七年级数学上册专题训练八线段的计算人教版
- 格式:docx
- 大小:79.57 KB
- 文档页数:2
七年级上册数学线段的计算
在七年级上册数学课程中,学生通常会学习关于线段的计算。
线段的计算涉及到长度、比例、相似性等概念。
首先,学生会学习
如何计算线段的长度。
他们会学习使用坐标轴上两点的坐标来计算
两点之间的距离,这涉及到使用勾股定理或距离公式来计算线段的
长度。
此外,学生也会学习如何在平面几何图形中计算线段的长度,比如在三角形、四边形等图形中计算边长。
另外,学生还会学习如何进行线段的比较和运算。
他们会学习
如何比较不同线段的长度,以及如何进行加法和减法运算。
比如,
当给出两个线段的长度,学生需要比较它们的大小,并且能够进行
简单的加减运算。
此外,学生还会学习关于相似形的概念,这也涉及到线段的计算。
他们会学习如何判断两个图形是否相似,以及如何利用相似图
形的特性来计算线段的长度比例。
总的来说,在七年级上册数学课程中,线段的计算涉及到长度
计算、比较运算以及相似图形的计算。
学生需要掌握这些知识,并
且能够灵活运用到解决各种几何问题中。
这些知识不仅对于数学课程有用,也对于日常生活和实际问题的解决有一定的应用意义。
线段的计算热点题型归纳一、直接计算例 如图,AB=40,点C 为AB 的中点,点D 为CB 上的一点,点E 是BD 的中点,且EB=5,求CD 的长。
解:因为AB=10.点C 为AB 的中点,所以CB=AB=×40=20.1212因为点E 为BD 的中点,EB=5,所以BD=2EB=10,所以CD=CB-BD=20-10=10巩固练习:1.如图,P 是线段AB 上一点,点M 、N 分别为AB 、AP 的中点,若AB=16,BP=6,求线段MN 的长2.如图,已知线段AD=6cm,线段AC=BD=4cm,E 、F 分别是线段AB 、CD 的中点,求线段EF 的长。
二、方程思想例.如图,线段AB 上有两点M 、将AB 分成2:3两部分,点N 将AB分成4:1两部分,且线段MN=8cm,则AM 、NB 的长各为多少?解:依题意,设AM=2X,那么BM=3X,AB=5X.由AN:NB=4:1,得AN=AB=4X,BN=AB=x,4515即有4x-2x=8,解得x=4,所以AM=2x=2×4=8(cm),则AM 、BN 的长分别为8cm 、4cm.变式练习:如图,线段AB 上有两点M,N,AM:MB=5:11,AN:NB=5:7,MN=1.5,求AB 的长。
巩固练习:1.如图,线段AB 被点C 、D 分成了3:4:5三部分,且AC 的中点M 和DB 的中点N 之间的距离是40cm,求AB 的长。
2.如图,已知线段AB 上有两点C 、D,AD=35,BC=44,AC=,求23BD 线段AB 的长。
三、分类讨论的思想例 已知线段AB=14cm,在直线AB 上有一点C,且BC=4cm,,M 是线段AC 的中点,求线段AM 的长。
解:(1)当点C 在线段AB 上时因为M 是线段AC 的中点,所以AM=AC,又因为C=AB-12BC,AB=14cm,BC=4cm,所以AM=(AB-AC)= (14-4)=5cm.1212(2)当点C 在线段AB 的延长线上时,如图因为M 是线段AC 的中点,所以AM=AC,又因为12AC=AB+C,AB=14cm,BC=4cm,所以AM=(AB+C)= (14+4)=9cm.1212变式练习已知线段AB 、BC 在同一直线上,AB=5,BC=2,求AC 的长。
2021-2022学年度 秋季 七年级上学期 人教版数学 《第四章 几何图形初步》有关线段的计算问题练习题(新版)新人教版1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. (1)如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度. (2)根据(1)的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和B C 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.5. 已知P 为线段AB 上的一点,且25AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.人教版数学七年级上册 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A 、B 、C 三点,已知8.9. 人教版七年级数学上册必须要记、背的知识点1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1a a>⇔= ; 0a 1a a <⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小: (1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。
专题:线段的计算(基础题)1、如图,线段AB=8cm ,点C 是AB 的中点,点D 在CB 上且DC=1.5cm ,求线段BD 的长度.2、已知线段AB ,延长AB 到C ,使BC=41AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.3、已知,如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM=6cm ,求CM 和AD 的长.4、如图,已知AB =7, BC =3,点D 为线段AC 的中点,求线段DB 的长度.5、.如图,M 是线段AB 的中点,点C 在线段AB 上,N 是AC 的中点,且AN=2cm ,CM=1cm ,求线段AB 的长.6、如图,D 是AB 的中点,E 是BC 的中点,BE=51AC=2 cm,求线段DE 的长.7、如图,AB=16cm,C 是AB 上的一点,且AC=10cm,D 是AC 的中点,E 是BC 的中点, 求线段DE 的长.8、如图,点C 、D 是线段AB 上两点,D 是AC 的中点,若BC=6厘米,BD=10厘米,求线段AB 的长度。
9、如图所示,点C 、D 为线段AB 的三等分点,点E 为线段AC 的中点,若ED =9,求线段AB 的长度.10、已知,如图,B ,C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,BM=6cm ,求CM 和AD 的长.11、如图1,线段AC =6cm ,线段BC =15cm ,点M 是AC 的中点,在CB 上取一点N ,使得CN :NB =1:2,求MN 的长.12、如图,已知线段AB 和CD 的公共部分BD=31AB=41CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB ,CD 的长.13、已知:如图,A ,B ,C 在同一条线段上,M 是线段AC 的中点,N 是线段BC 的中点,且AM=5cm ,CN=3cm .求线段AB 的长.14、如图,已知点C 在线段AB 的延长线上,AC=16cm ,AB=6cm ,点D 是线段AB 的中点,点E 是线段BC 的中点,求线段DE 的长度.15、如图,已知A、B、C三点在同一条线段上,M是线段AC的中点,N是线段BC的中点,且AM=5 cm,CN=3 cm.求线段AB的长.16、如图,AB=16cm,延长AB到C,使BC=3AB,D是BC的中点,求AD的长度.17、如图,已知点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.18、如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.19、已知:如图,B 、C 是线段AD 上两点,且AB :BC :CD=2:4:3,M 是AD 的中点,CD=6cm ,求线段MC 的长.20、如图所示,线段AB=8cm ,E 为线段AB 的中点,点C 为线段EB 上一点,且EC=3cm ,点D 为线段AC 的中点,求线段DE 的长度.21、如图,已知线段AB=32,C 为线段AB 上一点,且AC=31BC ,E 为线段BC 的中点,F 为线段AB 的中点,求线段EF 的长.22、如图,线段AC =8 cm ,线段BC =18 cm ,点M 是AC 的中点,在CB 上取一点N ,使得CN ∶NB =1∶2.求MN 的长.23、如图,M 是线段AC 中点,点B 在线段AC 上,且AB=4cm ,BC=2AB ,求线段MC 和线段BM 的长.24、如图,AB=16cm ,延长AB 到C ,使BC=3AB ,D 是BC 的中点,求AD 的长度.25、如图,线段AB=8,M 是线段AB 的中点,N 是线段AC 的中点,C 为线段AB 上一点,且AC=3.2,求M,N 两点间的距离.26、如图,已知M 是线段AB 的中点,N 在AB 上,MN=52AM ,若MN=2m ,求AB 的长.27、如图,线段AC=6cm ,线段BC=15cm ,点M 是AC 的中点,在BC 上取一点N ,使得CN=31BC ,求MN 的长.28、如图已知点 C 为 AB 上一点,AC=12cm ,CB=32AC ,D 、E 分别为 AC 、AB 的中点,求 DE 的 长.29、如图,已知M 是线段AB 的中点,P 是线段MB 的中点,如果MP=3cm ,求AP 的长.30、点A,B,C在同一直线上,AB=8,AC: BC=3 : 1,求线段BC的长度.31、如图4,线段AB=20cm。
新人教七年级数学上册线段的计算测试题姓名:分数:一.选择题(共12小题,每题3分,共36分)1.(5分)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离2.(5分)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC 的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=23.(5分)点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB4.(5分)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个5.(5分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm6.(5分)已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上7.(5分)如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A.2(a﹣b)B.2a﹣b C.a+b D.a﹣b8.(5分)如图,线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e.则以A,B,C,D,E,F为端点的所有线段长度的和为()A.5a+8b+9c+8d+5e B.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5e D.10a+16b+18c+16d+10e9.(5分)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC10.(5分)点M、N都在线段AB上,且M分AB为2:3两部分,N分AB为3:4两部分,若MN=2cm,则AB的长为()A.60cm B.70cm C.75cm D.80cm11.(5分)点A、点B是直线l上的两个定点,点P是直线l上任意一点,要使PA+PB的值最小,那么点P应在()A.线段AB的延长线上B.线段AB的反向延长线上C.直线l上D.线段AB上12.(5分)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB的长为()A.10cm B.16cm C.20cm D.3cm二.填空题(共8小题,每题3分,共24分)13.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.14.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC 的长度为.15.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地,架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有.(填序号)16.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是.17.如图,图中有条直线,有条射线,有条线段.18.如图,A,B,C,D是一直线上的四点,则+ =AD﹣AB,AB+CD=﹣.19.已知A、B、C三点在同一直线上,其中点A与点B的距离等于2.4千米,点B与点C 的距离等于3.5千米,那么点A与点C的距离等于千米.20.如图,一条街道旁有A、B、C、D、E五幢居民楼,某桶装水经销商统计各楼居民每周所需桶装水的数量如下表:楼号 A B C D E桶装水数量/桶38 55 50 72 85他们计划在这五幢楼中租赁一间门市房,设立桶装水供应点.若仅考虑这五幢楼内居民取水所走的路程之和最小,可以选择的地点应在楼.三.解答题(共7小题)21.(6分)根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.22.(7分)如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.23.(8分)如图,AD=DB,E是BC的中点,BE=AC=2cm,求线段DE的长.24.(10分)如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC 的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.25.(9分)如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.26.(9分)线段AD上两点B、C将AD分成2:3:4三部分,M是AD的中点,若MC=2,求线段AD的长.27.(12分)如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.新人教七年级数学上册线段的计算测试题参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)(2016春•威海期中)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离【分析】根据直线的定义、线段中点的性质、点到点的距离的概念利用排除法求解.【解答】解:A、两点之间的连线中,线段最短,错误;B、根据中点的定义可知若P是线段AB的中点,则AP=BP,正确;C、只有当点P在线段AB上,且AP=BP时,点P才是线段AB的中点,错误;D、连接两点的线段的长度叫做两点的距离,错误.故选B.【点评】本题主要考点有:线段的定义及性质,两点间的距离,直线的定义.根据各知识点的定义及性质进行判断.2.(5分)(2015•黄冈中学自主招生)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=2【分析】根据点M是线段AC的中点,点N是线段BC的中点,可知:,继而即可得出答案.【解答】解:根据点M是线段AC的中点,点N是线段BC的中点,可知:,∴只要已知AB即可.故选A.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.3.(5分)(2015秋•高新区期末)点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、C、D都可以确定点C是线段AB中点.【解答】解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.【点评】根据线段的中点能够写出正确的表达式.反过来,也要会根据线段的表达式来判断是否为线段的中点.4.(5分)(2015秋•太康县期末)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个【分析】根据题意,画出图形,观察图形,一一分析选项,排除错误答案.【解答】解:如图,若B是线段AC的中点,则AB=AC,AB=BC,AC=2AB,而AB+BC=AC,B可是线段AC上的任意一点,∴表示B是线段AC的中点的有①②③3个.故选C.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.(5分)(2015秋•太康县期末)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【解答】解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.【点评】本题考查了比较线段的长短,注意点的位置的确定,利用图形结合更易直观地得到结论.6.(5分)(2015秋•平武县期末)已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上【分析】根据线段的和、差定义进行分析.【解答】解:如图:∵PA+PB=AB,∴点P在线段AB上.故选B.【点评】此题考查了线段的和的概念.7.(5分)(2015秋•嘉祥县期末)如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A.2(a﹣b)B.2a﹣b C.a+b D.a﹣b【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8.(5分)(2015•合肥校级自主招生)如图,线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e.则以A,B,C,D,E,F为端点的所有线段长度的和为()A.5a+8b+9c+8d+5e B.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5e D.10a+16b+18c+16d+10e【分析】首先求出以A为端点线段的长度,类比依次求出B、C、D、E为端点的线段的长度,然后求出这些线段的长度总和.【解答】解:以A为端点线段有AB、AC、AD、AE、AF,这些线段长度之和为5a+4b+3c+2d+e,以B为端点线段有BC、BD、BE、BF,这些线段长度之和为4b+3c+2d+e,以C为端点线段有CD、CE、CF,这些线段长度之和为3c+2d+e,以D为端点线段有DE、DF,这些线段长度之和为2d+e,以E为端点线段有EF,线段的长度为e,故这些线段的长度之和为5a+8b+9c+8d+5e,故选A.【点评】本题主要考查比较线段的长短的知识点,解答本题的关键是求出A,B,C,D,E,F为端点的所有线段的条数,本题不是很难.9.(5分)(2014秋•温州期末)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC【分析】熟练掌握线段的概念和定义,进行分析.【解答】解:A、根据线段的延长线的概念,则BA=BC﹣AC,故错误;B、根据线段的和的计算,正确;C、根据两点之间,线段最短,显然正确;D、根据两点之间,线段最短,显然正确.故选A.【点评】考查了线段的延长线的概念,同时注意线段公理:两点之间,线段最短.10.(5分)(2014秋•林甸县期末)点M、N都在线段AB上,且M分AB为2:3两部分,N分AB为3:4两部分,若MN=2cm,则AB的长为()A.60cm B.70cm C.75cm D.80cm【分析】由题意可知,M分AB为2:3两部分,则AM为AB,N分AB为3:4两部分,则AN为AB,MN=2cm,故MN=AN﹣AM,从而求得AB的值.【解答】解:如图所示,假设AB=a,则AM=a,AN=a,∵MN=a﹣a=2,∴a=70.故选B.【点评】在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.11.(5分)(2014秋•成县期末)点A、点B是直线l上的两个定点,点P是直线l上任意一点,要使PA+PB的值最小,那么点P应在()A.线段AB的延长线上B.线段AB的反向延长线上C.直线l上D.线段AB上【分析】分类讨论:当P点在线段AB的延长线上,则PA+PB=AB+2PB;当P点在线段AB 的反向延长线上,则PA+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,然后比较线段的大小即可得到结论.【解答】解:当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选D.【点评】本题考查了比较线段的长短:比较两条线段长短的方法有两种:度量比较法、重合比较法.12.(5分)(2014秋•阜南县校级期末)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB的长为()A.10cm B.16cm C.20cm D.3cm【分析】结合图形表示出PM与AB的关系为PM=AB﹣AB,再代入数据求解即可.【解答】解:如图,∵M是AB的中点,∴AM=AB,∴PM=AM﹣AP=AB﹣AB=AB,∵PM=2cm,∴AB=10PM=20cm.故选C.【点评】作出图形,整理出AB与PM的关系是解本题的关键.二.填空题(共8小题)13.(2015秋•甘谷县期末)如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于11 .【分析】AD和AC已知,所以可以得出CD的长度,点C是BD的中点,所以CD的长度等于BD长度的一半,从而可求出BD的长度,进而可求出AB的长度.【解答】解:∵AD=3,AC=7∴CD=4.∵点C是线段BD的中点∴BD=2CD=8AB=BD+AD=3+8=11.故应填11.【点评】本题考点:线段中点的性质,根据题干图形得出各线段之间的关系,然后结合已知条件即可求出AB的长度.14.(2015秋•邢台期末)长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为8cm .【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC得其长度.【解答】解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.15.(2015秋•淮安期末)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地,架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有③④.(填序号)【分析】由题意,认真分析题干,运用线段的性质直接做出判断即可.【解答】解:①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.故答案为:③④.【点评】本题主要考查两点之间线段最短和两点确定一条直线的性质,应注意理解区分.16.(2016春•通化校级月考)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是两点确定一条直线.【分析】根据直线的性质:两点确定一条直线即可得.【解答】解:能解释这一实际应用的数学知识是:两点确定一条直线,故答案为:两点确定一条直线.【点评】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.17.(2016•綦江区校级模拟)如图,图中有 1 条直线,有9 条射线,有12 条线段,以E为顶点的角有 4 个.【分析】直线:过两点有且只有一条直线(两点确定一条直线),无端点.射线:直线上的一点,可向一方无限延伸,有一个端点.线段:直线的一部分,有限长,有2个端点再根据角的定义数出角的个数即可求解.【解答】解:如图,图中有直线AC,共1条直线,有A为端点的2条射线,B为端点的1条射线,C为端点的2条射线,E为端点的3条射线,F为端点的1条射线共2+1+2+3+1=9条射线,有线段AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,DF,EF,共12条线段,以E为顶点的角有∠AEB,∠AEF,∠BEC,∠CEF,共4个.故答案为:1,9,12,4.【点评】本题主要考查直线、线段、射线的知识点,还考查角的概念的知识点,不是很难,不过做题要仔细.18.(2016秋•高密市校级月考)如图,A,B,C,D是一直线上的四点,则BC + CD =AD﹣AB,AB+CD= AD ﹣BC .【分析】根据图中给出A,B,C,D4个点的位置,根据两点间距离的计算即可解题.【解答】解:∵AD=AB+BC+CD,∴BC+CD=AD﹣AB;∵AB+CD+BC=AD,∴AB+CD=AD﹣BC;∵AD=AB+BC+CD,∴AB+BC=AD﹣CD.故答案为BC,CD,AD,BC.【点评】题考查了两点间距离的计算,本题属基础题,熟练求线段长度是解题关键.19.(2016春•浦东新区期末)已知A、B、C三点在同一直线上,其中点A与点B的距离等于2.4千米,点B与点C的距离等于3.5千米,那么点A与点C的距离等于 5.9或1.1 千米.【分析】根据线段的和差,可得答案.【解答】解:A在线段BC上,由线段和差,得AC=BC﹣AB=3.5﹣2.4=1.1km,A点线段BC的反向延长线上,由线段和差,得AC=AB+BC=2.4+3.4=5.9km,故答案为:5.9或1.1.【点评】本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论,以防遗漏.20.(2013秋•惠山区校级月考)如图,一条街道旁有A、B、C、D、E五幢居民楼,某桶装水经销商统计各楼居民每周所需桶装水的数量如下表:楼号 A B C D E桶装水数量/桶38 55 50 72 85他们计划在这五幢楼中租赁一间门市房,设立桶装水供应点.若仅考虑这五幢楼内居民取水所走的路程之和最小,可以选择的地点应在 D 楼.【分析】根据图形近似设AB=a,BC=2a,CD=a,DE=2a,再根据各楼所需的数量和距离分别计算出当桶装水供应点在A楼时,这五幢楼内居民取水所走的路程之和=1003a;当桶装水供应点在B楼时,这五幢楼内居民取水所走的路程之和=779a;当桶装水供应点在C楼时,这五幢楼内居民取水所走的路程之和=551a;当桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和=477a;当桶装水供应点在E楼时,这五幢楼内居民取水所走的路程之和=797a,于是可得判断桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和最小.【解答】解:设AB=a,BC=2a,CD=a,DE=2a,当桶装水供应点在A楼时,这五幢楼内居民取水所走的路程之和=55a+50(a+2a)+72(a+2a+a)+85(a+2a+a+2a)=1003a;当桶装水供应点在B楼时,这五幢楼内居民取水所走的路程之和=38a+50×2a+72(a+2a)+85(2a+a+2a)=779a;当桶装水供应点在C楼时,这五幢楼内居民取水所走的路程之和=38(a+2a)+55×2a+72×a+85(a+2a)=551a;当桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和=38(a+2a+a)+55×(a+2a)+50a+85×2a=537a;当桶装水供应点在E楼时,这五幢楼内居民取水所走的路程之和=55(2a+a+2a)+50(a+2a)+72×2a+38(a+2a+a+2a)=797a,所以桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和最小.故答案为D.【点评】本题考查了比较线段的长短:比较两条线段长短的方法有两种:度量比较法、重合比较法.三.解答题(共7小题)21.(2015秋•连州市期末)根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.【分析】根据直线、线段和射线的定义作出即可.【解答】解:如图所示.【点评】本题考查了直线、射线、线段,主要是对文字语言转化为图形语言的能力的培养.22.(2013秋•金平区期末)如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【分析】根据线段的性质:两点之间线段最短,即可得出答案.【解答】解:点P的位置如下图所示:作法是:连接AB交L于点P,则P点为汽车站位置,理由是:两点之间,线段最短.【点评】本题考查了线段的性质,属于基础题,注意两点之间线段最短这一知识点的灵活运用.23.(2016春•郴州期末)如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.【分析】(1)根据M是AC的中点得MC=3cm,由MB=10cm可得BC=7cm,再根据N为BC的中点可得CN的长,继而可得答案;(2)由M是AC中点,N是BC中点可得MC=AC、NC=BC,再根据MN=MC﹣NC 即可得.【解答】解:(1)∵AC=6cm,M是AC的中点,∴AM=MC=AC=3cm,∵MB=10cm,∴BC=MB﹣MC=7cm,∵N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+CN=6.5cm;(2)如图,∵M是AC中点,N是BC中点,∴MC=AC,NC=BC,∵AC﹣BC=bcm,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=b(cm).【点评】本题主要考查两点间的距离,熟练掌握中点的性质是解题的关键.24.(2015秋•祁阳县期末)如图,AD=DB,E是BC的中点,BE=AC=2cm,求线段DE的长.【分析】根据题目已知条件结合图形可知,要求DE的长可以用AC长减去AD长再减去EC 长或者用DB长加上BE长.【解答】解:由于BE=AC=2cm,则AC=10cm,∵E是BC的中点,∴BE=EC=2cm,BC=2BE=2×2=4cm,则AB=AC﹣BC=10﹣4=6cm,又∵AD=DB,则AB=AD+DB=AD+2AD=3AD=6cm,AD=2cm,DB=4cm,所以,DE=AC﹣AD﹣EC=10﹣2﹣2=6cm,或DE=DB+BE=4+2=6cm.故答案为6cm.【点评】本题考查求线段及线段中点的知识,解这列题要结合图形根据题目所给的条件,寻找所求与已知线段之间的关系,最后求解.25.(2015秋•偃师市期末)如图,已知B、C两点把线段AD分成2:4:3的三部分,M 是AD的中点,若CD=6,求线段MC的长.【分析】首先由B、C两点把线段AD分成2:4:3的三部分,知CD=AD,即AD=3CD,求出AD的长,再根据M是AD的中点,得出MD=AD,求出MD的长,最后由MC=MD ﹣CD,求出线段MC的长.【解答】解:∵B、C两点把线段AD分成2:4:3的三部分,2+4+3=9,∴AB=AD,BC=AD,CD=AD,又∵CD=6,∴AD=18,∵M是AD的中点,∴MD=AD=9,∴MC=MD﹣CD=9﹣6=3.【点评】利用中点及其它等分点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.本题中B、C是线段AD的九等分点中的两个.26.(2013秋•天柱县期末)线段AD上两点B、C将AD分成2:3:4三部分,M是AD 的中点,若MC=2,求线段AD的长.【分析】根据题意,设三条线段的长分别为2k、3k、4k,再根据“M是AD的中点”得到MD 等于4.5k,所以MC的长是0.5k,代入即可求出x的值,再求线段AD的长也就容易了.【解答】解:如图,根据题意,设AB、BC、CD的长分别为2k、3k、4k,∴AD=2k+3k+4k=9k,∵M是AD的中点,∴MD=AD=4.5k,∴MC=MD﹣CD=4.5k﹣4k=0.5k=2,解得k=4,∴AD=9k=9×4=36.【点评】本题主要考查根据设“k”法的思想,根据比例关系利用设“k”法是中学阶段重要的方法,需要熟练掌握.27.(2014秋•靖江市期末)如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.【分析】此题较为复杂,但仔细阅读,读懂题意根据速度公式就可求解.(1)从题中我们可以看出点P及Q是运动的,不是静止的,当PA=2PB时实际上是P正好到了AB的三等分点上,而且PA=40,PB=20.由速度公式就可求出它的运动时间,即是点Q的运动时间,点Q运动到的位置恰好是线段AB的三等分点,这里的三等分点是二个点,因此此题就有二种情况,分别是AQ=时,BQ=时,由此就可求出它的速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm,这也有两种情况即当它们相向而行时,和它们直背而行时,此题可设运动时间为t秒,按速度公式就可解了.(3)此题就可把它当成一个静止的线段问题来解决了,但必须借助图形.【解答】解:(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得PA=40,OP=60,故点P运动时间为60秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷60=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷60=(cm/s).②点P在线段AB延长线上时,由PA=2PB及AB=60,可求得PA=120,OP=140,故点P 运动时间为140秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷140=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷140=(cm/s).(2)设运动时间为t秒,则t+3t=90±70,t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm;(3)如图1,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.如图2,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.【点评】做这类题时学生一定要认真仔细地阅读,利用已知条件求出未知值.学生平时就要培养自己的思维能力.而且要图形结合,与生活实际联系起来,也可以把此题当成一道路程题来对待.。
专题08几何图形初步中求线段长度重难点题型分类(解析版)专题简介:本份资料包含《几何图形初步》这一章中求线段长度这一模块全部重要题型,所选题目源自各名校月考、期末试题中的典型考题,具体包含五类题型:简单利用线段的和差求线段长度、双中点问题中的线段长度、按比例分配的线段长度、点在直线上的分情况讨论求线段长度、用方程方法求线段长度、线段长度中的动点问题,适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一:简单利用线段的和差求线段长度1.(雅礼)如图,线段AB =8cm ,点C 在BA 的延长线上,AC =2cm ,M 是BC 中点,则AM 的长是cm .【解答】解:∵AB =8cm ,AC =2cm ,∴BC =AB +AC =8cm +2cm =10cm ,∵M 是BC 的中点,∴CM =BC =×10cm =5cm ,∴AM =CM ﹣AC =5﹣2=3(cm ),故答案为:3.2.(北雅)已知点C ,D 在线段AB 上,且AC =BD =1.5,若AB =7,则CD 的长为.【解答】解:如图:∵AC =BD =1.5,AB =7,∴CD =AB ﹣AC ﹣BD =4,故答案为:4.3.(长梅)如图,已知M 是线段AB 的中点,N 在AB 上,25MN AM =,若2cm MN =,求AB 的长.【解答】解:∵MN =AM ,MN =2m ,∴AM =5cm ,∵M 是线段AB 的中点,∴AB =2AM =10cm ,即AB 的长是10cm 4.(雅礼)已知线段AB 如图所示,延长AB 至C ,使BC =AB ,反向延长AB 至D ,使AD =BC ,点E 是线段CD 的中点.(1)依题意补全图形;(2)若AB 的长为4,求BE 的长.【解答】解:(1)图形如图所示:(2)∵AB =BC =4,AD =AB =2,∴CD =AD +AB +BC =10,∴DE =EC =CD =5,∴EB =EC ﹣BC =5﹣4=1.题型二:双中点问题中的线段长度两中点间线段长度=“大一半+小一半”或“大一半-小一半”5.(长郡)如图,C 为线段AB 的中点,D 是线段BC 的中点,BD =4cm ,AB =cm .【解答】解:∵点D 是线段BC 的中点,BD =4cm ,∴BC =2BD =2×4=8(cm ),∵点C 是线段AB 的中点,∴AB =2BC =16(cm ),故答案为:16.6.(青竹湖)如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为cm .【解答】解:∵点C 在线段AB 上,点M 、N 分别为AC 和BC 的中点,∴MC =AC ,NC =BC ,∴MN =MC +NC =(AC +CB )=AB =×8=4(cm ),故答案为:4.7.(长郡)如图,已知线段AB =16cm ,M 是AB 的中点,P 是线段MB 上一点,N 为PB 的中点,NB =3cm ,则线段MP =cm .【解答】解:∵M 是AB 的中点,AB =16cm ,∴AM =BM =8cm ,∵N 为PB 的中点,NB =3cm ,∴PB =2NB =6cm ,∴MP =BM ﹣PB =8﹣6=2(cm ).故答案为:2.8.(北雅)线段AB =1,C 1是AB 的中点,C 2是C 1B 的中点,C 3是C 2B 的中点,C 4是C 3B 的中点,依此类推……,线段AC 2022的长为.【解答】解:因为线段AB =1,C 1是AB 的中点,所以C 1B =AB =×1=;因为C 2是C 1B 的中点,所以C 2B =C 1B =×=;因为C 3是C 2B 的中点,所以C 3B =C 2B =×=;...,所以C 2022B =,所以AC 2022=AB ﹣C 2022B =1﹣,故答案为:1﹣.9.(一中双语)如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度.【解答】解:∵C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,∴AC =CB =AB =5cm ,CD =BC =2.5cm ,∴AD =AC +CD =5+2.5=7.5cm .10.(青竹湖)如图,已知点C 为AB 上一点,18AC =cm ,23CB AC =,D 、E 分别是AC 、AB 的中点,求DE 的长.【解答】解:∵AC =18cm ,CB =AC ,∴BC =×18=12cm ,则AB =AC +BC =30cm ,∵D 、E 分别为AC 、AB 的中点,∴=AC =9cm ,AE =AB =15cm ,∴DE =AE ﹣AD =15﹣9=6cm ,答:DE 的长是6cm .11.(明德)如图,点C 为线段AB 的中点,点E 为线段AB 上的一点,点D 为线段AE 的中点.(1)若线段AB =m ,CE =n ,|m ﹣10|+|n ﹣3|=0,求m ,n 的值;(2)在(1)的条件下,求线段DC 的长.【解答】解:(1)|m ﹣10|+(n ﹣3)2=0,∴m ﹣10=0,n ﹣3=0,∴m =10,n =3;(2)∵点C 为线段AB 的中点,AB =10,∴AC =BC =AB =5,∵CE =3,∴AE =AC +CE =5+3=8,∵点D 为线段AE 的中点,∴AD =AE =4,∴CD =AC ﹣AD =5﹣4=1.12.(广益)如图,C 是线段AB 上一点,线段AB =25cm ,,D 是AC 的中点,E 是AB 的中点.(1)求线段CE 的长;(2)求线段DE的长.【解答】解:(1)∵AB=25cm,BC=AC,∴BC=AB=×25=10(cm),∵E是AB的中点,∴BE=AB=12.5cm,∴EC=12.5﹣10=2.5(cm);(2)由(1)得,AC=AB﹣CB=25﹣10=15(cm),∵点D、E分别是AC、AB的中点,∴AE=AB==12.5(cm),AD=AC==7.5(cm),∴DE=AE﹣AD=12.5﹣7.5=5(cm).13.(雅礼)如图,已知线段AC=12cm,点B在线段AC上,满足BC=AB.(1)求AB的长;(2)若D是AB的中点,E是AC的中点,求DE的长.【解答】解:(1)∵BC=AB,AC=12cm,∴BC=AC=4cm,∴AB=AC﹣CB=12﹣4=8(cm);(2)∵D是AB的中点,AB=8cm,∴AD=AB=4cm,∵E是AC的中点,AC=12cm,∴AE=AC=6cm,∴DE=AE﹣AD=6﹣4=2(cm).14.(青竹湖)如图,已知线段AB C、D,且AC BD=,M、N分别是线段AC、AD的中点,若cmAB a=,a b-+-=.==,且a、b满足()21060AC BD bcm(1)求AB,AC的长度;(2)求线段MN的长度.【解答】解:(1)由题意可知:(a﹣10)2+|b﹣6|=0,∴a=10,b=6,∴AB=10cm,AC=6cm;(2)∵BD=AC=6cm,∴AD=AB﹣BD=4cm,又∵M、N是AC、AD的中点,∴AM=3cm,AN=2cm.∴MN=AM﹣AN=1cm.AB=,点C是线段AB的中点,点D为线段CB上的一点,点E为线段DB的15.(青竹湖)如图,已知40EB=。
专题训练 线段或角的计算一、线段的和或差的计算1.如图,C 是线段AB 上的一点,M 是线段AC 的中点,若AB =8 cm ,BC =2 cm ,则MC 的长度为( )A.2 cmB.3 cmC.4 cmD.6 cm 2.平坦的草地上有A ,B ,C 三个球,A 球距B 球3 m ,A 球距C 球1 m ,则B 球与C 球相距( )A.4 mB.3 mC.2 mD.无法确定3.如图已知线段AD =16 cm ,线段AC =BD =10 cm ,E ,F 分别是AB ,CD 的中点,则EF 长为 cm .4.如图,C ,D 是线段AB 上的两点,已知BC =14AB ,AD =13AB ,AB =12 cm ,则DC = cm.5.过点P 作直线l 的垂线PO ,垂足为O ,连接PA ,PB ;比较线段PO ,PA ,PB 的长短,并按从小到大的顺序排列 .6.如图,已知线段AB =6 cm ,延长AB 至点C ,使BC =13AB ,若点D 为线段AC 的中点,求线段BD 的长.7.已知线段AB =6 cm ,在直线AB 上画点C ,使BC =4 cm ,若M ,N 分别是AB ,BC 的中点.(1)求点M ,N 之间的距离;(2)若AB =a cm ,BC =b cm ,其他条件不变,此时M ,N 间的距离是多少? (3)分析(1)(2)的解答过程,从中你发现了什么规律?二、角的和或差的计算8.已知∠α=75°,则∠α的补角的度数是( )A.15°B.25°C.105°D.125° 9.上午10:00时,钟表上分针与时针所夹角的度数为( )A.45°B.60°C.75°D.90° 10.一个角的余角比它的补角的12少20°,则这个角为( )A.30°B.40°C.60°D.75°11.如图,已知∠AOC =90°,∠COB =50°,OD 平分∠AOB ,则∠COD 的度数为______.第11题图 第12题图12.如图,∠AOB =160°,OC 平分∠AOB ,OD 为∠BOC 内任一射线,OE 平分∠BOD ,且∠BOE =30°,则∠COD = .13.如图,已知∠AOB =m 度,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,…,OA n 平分∠AOA n -1,则∠AOA n 的度数为 度.14.如图,OC 为∠AOB 的内部任一条射线,OD ,OE 分别是∠AOC ,∠BOC 的平分线.若∠AOB =80°,求∠DOE 的度数.15.如图,选择适当的方向击打白球,可以使白球反弹后将红球撞入袋中,此时∠1=∠2.如果红球与洞口连线和台球桌面边缘夹角∠3=30°,那么∠1应等于多少度,才能保证红球能直接入袋?16.如图,已知小明家(A )在商场(O )的南偏东60°方向,小华家(B )在商场的东北方向.(1)若王亮家(C)在商场的北偏西19°20′的方向,试问:∠AOB和∠AOC的度数分别是多少?(2)若∠BOC=67°20′,试说明王亮家(C)在商场的什么方向上?17.把一副三角板的直角顶点O重叠在一起.(1)如图1,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图2,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?18.将一张长方形纸片按如图所示方式折叠,若∠AEM′=120°,则∠BCN′的度数为多少?。
2019年七年级数学上册线段的计算专题练习一、解答题:1、如图,己知线段AB=80,M为AB的中点,P在MB上,N为PB的中点,且NB=14,(1)求MB的长;(2)求PB的长;(3)求PM的长.2、如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB的长度.3、如图,已知点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.4、点A,B,C在同一直线上,AB=8,AC:BC=3:1,求线段BC的长度.5、如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.6、如图,已知线段AB=32,C为线段AB上一点,且3AC=BC,E为线段BC的中点,F为线段AB的中点,求线段EF的长.7、如图,M是线段AC中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.8、如图,线段AC=8 cm,线段BC=18 cm,点M是AC的中点,在CB上取一点N,使得CN∶NB=1∶2.求MN的长.9、如图,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.10、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.11、如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若4BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.12、A、B、C、D四个车站的位置如图所示,B、C两站之间的距离BC=2a+b,B、D两站之间的距离BD=4a +3b.求:⑴ C、D两站之间的距离CD;⑵若C站到A、D两站的距离相等,则A、B两站之间的距离AB是多少?13、如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,并说明理由.14、如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN 的长.15、如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP= ,AQ= ;(2)当t=2时,求PQ的值;(3)当AB=2PQ时,求t的值.16、如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=6 ,CB=4 ,求线段MN的长;(2)若点C为线段AB上任一点,其它条件不变,你能猜想线段MN与AB的数量关系吗?并说明你的理由;(3)若点C在线段AB的延长线上,其它条件不变,你上述猜想的结论是否仍然成立?请画出图形,写出你的结论,并说明你的理由;17、如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.18、已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数: ;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A.①点P、Q同时运动运动的过程中有处相遇,相遇时t= 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.19、如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.20、探索性问题:已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a= ,b= ,c= ;(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用t的关系式表示);②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案1、解:(1)∵M是AB的中点∴MB=40(2)∵N为PB的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=122、解:已知BC=6cm,BD=10cm,∴DC=BD﹣BC=4cm,又点D是AC的中点,∴DA=DC=4cm,所以AB=BD+DA=10+4=14(cm).答:线段AB的长度为14cm.3、解:(1)∵DE=9cm,∴DC+CE=9cm.∵点D是线段AC的中点,点E是线段BC的中点,∴AC=2CD,BC=2CE.∵AB=AC+BC=2(CD+CE)=2DE=18cm;(2)点C是线段AB的中点,∴AB=ACB.∵点E是线段BC的中点,∴BC=2CE=10cm.∵点D是线段AC的中点,∴DC=AC=BC=5cm.∴DB=DC+CB=5+10=15cm.4、解:由于AC:BC=3:1,设BC=x,则AC=3x第一种情况:当点C在线段AB上时,AC+BC=AB.因为 AB=8,所以3x+x=8解得 x=2所以 BC=2第二种情况:当点C在AB的延长线上时,AC﹣BC=AB因为 AB=8,所以3x﹣x=8解得 x=4所以 BC=4综上,BC的长为2或4.5、解:∵线段AB=8cm,E为线段AB的中点,∴BE4cm,∴BC=BE﹣EC=4﹣3=1cm,∴AC=AB﹣BC=8﹣1=7cm,∵点D为线段AC的中点,∴CD=3.5cm,∴DE=CD﹣EC=3.5﹣3=0.5cm.6、解:∵F为线段AB的中点,∴BF=AB=16,∵AC=BC,∴BC=AB=24,∵E为线段BC的中点,∴BE=12,∴EF=BF﹣BE=16﹣12=4.7、解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.8、解:BC=18cm所以CN=18×1÷(1+2)=6mM是AC中点所以MC=AC/2=4cm所以MN=MC+CN=4+6=10cm9、解:设BC=x厘米,由题意得:AB=3x,CD=4x∵E,F分别是AB,CD的中点∴BE=AB=x,CF=CD=2x∴EF=BE+CF﹣BC=x+2x﹣x即x+2x﹣x=60,解得x=24∴AB=3x=72(厘米),CD=4x=96(厘米).答:线段AB长为72厘米,线段CD长为96厘米.10、解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×10=5cm.11、解:12、解:⑴ CD=(4a+3b)-(2a+b)=2a+2b 答:C、D两站之间的距离CD为(2a+2b)⑵ AB=AC-BC=CD-BC=(2a+2b)-(2a+b)=b 答:A、B两站之间的距离AB是b.13、解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.14、解:∵M是AC的中点,AC=6,∴MC=3,又因为CN∶NB=1∶2,BC=15,∴CN=5,∴MN=MC+CN=3+5=8,∴MN的长为8 cm15、解:16、解:17、解:18、解:(1)P点对应的数为﹣26+t;PC=36﹣t;故答案为:﹣26+t;36﹣t;(2)①有2处相遇;分两种情况:Q返回前相遇:3(t﹣16)﹣16=t﹣16,解得:t=24,Q返回后相遇:3(t﹣16)+t=36×2.解得:t=30.综上所述,相遇时t=24秒或30秒.故答案为:24或30;②当16≤t≤24时 PQ=t﹣3(t﹣16)=﹣2t+48,当24<t≤28时 PQ=3(t﹣16)﹣t=2t﹣48,当28<t≤30时 PQ=72﹣3(t﹣16)﹣t=120﹣4t,当30<t≤36时 PQ=t﹣[72﹣3(t﹣16)]=4t﹣120,当36<t≤40时 PQ=3(t﹣16)﹣36=3t﹣84.19、解:20、解:。
新人教版七年级数学上册专题训练:线段的计算(含答案)一、选择题1. 已知线段AB的长度为5cm,线段BC的长度为9cm,求线段AC的长度是多少?A) 4cmB) 6cmC) 10cmD) 14cm答案: B) 6cm2. 已知线段DE的长度为7cm,线段EF的长度为3cm,求线段DF的长度是多少?A) 4cmB) 7cmC) 10cmD) 14cm答案: A) 4cm3. 正方形ABCD的一条边长为10cm,求它的对角线的长度是多少?A) 5cmB) 10cmC) 14cmD) 20cm答案: C) 14cm二、填空题1. 直线段AB的长度为15cm,点P在AB上,且AP与PB的比例为2:3,则AP的长度为__ cm。
答案: 6 cm2. 直线段CD的长度为12cm,点P在CD上,且CP与PD的比例为1:4,则PD的长度为__ cm。
答案: 9 cm三、解答题1. 三角形ABC中,线段AB的长度为8cm,线段AC的长度为10cm,求线段BC的长度。
答案: 使用勾股定理计算,BC = √(AB² + AC²) = √(8² + 10²) = √(64 + 100) = √(164) ≈ 12.81cm2. 线段EF的长度为15cm,点P在EF上,且PE与PF的比例为3:4,求PE和PF的长度。
答案: 根据比例关系,PE = (3/7) * EF = (3/7) * 15 = 6.43cm,PF = (4/7) * EF = (4/7) * 15 = 8.57cm以上为新人教版七年级数学上册专题训练中关于线段的计算的题目及答案。
希望能够帮助到你!。
2020-2021学年七年级数学上册期末综合复习专题提优训练(人教版)专题08 线段的有关计算【典型例题】1.(2019·武汉七一华源中学七年级月考)如图,已知线段AB ,点C 在线段AB 的延长线上,且52AC AB =,点D 在线段AB 的反向延长线上,且23AD BD =. (1)请画出图形,并求DABC的值; (2)若线段AB =2,点R 在直线AB 上,线段CR =4,请求出线段DR 的长.【答案】解:(1)如图,设3,BD m =23AD BD =, 2,AD m ∴=32,AB BD AD m m m ∴=-=-=52AC AB =, 5,2AC m ∴=53,22BC AC AB m m m ∴=-=-= 232422.32332AD m BC m ∴==÷=⨯=(2)如图,当R 在C 的左边时,由(1)得:AB =2 m24,AD m ∴==5=5,2AC m =4CR =,541AR AC CR ∴=-=-=, 415DR AR AD ∴=+=+=,当R 在C 的右边时,如图,45413.DR AD AC CR =++=++=综上:DR 的长为:5或13.【点睛】本题考查的是线段的和差,简单的作图,掌握线段的和差关系是解题的关键.【专题训练】一、选择题1.(2020·甘州中学七年级月考)点A,B,P在同一直线上,下列说法正确的是()A.若AB=2P A,则P是AB的中点B.若AB=PB,则P是AB的中点C.若AB=2PB,则P是AB的中点D.若AB=2P A=2PB,则P是AB的中点【答案】D2.(2020·重庆九十五中佳兆业中学七年级期中)已知线段AB=10,C是AB上一点,D、E分别是AC、BC的中点,则线段DE的长为()A.4B.5C.8D.6【答案】B3.(2020·辽宁)已知线段AB=9,点C是AB的中点,点D是AB的三等分点,则C,D两点间距离为()A.3B.1.5C.1.2D.1【答案】B4.(2020·明光市明湖学校七年级期末)如图,长度为12的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为()A.2B.5C.6D.8【答案】D5.(2019·浙江七年级月考)如图,在线段AB上有C、D两点,CD长度为1,AB长为整数,则以A、B、C、D为端点的所有线段长度和不可能为()A.21B.22C.25D.31【答案】A6.(2019·武汉七一华源中学七年级月考)如图:点C是线段AB上的点,若AC=3cm,AB=15cm,点D为线段CB的中点,则线段CD的长为()A.3cm B.6cm C.9cm D.7.5cm【答案】B7.(2020·全国七年级课时练习)如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4B.3C.2D.1【答案】C二、填空题8.(2020·湖北七年级期中)在数轴上,点B表示-1,点C表示5,若点B为线段AC的中点,则点A表示的数是_____.【答案】-79.(2020·甘州中学七年级月考)线段AB上有点C,点C使AC:CB=2:3,点M和点N分别是线段AC和线段CB的中点,若MN=4,则AB的长是_____.【答案】810.(2019·陕西师范大学附属中学分校七年级月考)已知在一直线上顺次有A、B、C三个点,且线段AB=8cm,BC=6cm BC ,点M是线段AC的中点,则线段AM的长为___cm.6cm【答案】711.(2020·吉林农安县第三中学、农安三中七年级月考)如图,C是线段BD的中点,AD=3,AC=7,则线段AB的长等于________.【答案】1112.(2019·武汉七一华源中学七年级月考)已知线段AB的长度为12,点P为线段AB的四等分点,则线段AP的长为_______.【答案】3,6,913.(2020·辽宁)已知点C,D在直线AB上,且AC=BD=1.5,若AB=7,则CD的长为_______.【答案】4或7或1014.(2018·浙江七年级月考)如图,将一根绳子对折以后用线段AB表示,点P是AB的四等分点,现从P处将绳子剪断,剪断后的各段绳子中的一段长为30cm,则这条绳子的原长为_____cm.【答案】40或80或120或240.三、解答题15.(2020·吉林农安县第三中学、农安三中七年级月考)如图,D是AB的中点,E是BC的中点,13cm6BE AC==,求DE的长.【答案】∵13cm6BE AC==∴AC=6BE=18cm ∵E是BC的中点∴BC =2BE =6cm∴AB =AC -BC =12cm又∵AB =2AD∴BD =6cm∴DE =DB +BE =6+3=9cm【点睛】本题考查了两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.16.(2020·辽宁)如图,已知点C ,D 在线段AB 上,且::2:5:3AC CD DB =,AC =4 cm ,若点M 是线段AD 的中点,求线段BM 的长.【答案】解:设2AC x =,5CD x =,3DB x =由题意:24=x , 解得2x=,224AC cm ∴=⨯=,5210CD cm =⨯=,326DB cm =⨯=, 41014AD AC CD cm ∴=+=+=.M 是线段AD 中点, 1114722DM AD cm ∴==⨯=. 6713BM BD DM cm ∴=+=+=.【点睛】本题考查线段的中点,线段的和差,掌握中点的性质和线段的和差关系为解题关键.17.(2019·西安交通大学附属中学雁塔校区七年级月考)如图,已知线段AB=20cm,C是线段AB延长线上一点,点D是BC 中点.当AC=6CD时,求AC的长.【答案】解:∵点D是BC的中点,∴BC=2CD,∵AC=6CD,∴AB=4CD,∵AB=20cm,∴CD=5cm,∴AC=30cm.【点睛】本题考查的是两点间的距离,熟知中点的定义是解答此题的关键.18.(2020·甘肃临泽二中七年级月考)如图所示,已知D是AB上任意一点,M、N分别是AD、DB的中点,若AB=16,求MN的长.【答案】解:∵M、N分别是AD、DB的中点,AB=16∴MD=12AD,DN=12BD,AD+BD=AB=16.∴MN=MD+DN=12(AD+BD)=8.【点睛】此题主要考查与线段中点有关的线段计算问题,解题的关键是学生的读图能力及建立线段之间的数量关系.19.(2020·甘州中学七年级月考)点A,B,C三点在同一直线上,AB的中点是点E,BC的中点是点F,EF=12,求AC的长度.【答案】解:当如图1所示时,∵AB的中点是点E,BC的中点是点F,EF=12,∴EF=12AB﹣12BC=12(AB﹣BC)=12AC=12,解得AC=24;当如图2所示时,∵AB的中点是点E,BC的中点是点F,EF=12,∴EF=12AB+12BC=12(AB+BC)=12AC=12,解得AC=24;当如图3所示时,∵AB的中点是点E,BC的中点是点F,EF=12,∴EF=12BC-12AB=12(BC-AB)=12AC=12,解得AC=24;综上所述:AC的长为24故AC 的长为24.【点睛】本题主要考查两点之间的距离,熟知各线段之间的和差倍数关系是解题的关键.20.(2019·浙江七年级月考)线段AB 和CD 在同一直线上,M ,N 分别是线段AB ,CD 的中点,已知AB =6 cm ,CD =8 cm .(1)当A ,C 两点重合时,如图1,求MN 的长;(2)当C 点在线段AB 上时,如图2,如果线段AB ,CD 的公共部分CB =2 cm ,求MN 的长;(3)在(2)的情况下,MN 与AB ,CD ,BC 有怎样的数量关系?(直接写出结果)【答案】解:(1)M ,N 分别是线段AB ,CD 的中点,6AB cm =,8CD cm =,3AM cm ∴=,4AN CN cm ==, 1MN AN AM cm ∴===;(2)M ,N 分别是线段AB ,CD 的中点,6AB cm =,8CD cm =,3AM cm ∴=,4DN cm =,线段AB ,CD 的公共部分2BC cm =,68212AD AB CD BC cm ∴=+-=+-=.故12345MN AD AM DN cm =--=--=;(3)M ,N 分别是线段AB ,CD 的中点,12AM AB ∴=,12DN CD =, AD AB CD BC ∴=+-,故11112222MN AD AM DN AB CD BC AM DN AB CD BC AB CD AB CD BC =--=+---=+---=+-. 【点睛】本题考查了线段中点的相关计算,利用线段中点的性质得出MC ,NC 的长是解题关键.。
专题08 线段上动点问题的三种考法类型一、求值问题例.数轴上有A ,B ,C 三点,A ,B 表示的数分别为m ,n ()m n <,点C 在B 的右侧,2AC AB -=.(1)如图1,若多项式()371231m n x x x +--+-是关于x 的二次三项式,请直接写出m ,n 的值:(2)如图2,在(1)的条件下,长度为1的线段EF (E 在F 的左侧)在A ,B 之间沿数轴水平滑动(不与A ,B 重合),点M 是EC 的中点,N 是BF 的中点,在EF 滑动过程中,线段MN 的长度是否发生变化,请判断并说明理由;(3)若点D 是AC 的中点.①直接写出点D 表示的数____________(用含m ,n 的式子表示);②若24AD BD +=,试求线段AB 的长.【答案】(1)5m =-,1n =;(2)不变化,理由见解析;(3)①12m n ++;②103【解析】(1)解:由题可知,n -1=0,7+m =2,∴1n =,5m =-故答案为:5m =-,1n =(2)解:MN 的长不发生变化,理由如下:由题意,得点C 表示的数为3,设点E 表示的数为x ,则点F 表示的数为1x +∴6AB = ,2BC = ,5AE x =+ ,6AF x =+ ,3EC x =- ,BF x =-,∵点M 是EC 的中点,N 是BF 的中点∴32x MC ME -==,2x NF -=,即311222x x MN ME EF FN --=--=--=(3)解:①∵A ,B 表示的数分别为m ,n ()m n <又点C 在B 的右侧,∴AB =n -m∵2AC AB -=,∴AC = n -m +2∵点D 是AC 的中点,∴AD =12AC = 12(n -m +2)∴D 表示的数为:m + 12(n -m +2)=12m n ++②依题意,点C 表示的数分别为2n +∴AB n m =-,1122m n n m AD m +-=+-=+∴1122m n m n BD n +-=+-=+,22122m n BD m n -=+=-+∵24AD BD +=,即1242n m m n -++-+=当20m n -+>时.()1242n m m n -++-+=,2m n -=∵m n <,∴2m n -=不符合题意,舍去当20m n -+<时.()1242n m m n -+--+=,103n m -=综上所述,线段AB 的长为103.【变式训练1】如图1,点C 在线段AB 上,图中共有三条线段AB ,AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)线段的中点__这条线段的“巧点”;(填“是”或“不是”);(2)如图2,已知AB =15cm .动点P 从点A 出发,以2cm /s 的速度沿AB 向点B 匀速运动;点Q 从点B 出发,以1cm /s 的速度沿BA 向点A 匀速运动,点P ,Q 同时出发,当其中一点到达终点时,运动停止.设移动的时间为t (s ),当t =__s 时,Q 为A ,P 的“巧点”.【答案】是 7.5或457【解析】(1)若线段中点为C点,AB=2AC,所以中点是这条线段“巧点”(2)设A点为数轴原点,作数轴,设运动时间为t秒;t最大=7.5,A:0,P:0+2t=2t,Q:15﹣t,①Q为AP中点,20152tt+-=,∴t=7.5;②AQ=2PQ,AQ=15﹣t﹣0=15﹣t,PQ=2t﹣(15﹣t)=3t﹣15,∵AQ=2PQ,∴15﹣t=2(3t﹣15),∴457t=;③PQ=2AQ,得3t﹣15=2(15﹣t),∴t=9>7.5(舍去).综上所述:t=7.5或45 7.故答案为:(1)是;(2)7.5或45 7.【变式训练2】已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s 的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN3AB的值.【答案】(1)7cm;(2)13;(3)13或23【解析】(1)解:当点C、D运动了1s时,CM=1cm,BD=3cm ∵AB=11cm,CM=1cm,BD=3cm∴AC+MD=AB﹣CM﹣BD=11﹣1﹣3=7cm.(2)解:设运动时间为t,则CM=t,BD=3t,∵AC=AM﹣t,MD=BM﹣3t,又MD=3AC,∴BM﹣3t=3AM﹣3t,即BM=3AM,∴AM=13 BM故答案为:13.(3)解:由(2)可得:∵BM =AB ﹣AM ∴AB ﹣AM =3AM ,∴AM =14AB ,①当点N 在线段AB 上时,如图∵AN ﹣BN =MN ,又∵AN ﹣AM =MN ,∴BN =AM =14AB ,∴MN =12AB ,即2MN 3AB =13.②当点N 在线段AB 的延长线上时,如图∵AN ﹣BN =MN ,又∵AN ﹣BN =AB ,∴MN =AB ,∴MN AB=1,即2MN 3AB =23.综上所述2MN 3AB =13或23【变式训练3】如图,数轴上有两点,A B ,点C 从原点O 出发,以每秒1cm 的速度在线段OA 上运动,点D 从点B 出发,以每秒4cm 的速度在线段OB 上运动.在运动过程中满足4OD AC =,若点M 为直线OA 上一点,且AM BM OM -=,则AB OM的值为_______.【答案】1或53【解析】设运动的时间为t 秒,点M 表示的数为m则OC=t ,BD=4t ,即点C 在数轴上表示的数为-t ,点D 在数轴上表示的数为b-4t ,∴AC=-t-a ,OD=b-4t ,由OD=4AC 得,b-4t=4(-t-a ),即:b=-4a ,①若点M 在点B 的右侧时,如图1所示:由AM-BM=OM 得,m-a-(m-b )=m ,即:m=b-a ;∴=1b a B O mA m M m -==②若点M 在线段BO 上时,如图2所示:由AM-BM=OM 得,m-a-(b-m )=m ,即:m=a+b ;∴=4543b a b a a a m a AB b a a OM ----===+-③若点M 在线段OA 上时,如图3所示:由AM-BM=OM 得,m-a-(b-m )=-m ,即:433a b a a m a +-===-∵此时m <0,a <0,∴此种情况不符合题意舍去;④若点M 在点A 的左侧时,如图4所示:由AM-BM=OM 得,a-m-(b-m )=-m ,即:m=b-a=-5a ;而m <0,b-a >0,因此,不符合题意舍去,综上所述,AB OM 的值为1或53.类型二、证明定值问题例.如图,已知线段AB m =,CD n =,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若()21260m n -+-=.(1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,4BC =,求线段MN 的长;(3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA PB PC -是定值,②PA PB PC+是定值,请选择你认为正确的一个并加以说明.【答案】(1)12AB =,6CD =;(2)9;(3)②正确,2PA PB PC+=,见解析【解析】(1)由()21260m n -+-=,()212600m n ³--³,,12=06=0m n --,,得12m =,6n =,所以12AB =,6CD =;(2)当点C 在点B 的右侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,4BC =,所以()()1124118222AM AC AB BC ==+´+==,()()111645222DN BD CD BC ===++=,又因为124622AD AB BC CD =++=++=,所以22859MN AD AM DN =--=--=,当点C 在点B 的左侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,所以()()1111244222AM MC AC AB BC ===--==,()()111641222BN ND BD CD BC ===--==,所以126414AD AB CD BC =+-=+-=所以14419MN AD AM DN =--=--=.综上,线段MN 的长为9;(3)②正确,且2PA PB PC+=.理由如下:因为点D 与点B 重合,所以BC DC =,所以6AC AB BC AB DC =-=-=,所以AC BC =,所以()()222PC AC PC BC PA PB PC AC BC PC PC PC PC PC++-++-====.【变式训练1】已知线段AB =m ,CD =n ,线段CD 在直线AB 上运动(A 在B 的左侧,C 在D 的左侧),且m ,n 满足|m -12|+(n -4)2=0.(1)m= ,n= ;(2)点D与点B重合时,线段CD以2个单位长度/秒的速度向左运动.①如图1,点C在线段AB上,若M是线段AC的中点,N是线段BD的中点,求线段MN的长;②P是直线AB上A点左侧一点,线段CD运动的同时,点F从点P出发以3个单位/秒的向右运动,点E是线段BC的中点,若点F与点C相遇1秒后与点E相遇.试探索整个运动过程中,FC-5DE是否为定值,若是,请求出该定值;若不是,请说明理由.【解析】(1)∵|m-12|+(n-4)2=0,∴m-12=0,n-4=0,∴m=12,n=4;故答案为:12;4.(2)由题意,①∵AB=12,CD=4,∵M是线段AC的中点,N是线段BD的中点,∴AM=CM=12AC ,DN=BN=12BD∴MN=CM+CD+DN=12AC +CD+12BD=12AC +12CD+12BD+12CD=12(AC +CD+BD)+12CD=12(AB +CD)=8;②如图,设PA=a,则PC=8+a,PE=10+a,依题意有:81013231a a+++=++,解得:a=2,在整个运动的过程中:BD=2t,BC=4+2t,∵E是线段BC的中点,∴CE= BE=12BC=2+t;Ⅰ.如图1,F,C相遇,即t=2时F,C重合,D,E重合,则FC=0,DE=0,∴FC-5 DE =0;Ⅱ.如图2,F,C相遇前,即t<2时FC =10-5t,DE =BE-BD=2+t-2t=2-t,∴FC-5 DE =10-5t -5(2-t)=0;Ⅲ.如图3,F,C相遇后,即t>2时FC =5t-10,DE = BD - BE=2t –(2+t)= t-2,∴FC-5 DE =5t-10 -5(t-2)=0;综合上述:在整个运动的过程中,FC-5 DE的值为定值,且定值为0.【变式训练2】如图,数轴上点A,B表示的有理数分别为6,3,点P是射线AB上的一个动点(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.【答案】(1)6;6;(2)不发生改变,MN为定值6,过程见解析【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3),∴MN=MP-NP=6.综上所述:点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长为定值6.【变式训练3】(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解.①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由;(2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PB PC+的值不变.【答案】(1)①AB=4;②线段MN 的长与点P 在线段AB 上的位置无关,理由见解析;(2)见解析.【详解】解:(1)①∵关于x 的方程()46n x n -=-无解.∴4n -=0,解得:n=4.故AB=4.②线段MN 的长与点P 在线段AB 上的位置无关,理由如下:∵M 为线段PB 的中点,∴PM=12PB .同理:PN= 12AP ..∴MN=PN+PM= 12(PB+AP )= 12AB= 12×4=2.∴线段MN 的长与点P 在线段AB 上的位置无关.(2)设AB=a ,BP=b ,则PA+PB=a+b+b=a+2b .∵C 是AB 的中点,1122BC AB a \==12PC PB BC a b \=+=+,2212PA PB a b PC a b ++\==+,所以PA PB PC+的值不变.类型三、数量关系例.数轴上A B 、两点对应的数分别是4,12-,线段CE 在数轴上运动,点C 在点E 的左边,且8,CE =点F是AE 的中点.(1)如图1,当线段CE 运动到点,C E 均在,A B 之间时,若1CF =,则AB =_________,点C 对应的数为________,BE =________;(2)如图2,当线段CE 运动到点A 在C E 、之间时,画出草图并求BE 与CF 的数量关系.【答案】(1)16;2;2;(2)2BE CF =,画图见解析.【解析】(1)Q 数轴上A B 、两点对应的数分别是4,12-,12(4)16AB \=--=8,1CE CF ==Q 7EF CE CF \=-=Q 点F 是AE 的中点,7AF EF \==,6AC AF CF \=-=6AC AO CO =+=Q ,2CO \=,C \对应的数是2,2BE AB AF EF \=--=故答案为:16;2;2;(2),BE AB AE CF CE EF =-=-Q ,Q 点F 是AE 的中点,2AE EF\=162,8BE AB AE EF CF CE EF EF \=-=-=-=-,2BE CF\=故答案为:(1)16;2;2;(2)2BE CF =,画图见解析.【变式训练1】如图,已知线段AB ,延长线段BA 至C ,使CB =43AB .(1)请根据题意将图形补充完整.直接写出AC AB= _______;(2)设AB = 9cm ,点D 从点B 出发,点E 从点A 出发,分别以3cm/s ,1cm/s 的速度沿直线AB 向左运动.①当点D 在线段AB 上运动,求AD CE 的值;②在点D ,E 沿直线AB 向左运动的过程中,M ,N 分别是线段DE 、AB 的中点.当点C 恰好为线段BD 的三等分点时,求MN 的长.【答案】(1)13,(2)3,(3)12cm 或24cm .【详解】解:(1)图形补充完整如图,∵CB =43AB ,∴CA =13BC AB AB -=,13AC AB =,故答案为:13;(2)①AB = 9cm ,由(1)得,133CA AB ==(cm ),设运动的时间为t 秒,(93)DA t =-cm ,(3)CE t =-cm ,93=33AD t CE t-=-,②当3BD CD =时,∵AB = 9cm , 3CA =cm ,∴212CB CD ==cm ,∴6CD =cm ,318BD CD ==cm ,运动时间为:18÷3=6(秒),则6AE =cm ,15BE BA AE =+=cm ,3ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴ 1.5DM =cm , 4.5BN =cm ,12MN BD DM BN =--=cm ,当3BD CB =时,∵AB = 9cm , 3CA =cm ,∴12CB =cm ,∴336BD CB ==cm ,运动时间为:36÷3=12(秒),则12AE =cm ,21BE BA AE =+=cm ,15ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴7.5DM =cm , 4.5BN =cm ,24MN BD DM BN =--=cm ,综上,MN 的长是12cm 或24cm .【变式训练2】已知点C 在线段AB 上,AC =2BC ,点D 、E 在直线AB 上,点D 在点E 的左侧,(1)若AB=18,DE=8,线段DE在线段AB上移动,①如图1,当E为BC中点时,求AD的长;②当点C是线段DE的三等分点时,求AD的长;(2)若AB=2DE,线段DE在直线上移动,且满足关系式32AD ECBE+=,则CDAB= .【答案】(1)①AD=7;②AD=203或283;(2)1742或116【详解】解:(1)∵AC=2BC,AB=18,∴BC=6,AC=12,①∵E为BC中点,∴CE=3,∵DE=8,∴CD=5,∴AD=AC﹣CD=12﹣5=7;②∵点C是线段DE的三等分点,DE=8,∴CE=13DE=83或CE=23DE=163,∴CD=163或CD=83,∴AD=AC﹣CD=12﹣163=203或12-83=283;(2)当点E在线段BC之间时,如图,设BC=x,则AC=2BC=2x,∴AB=3x,∵AB=2DE,∴DE=1.5x,设CE=y,∴AE=2x+y,BE=x﹣y,∴AD=AE﹣DE=2x+y﹣1.5x=0.5x+y,∵32AD ECBE+=,∴0.532x y yx y++=-,∴y=27x,∴CD=1.5x﹣27x=1714x,∴171714342==xCDAB x;当点E在点A的左侧,如图,设BC =x ,则DE =1.5x ,设CE =y ,∴DC =EC +DE =y +1.5x ,∴AD =DC ﹣AC =y +1.5x ﹣2x =y ﹣0.5x ,∵32AD EC BE +=,BE =EC +BC =x +y ,∴0.532y x y x y -+=+,∴y =4x ,∴CD =y +1.5x =4x +1.5x =5.5x ,BD =DC +BC =y +1.5x +x =6.5x ,∴AB =BD ﹣AD =6.5x ﹣y +0.5x =6.5x ﹣4x +0.5x =3x ,∴ 5.51136==CD x AB x ,当点E 在线段AC 上及点E 在点B 右侧时,无解,综上所述CD AB 的值为1742或116.故答案为:1742或116.课后作业1.已知有理数a ,b ,c 在数轴上对应的点从左到右顺次为A ,B ,C ,其中b 是最小的正整数,a 在最大的负整数左侧1个单位长度,BC=2AB .(1)填空:a= ,b= ,c= (2)点D 从点A 开始,点E 从点B 开始, 点F 从点C 开始,分别以每秒1个单位长度、1个单位长度、4个单位长度的速度在数轴上同时向左运动,点F 追上点D 时停止动,设运动时间为t 秒.试问:①当三点开始运动以后,t 为何值时,这三个点中恰好有一点为另外两点的中点?②F 在追上E 点前,是否存在常数k ,使得DF k EF +×的值与它们的运动时间无关,为定值.若存在,请求出k 和这个定值;若不存在,请说明理由.【答案】(1)-2,1,7;(2)①t=1或t=52;②k=-1【解析】(1)∵最小正数为1.最大的负整数为小-1,a 在最大的负整数左侧1个单位长度∴点A 表示的数a 为-1-1=-2,点B 表示的数b 为1,∴AB=1-(-2)=3∵223=6BC AB ==´,∴点C 表示的数为c=1+6=7,故答案为:-2,1,7;(2)①依题意,点F 的运动距离为4t ,点D 、E 运动的距离为t,∴点D 、E 、F 分别表示的数为-2-t ,1-t , 7-4t,当点F 追上点D 时,必将超过点B ,∴存在两种情况,即DE=EF 和DF=EF ,如图,当DE=EF ,即E 为DF 的中点时,()21=274t t t ----+,解得,t=1,如图,当EF=DF ,即F 为DE 中点时,()74=21t t t ---+-2,解得t=52,综上所述,当t=1秒和t=52时,满足题意.②存在,理由:点D 、E 、F 分别表示的数为-2-t ,1-t ,7-4t,如图,F 在追上E 点前, ()74-2=93DF t t t =----,()74-1=63EF t t t =---,()()93639633DF k EF t k t k k t +×=-+-=+-+,当DF k EF +×与t 无关时,需满足3+3k=0,即k=-1时,满足条件.故答案为:(1)-2,1,7;(2)①t=1或t=52;②k=-12.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.若18AB =,8DE =,线段DE 在线段AB 上移动.(1)如图1,当E 为BC 中点时,求AD 的长;(2)点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长.【答案】(1)7;(2)3或5【解析】(1)2AC BC =,18AB =,6BC \=,12AC =,如图1,E Q 为BC 中点,3CE BE \==,8DE =Q ,∴8311BD DE BE =+=+=,∴18117AD AB DB =-=-=,(2)Ⅰ、当点E 在点F 的左侧,如图2,或∵3CE EF +=,6BC =,\点F 是BC 的中点,∴3CF BF ==,∴18315AF AB BF =-=-=,∴153AD AF ==,∵3CE EF +=,故图2(b )这种情况求不出;Ⅱ、如图3,当点E 在点F 的右侧,或12AC =Q ,3CE EF CF +==,∴9AF AC CF =-=,∴39AF AD ==,3AD \=.∵3CE EF +=,故图3(b )这种情况求不出;综上所述:AD 的长为3或5.3.已知线段AB ,点C 在直线AB 上,D 为线段BC 的中点.(1)若8AB =,2AC =,求线段CD 的长.(2)若点E 是线段AC 的中点,请写出线段DE 和AB 的数量关系并说明理由.【答案】(1)3或5(2)2AB DE =,理由见解析【解析】(1)解:如图1,当C 在点A 右侧时,∵8AB =,2AC =,∴6C AB C B A =-=,∵D 是线段BC 的中点,:∴132CD BC ==;如图2,当C 在点A 左侧时,∵8AB =,2AC =,∴10BC AB AC =+=,∵D 是线段BC 的中点,∴152CD BC ==;综上所述,3CD =或5;(2)解:2AB DE =.理由是:如图3,当C 在点A 和点B 之间时,∵E 是AC 的中点,D 是BC 的中点,∴2AC EC =,2BC CD =,∴222AB AC BC EC CD DE =+=+=;如图4,当C 在点A 左侧时,同理可得:()2222AB BC AC CD CE CD CE DE =-=-=-=;如图5,当C 在点B 右侧时,同理可得:()2222AB AC BC EC CD EC CD DE =-=-=-=.4.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN3AB的值.【答案】(1)7cm;(2)13;(3)13或23【解析】(1)解:当点C、D运动了1s时,CM=1cm,BD=3cm∵AB=11cm,CM=1cm,BD=3cm∴AC+MD=AB﹣CM﹣BD=11﹣1﹣3=7cm.(2)解:设运动时间为t,则CM=t,BD=3t,∵AC=AM﹣t,MD=BM﹣3t,又MD=3AC,∴BM﹣3t=3AM﹣3t,即BM=3AM,∴AM=13BM,故答案为:13.(3)解:由(2)可得:∵BM=AB﹣AM,∴AB﹣AM=3AM,∴AM=14 AB,①当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN,∴BN=AM=14AB,∴MN=12AB,即2MN3AB=13.②当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB,∴MN=AB,,∴MNAB=1,即2MN3AB=23.综上所述2MN3AB=13或235.如图,在数轴上A点表示的数为a,B点表示的数为b,C点表示的数为c,b是最大的负整数,且a,c满足()2390a c ++-=.点P 从点B 出发以每秒3个单位长度的速度向左运动,到达点A 后立刻返回到点C ,到达点C 后再返回到点A 并停止.(1)=a ________,b =________,c =________.(2)点P 从点B 离开后,在点P 第二次到达点B 的过程中,经过x 秒钟,13PA PB PC ++=,求x 的值.(3)点P 从点B 出发的同时,数轴上的动点M ,N 分别从点A 和点C 同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t 秒钟时,P 、M 、N 三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的t 的值.【答案】(1)3-,1-,9;(2)13x =或1x =或53x =或233x =;(3)167t =,1,2617,8,12【详解】解:(1)∵b 是最大的负整数,且a ,c 满足()2390a c ++-=,∴b=-1,a+3=0,c-9=0,∴a=-3,c=9.故答案为:-3;-1;9.(2)由题意知,此过程中,当点P 在AB 上时.∴PA+PB=AB=b-a=-1-(-3)=2.∴()13-=13-2=11PC PA PB =+.又∵BC=c-b=9-(-1)=10.∴PB=PC-BC=11-10=1.当P 从B 到A 时,如图所示:∵PB=1,可以列方程为:3x=1,解得:x=1;当P 从A 到C 时,分两种情况讨论:①当P 在线段AB 之间时,如图所示:可以列方程为:3x=3,解得:x=1,②当P 在线段BC 之间时,如图所示:∵PA+PB+PC=13,AB=2,BC=10,∵PB+PC=10∴PA=13-10=3,∴PB=PA-AB=3-2=1,可列方程为:3x=5,解得:53x =.当P 从C 到B 时,如图所示:可列方程为:3x=23,解得:233x =.综上所述,13x =或1x =或53x =或233x =.(3)当点从为PN 中点时,当0<t<23时,点P 向A 运动,.此时,P=-1-3t ,M=-3+4t ,N=9-5t .(-1-3t )+(9-5t )=2(-3+4t ),解得t=78(舍去).当23≤t≤43时,点P 从A 返回向B 运动.此时,P=-3+3(t-23)=3t-5.3t-5+9-5t=2(-3+4t ),解得t=1.当P 为MN 中点时,t>43.(9-5t )+(-3+4t )=2(3t-5),解得t=167 .当点N 为PM 中点时,t>43.(-3+4t )+(3t-5)=2(9-5t ),解得t=2617.综上所述,t 的值为1, 167或2617.6.七(1)班的学习小组学习“线段中点”内容时,得到一个很有意思的结论,请跟随他们一起思考. (1)发现:如图1,线段12AB =,点,,C E F 在线段AB 上,当点,E F 是线段AC 和线段BC 的中点时,线段EF 的长为_________;若点C 在线段AB 的延长线上,其他条件不变(请在图2中按题目要求将图补充完整),得到的线段EF 与线段AB 之间的数量关系为_________.(2)应用:如图3,现有长为40米的拔河比赛专用绳AB ,其左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求. 已知磨损的麻绳总长度不足20米. 小明认为只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF . 小明所在学习小组认为此法可行,于是他们应用“线段中点”的结论很快做出了符合要求的专用绳EF ,请你尝试着“复原”他们的做法:①在图中标出点E 、点F 的位置,并简述画图方法;②请说明①题中所标示,E F 点的理由.【答案】(1)6;补图见解析,12EF AB (2)①见解析(答案不唯一)②见解析.【详解】解:(1)点,,C E F 在线段AB 上时,因为点E 是线段AC 的中点,所以CE=12AC ,因为点F 是线段BC 的中点,所以CF=12BC ,所以EF=CE+CF=12AC+12BC=12AB ,又AB=12,所以EF=6.当点C 在线段AB 的延长线上时,如图2,此时,EF=EC-FC ═12AC-12BC=12AB.答案为:6;EF=12AB.(2)①图3如图,在CD 上取一点M ,使CM CA =,F 为BM 的中点,点E 与点C 重合. (答案不唯一)②因为F 为BM 的中点,所以MF BF =.因为,AB AC CM MF BF CM CA =+++=,所以222()2AB CM MF CM MF EF =+=+=.因为40AB =米,所以20EF =米.因为20AC BD +<米,40AB AC BD CD =++=米,所以20CD >米.因为点E 与点C 重合,20EF =米,所以20CF =米,所以点F 落在线段CD 上.所以EF 满足条件.7.问题背景整体思想就是从问题的整体性质出发,突出对问题的整体结构的分析,把握它们之间的关联,进行有目的、有意识的整体处理,整体思想在代数和几何中都有很广泛的应用.(1)如图1,A 、B 、O 三点在同一直线上,射线OD 和射线OE 分别平分∠AOC 和∠BOC ,则∠DOE 的度数为 (直接写出答案).(2)当x =1时,代数式a 3x +bx +2021的值为2020,当x =﹣1时,求代数式a 3x +bx +2021的值.(3)①如图2,点C 是线段AB 上一定点,点D 从点A 、点E 从点B 同时出发分别沿直线AB 向左、向右匀速运动,若点E 的运动速度是点D 运动速度的3倍,且整个运动过程中始终满足CE =3CD ,求AC AB 的值;②如图3,在①的条件下,若点E 沿直线AB 向左运动,其它条件均不变.在点D 、E 运动过程中,点P 、Q 分别是AE 、CE 的中点,若运动到某一时刻,恰好CE =4PQ ,求此时AD AB的值.【答案】(1)90°;(2)2022;(3)①14;②112或512【解析】(1)解:如图1,∵射线OD 和射线OE 分别平分∠AOC 和∠BOC ,∴∠DOC =12∠AOC ,∠COE =12∠BOC ,∵∠DOE =∠DOC +∠COE ,∴∠DOE =12∠AOC +12∠BOC =12(∠AOC +∠BOC ),∵∠AOC +∠BOC =180°,∴∠DOE =12×180°=90°,故答案为:90°.(2)∵当x =1时,代数式a 3x +bx +2021的值为2020,∴a +b +2021=2020,∴a +b =-1,∴-a -b =1,当x =﹣1时,a 3x +bx +2021= -a -b +2021=1+2021=2022.(3)①如图2,设点D 运动的路程为x ,则点E 运动的路程为3x ,∴CE =BC +BE =BC +3x ,CD =CA +AD =CA +x ,∵CE =3CD ,∴BC +3x = 3CA +3x ,∴CB =3AC ,∴AB =CB +AC =4AC ,∴AC AB =14.②根据①,设AC =m ,则CB =3m ,AB =4m ,设点D 运动的路程为AD =x ,则点E 运动的路程为EB =3x ,当点E 在C 点的右侧时,如图3,∴CE =BC -BE =3m -3x ,CD =CA +AD =m +x ,∵点P 、Q 分别是AE 、CE 的中点,∴PE =12AE ,QE =12CE ,∴PQ =PE -QE =12AE -12CE =11()222m AE CE AC -==,∵CE =4PQ ,∴3m -3x =4×2m ,解得x =3m ,故AD =3m ,∴AD AB =13412m m =.当点E 在C 点的左侧,且在点A 的右侧时,如图4,∴CE =BE -BC =3x -3m ,CD =CA +AD =m +x ,∵点P 、Q 分别是AE 、CE 的中点,∴PE =12AE ,QE =12CE ,∴PQ =PE +QE =12AE +12CE =11()222m AE CE AC +==,∵CE =4PQ ,∴3x -3m =4×2m ,解得x =53m ,故AD =53m ,∴AD AB =53412m m =.当点E 在A 点的左侧时,如图5,∴CE =BE -BC =3x -3m ,CD =CA +AD =m +x ,∵点P 、Q 分别是AE 、CE 的中点,∴PE =12AE ,QE =12CE ,∴PQ =PE +QE =12AE +12CE =11()222m AE CE AC +==,∵CE =4PQ ,∴3x -3m =4×2m ,解得x =53m ,故AD =53m ,∴AD AB =553412m m =.综上所述,AD AB 的值为112或512.8.已知:如图1,点M 是线段AB 上一定点,AB =12cm ,C 、D 两点分别从M 、B 出发以1cm /s 、2cm /s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AM =4cm ,当点C 、D 运动了2s ,此时AC = ,DM = ;(直接填空)(2)当点C 、D 运动了2s ,求AC +MD 的值.(3)若点C 、D 运动时,总有MD =2AC ,则AM = (填空)(4)在(3)的条件下,N 是直线AB 上一点,且AN ﹣BN =MN ,求MN AB的值.【答案】(1)2,4;(2)6 cm ;(3)4;(4)13MN AB =或1.【详解】(1)根据题意知,CM =2cm ,BD =4cm ,∵AB =12cm ,AM =4cm ,∴BM =8cm ,∴AC =AM ﹣CM =2cm ,DM =BM ﹣BD =4cm ,故答案为:2cm ,4cm ;(2)当点C 、D 运动了2 s 时,CM =2 cm ,BD =4 cm∵AB =12 cm ,CM =2 cm ,BD =4 cm∴AC +MD =AM ﹣CM +BM ﹣BD =AB ﹣CM ﹣BD =12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD =2MC ,∵MD =2AC ,∴BD +MD =2(MC +AC ),即MB =2AM ,∵AM +BM =AB ,∴AM +2AM =AB ,∴AM =13AB =4,故答案为:4;(4)①当点N 在线段AB 上时,如图1,∵AN ﹣BN =MN ,又∵AN ﹣AM =MN ,∴BN =AM =4∴MN =AB ﹣AM ﹣BN =12﹣4﹣4=4,∴13MN AB =;②当点N 在线段AB 的延长线上时,如图2,∵AN ﹣BN =MN ,又∵AN ﹣BN =AB ,∴MN =AB =12,∴1MN AB=;综上所述13MN AB =或1故答案为13MN AB =或1.9.如图,数轴正半轴上的A ,B 两点分别表示有理数a ,b ,O 为原点,若3a =,线段5OB OA =.(1)=a ______,b =______;(2)若点P 从点A 出发,以每秒2个单位长度向x 轴正半轴运动,求运动时间为多少时;点P 到点A 的距离是点P 到点B 距离的3倍;(3)数轴上还有一点C 表示的数为32,若点P 和点Q 同时从点A 和点B 出发,分别以每秒2个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A ,求点P 和点Q 运动多少秒时,P 、Q 两点之间的距离为4.【答案】(1)3a =,15b =;(2)9或92;(3)8或503【详解】解:(1)∵数轴正半轴上的A ,B 两点分别表示有理数a ,b ,|a|=3,线段OB=5OA ,∴a=3,b=15,故答案为:3,15;(2)设运动时间为t 秒时,点P 到点A 的距离是点P 到点B 距离的3倍.由题意得:AB=15-3=12,当点P 在A 、B 之间时,有2t=3(12-2t ),解得:t=92;当点P 在B 的右边时,有2t=3(2t-12),解得t=9;即运动时间为92或9秒时,点P 到点A 的距离是点P 到点B 的距离的3倍;(3)根据题意,由点C 为32,则AC=32-3=29,BC=32-15=17,∴点P 运动到点C 所需要的时间为:2914.52t ==秒,点Q 运动到点C 所需要的时间为:17171t ==秒,则可分为两种情况进行分析:①当点P 还没有追上点Q 时,有:1224t t +-=,解得:8t =;②当点P 运动到点C 返回时,与点Q 相遇后,与点Q 相距4,则有:2124292t t ++-=´,解得:503t =.10.已知数轴上三点M ,O ,N 对应的数分别为-3,0,1,点P 为数轴上任意一点,其对应的数为x .(1)如果点P 到点M ,点N 的距离相等,那么x 的值是______;(2)数轴上是否存在点P ,使点P 到点M ,点N 的距离之和是5?若存在,请直接写出x 的值;若不存在,请说明理由.(3)如果点P 以每分钟3个单位长度的速度从点O 向左运动时,点M 和点N 分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P 到点M ,点N 的距离相等.(直接写出答案)【答案】(1)1-;(2)x= 3.5-或1.5;(3)4t 3=分钟或t=2分钟时点P 到点M ,点N 的距离相等.【详解】解:(1)∵M ,O ,N 对应的数分别为-3,0,1,点P 到点M ,点N 的距离相等,∴x 的值是1-.故答案为1-;(2)存在符合题意的点P ;∵点M为-3,点N为1,则点P分为两种情况,①点P在N点右侧,则(1)(3)5x x-++=,解得: 1.5x=;②点P在M点左侧,则(3)(1)5x x--+-=,解得: 3.5x=-;∴ 3.5 1.5x=-或=.(3)设运动t分钟时,点P对应的数是-3t,点M对应的数是-3-t,点N对应的数是1-4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以:-3-t=1-4t,解得t=43,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=-3t-(-3-t)=3-2t.PN=(1-4t)-(-3t)=1-t.因为PM=PN,所以3-2t=1-t,解得t=2.此时点M对应的数是-5,点N对应的数是-7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=3t-t-3=2t-3.PN=-3t-(1-4t)=t-1.因为PM=PN,所以2t-3=t-1,解得t=2.此时点M对应的数是-5,点N对应的数是-7,点M在点N右侧,符合题意.综上所述,三点同时出发,43分钟或2分钟时点P到点M,点N的距离相等.11.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2=,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【答案】(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13AB,∴13PQAB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112 AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.。
人教版七年级上册数学第四章几何图形初步求线段的长度专题训练1. 已知线段AB ,延长AB 到C ,使得2CB AB =,再反向延长线段AB 到D ,使得12AD AB =,E 为AC 中点,若2cm BE =,求DC 的长.2.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点,若15AB =, 4.5CE =,求出线段AD 的长度.2. 已知点C 在直线AB 上,10cm AC =,6cm CB =,点M 、N 分别是AC 、BC 的中点,求线段AB 、MN 的长4.已知点C ,D 是线段AB 上两点,点M ,N 分别为AC ,DB 的中点.(1)如图,若点C 在点D 的左侧,AB =12,CD =5,求MN 的长.(2)若AB =a ,CD =b ,请直接用含a ,b 的式子表示MN 的长.5.(1)如图,已知点C 在线段AB 上,且10AB =cm ,4BC =cm ,点M 、N 分别是AB 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AB a ,BC b =,点M ,N 分别是AB ,BC 的中点,则MN =________; (3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,(2)中的结论是否仍然成立?若不成立,直接写出MN 的长度的表达式.6.如图,点A 、B 、C 、D 在同一条直线上,且AB :BC :CD =2:3:5,线段BC =6.(1)求线段AB 、CD 的长;(2)若在直线上存在一点M 使得AM =2,求线段DM 的长.7.如图,M ,N 为线段AB 上两点,且:1:3AM MB =,:5:7AN NB =.若2MN =,求AB 的长.8.如图,C 为线段AD 上的一点,B 为线段CD 的中点,AD =12cm ,BD =3cm .(1)图中共有 条线段;(2)求线段AC 的长;(3)若点E 在线段AD 上,且BE =2cm ,求AE 的长.9.已知线段AB =2cm ,延长AB 到C ,使BC =32AB ,D 是线段AB 的中点, (1)求线段CD 的长?(2)线段AC 是线段DB 的几倍?(3)线段AD 是线段BC 的几分之几?10.如图,点C为线段AB上一点,AC=16cm,CB=10cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若AC+BC=b cm,其他条件不变,求出线段MN的长并说明理由.11.如图,点B,D在线段AC上,13BD AB=,34AB CD=,线段AB、CD的中点E、F之间的距离是10,求线段AC的长.12.如图,点C、D是线段AB上两点,:3:2AC BC=,点D为AB的中点.(1)如图1所示,若30AB=,求线段CD的长;(2)如图2所示,若E为AC的中点,5ED=,求线段AB的长.13.已知点A,B,C在同一条直线上,点M,N分别是AC,BC的中点.(1)如图1,若点C在线段AB上,AC=6cm,CB=4cm,则线段MN的长为cm;(2)若点C在线段AB上,且AC+CB=acm,则线段MN的长度为cm;。
专题训练(八) 线段的计算
——教材P128练习T3的变式与应用
教材母题:(教材P 128练习T 3)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4 cm ,求线段CD 的长度.
【解答】 因为点D 是线段AB 的中点,AB =4 cm , 所以AD =12AB =1
2×4=2(cm ).
因为C 是线段AD 的中点, 所以CD =12AD =1
2
×2=1(cm ).
【方法归纳】 结合图形,将待求线段长转化为已知线段的和、差形式.若题目中出现线段
的中点,常利用线段中点的性质,结合线段的和、差、倍、分关系求解.同时应注意题目中若没有图形,或点的位置关系不确定时,常需要分类讨论,确保答案的完整性.
1.如图,线段AB =22 cm ,C 是线段AB 上一点,且AC =14 cm ,O 是AB 的中点,求线段OC 的长度.
解:因为点O 是线段AB 的中点,AB =22 cm , 所以AO =1
2
AB =11 cm .
所以OC =AC -AO =14-11=3(cm ).
2.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.
(1)若DE =9 cm ,求AB 的长; (2)若CE =5 cm ,求DB 的长.
解:(1)因为D 是AC 的中点,E 是BC 的中点, 所以AC =2CD ,BC =2CE.
所以AB =AC +BC =2DE =18 cm . (2)因为E 是BC 的中点, 所以BC =2CE =10 cm .
因为C 是AB 的中点,D 是AC 的中点, 所以DC =12AC =1
2
BC =5 cm .
所以DB =DC +BC =5+10=15(cm ).
3.如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.
解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 所以AD =AB +BC +CD =10x cm . 因为M 是AD 的中点, 所以AM =MD =1
2
AD =5x cm .
所以BM =AM -AB =5x -2x =3x(cm ). 因为BM =6 cm , 所以3x =6,x =2.
故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).
4.如图,线段AB =1 cm ,延长AB 到C ,使得BC =3
2AB ,反向延长AB 到D ,使得BD =2BC ,
在线段CD 上有一点P ,且AP =2 cm .
(1)请按题目要求画出线段CD ,并在图中标出点P 的位置; (2)求出线段CP 的长度.
解:(1)线段CD 和点P 的位置如图1、2所示.
(2)因为AB =1 cm , 所以BC =32AB =3
2 cm .
所以BD =2BC =3 cm .
当点P 在点A 的右边时,CP =AB +BC -AP =1
2
cm ;
当点P 在点A 的左边时,点P 与点D 重合,CP =BD +BC =9
2
cm .。