直接热装时燃耗量急剧减少的特点;如果加热的钢坯较宽,均热段比一般热连轧加热炉稍长,均热段烧嘴能力要稍大一些并留有一定的富余能力,以适应在短时间内迅速提温适应轧机增产的需要。
二、常规加热炉的燃烧系统布置
燃烧系统是加热炉实现准确、灵活、有效的加热制度的核心,下面以韶钢某加热炉为例说明常规加热炉的燃烧系统布置。
上部供热采用全平焰烧嘴均匀布置。
由于平焰烧嘴依靠“附壁效应”实现在炉顶表面的完全燃烧,与调焰烧嘴比较具有更好的温度均
匀性和炉压稳定性。
第一加热段下部采用侧向交错布置的长火焰调焰烧嘴。
长火焰调焰烧嘴是具有“二级燃烧”功能的烧嘴。
该烧嘴具有温度场分布均匀、调节范围广的优点,改善下了下部段加热所带来的炉型结构复杂、炉底利用率低、不便于沿炉长方向供热的灵活控制等缺陷。
第二加热段下部和均热段下部采用在炉子下部加热端部布置的直焰烧嘴,提高沿炉宽方向坯料加热的均热性,改善加热段水梁遮蔽所造成的温差。
第二加热段下部烧嘴处设置了操作通道(俗称狗洞),为避免此处环境温度高,检修不便,专门配置了冷却风管道,使这里的加热量可以顺利流出,降低了温度,改善了操作环境。
加热区沿炉长分为一、二两个加热段。
配备针对加热炉高产量、热装及混装时供热量大幅波动的状况,燃烧系统设备构成了与炉温的闭环回路,可根据炉温变化自动调整沿炉长方向向供热区的范围及幅度,同时结合二级优化控制系统,可设定最优的炉温调整速率,实现加热炉的最高产量和最低燃耗。
均热段上部第一排平焰烧嘴配备火焰形状可调节功能,以改善板坯端部受炉口低温区影响所造成的温度欠缺。
燃烧系统包括烧嘴、助燃空气管道、煤气管道以及煤气管道放散用的氮气管道。
平焰烧嘴及下部加热用的长火焰调焰烧嘴,烧嘴前的热风温度约为520℃。
烧嘴前煤气压力平焰烧嘴为2000—2500Pa,长火焰及调焰烧嘴为2000—2500Pa。
烧嘴前空气压力均为3500—4000Pa,烧嘴调
节比为1:8—10.
炉子分为12个温度控制段,即第一加热段上部配置16个平焰烧嘴,加热段下部左右配置2个侧向长火焰调焰烧嘴,第二加热段左上部和右下部各配置16个平焰烧嘴,第二下部加热左侧配置6个直焰烧嘴,第二加热段右侧配置6个直焰烧嘴;均热段上部左、中、右各配置12个平焰烧嘴;均热段下部左右各配置4个平焰烧嘴,均热段下中部配置5个直焰烧嘴。
三、蓄热式加热炉的燃烧系统布置
以韶钢某蓄热式加热炉为例说明蓄热式加热炉的燃烧系统布置。
炉子两端墙下部每侧各设有5个空气蓄热室和5个煤气蓄热室,预热后的空气和煤气从侧墙上部和下部的喷口喷入炉内。
由于预热温度高反应速度快,燃烧温度高,加之喷口密布,炉内火焰无死闲区,蓄热式燃烧是弥散式燃烧方式,整个炉膛温度非常均匀,缩短了钢坯在炉的均热时间。
煤气设计贴近钢坯,煤气和空气在炉内分层扩散燃烧的混合、燃烧方式,在钢坯表面形成较弱的氧化性气氛,抑制了钢坯表面氧化铁皮的生成趋势,钢坯的氧化损率大幅度降低。
全炉共分为5个燃烧控制段,分别为:预热段、第一加热段、第二加热段、均热段上和均热段下以及均热段炉低中间补热段。
煤气热负荷按满足加热炉120t/h产量配备,燃料消耗高炉煤气为25600m3/h。
均热段占20%,第二加热段占28%,第一加热段占30%,预热段占22%。