2019年苏州市石牌中学初一上数学期末试题(四)(有答案)
- 格式:doc
- 大小:230.50 KB
- 文档页数:7
第一学期初一数学期末测试卷 (四)(满分:100分时间:120分钟)一、选择题 (每题2分.共20分)1.在-2,1,5,0这四个数中,最大的数是 ( )A.-2 B.1 C.5 D.02.计算-10-8所得的结果是 ( )A.-2 B.2 C.18 D.-183.在网络上搜索“中国梦”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为( )A.451×105 B.45.1×106 C.4.51×107 D.0.451×1084.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.在下列图形中,该几何体的表面展开图是 ( )5.甲、乙、丙三家超市对一种定价相同的商品进行促销.甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.那么顾客购买这种商品应该去的超市是 ( )A.甲 B.乙 C.丙 D.一样6.2016年,王先生到银行存了一笔三年期的定期存款,年利率是2.75%,若到期后取出,得到本息和 (本金+利息) 为33852元.若设王先生存入的本金为元,则下面所列方程正确的是 ( )A.+3×2.75%=33825 B.+2.75%+=33825C.3×2.75%=33825 D.3(+2.75%)=338257.某道路一侧原有路灯106盏,相邻两盏灯的距离为36 m,现计划全部更换为新型的节能灯,若相邻两盏灯的距离变为70 m,则需更换的新型节能灯有 ( )A.54盏 B.55盏 C.56盏D.57盏8.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a (m) 及行驶的平均速度b (m/h) 用 (a,b) 表示,则从景点A到景点C用时最少的路线是 ( )A.A→E→C B.A→D→CC.A→E→B→C D.A→B→E→C9.下列各图中,∠1与∠2互为余角的是()A. B. C. D.10.观察图中正方形四个顶点所标的数字规律,可知,数2017应标在()A.第504个正方形的左下角 B.第504个正方形的右下角C.第505个正方形的右上角 D.第505个正方形的右下角二、填空题(每题2分,共20分)11.若实数a,b在数轴上对应点的位置如图所示,则a b.(填“<”、“>”或“=”)d中的○里,填入运算符号,能使得算式的值最小.(填“+”、“-”、“×”12.在算式1-23或“÷”)13.体育委员带了500元钱去买体育用品,若二个足球a元,一个篮球b元,则代数式500-3a-2b表示.14.下图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n (n为正整数)个图案由个▲组成.15.某计算程序如图所示,当输人= 时,输出的y=8.16.根据里氏震级的定义,地震所释放的相对能量E与震级n的关系为E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是.17.如果=1时,代数式2a3+3b+4的值是5,那么=-1时,代数式2a3+3b+4的值是 . 18.李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色 (不包含底面),则表面被他染成红色的面积为.19.某商场出售A,B,C三种型号的笔记本电脑,四月份A型电脑的销售额占三种型号总销售额的56%,五月份B ,C 两种型号的电脑销售额比四月份减少了m %,A 型电脑的销售额比四月份增加了23%.已知商场五月份这三种型号电脑的总销售额比四月份增加了12%,则m = .20.某商场在元旦期间举行促销活动,根据顾客按商品标价一次性购物的总额,规定相应的优惠方法:①若不超过500元,则不予优惠;②若超过500元,但不超过800元,则按购物总额给予8折优惠;③若超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款 元. 三、解答题 (共60分) 21.(本题6分) 计算:(1) (-39)-(+21)-(-5)+(-9); (2) -22+3×(-1)2016-9÷(-3)22.(本题6分) 解下列方程: (1) 2(+1)-6=3(-2)-4(-5); (2) 213x -=216x +-123.(本题4分) 已知关于的方程3(-2)=-a 的解比2x a +=23x a -的解小52,求a 的值.24.(本题6分) 先化简,再求值: (1) 求2m 2-4m +l -2(m 2+2m -12),其中m =-1;y =0,求5y2-[22y-(22 y-3y2)](2) 已知 (-2)2+125.(本题5分) 三个队植树,第一队植树a棵,第二队植树棵数比第一队的2倍少8棵,第三队植树棵数比第二队的一半多6棵,问三个队共植树多少棵? 并求当a=100时,三个队植树的总棵数.26.(本题6分) 为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如下表:例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?27.(本题8分)(1) 如图,B、C两点把线段MN分成三部分,其比例为MB:BC:CN=2:3:4,P是MN的中点,PC=2cm,求MN的长.(2) 作图与推理:如图所示是由一些大小相同的小正方体组合成的简单几何体.①图中有块小正方体;②该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.28.(本题9分) 一天,某客运公司的甲、乙两辆客车分别从相距380 m的A,B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2 h甲车先到达服务区C地,此时两车相距20 m,甲车在服务区C地休息了20 min,然后按原速度开往B地;乙车行驶2 h 15 min时也经过C地,未停留继续开往A地。
2019-2020 年初一数学期末复习综合试卷( 4)苏科版一、 : ( 本 共 10 小 ,每小3 分,共 30 分 )1.我国 “一 一路”沿 国家不停加大投 ,当前已 相关国家 造了近1100000000美元税收,此中1100000000 用科学 数法表示 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A .108;B .109 ;C .1010;D .11108;2.如 是某个几何体的睁开 , 几何体是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A .三棱柱;B . ;C .四棱柱;D . 柱;3. 式3 xy 2 的系数和次数分 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()2A .-3, 3B .3, 2C .3, 3D .-3,2 22224.有理数a ,b 的点在数 上的地点如 , 以下 的是⋯⋯⋯⋯⋯( )A . ab0 ;B .ab; C .a0 ;D .ab ;b第 4第 7第 25. 以下 算正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A . 7a a 7a2. 5 y 3y 2 ;22 25ab;B C .3x y 2 yxx y; .;D 3a 2b6.表示“ m 的 5 倍与 n 的平方的差” 的代数式是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ()A .2222225m n ; B . 5m n;.5mn;. 5m n ;C D7. 如 ,已知△ ABC 中, BC=6, AC=3,CP ⊥ AB ,垂足 P , CP 的 可能是( )A . 2;B . 4;C . 5;D . 7;8. 如 ,以下推理中正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A. ∵∠ 1=∠ 4,∴ BC//AD ;B.∵∠ 2=∠ 3,∴ AB//CD ;C. ∵∠ BCD+∠ ADC=180°,∴ AD//BC ;D.∵∠ CBA+∠ C=180°,∴ BC//AD ;第 8第16第 159. 4 个小朋友在一同,每两人握一次手,他 一共握了 6 次手, 12 个小朋友在一同,他一共握手的次数是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A . 18B . 60C . 66D . 14410. 出以下 :① 式-3x 2y 的系数3,次数2;②当 x = 5, y =4 ,代22数式 x 221 1 x3 52 n 1y 的 1;③化 x42 x的 果是;④若 式ax y447与7ax m y 4 的差还是 式,m n = 5.此中正确的 有⋯⋯⋯⋯⋯⋯⋯⋯⋯5()A .1个B .2 个C .3个D .4 个二、填空 : ( 本 共 8 小 ,每小 3 分,共 24 分)11.若对于 x 的方程 2 a x a 11 0 是一元一次方程, a =. 12.假如一个角的 角是 54°36′ 18″, 个角的大小是.13. 已知:方程 2x+1=3 的解是方程m x=2 的解, m =.第 17214.点 A 、B 、C 在直 l 上,AB = 4,BC = 6,点 E 是 AB 中点,点 F 是 BC 的中点, EF =.15. 如 ,直 l 1 / /l 2 / /l 3 ,点 A 、 B 、 C 分 在直 l 1 、 l 2 、 l 3 上.若∠ 1=70°,∠ 2=50°,∠ ABC= 度.16.将一 方形 片按如 所示的方式折叠, BD 、 BE 折痕,点B 、C 、 A 在向来上,若∠ ABE = 25°, ∠ DBC 度.17.如 , AB 、CD 订交于点 O ,OE 是∠ AOC 的均分 , ∠ BOD = 70°,∠ EOF = 65°, ∠ AOF的度数°.18.有 100 个数排成一行,此中随意相 的三个数中,中 的数等于它前后两个数的和.若第一个数和第二个数都是-1 , 100 个数的和等于 .三、解答 :(本 分 76 分)19. 算:(本 分 10 分)1 2 8;(2)32018(1) 33 5 223251 ;51520. (本 分 8 分)解方程 :(1) 2( x + 3)= 5x ;x 12 3x(2)12321.(本 分 6 分)A 3ax 3bx , Bax 32bx 8 .(1) 求 A +B ;(2) 当 x 1 , A + B = 10,求代数式 9b 6a 2 的 .22.(本 分6 分)假如代数式5a+ 3b 的值为- 4,那么代数式2(a+ b-1) +4( 2a+ b+ 2)的值是多少?23.(此题满分5 分)如图,已知∠ α.(1)试画出∠α的一个余角(用∠ 1 表示)和∠α的一个补角(用∠ 2 表示)(2) 若∠α= 32° 33' ,则∠ 1=°;∠ 2=°.24.(此题 6 分)如图, B, C 是线段 AD上随意两点, M是 AB 的中点, N 是 CD中点.(1)若 MN=10cm, BC= 4cm,求线段 AD的长.(2)若 MN=a, BC=b,求线段 AD的长 .25.(此题满分 6 分)如图,依据图形填空:已知:∠ DAF=∠ F,∠ B=∠ D,AB 与 DC平行吗?解:∠ DAF=∠ F ( _________)∴AD∥ BF( _________),∴∠ D=∠ DCF(_________)∵∠ B=∠D (_________)∴∠ B=∠ DCF (_________)∴AB∥ DC( _________)26.(此题满分 5 分)已知对于 x 的方程x mx m 与2x 16x 2 的解互为倒数,求m 的值.23227.(此题满分 6 分)甲、乙两人同时从相距25 千米的 A 地去 B 地,甲骑车乙步行,甲的速度是乙的速度的 3 倍,甲抵达 B 地逗留 40 分钟,而后从 B 地返回 A 地,在途中遇到乙,这时距他们出发的时间恰巧 3 小时,求两人的速度各是多少?28.(此题满分 9 分)如图,过点 O 的四条射线 OA、 OB、 OD、 OC按逆时针摆列,∠ AOB=60°, OM均分∠ AOC,ON 均分∠ DOB.①如图( 1),当∠ COD=80°时,求∠ MON的度数.②如图( 2),若∠ COD的度数为n,请用 n 的式子表示∠ MON的度数.③在②的条件下,当∠AON比∠ CON大 40°时,求∠ MON的度数.29.( 此题满 9 分 )如图 1,已知数轴上有三点A、B、 C, AB=1AC,点 C 对应的数是200.2(1)若 BC=300,求点 A 对应的数;(2)如图 2,在( 1)的条件下,动点 P、 Q分别从 A、C 两点同时出发向左运动,同时动点R从 A 点出发向右运动,点P、Q、R 的速度分别为10 单位长度每秒、 5 单位长度每秒、 2 单位长度每秒,点 M为线段 PR的中点,点 N 为线段 RQ的中点,多少秒时恰巧知足MR=4RN(不考虑点 R 与点 Q相遇以后的情况);(3)如图 3,在( 1)的条件下,若点E、D 对应的数分别为﹣800、0,动点 P、Q分别从 E、D两点同时出发向左运动,点P、 Q的速度分别为10 单位长度每秒、 5 单位长度每秒,点M为线段PQ的中点,点Q在从是点D 运动到点A的过程中3 QC﹣AM的值能否发生变化?若不2变,求其值;若不变,请说明原因.。
苏州市初一上学期数学期末试卷带答案一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×108B.6.5×107C.6.5×108D.65×1062.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线3.如图,C为射线AB上一点,AB=30,AC比BC的14多5,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论:①BC=2AC;②AB=4NQ;③当PB=12BQ时,t=12,其中正确结论的个数是()A.0 B.1 C.2 D.34.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2 B.2C2D325.若多项式229x mx++是完全平方式,则常数m的值为()A.3 B.-3 C.±3 D.+66.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()A.2(30+x)=24﹣x B.2(30﹣x)=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )7.3的倒数是( ) A .3B .3-C .13D .13-8.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山9.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯B .5510⨯C .6510⨯D .510⨯10.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32bB .a =2bC .a =52b D .a =3b11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题13.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.14.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.15.计算:11(2019)5-⎛⎫+-⎪⎝⎭=_________16.分解因式: 22xy xy+=_ ___________17.如图,在长方形ABCD中,10,13.,,,AB BC E F G H==分别是线段,,,AB BC CD AD上的定点,现分别以,BE BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF与正方形DGIH的重合部分恰好是一个正方形,且,BE DG=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为123,,s s s.若2137SS=,则3S=___18.如图所示,ABC90∠=,CBD30∠=,BP平分ABD.∠则ABP∠=______度.19.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.20.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.21.已知一个角的补角是它余角的3倍,则这个角的度数为_____.22.4是_____的算术平方根.23.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题25.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由. 26.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.27.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.28.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
苏州市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×1072.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b3.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( )A .B .C .D . 4.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.5.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)36.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒ 7.-2的倒数是( )A .-2B .12-C .12D .2 8.在223,2,7-四个数中,属于无理数的是( ) A .0.23 B 3 C .2- D .2279.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-= 10.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1 C .9 D .711.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 .14.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.15.=38A ∠︒,则A ∠的补角的度数为______.16.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.17.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;18.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.19.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)20.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.21.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.22.﹣225ab π是_____次单项式,系数是_____. 23.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).26.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.27.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.28.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?29.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.30.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.31.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.32.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.3.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.4.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D∵0的绝对值是0,故本选项错误.故选C.5.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.6.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).7.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握8.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,227是分数,是有理数,不符合题意,故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.9.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.10.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.11.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.12.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.二、填空题13.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.14.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15.【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:,的补角的度数为:,故答案为:.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.解析:142︒【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:∠=,38A∴A∠的补角的度数为:18038142-=,故答案为:142︒.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.16.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.17.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.18.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.19.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.20.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.21.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.22.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 23.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、压轴题25.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 26.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°. 【点睛】 本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.27.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.28.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;②当点P 运动到点B 的左侧时:∵M 为线段AP 的中点,N 为线段BP 的中点, ∴MN=MP-NP=AP-BP=(AP-BP )=AB=15,∴综上所述,线段MN 的长度不发生变化,其值为15.(3)若点P 、Q 同时出发,设点P 运动t 秒时与点Q 距离为4个单位长度.①点P 、Q 相遇之前,由题意得4+5t=30+3t ,解得t=13;②点P 、Q 相遇之后,由题意得5t-4=30+3t ,解得t=17.答:若点P 、Q 同时出发,13或17秒时P 、Q 之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.29.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:()()12.....2S n n n n =++++++()()()()=.....12.. (1112)n n n n n n n n +++++++=+++()312n n =+ 【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.30.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.31.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.32.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm;(2) 设AC=acm ,∵点D 、E 分别是AC 和BC 的中点,∴DE=CD+CE=12(AC+BC )=12AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;(3)①当OC 在∠AOB 内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=12∠BOC,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。
苏州市第一学期初一数学期末综合试卷含答案考试名称:苏州市初一数学期末综合试卷考试时间:2019年1月班级:初一年级注意事项:1. 考试时间为90分钟。
2. 本试卷共四大题,满分为100分。
3. 请将所有答案写在答题纸上。
4. 答案部分请写清题号和答案,计算过程必须写在答题纸上。
第一部分:选择题(共40分,每题2分)1. 下列哪个不是自然数?A. 0B. 1C. 2D. 32. 将3的平方根化为最简根式是:A. √3B.2√3C. √6D. 33. 若a:b = 2:3,b:c = 5:6,则a:c = ?A. 10:12B. 3:2C. 5:4D. 4:54. 若正方体的体积为8m³,则它的边长为:A. 2mB. 4mC. 6mD. 8m.....第二部分:填空题(共30分,每题2分)1. 若平行线l₁和l₂交与F点,若l₃与l₁平行,则l₃和l₂的交点为________。
答:F2. 计算: 6 × ( 4 - 2 ) - 5 ÷ 5 = ________。
答:113. 一个有n个顶点的多边形的内角和为__________度。
答:(n-2) × 180.....第三部分:解答题(共20分)1. 已知三角形ABC,BC=12cm,∠B=30°,∠C=60°,求AB的长度。
答:由正弦定理可得 AB = 2 × BC × sin∠C = 12 × sin60° = 12√3 cm。
2. 张三用10m的绳子围成了一个正方形花坛,李四用同样长度的绳子围成了一个圆形花坛,两人谁围成的花坛的面积更大?并说明理由。
答:李四围成的圆形花坛的面积更大。
因为在给定周长的情况下,圆形花坛的面积最大。
第四部分:应用题(共10分)某市开展了一项环保活动,计划种植苗木来改善环境。
甲地可以种植树木,乙地可以种植花卉,丙地则适合种植蔬菜。
苏州市初一上学期数学期末试卷带答案一、选择题1.以下选项中比-2小的是( ) A .0B .1C .-1.5D .-2.52.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+ C .23x = D .3-3x x = 3.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-24.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=5.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或56.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-= D .32(72)30x x +-=7.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃B .7℃C .﹣7℃D .9℃8.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( ) A .a >ab >ab 2 B .ab >ab 2>a C .ab >a >ab 2 D .ab <a <ab 29.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对10.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .111.估算15在下列哪两个整数之间( )A.1,2 B.2,3 C.3,4 D.4,512.如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠213.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥B.四棱柱C.三棱锥D.三棱柱14.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x元,根据题意可列方程为()A.300-0.2x=60 B.300-0.8x=60 C.300×0.2-x=60 D.300×0.8-x=60 15.下列计算正确的是()A.3a+2b=5ab B.4m2n-2mn2=2mnC.-12x+7x=-5x D.5y2-3y2=2二、填空题16.如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若MN=17cm,则BD=__________cm.17.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.18.如图,将一张长方形纸片分別沿着EP,FP对折,使点B落在点B,点C落在点C′.若点P,B′,C′不在一条直线上,且两条折痕的夹角∠EPF=85°,则∠B′PC′=_____.199________20.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.21.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.22.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___23.因式分解:32x xy -= ▲ .24.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).25.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.26.若α与β互为补角,且α=50°,则β的度数是_____.27.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____.28.﹣225ab π是_____次单项式,系数是_____.29.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.30.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.三、压轴题31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.33.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.34.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3. 问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.35.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
七年级上册苏州数学期末试卷练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.(1)①若m=50,则射线OC的方向是________,②图中与∠BOE互余的角有________,与∠BOE互补的角有________.(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW(2)解:∠AOC= ∠SOB.理由如下:∵OA平分∠BON,∴∠NOA= ∠NOB,又∵∠BON=180°-∠SOB,∴∠NOA= ∠BON=90°- ∠SOB,∵∠NOC=90°-∠EOC,由(1)知∠BOS=∠EOC,∴∠NOC=90°-∠SOB,∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),即∠AOC= ∠SOB.【解析】【解答】解:(1)①∵m+n=90°,m=50°,∴n=40°,∴射线OC的方向是北偏东40°;②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,∴图中与∠BOE互余的角有∠BOS,∠EOC;∠BOE+∠BOW=180°,∴图中与∠BOE互补的角有∠BOW,故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)点B表示的数是﹣6;点P表示的数是8﹣5t(2)解:设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…解得:x=7,∴点P运动7秒时,在点C处追上点Q(3)解:没有变化.分两种情况:①当点P在点A.B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB=7…②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7…综上所述,线段MN的长度不发生变化,其值为7…(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。
苏州市初一上学期数学期末试卷带答案一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90°2.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .2063.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×107 4.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.5.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-= 6.下列说法中正确的有( )A .连接两点的线段叫做两点间的距离B .过一点有且只有一条直线与已知直线垂直C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线 7.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣38.不等式x ﹣2>0在数轴上表示正确的是( )A .B .C .D .9.若a<b,则下列式子一定成立的是( ) A .a+c>b+c B .a-c<b-c C .ac<bc D .a b c c < 10.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2 11.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180° 12.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( )A .﹣4B .﹣2C .4D .2 二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________.14.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.15.15030'的补角是______.16.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.17.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.18.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.19.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.20.当x= 时,多项式3(2-x )和2(3+x )的值相等.21.已知代数式235x -与233x -互为相反数,则x 的值是_______. 22.当12点20分时,钟表上时针和分针所成的角度是___________.23.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、解答题 25.计算:(1)()7.532-⨯-(2)()383+3233⨯-+-26.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.27.如图,已知数轴上点A 表示的数为﹣1,点B 表示的数为3,点P 为数轴上一动点. (1)点A 到原点O 的距离为 个单位长度;点B 到原点O 的距离为 个单位长度;线段AB 的长度为 个单位长度;(2)若点P 到点A 、点B 的距离相等,则点P 表示的数为 ;(3)数轴上是否存在点P ,使得PA +PB 的和为6个单位长度?若存在,请求出PA 的长;若不存在,请说明理由?(4)点P 从点A 出发,以每分钟1个单位长度的速度向左运动,同时点Q 从点B 出发,以每分钟2个单位长度的速度向左运动,请直接回答:几分钟后点P 与点Q 重合?28.已知A =3x 2+x+2,B =﹣3x 2+9x+6.(1)求2A ﹣13B ; (2)若2A ﹣13B 与32C -互为相反数,求C 的表达式; (3)在(2)的条件下,若x =2是C =2x+7a 的解,求a 的值.29.如图所示,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线,65 25EOC DOC ∠=︒∠=,,求AOB ∠的度数.30.如图所示,∠AOB=∠AOC=90°,∠DOE=90°,OF 平分∠AOD ,∠AOE=36°.(1)求∠COD 的度数;(2)求∠BOF 的度数.四、压轴题31.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.32.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数33.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB .(1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B .【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.D解析:D【解析】【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +,根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案.【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D.【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C解析:C【解析】试题解析:A ∵0的绝对值是0,故本选项错误.B ∵互为相反数的两个数的绝对值相等,故本选项正确.C 如果一个数是正数,那么这个数的绝对值是它本身.D ∵0的绝对值是0,故本选项错误.故选C .5.A解析:A【解析】【分析】设女生x 人,男生就有(30-x )人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x 人,∵共有学生30名,∴男生有(30-x )名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x 棵,男生植树3(30-x )棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.6.C解析:C【解析】【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可.【详解】A .连接两点的线段的长度叫做两点间的距离,错误;B .在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C .对顶角相等,正确;D .线段AB 的延长线与射线BA 不是同一条射线,错误.故选C .【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.7.B解析:B【解析】【分析】将1x =-代入2ax x -=,即可求a 的值.【详解】解:将1x =-代入2ax x -=,可得21a --=-,解得1a =-,故选:B .【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.8.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.9.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.10.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.12.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.二、填空题13.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB =5,BC =3,∴AC =5+3=8;∵点D 是AC 的中点,∴AD =8÷2=4;∵点E 是AB 的中点,∴AE =5÷2=2.5,∴ED =AD ﹣AE =4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.15.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:18015030'2930'-=.故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.16.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:459<<,23∴<<,a 2∴=,b 3=,则原式495=-=-,故答案为5-【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线, ∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.19.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.20.【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.21.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键 解析:278【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.22.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.23.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=50×40×h ,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm ),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键. 24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、解答题25.(1)13.5;(2)9.【分析】(1)根据有理数的四则混合运算解答;(2)根号二次根式的四则运算进行解答.【详解】解:(1) ()7.532-⨯-=7.56+=13.5;(3--=(23⨯-=3+=9.【点睛】本题考查的是有理数以及二次根式的计算问题,解题关键按照四则运算去计算即可.26.(1)一个暖瓶的售价是30元,一个水杯的售价是8元;(2)这个单位在甲商场购买更算.【解析】【分析】(1)根据“暖瓶+水杯=38元”和“2个暖瓶的价格+3个水杯的价格=84元”这两个关系式,设暖瓶为x 元,用x 将水杯的售价表示出来,然后列出一元一次方程求解即可.(2)根据售价×折扣=实际售价,分别计算两个方案各自的售价,然后对比判断即可解决.【详解】(1)设一个暖瓶售价x 元,则一个水杯售价是(38)x -元.依题意得:23(38)84x x +-=,解得:30x =.38-30=8(元).因此,一个暖瓶的售价是30元,一个水杯的售价是8元.(2)这个单位在甲商场购买更算.理由:在甲商场购买所需费用为:43016885%210.8⨯+⨯⨯=()(元);在乙商场购买所需费用为:43016-48216⨯+⨯=()(元);因为210.8<216,所以这个单位在甲商场购买更算.【点睛】本题考查了一元一次方程解决问题和方案选择问题,解决本题的关键是正确理解题意,找到等量关系,能够根据各自的方案计算其所需的费用.27.(1)1,3,4;(2)1;(3)存在,PA=1;(4)经过4分钟后点P 与点Q 重合.【解析】(1)根据数轴上两点间的距离公式进行计算即可;(2)设点P 表示的数为x ,根据题意列出方程可求解;(3)设点P 表示的数为y ,分1y <-,13y -≤≤和3y >三种情况讨论,即可求解; (4)设经过t 分钟后点P 与点Q 重合,由点Q 的路程﹣点P 的路程=4,列出方程可求解.【详解】解:(1)∵点A 表示的数为﹣1,点B 表示的数为3,∴()OA=011--=,OB=303-=,()AB=314--=故答案为:1,3,4;(2)设点P 表示的数为x ,∵点P 到点A 、点B 的距离相等,∴3(1)-=--x x∴x =1,∴点P 表示的数为1,故答案为1;(3)存在,设点P 表示的数为y ,当1y <-时,∵PA +PB =136--+-=y y ,∴y =﹣2,∴PA =1(2)1---=,当13y -≤≤时,∵PA +PB =(1)36--+-=y y ,∴无解,当y >3时,∵PA +PB =(1)36--+-=y y ,∴y =4,∴PA =5;综上所述:PA =1或5.(4)设经过t 分钟后点P 与点Q 重合,2t ﹣t =4,∴t =4答:经过4分钟后点P 与点Q 重合.【点睛】本题考查数轴上两点间的距离,以及数轴上的动点问题,熟练掌握数轴上两点间的距离公式,并运用方程思想是解题的关键.28.(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣57 7【解析】【分析】(1)根据题意列出算式2(3x2+x+2)﹣13(﹣3x2+9x+6),再去括号、合并即可求解;(2)由已知等式知2A﹣13B+32C-=0,将多项式代入,依此即可求解;(3)由题意得出x=2是方程C=2x+7a的解,从而得出关于a的方程,解之可得.【详解】解:(1)2A﹣1 3 B=2(3x2+x+2)﹣13(﹣3x2+9x+6)=6x2+2x+4+x2﹣3x﹣2=7x2﹣x+2;(2)依题意有:7x2﹣x+2+32C-=0,14x2﹣2x+4+C﹣3=0,C=﹣14x2+2x﹣1;(3)∵x=2是C=2x+7a的解,∴﹣56+4﹣1=4+7a,解得:a=﹣577.故a的值是﹣577.【点睛】本题考查了整式的加减、相反数和一元一次方程的解法,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.29.130︒【解析】【分析】根据题意直接利用角平分线的性质得出∠AOD和∠BOD,进而求出AOB∠的度数.【详解】解:∠EOD=∠EOC-∠DOC=65°-25°=40°,∵OC是∠AOD的平分线,OE是∠BOD的平分线,∴∠AOD=2∠DOC=2⨯25°=50°,∠BOD=2∠EOD=2⨯40°=80°,∴∠AOB=∠AOD+∠BOD =50°+80°=130°.【点睛】本题主要考查角的运算,熟练运用角平分线的定义以及正确掌握角平分线的性质是解题关键.30.(1)144°;(2)63°【解析】【分析】(1)先根据互余的关系求出∠COE=54°,然后利用∠COD=∠DOE+∠COE 计算即可;(2)先根据互余的关系求出∠AOD=54°,再求出∠BOD 和∠DOF ,利用角的和差关系即可求出∠BOF .【详解】(1)∵∠AOC=90°,∴∠COE=90°﹣AOE=90°﹣36°=54°,∴∠COD=∠DOE+∠COE=90°+54°=144°;(2)∵∠DOE=90°,∠AOE=36°,∴∠AOD=90°﹣36°=54°,∵∠AOB=90°,∴∠BOD=90°﹣54°=36°,∵OF 平分∠AOD ,∴∠DOF=12∠AOD=27°, ∴∠BOF=36°+27°=63°.考点:1.余角和补角;2.角平分线的定义.四、压轴题31.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.32.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣4834 【解析】【分析】(1)根据A 点对应的数为60,B 点在A 点的左侧,AB =30求出B 点对应的数;根据AC =4AB 求出AC 的距离;(2)①当P 点在AB 之间运动时,根据路程=速度×时间求出AP =3t ,根据BP =AB ﹣AP 求解;②分P 点是A 、B 两个点的中点;B 点是A 、P 两个点的中点两种情况讨论即可;③根据P 、Q 两点的运动速度与方向可知Q 点在往返过程中与P 点相遇2次.设Q 点在往返过程中经过x 秒与P 点相遇.第一次相遇是点Q 从A 点出发,向C 点运动的途中.根据AQ ﹣BP =AB 列出方程;第二次相遇是点Q 到达C 点后返回到A 点的途中.根据CQ+BP =BC 列出方程,进而求出P 点在数轴上对应的数.【详解】(1)∵A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,∴B 点对应的数为60﹣30=30;∵C 点到A 点距离是B 点到A 点距离的4倍,∴AC=4AB =4×30=120;(2)①当P 点在AB 之间运动时,∵AP=3t ,∴BP=AB ﹣AP =30﹣3t .故答案为30﹣3t ;②当P 点是A 、B 两个点的中点时,AP =12AB =15, ∴3t=15,解得t =5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.33.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°.【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,证明:延长AP交ON于点D,∵∠ADB是△AOD的外角,∴∠ADB=∠PAO+∠AOD,∵∠AP B是△PDB的外角,∴∠APB=∠PDB+∠PBO,∴∠APB=∠MON+∠PAO+∠PBO;(2)设∠MON=2m°,∠APB=2n°,∵OC平分∠MON,∴∠AOC=∠MON=m°,∵PQ平分∠APB,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,∴∠OQP=180°+x°﹣y°;第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,即∠OQP+n°=m°+x°,∴2∠OQP+2n°=2m°+2x°①,∵∠APB=∠MON+∠PAO+∠PBO,∴2n°=2m°+x°+y°②,①﹣②得2∠OQP=x°﹣y°,∴∠OQP=x°﹣y°,综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.。
第一学期期末七年级数学模拟试卷四考试范围:苏科版2013年教材七年级数学上册内容,加七年级下册第10章《二元一次方程组》。
考试题型:选择、填空、解答三大类;考试时间:120分钟;试卷分值:130分。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.|﹣3|结果为( )A.﹣3B. 3C. 13D.﹣132.一种面粉的质量标识为“50±0.25千克”,则下列面粉中合格的是( )A. 50.30千克B. 49.51千克C. 49.80千克D. 50.70千克 3.下列各题中合并同类项,结果正确的是( )A. 2a2+3a2=5a2B. 2a2+3a2=6a2C. 4xy-3xy=1D. 2x3+3x3=5x6 4.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A 地到B 地架设电线,总是尽可能沿着线段AB 架设. (3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线. (4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有( )A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4) 5.关于x 的方程﹣ax=b (a ≠0)的解是( )A. x=b aB. x=﹣b aC. x=﹣a bD. x=ab6.点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是( )A. AC =BCB. AB =2ACC. AC + BC=ABD. BC =12 AB7)8.数轴上三个点表示的数分别为p 、r 、s .若p-r =5,s-p=2,则s-r 等于( ) A .3 B .-3 C .7 D .-7 9.已知线段AB=8cm ,在直线AB 上画线BC ,使它等于3cm ,则线段AC 等于( ) A .11cmB .5cmC .11cm 或5cmD .8cm 或11cmA. B. C. D.线 密班级 姓 学 试场封10. 当1x =-时,代数式21ax bx ++的值为1-,则(1)(1)a b a b +--+的值为( )A . 3-B .1-C .1D .3二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.马拉松(Marathon)国际上非常普及的长跑比赛项目,全程距离26英里385码,折合为42195米,用科学记数法表示42195为 . 12.已知∠a=34°,则∠a 的补角为 °.13.请列举一个单项式,使它满足系数为2,次数为3,含有字母a 、b ,单项式可以为 . 14.已知x <-1,则x 、x2、x3的大小关系是 .15.如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC =63°,则∠AOD= .16.某商店在进价的基础上提高50元作零售价销售,商店又以8折(即售价的80%)的价格开展促销活动,这时一件商品所获利润为20元,则该商品进价为 元.17.如图,下面两个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么黄色的对面是 .18.计算⎝⎛⎭⎫16+17+18-2×⎝⎛⎭⎫12-16-17-18-3×⎝⎛⎭⎫16+17+18-19的结果是 .三、解答题(本大题共11小题,共76分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(6分)计算:(1) [(-2) 2-32]÷56. (2)﹣14﹣(1﹣12)÷3×|3﹣(﹣3)2|.20.(6分)①先化简, 再求值:2(x2-xy)-(3x2-6xy),其中x=12,y=-1.(第15题)AOBCD(第17题)②先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.21.(6分)已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关。
江苏省苏州市2019-2020学年上学期初中七年级期末考试数学试卷满分130分。
考试用时120分钟。
一、选择题:(本大题共有10小题,每小题3分,共30分.以下各题都有四个选项,其中只有一个是正确的)1. 下列各组数中,互为相反数的A. 3-与13-B. 3-与3C. 13-与13-D. 13-与13-- 2. 下列计算正确的是A.277a a a +=B.532y y -=C.22232x y yx x y -=D.325a b ab +=3. 解方程2(3)3(4)5x x ---=时,下列去括号正确的是A.23345x x --+=B.26345x x ---=C.233125x x ---=D.263125x x --+=4. 下列图形中,能够折叠成一个正方体的是5. 不等式组211x -≤+<的解集,在数轴上表示正确的是6. 已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是A.AC BC =B.2AB AC =C.AC BC AB +=D.12BC AB =7. 不等式1243x -≥的正整数解有A. 3个B. 2个C. 1个D. 0个8. 某公园将一长方形草地改造,长增加20%,宽减少20%,则这块长方形草地的面积A.减少4%B.不改变C.增大4%D.增大10%9. 已知30AOB ∠=︒,自AOB ∠顶点O 引射线OC ,若:4:3AOC AOB ∠∠=,那么 BOC ∠的度数是A. 10°B. 40°或30°C. 70°D. 10°或70°10. 1011(2)(2)-+-的值为A.212-B.22-C.2-D.102-二、填空题: (本大题共8小题,每小题3分,共24分。
)11. 计算:(4)6-⨯= . 12. 当x = 时,代数式344x -的值是12. 13. 如图,A 、O 、B 在同一条直线上,如果OA 的方向是北偏西25°那么OB 的方向是南 偏东 .14. 若0m n <<,则()()m n m n +- 0.(填“<”、“>”或“=”)15. 如果关于x 的方程23ax b +=的解是1x =-,那么代数式2a b -= .16. 从一个n 边形的一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割 成7个三角形,则n 的值是 .17. 如图,对于大于或等于2的自然数n 的平方进行如下“分裂”,分裂成n 个连续奇数的和, 则自然数29的分裂数中最大的数是 .18. 如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为 .三、解答题:(本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说 明.)19. 计算(每题5分;共10分)(1)2(3)(5)-+--- (2)421112(3)5(1)22--⨯--÷⨯-20. 解方程(每题5分;共10分)(1)2(34)5(1)3x x +-+= (2)2151136x x +--=21. (本题4分)如图,已知线段AB 及点C ,在方格纸上画图并回答问题.(1)画直线AC ;(2)过点B 画直线AC 的平行线l ;(3)过点B 画直线AC 的垂线,垂足是D ;点B 到直线AC 的距离是线段 的长度.22. (本题6分)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费 为8元/辆.现在停车场共有50辆中、小型汽车,其中中型汽车有x 辆.(1)则小型汽车有 辆(用含x 的代数式表示);(2)这些车共缴纳停车费480元,中、小型汽车各有多少辆?23. (本题6分)先化简,再求值:22224[(5)(32)]xy x xy y x xy y -+--+-,其中14x =-,12y =-.24.(本题6分)若代数式312x +-的值不大于436x +的值时,求x 的取值范围. 25.(本题8分)根据要求完成下列题目(1)图中有 块小正方体;(2)请在下面方格纸中分别画出它的左视图和俯视图(画出的图都用铅笔涂上阴影);(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要 个小正方体,最多要 个小正方体.26. (本题8分)如图,已知,A 、O 、B 在同一条线上,AOE COD ∠=∠,30EOD ∠=︒.(1)若90AOE ∠=︒,求BOC ∠的度数;(2)若射线OC 平分EOB ∠,求AOD ∠的度数.27. (本题8分)(1)已知关于x 的方程3(24)22x m --=的解为正数,求m 的取值范围; (2)已知关于x 的不等式3(24)22x m --≤的正整数解是1,2,3,求m 的取值范围.28. (本题共10分)如图,点A 、B 、C 在数轴上对应的数分别是1-、5、2-.(1)若点D是线段AB的中点,则点D在数轴上对应的数是,CD 个单位;(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒0. 5个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?(3)在数轴上是否存在一点M,使M到A、B、C的距离之和等于10?若存在,请求出点M 对应的数;若不存在,请说明理由.江苏省苏州市相城区2016-2017学年上学期初中七年级期末考试数学试卷参考答案。
2018-2019学年江苏省苏州市七年级(上)期末数学试卷一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卷相应的位置上.1.(2分)苏州中心占地面积约167000平方米,用科学记数法表示为()A.16.7×104B.1.67×105C.0.167×106D.167×103 2.(2分)下列运算中,结果正确的是()A.6xy﹣4xy=2xy B.3x2+2=5x2C.4x+3y=7xy D.5x2﹣x2=43.(2分)下列说法正确的是()A.﹣2的绝对值是﹣2B.0的倒数是0C.32与﹣32的结果相等D.﹣3和3互为相反数4.(2分)下列关于多项式ab﹣2ab2﹣1的说法中,正确的是()A.次数是5B.二次项系数是0C.最高次项是﹣2ab2D.常数项是15.(2分)若数a,b在数轴上的位置如图示,则()A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>0 6.(2分)如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有()A.1个B.2个C.3个D.4个7.(2分)如图,小明用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图①变到图②,不改变的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图8.(2分)一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.140°B.130°C.50°D.40°9.(2分)某中学组织初一部分学生参加社会实践活动,需要租用若干辆客车.若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.设租了x辆客车,则可列方程为()A.40x+10=43x+1B.40x﹣10=43x﹣1C.40x+10=43(x﹣1)D.40x+10=43x﹣110.(2分)已知线段AC,点D为AC的中点,B是直线AC上的一点,且BC=AB,BD =1cm,则线段AC的长为()A.B.C.6cm或D.6cm或二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卷相应的位置上.11.(2分)比较大小:﹣﹣3.(填“>”“<”或“=”).12.(2分)64°27′的余角是.13.(2分)若﹣2a m+1b3与5a3b2n﹣3可以合并成一项,则mn的值是.14.(2分)当x=时,代数式5x+2的值比11﹣x的值大3.15.(2分)当k=时,多项式x2+(k﹣1)xy﹣3y2﹣2xy﹣5中不含xy项.16.(2分)已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是.17.(2分)已知a,b两数在数轴上的位置如图所示,则化简代数式|a﹣b|+|a﹣2|﹣|b+1|的结果是.18.(2分)如图,O为模拟钟面圆心,M、O、N在一条直线上,指针OA、OB分别从OM、ON同时出发,绕点O按顺时针方向转动,OA运动速度为每秒12°,OB运动速度为每秒4°,当一根指针与起始位置重合时,转动停止,设转动的时间为t秒,当t=秒时,∠AOB=60°.三、解答题:本大题共10小题,共64分.把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.19.(8分)计算:(1)﹣12018﹣(﹣2)3﹣2×(﹣3)+|2﹣(﹣3)2|;(2)26﹣()×36.20.(8分)解下列方程:(1)2(2x+1)=1﹣5(x﹣2);(2)=1.21.(5分)先化简,再求值:5m2﹣[2mn﹣3(mn+2)+4m2],其中(m+2)2+|2n﹣1|=0.22.(4分)方程1﹣2(x+1)=0的解与关于x的方程的解互为倒数,求k 的值.23.(5分)如图,△ABC的三个顶点均在格点处.(1)找一个格点D,过点C画AB的平行线CD;(2)找一个格点E,过点C画AB的垂线CE,垂足为H;(3)过点H画BC的垂线段,交BC于点G,则是点H到线段BC的距离;线段AC、CH、HG的大小关系是.(用“<”号连接).24.(4分)如图,已知线段AB=10cm,点C、D是线段AB上两点,且AC=BD=8cm,M、N分别是线段AC、AD的中点,求线段MN的长度.25.(6分)已知:2A﹣B=3a2+2ab,A=﹣a2+2ab﹣3.(1)求B;(用含a、b的代数式表示)(2)比较A与B的大小.26.(7分)如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOD.(1)若∠AOC=32°,求∠EOF的度数;(2)若∠EOF=60°,求∠AOC的度数.27.(8分)2019年元旦期间,某超市打出促销广告,如下表所示:(1)小张一次性购买物品的原价为400元,则实际付款为元;(2)小王购物时一次性付款580元,则所购物品的原价是多少元?(3)小赵和小李分别前往该超市购物,两人各自所购物品的原价之和为1200元,且小李所购物品的原价高于小赵,两人实际付款共1074元,则小赵和小李各自所购物品的原价分别是多少元?28.(9分)如图,点A,B是数轴上的两点.点P从原点出发,以每秒2个单位的速度向点B作匀速运动;同时,点Q也从原点出发用2s到达点A处,并在A处停留1s,然后按原速度向点B运动,速度为每秒4个单位.最终,点Q比点P早3s到达B处.设点P 运动的时间为ts.(1)点A表示的数为;当t=3s时,P、Q两点之间的距离为个单位长度;(2)求点B表示的数;(3)从P、Q两点同时出发至点P到达点B处的这段时间内,t为何值时,P、Q两点相距3个单位长度?2018-2019学年江苏省苏州市七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卷相应的位置上.1.(2分)苏州中心占地面积约167000平方米,用科学记数法表示为()A.16.7×104B.1.67×105C.0.167×106D.167×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:167000平方米,用科学记数法表示为1.67×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)下列运算中,结果正确的是()A.6xy﹣4xy=2xy B.3x2+2=5x2C.4x+3y=7xy D.5x2﹣x2=4【分析】直接利用合并同类项法则进而分析得出答案.【解答】解:A、6xy﹣4xy=2xy,正确;B、3x2+2,无法计算,故此选项错误;C、4x+3y,无法计算,故此选项错误;D、5x2﹣x2=4x2,故此选项错误;故选:A.【点评】此题主要考查了合并同类项,正确把握合并同类项法则是解题关键.3.(2分)下列说法正确的是()A.﹣2的绝对值是﹣2B.0的倒数是0C.32与﹣32的结果相等D.﹣3和3互为相反数【分析】根据绝对值、倒数、有理数的乘方和相反数判断即可.【解答】解:A、﹣2的绝对值是2,错误;B、0没有倒数,错误;C、32=9,﹣32=﹣9,结果不相等,错误;D、﹣3和3互为相反数,正确;故选:D.【点评】此题考查绝对值、倒数、有理数的乘方和相反数,关键是根据绝对值、倒数、有理数的乘方和相反数解答.4.(2分)下列关于多项式ab﹣2ab2﹣1的说法中,正确的是()A.次数是5B.二次项系数是0C.最高次项是﹣2ab2D.常数项是1【分析】直接利用多项式的相关定义进而分析得出答案.【解答】解:A、多项式ab﹣2ab2﹣1次数是3,错误;B、二次项系数是1,错误;C、最高次项是﹣2ab2,正确;D、常数项是﹣1,错误;故选:C.【点评】此题主要考查了多项式,正确掌握多项式次数与系数的确定方法是解题关键.5.(2分)若数a,b在数轴上的位置如图示,则()A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>0【分析】根据数轴上点的位置判断即可.【解答】解:根据题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.【点评】此题考查了数轴,以及有理数的加法,熟练掌握运算法则是解本题的关键.6.(2分)如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有()A.1个B.2个C.3个D.4个【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【解答】解:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,∠α+∠β=180°,互补.图④,根据等角的补角相等∠α=∠β;故选:B.【点评】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.7.(2分)如图,小明用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图①变到图②,不改变的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【解答】解:从正面看第一层都是三个小正方形,图①中第二层右边一个小正方形,图②中第二层中间一个小正方形,中①②的主视图不相同;从左面看第一层都是三个小正方形,第二层左边一个小正方形,①②的左视图相同;从上面看第一列都是一个小正方形,第二列都是一个小正方形,第三列都是三个小正方形,故①②的俯视图相同.故选:D.【点评】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.8.(2分)一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.140°B.130°C.50°D.40°【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【解答】解:设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°﹣α=3(90°﹣α)+10°,180°﹣α=270°﹣3α+10°,解得α=50°.故选:C.【点评】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.9.(2分)某中学组织初一部分学生参加社会实践活动,需要租用若干辆客车.若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.设租了x辆客车,则可列方程为()A.40x+10=43x+1B.40x﹣10=43x﹣1C.40x+10=43(x﹣1)D.40x+10=43x﹣1【分析】根据人数不变,结合总人数=每辆车乘坐人数×车的辆数+剩余人数即可得出方程,此题得解.【解答】解:设租了x辆客车,则可列方程为40x+10=43x+1,故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,根据数量关系总人数=每辆车乘坐人数×车的辆数+剩余人数列出一元一次方程是解题的关键.10.(2分)已知线段AC,点D为AC的中点,B是直线AC上的一点,且BC=AB,BD =1cm,则线段AC的长为()A.B.C.6cm或D.6cm或【分析】首先根据题意画出图形,分两种情况:①B在AC上,②B在AC的延长线上,然后利用方程思想设出未知数,表示出BC、AB、AC和BD的长即可解决问题.【解答】解:如图1,设BC=xcm,则AB=2xcm,AC=3xcm,∵点D为AC的中点,∴AD=CD=AC=1.5xcm,∴BD=0.5xcm,∵BD=1cm,∴0.5x=1,解得:x=2,∴AC=6cm;如图2,设BC=xcm,则AB=2xcm,AC=xcm,∵点D为AC的中点,∴AD=CD=AC=0.5xcm,∴BD=1.5xcm,∵BD=1cm,∴1.5x=1,解得:x=,∴AC=cm.综上所述,线段AC的长为6cm或.故选:C.【点评】此题主要考查了两点之间的距离,关键是掌握线段的中点平分线段,正确画出图形.二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卷相应的位置上.11.(2分)比较大小:﹣>﹣3.(填“>”“<”或“=”).【分析】根据负数比较大小的法则进行比较即可.【解答】解:∵|﹣|=,|﹣3|=3,∵<3,∴﹣>﹣3,故答案为:>.【点评】本题考查的是有理数比较大小的法则,即①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.(2分)64°27′的余角是25°33'.【分析】根据余角的定义解答即可.【解答】解:64°27′的余角=90°﹣64°27′=25°33',故答案为:25°33'.【点评】本题考查了余角和补角,熟记余角的定义是解题的关键.13.(2分)若﹣2a m+1b3与5a3b2n﹣3可以合并成一项,则mn的值是6.【分析】直接利用同类项的定义得出m,n的值,进而得出答案.【解答】解:依题意知,﹣2a m+1b3与5a3b2n﹣3是同类项,则m+1=3,2n﹣3=3,解得m=2,n=3,所以mn=2×3=6.故答案是:6.【点评】此题主要考查了同类项,正确把握合并同类项法则是解题关键.14.(2分)当x=2时,代数式5x+2的值比11﹣x的值大3.【分析】根据“代数式5x+2的值比11﹣x的值大3”,得到关于x的一元一次方程,依次去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:根据题意得:(5x+2)﹣(11﹣x)=3,去括号得:5x+2﹣11+x=3,移项得:5x+x=3+11﹣2,合并同类项得:6x=12,系数化为1得:x=2,故答案为:2.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.15.(2分)当k=3时,多项式x2+(k﹣1)xy﹣3y2﹣2xy﹣5中不含xy项.【分析】不含有xy项,说明整理后其xy项的系数为0.【解答】解:整理只含xy的项得:(k﹣3)xy,∴k﹣3=0,k=3.故答案为:3.【点评】本题考查多项式的概念.不含某项,说明整理后的这项的系数之和为0.16.(2分)已知代数式2x ﹣y 的值是,则代数式﹣6x +3y ﹣1的值是 ﹣ .【分析】由题意可知:2x ﹣y =,然后等式两边同时乘以﹣3得到﹣6x +3y =﹣,然后代入计算即可.【解答】解:∵2x ﹣y =,∴﹣6x +3y =﹣.∴原式=﹣﹣1=﹣.故答案为:﹣.【点评】本题主要考查的是求代数式的值,利用等式的性质求得﹣6x +3y =﹣是解题的关键.17.(2分)已知a ,b 两数在数轴上的位置如图所示,则化简代数式|a ﹣b |+|a ﹣2|﹣|b +1|的结果是 3 .【分析】由数轴知,b <﹣1<1<a <2,故a ﹣b >0,a ﹣2<0,b +1<0,去绝对值合并同类项即可.【解答】解:|a ﹣b |+|a ﹣2|﹣|b +1| =a ﹣b +(2﹣a )﹣(﹣b ﹣1) =a ﹣b +2﹣a +b +1 =3故答案为:3.【点评】本题考查绝对值的性质.解答此题的关键是确定绝对值内部代数式的性质符号. 18.(2分)如图,O 为模拟钟面圆心,M 、O 、N 在一条直线上,指针OA 、OB 分别从OM 、ON 同时出发,绕点O 按顺时针方向转动,OA 运动速度为每秒12°,OB 运动速度为每秒4°,当一根指针与起始位置重合时,转动停止,设转动的时间为t 秒,当t = 15或30 秒时,∠AOB =60°.【分析】根据题意得出OA旋转的角度为12t°,OB旋转的角度为4t°,再分OA与OB 重合前和重合后两种情况,根据角度间的熟练关系列出方程求解可得.【解答】解:根据题意知OA旋转的角度为12t°,OB旋转的角度为4t°,①OA与OB重合前,12t+60=180+4t,解得:t=15;②OA与OB重合后,4t+60+180=12t,解得:t=30;综上,当t=15或30时,∠AOB=60°;故答案为:15或30.【点评】本题考查一元一次方程的应用,解题的关键是理解题意,学会设未知数列方程解决问题,属于中考常考题型.三、解答题:本大题共10小题,共64分.把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.19.(8分)计算:(1)﹣12018﹣(﹣2)3﹣2×(﹣3)+|2﹣(﹣3)2|;(2)26﹣()×36.【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据乘法分配律和有理数的加减法可以解答本题.【解答】解:(1)﹣12018﹣(﹣2)3﹣2×(﹣3)+|2﹣(﹣3)2|=﹣1﹣(﹣8)+6+|2﹣9|=﹣1+8+6+7=20;(2)26﹣()×36=26﹣28+33﹣6=25.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.(8分)解下列方程:(1)2(2x+1)=1﹣5(x﹣2);(2)=1.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:4x+2=1﹣5x+10,移项得:4x+5x=1+10﹣2,合并同类项得:9x=9,系数化为1得:x=1,(2)方程两边同时乘以6得:2(2x﹣1)﹣(x﹣1)=6,去括号得:4x﹣2﹣x+1=6,移项得:4x﹣x=6﹣1+2,合并同类项得:3x=7,系数化为1得:x=.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.(5分)先化简,再求值:5m2﹣[2mn﹣3(mn+2)+4m2],其中(m+2)2+|2n﹣1|=0.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=5m2﹣(2mn﹣mn﹣6+4m2)=5m2﹣mn+6﹣4m2=m2﹣mn+6由题意可知:m+2=0,2n﹣1=0,∴m=﹣2,n=,∴原式=4+1+6=11.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.(4分)方程1﹣2(x+1)=0的解与关于x的方程的解互为倒数,求k 的值.【分析】首先解第一个方程求得x的值,然后根据倒数的定义求得第二个方程的解,然后代入第二个方程,得到一个关于k的方程,求解.【解答】解:解方程1﹣2(x+1)=0得:x=﹣,则关于x的方程的解是x=﹣2,把x=﹣2代入方程得:﹣3k﹣2=﹣4,解得:k=.【点评】本题考察了方程的解的定义,理解定义是关键.23.(5分)如图,△ABC的三个顶点均在格点处.(1)找一个格点D,过点C画AB的平行线CD;(2)找一个格点E,过点C画AB的垂线CE,垂足为H;(3)过点H画BC的垂线段,交BC于点G,则线段HG的长度是点H到线段BC 的距离;线段AC、CH、HG的大小关系是HG<CH<AC.(用“<”号连接).【分析】(1)根据网格结构特点,过点C作矩形的对角线即可;(2)根据网格结构以及正方形的性质作出即可;(3)根据点到直线的距离的定义解答.【解答】解:(1)如图,直线CD即为所求;(2)如图,直线CE即为所求;(3)线段HG即为所求;线段HG的长度是点H到线段BC的距离;在Rt△CHG中,CH>HG,在Rt△ACH中,AC>CH,∴AC、CH、HG的大小关系是HG<CH<AC.故答案为:线段HG的长度,HG<CH<AC.【点评】本题考查了基本作图,利用网格结构作垂线,平行线,点到直线的距离的定义,都是基础知识,需熟练掌握.24.(4分)如图,已知线段AB=10cm,点C、D是线段AB上两点,且AC=BD=8cm,M、N分别是线段AC、AD的中点,求线段MN的长度.【分析】可以求出AD=BC,然后求出AD的长度,再根据中点的定义,求出AN与AM 的长度,两者相减就等于MN的长度.【解答】解:∵AC=BD,∴AB﹣AC=AB﹣BD,即BC=AD,∵AB=10cm,AC=BD=8cm,∴AD=10﹣8=2cm,∵M、N分别是线段AC、AD的中点,∴AN=AD=1cm,AM=4cm,∴MN=AM﹣AN=4﹣1=3cm.【点评】本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.25.(6分)已知:2A﹣B=3a2+2ab,A=﹣a2+2ab﹣3.(1)求B;(用含a、b的代数式表示)(2)比较A与B的大小.【分析】(1)由已知等式得出B=2A﹣(3a2+2ab),再去括号、合并同类项即可得;(2)将两式相减,去括号、合并得出其差,再与零比较大小即可得.【解答】解:(1)B=2A﹣(3a2+2ab)=2(﹣a2+2ab﹣3)﹣3a2﹣2ab=﹣2a2+4ab﹣6﹣3a2﹣2ab=﹣5a2+2ab﹣6;(2)A﹣B=(﹣a2+2ab﹣3)﹣(﹣5a2+2ab﹣6)=﹣a2+2ab﹣3+5a2﹣2ab+6=4a2+3>0,∴A>B.【点评】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.26.(7分)如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOD.(1)若∠AOC=32°,求∠EOF的度数;(2)若∠EOF=60°,求∠AOC的度数.【分析】(1)根据角平分线的定义得到∠AOF=∠DOF=74°,求得∠AOC=∠BOD=32°,根据角平分线的定义得到∠BOD=∠EOD=32°,于是得到结论;(2)设∠AOC=∠BOD=x,∠DOF=∠DOE+∠EOF=x+60,根据角平分线的定义得到∠AOD=2∠DOF=2x+120°,列方程即可得到结论.【解答】解:(1)∵∠AOC=32°∴∠AOD=180°﹣∠AOC=148°,∵OF平分∠AOD,∴∠AOF=∠DOF=74°,∴∠AOC=∠BOD=32°,∵OD平分∠BOE,∴∠BOD=∠EOD=32°,∴∠EOF=∠DOF﹣∠EOD=74°﹣32°=42°,(2)设∠AOC=∠BOD=x,则∠DOF=∠DOE+∠EOF=x+60,∵OF平分∠AOD,∴∠AOD=2∠DOF=2x+120°,∵∠AOD+∠BOD=180°,∴2x+120°+x=180°,∴x=20°,∴∠AOC=20°.【点评】本题考查了对顶角和邻补角,角平分线的定义,正确的识别图形是解题的关键.27.(8分)2019年元旦期间,某超市打出促销广告,如下表所示:(1)小张一次性购买物品的原价为400元,则实际付款为360元;(2)小王购物时一次性付款580元,则所购物品的原价是多少元?(3)小赵和小李分别前往该超市购物,两人各自所购物品的原价之和为1200元,且小李所购物品的原价高于小赵,两人实际付款共1074元,则小赵和小李各自所购物品的原价分别是多少元?【分析】(1)依据表格,用原价乘以0.9即可得;(2)先判断物品原价的范围,再依据表格数据计算可得;(3)由题意知小赵所购物品的原价低于600元,小李所购物品的原价高于600元,设小赵所购物品原价为y元,则小李所购物品的原价为(1200﹣y)元,再分小赵所购物品的原价低于200元和超过200元,但不超过600元两种情况分别列出方程求解可得.【解答】解:(1)小张一次性购买物品的原价为400元,则实际付款为400×0.9=360(元),故答案为:360.(2)若所购物凭的原价为600元,则实际付款为540元,因为580>540,所以小王所购物品原价超过600元,设小王所购物品原价为x元,根据题意,得:600×0.9+0.8(x﹣600)=580,解得x=650,答:所购物品的原价是650元;(3)∵小赵和小李各自所购物品的原价之和为1200元,且小李所购物品的原价高于小赵,所以小赵所购物品的原价低于600元,小李所购物品的原价高于600元,设小赵所购物品原价为y元,则小李所购物品的原价为(1200﹣y)元,①若小赵所购物品的原价低于200元,根据题意,得:y+600×0.9+0.8(1200﹣y﹣600)=1074,解得y=270>200,不符合题意;②若小赵所购物品的原价超过200元,但不超过600元,根据题意,得:0.9y+600×0.9+0.8(1200﹣y﹣600)=1074,解得:y=540,∴1200﹣540=660,符合题意;答:小赵所购物品原价为540元,则小李所购物品的原价为660元.【点评】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程(或列式计算)是解题的关键.28.(9分)如图,点A,B是数轴上的两点.点P从原点出发,以每秒2个单位的速度向点B作匀速运动;同时,点Q也从原点出发用2s到达点A处,并在A处停留1s,然后按原速度向点B运动,速度为每秒4个单位.最终,点Q比点P早3s到达B处.设点P 运动的时间为ts.(1)点A表示的数为﹣8;当t=3s时,P、Q两点之间的距离为14个单位长度;(2)求点B表示的数;(3)从P、Q两点同时出发至点P到达点B处的这段时间内,t为何值时,P、Q两点相距3个单位长度?【分析】(1):因为知道点P,Q的运动速度,所以根据时间•速度=路程,可以求出P,Q的路程,在判断点A在原点的左侧,所以得出点A的值,求出P,Q的距离.(2):根据点Q的运动为O﹣﹣A﹣﹣﹣B,点P的运动为:O﹣﹣﹣B,根据两者之间的路程列出方程求出时间t.(3):当点P,Q相距为3个单位长度时,分为4种情况,解答中已经描述的很详细,可以明白.【解答】解:(1)∵Q从原点出发用2s到达点A处,且速度为每秒4个单位∴|OA|=2×4=8又∵A点在原点的左侧∴A:﹣8当t=3s时又∵Q也从原点出发用2s到达点A处,并在A处停留1s∴|OQ|=|OA|=8∵点P从原点出发,以每秒2个单位的速度向点B作匀速运动∴|OP|=2×3=6∴|PQ|=|OQ|+|OP|=6+8=14(2):点P从原点运动到点B的时间为t,∴8+2t=4(t﹣6)解得:t=16∴BC=2t=32∴点B表示的数是32(3):由(2)得:∵点P到达点B处需要16s,点Q到达点B处需要13s,∴P、Q两点相距3个单位长度分四种情况:①:当点Q从O﹣﹣A上时,4t+2t=3,解得:t=②:当点Q从O﹣﹣A﹣﹣B上时且在P的左侧时,8+2t=4(t﹣3)+3,解得:t=③:当点Q从O﹣﹣A﹣﹣B上时且在P的右侧时,8+2t+3=4(t﹣3),解得:t=④:当点Q到达点B时:2t+3=32,解得:t=∵t<16s∴当P、Q两点相距3个单位长度,t的值为:,,,.【点评】本题是关于路程类的应用题,掌握速度×时间=路程是关键,在结合数轴的特点,原点左侧是小于0,原点右侧数值大于0,即可解答本题.。
初一第一学期数学期末测试卷(四)(满分:100分时间:120分钟)一、选择题(每题2分.共20分)1.在-2,1,5,0这四个数中,最大的数是( )A.-2 B.1 C.5 D.02.计算-10-8所得的结果是( )A.-2 B.2 C.18 D.-183.在网络上搜索“中国梦”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为( )A.451×105B.45.1×106C.4.51×107D.0.451×1084.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.在下列图形中,该几何体的表面展开图是( )5.甲、乙、丙三家超市对一种定价相同的商品进行促销.甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.那么顾客购买这种商品应该去的超市是( ) A.甲B.乙C.丙D.一样6.2016年,王先生到银行存了一笔三年期的定期存款,年利率是2.75%,若到期后取出,得到本息和(本金+利息) 为33852元.若设王先生存入的本金为元,则下面所列方程正确的是( ) A.+3×2.75%=33825 B.+2.75%+=33825C.3×2.75%=33825 D.3(+2.75%)=338257.某道路一侧原有路灯106盏,相邻两盏灯的距离为36 m,现计划全部更换为新型的节能灯,若相邻两盏灯的距离变为70 m,则需更换的新型节能灯有( )A.54盏B.55盏C.56盏D.57盏8.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a (m) 及行驶的平均速度b (m/h) 用(a,b) 表示,则从景点A 到景点C用时最少的路线是( )A.A→E→C B.A→D→CC.A→E→B→C D.A→B→E→C9.下列各图中,∠1与∠2互为余角的是()A.B.C.D.10.观察图中正方形四个顶点所标的数字规律,可知,数2017应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的右上角D.第505个正方形的右下角二、填空题(每题2分,共20分)11.若实数a,b在数轴上对应点的位置如图所示,则a b.(填“<”、“>”或“=”)中的○里,填入运算符号,能使得算式的值最小.(填“+”、“-”、“×”12.在算式1-23或“÷”)13.体育委员带了500元钱去买体育用品,若二个足球a元,一个篮球b元,则代数式500-3a-2b表示.14.下图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n (n为正整数)个图案由个▲组成.15.某计算程序如图所示,当输人= 时,输出的y=8.16.根据里氏震级的定义,地震所释放的相对能量E与震级n的关系为E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是.17.如果=1时,代数式2a3+3b+4的值是5,那么=-1时,代数式2a3+3b+4的值是. 18.李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色(不包含底面),则表面被他染成红色的面积为 .19.某商场出售A ,B ,C 三种型号的笔记本电脑,四月份A 型电脑的销售额占三种型号总销售额的56%,五月份B ,C 两种型号的电脑销售额比四月份减少了m %,A 型电脑的销售额比四月份增加了23%.已知商场五月份这三种型号电脑的总销售额比四月份增加了12%,则m = .20.某商场在元旦期间举行促销活动,根据顾客按商品标价一次性购物的总额,规定相应的优惠方法:①若不超过500元,则不予优惠;②若超过500元,但不超过800元,则按购物总额给予8折优惠;③若超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款 元. 三、解答题 (共60分) 21.(本题6分) 计算:(1) (-39)-(+21)-(-5)+(-9); (2) -22+3×(-1)2016-9÷(-3)22.(本题6分) 解下列方程: (1) 2(+1)-6=3(-2)-4(-5); (2) 213x -=216x +-123.(本题4分) 已知关于的方程3(-2)=-a 的解比2x a +=23x a -的解小52,求a 的值.24.(本题6分) 先化简,再求值: (1) 求2m 2-4m +l -2(m 2+2m -12),其中m =-1;y =0,求5y2-[22y-(22 y-3y2)](2) 已知(-2)2+125.(本题5分) 三个队植树,第一队植树a棵,第二队植树棵数比第一队的2倍少8棵,第三队植树棵数比第二队的一半多6棵,问三个队共植树多少棵? 并求当a=100时,三个队植树的总棵数.26.(本题6分) 为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如下表:例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?27.(本题8分)(1) 如图,B、C两点把线段MN分成三部分,其比例为MB:BC:CN=2:3:4,P是MN的中点,PC=2 cm,求MN的长.(2) 作图与推理:如图所示是由一些大小相同的小正方体组合成的简单几何体.①图中有块小正方体;②该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.28.(本题9分) 一天,某客运公司的甲、乙两辆客车分别从相距380 m的A,B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2 h甲车先到达服务区C地,此时两车相距20 m,甲车在服务区C地休息了20 min,然后按原速度开往B地;乙车行驶2 h 15 min时也经过C地,未停留继续开往A地。
苏州市初一上学期数学期末试卷带答案一、选择题1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( ) A .0.1289×1011 B .1.289×1010 C .1.289×109D .1289×1073.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 4.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯5.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+56.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33° 7.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1)8.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .9.单项式﹣6ab 的系数与次数分别为( ) A .6,1B .﹣6,1C .6,2D .﹣6,210.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x =11.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯ B .51510⨯C .70.1510⨯D .61.510⨯12.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=2二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.159________16.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元. 17.﹣30×(1223-+45)=_____. 18.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.19.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.20.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;21.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 22.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.23.8点30分时刻,钟表上时针与分针所组成的角为_____度.24.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.三、压轴题25.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.26.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.27.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 28.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.29.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.30.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.31.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值.32.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A ,B 两点同时出发到C 点,若甲的速度为8 cm/s ,乙的速度为6 cm/s ,设乙运动时间为x (s ), 甲乙两点之间距离为y (cm ). (1)当甲追上乙时,x = . (2)请用含x 的代数式表示y . 当甲追上乙前,y = ;当甲追上乙后,甲到达C 之前,y = ; 当甲到达C 之后,乙到达C 之前,y = .问题二:如图2,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB=30°.(1)分针OD 指向圆周上的点的速度为每分钟转动 cm ;时针OE 指向圆周上的点的速度为每分钟转动 cm .(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.2.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109. 故选:C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .4.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 5.A解析:A 【解析】试题分析:设段数为x ,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n 时,x=4n+1.故选A . 考点:探寻规律.6.A【解析】 【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果. 【详解】解:OB 平分AOC ∠,18AOB ∠=︒, 236AOC AOB ∴∠=∠=︒, 又84AOD ∠=︒,843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A . 【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.7.A解析:A 【解析】 【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可. 【详解】解:﹣(﹣1)=1, ∴﹣1<0<﹣(﹣1)<2, 故选:A . 【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.8.C解析:C 【解析】 【分析】利用棱柱的展开图中两底面的位置对A 、D 进行判断;根据侧面的个数与底面多边形的边数相同对B 、C 进行判断. 【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A 、D 选项错误; 当底面为三角形时,则棱柱有三个侧面,所以B 选项错误,C 选项正确. 故选:C . 【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.解析:D 【解析】 【分析】直接利用单项式的次数与系数确定方法分析得出答案. 【详解】解:单项式﹣6ab 的系数与次数分别为﹣6,2. 故选:D . 【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.10.A解析:A 【解析】 【分析】根据等式的基本性质对各项进行判断后即可解答. 【详解】选项A ,由360x -=变形可得36x =,选项A 正确; 选项B ,由 533x x +=-变形可得42x =-,选项B 错误; 选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A. 【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键.11.D解析:D 【解析】 【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1. 【详解】150万=1500000=61.510⨯, 故选:D. 【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.12.C【解析】试题解析:A.不是同类项,不能合并.故错误. B. 不是同类项,不能合并.故错误. C.正确.D.222 532.y y y -=故错误. 故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.二、填空题13.1或5. 【解析】 【分析】根据|x|=3,|y|=2,可得:x =±3,y =±2,据此求出|x+y|的值是多少即可. 【详解】解:∵|x|=3,|y|=2, ∴x =±3,y =±2, (1)x =3解析:1或5. 【解析】 【分析】根据|x |=3,|y |=2,可得:x =±3,y =±2,据此求出|x +y |的值是多少即可. 【详解】解:∵|x |=3,|y |=2, ∴x =±3,y =±2, (1)x =3,y =2时, |x +y |=|3+2|=5 (2)x =3,y =﹣2时, |x +y |=|3+(﹣2)|=1 (3)x =﹣3,y =2时, |x +y |=|﹣3+2|=1 (4)x =﹣3,y =﹣2时, |x +y |=|(﹣3)+(﹣2)|=5 故答案为:1或5. 【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.﹣3或5. 【解析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3,;本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.16.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 17.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 18.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.19.3【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把代入方程组得:,①+②得:3(a +b )=9,则a +b =3,故答案为:3.【解析:3【解析】【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把12x y =⎧⎨=⎩代入方程组得:2722a b b a +=⎧⎨+=⎩, ①+②得:3(a +b )=9,则a +b =3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.20.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大21.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.22.3(x ﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x 辆车,则可列方程:3(x ﹣2)解析:3(x ﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.23.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.24.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系.三、压轴题25.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN 平分∠AEF ,EM 平分∠BEF∴∠NEF =12∠AEF ,∠MEF =12∠BEF ∴∠MEN =∠NEF +∠MEF =12∠AEF +12∠BEF =12(∠AEF +∠BEF )=12∠AEB ∵∠AEB =180°∴∠MEN =12×180°=90° (2)∵EN 平分∠AEF ,EM 平分∠BEG∴∠NEF =12∠AEF ,∠MEG =12∠BEG ∴∠NEF +∠MEG =12∠AEF +12∠BEG =12(∠AEF +∠BEG )=12(∠AEB ﹣∠FEG ) ∵∠AEB =180°,∠FEG =30° ∴∠NEF +∠MEG =12(180°﹣30°)=75° ∴∠MEN =∠NEF +∠FEG +∠MEG =75°+30°=105°(3)若点G 在点F 的右侧,∠FEG =2α﹣180°,若点G 在点F 的左侧侧,∠FEG =180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.26.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-=1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+=()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.27.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.28.(1)点P 在线段AB 上的13处;(2)13;(3)②MN AB 的值不变. 【解析】【分析】(1)根据C 、D 的运动速度知BD=2PC ,再由已知条件PD=2AC 求得PB=2AP ,所以点P 在线段AB 上的13处; (2)由题设画出图示,根据AQ-BQ=PQ 求得AQ=PQ+BQ ;然后求得AP=BQ ,从而求得PQ 与AB 的关系;(3)当点C 停止运动时,有CD =12AB ,从而求得CM 与AB 的数量关系;然后求得以AB 表示的PM 与PN 的值,所以MN =PN−PM =112AB . 【详解】解:(1)由题意:BD=2PC∵PD=2AC ,∴BD+PD=2(PC+AC ),即PB=2AP .∴点P 在线段AB 上的13处; (2)如图:∵AQ-BQ=PQ ,∴AQ=PQ+BQ ,∵AQ=AP+PQ ,∴AP=BQ ,∴PQ=13 AB,∴13 PQ AB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.29.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON =15°,∠AON =15°,∴ON 平分∠AOC .(2)∵∠AOC =30°,∴∠NOC =∠AOC -∠AON =90°-∠MOC ,∴30°-α=90°-β,∴β=α+60°; (3)设旋转时间为t 秒,∠AON =5t ,∠AOC =30°+8t ,∠CON =45°,∴30°+8t =5t +45°,∴t =5.即t =5时,射线OC 第一次平分∠MON .【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.30.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.31.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.【解析】【分析】(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.【详解】(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.∵b 是最小的正整数,∴b =1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.故答案为3t +3,5t +9,2t +6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.32.问题一、(1)32;(2)3-2x ;2x -3;13-6x ;问题一、(1)35;120;24011. 【解析】【分析】问题一根据等量关系,路程=速度⨯时间,路程差=路程1-路程2,即可列出方程求解。
第一学期初一数学期末测试卷 (四)(满分:100分时间:120分钟)一、选择题 (每题2分.共20分)1.在-2,1,5,0这四个数中,最大的数是 ( )A.-2 B.1 C.5 D.02.计算-10-8所得的结果是 ( )A.-2 B.2 C.18 D.-183.在网络上搜索“中国梦”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为( )A.451×105 B.45.1×106 C.4.51×107 D.0.451×1084.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.在下列图形中,该几何体的表面展开图是 ( )5.甲、乙、丙三家超市对一种定价相同的商品进行促销.甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.那么顾客购买这种商品应该去的超市是 ( )A.甲 B.乙 C.丙 D.一样6.2016年,王先生到银行存了一笔三年期的定期存款,年利率是2.75%,若到期后取出,得到本息和 (本金+利息) 为33852元.若设王先生存入的本金为元,则下面所列方程正确的是 ( )A.+3×2.75%=33825 B.+2.75%+=33825C.3×2.75%=33825 D.3(+2.75%)=338257.某道路一侧原有路灯106盏,相邻两盏灯的距离为36 m,现计划全部更换为新型的节能灯,若相邻两盏灯的距离变为70 m,则需更换的新型节能灯有 ( )A.54盏 B.55盏 C.56盏D.57盏8.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a (m) 及行驶的平均速度b (m/h) 用 (a,b) 表示,则从景点A到景点C用时最少的路线是 ( )A.A→E→C B.A→D→CC.A→E→B→C D.A→B→E→C9.下列各图中,∠1与∠2互为余角的是()A. B. C. D.10.观察图中正方形四个顶点所标的数字规律,可知,数2017应标在()A.第504个正方形的左下角 B.第504个正方形的右下角C.第505个正方形的右上角 D.第505个正方形的右下角二、填空题(每题2分,共20分)11.若实数a,b在数轴上对应点的位置如图所示,则a b.(填“<”、“>”或“=”)中的○里,填入运算符号,能使得算式的值最小.(填“+”、“-”、“×”12.在算式1-23或“÷”)13.体育委员带了500元钱去买体育用品,若二个足球a元,一个篮球b元,则代数式500-3a-2b表示.14.下图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n (n为正整数)个图案由个▲组成.15.某计算程序如图所示,当输人= 时,输出的y=8.16.根据里氏震级的定义,地震所释放的相对能量E与震级n的关系为E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是.17.如果=1时,代数式2a3+3b+4的值是5,那么=-1时,代数式2a3+3b+4的值是 .18.李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色 (不包含底面),则表面被他染成红色的面积为 .19.某商场出售A ,B ,C 三种型号的笔记本电脑,四月份A 型电脑的销售额占三种型号总销售额的56%,五月份B ,C 两种型号的电脑销售额比四月份减少了m %,A 型电脑的销售额比四月份增加了23%.已知商场五月份这三种型号电脑的总销售额比四月份增加了12%,则m = .20.某商场在元旦期间举行促销活动,根据顾客按商品标价一次性购物的总额,规定相应的优惠方法:①若不超过500元,则不予优惠;②若超过500元,但不超过800元,则按购物总额给予8折优惠;③若超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款 元. 三、解答题 (共60分) 21.(本题6分) 计算:(1) (-39)-(+21)-(-5)+(-9); (2) -22+3×(-1)2016-9÷(-3)22.(本题6分) 解下列方程: (1) 2(+1)-6=3(-2)-4(-5); (2) 213x -=216x +-123.(本题4分) 已知关于的方程3(-2)=-a 的解比2x a +=23x a -的解小52,求a 的值.24.(本题6分) 先化简,再求值:(1) 求2m2-4m+l-2(m2+2m-12),其中m=-1;(2) 已知 (-2)2+1y =0,求5y2-[22y-(22 y-3y2)]25.(本题5分) 三个队植树,第一队植树a棵,第二队植树棵数比第一队的2倍少8棵,第三队植树棵数比第二队的一半多6棵,问三个队共植树多少棵? 并求当a=100时,三个队植树的总棵数.26.(本题6分) 为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如下表:例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?27.(本题8分)(1) 如图,B、C两点把线段MN分成三部分,其比例为MB:BC:CN=2:3:4,P是MN的中点,PC=2cm,求MN的长.(2) 作图与推理:如图所示是由一些大小相同的小正方体组合成的简单几何体.①图中有块小正方体;②该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.28.(本题9分) 一天,某客运公司的甲、乙两辆客车分别从相距380 m的A,B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2 h甲车先到达服务区C地,此时两车相距20 m,甲车在服务区C地休息了20 min,然后按原速度开往B地;乙车行驶2 h 15 min时也经过C地,未停留继续开往A地。
(友情提醒:可以画出线段图帮助分析)(1) 乙车的速度是 m/h,B,C两地的距离是 m,A,C两地的距离是m;(2) 求甲车的速度;(3) 这一天,乙车出发多长时间,两车相距200 m?29.(本题10分)(1) 如图1,将两个正方形的一个顶点重合放置,若∠AOD=40°,则∠COB=°;(2) 如图2,将三个正方形的一个顶点重合放置,求∠1的度数;(3) 如图3,将三个正方形的一个顶点重合放置,若OF平分∠DOB,则OE平分∠AOC吗? 为什么?参考答案一、选择题1.C 2.D 3.C 4.B 5.C 6.A 7.B 8.D (提示:根据时间=路程÷速度,把四个选项中各个路线的时间求出,再相加比较即可)9.B 10.C (∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,数2017在第505个正方形的右上角,故选C.)二、填空题11.<12.×13.体育委员买了3个足球、2个篮球后剩余的经费14.3n+1 15.1或11 16.10017.3 18.33 19.2 20.838或910 (提示:付款480元时,实际标价为480元或600元;付款520元时,实际标价为650元)三、解答题21.(1) 原式=-64 (2) 原式=222.(1) = 6 (2) =-3 223.由3(-2) = -a得=62a-;由2x a+=23x a-得=5a,则62a-=5a-52,解得a=124.(1) 原式=-8m+2.当m=-1时,原式=8+2=10 (2) 原式=2y2,因为(-2)2+1y+=0,所以-2=0,y+1=0,即=2,y=-1,所以原式=425.第二队植树的棵数为2a-8,第三队植树的棵数为12(2a-8)+6=a-4+6=a+2,三个队共植树的棵数为a+(2a-8)+(a+2) =4a-6.当a=100时,三个队植树的总棵数为4×100-6=394(棵)26.①当五月份用电量度≤200度时,六月份用电(500-)度,由题意得0.55+0.6(500-) =290.5,解得=190,即六月份用电500-=310(度).②当五月份用电量度>200度时,六月份用电量为(500-)度>200度,由题意得0.6+0.6(500-)=290.5,方程无解,该情况不符合题意.答:该户居民五、六月份分别用电190度、310度27.(1) 设MB=2cm,则BC=3 cm,CN=4 cm,所以MP=12MN=12×(2+3+4) =92(cm),得PC=MC-MP= (2+3)-92=0.5(cm),所以0.5=2,解得=4,所以MN=2+3+4=9=36(cm) (2) ①11 ②图略28.(1) 80 180 200 (2) 甲车的速度200÷2=100 (m/h) (3) 分两种情况:甲车、乙车相遇前,设乙车出发 h两车相距200 m,100+80=380-200,=1;甲车、乙车相遇后,设乙车出发y h两车相距200 m,100(y-13)+80y=380+200,y=9227.所以乙车出发1 h或9227h,两车相距200 m29.(1) 140 (2) 由题意知∠1+∠2=50°①∠l+∠3=60°②又∠1+∠2+∠3=90°③,由①+②-③得∠1=20° (3) OE平分∠AOC.因为∠COD=∠AOB,所以∠COA=∠DOB (等角的余角相等).同理,∠EOA=∠FOB.因为OF平分∠DOB,所以∠DOF=∠FOB=12∠DOB,所以∠EOA=12∠DOB=12∠COA,所以OE平分∠AOC。