八年级数学一元一次不等式与一次函数PPT优秀课件
- 格式:ppt
- 大小:153.50 KB
- 文档页数:7
1. 下列式子中,哪些是不等式?哪些不是?(1) –2 < 0 ; (2) 2a > 3-a ; (3)3x +5; (4)2(-1)a ≥0;(5) s = vt ; (6)223x x +≠; (7) 3 > 5; (8) 5x ≤4x -1.2. 用“<,>,≤,≥”填空:(1) -0.3___0; (2) 5____8-; (3) 4)6(3___)5(-⨯-⨯;(4)-65___43-; (5) x 20 (6) .0___12+x(7) - x 2 0 (8)x 2 -1 (9)- x 2 23. 用不等式表示:(打星号的可不做,目的是为了现在所学的函数所用)(1)x 小于-6 (2)x +1大于0 (3)x 大于或等于5(4)x 小于或等于-8 (5)x 不大于6 (6)x 不小于-2(7)x 是正数 (8)x 是负数 (9)x 是非负数(10) x 与5的和大于2 (11)x 与a 的差小于2 (12)x 与y 的差是负数(13)x 与y 的和是非负数 (14)x 的2倍与5的和是正数(15)x 与3的差是负数 (16)x 的3倍与y 的2倍的和是非负数*(17)x 大于2且小于5 *(18)x 大于-5且小于-4*(19)x 不小于3且不大于6 *(20)x 不小于-2且不大于0*(21) a 是大于2且不大于9的数 *(22)b 是不小于3且小于5的数(三)用不等式表示下列数量之间的关系(将文字语言转化为不等式):1. 某种客车坐有x 人,它的最大载客量为40人.2. 小明每天跑步x 分钟,学校规定每位学生每天跑步时间不少于30分钟.3. 某校男子跳高记录是1.75 米,小强在今年的运动会上打破了校纪录.4. 我班一位学生的身高为x 米,我班学生最高是1.70米.5. 快车火车时速不超过150 km/h ,某快车的速度为x km/h .6. 某品牌奶粉规定每千克奶粉中蛋白质的含量x 不小于2.9 克.7. 冲藕粉时规定水温x 不低于95℃.8. 选身高高于1.75米的学生组成学生跑步方阵,小明被选上了,他的身高为x 米.9. 如图,天平右盘中每个砝码的重量都是5g ,写出图中显示出某药品A 重量x 的范围.(第9题)10. 矩形周长20cm ,宽x cm ,写出宽x 的取值范围.(四)将不等式转化为文字语言:1. 徐州某天某一时刻的气温为t C ︒,且-2≤t ≤6,则这一天的最高气温为_____C ︒,最低气温为________C ︒.2. 等腰三角形的周长为40 cm ,底长为x cm ,则0<x <20,表示底长要.3. 等腰三角形的周长为40 cm ,腰长为x cm ,则10<x <20,表示腰长要.五、当堂检测1. 用不等式表示:(1)a 与b 的和大于3: ;(2)x 的平方是非负数: ;(3)a 不大于b : ; (4)x 的3倍与-2的差是负数: ;(5)m 是大于-1且不大于2的数:____________________.2. 用不等式表示下列数量之间的关系:(1) 小明某天骑车上学花了x 分钟,他每天骑车上学的时间不少于25分钟:(2) 亮亮每天做作业的时间在2 h 以上,昨天他做作业花了t h :(3) 设有500个座位的礼堂坐了y 人:(4)长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: .(5)某商品原来的价格为6元/件,涨价x %后价格不高于9元/件: .3. 如图,天平右盘中每个砝码的重量都是1g ,图中显示出某药品A 重量的范围是( )A .大于2gB .小于3gC .大于2g 且小于3g ;D .大于2g 或小于3g(一)认识不等式的解、不等式的解集1. 能使不等式成立的未知数的值叫做不等式的解集.x = -1, 0, 1, 2 都是不等式x -3>0的解,不等式x -3>0的解有多少个?2. 一个含有未知数的不等式的解的全体叫做这个不等式的解集.(1)不等式x -1>0解集是 ,不等式x -4<0的解集是 .(2)x <0时,不等式x < 3 一定成立.能说不等式x < 3的解集是x <0吗?为什么?3. 求不等式解集的过程叫做解不等式.(二)将不等式的解集在数轴上表示出来:x - 4≥0的解集是x ≤4.x -3>0的解集是x >3.x -1≤0的解集是x ≤1.x +2>0的解集是x >-2.5. 在数轴上表示下列不等式的解集:(第3题) -2-1321(1)x >2; (2)x ≤2; (3)x <1.5; (4)x ≥- 2.5.(1) (2)(3) (4)(三) 写出下列各数轴所表示的不等式的解集:(1) (2)注意:数轴上的空心圆圈与实心圆点的意义有什么不同?不等式的解集4x <与4x ≤在数轴上表示时,有什么不同?要注意什么?(四)有条件限制的不等式的解1. 已知x 是整数,x =-2,-3,0,1,2,3,4是不等式x ≤4的解,其中正整数的解有4个,负整数的解有2个,非负整数解有5个.2. 已知a 是整数,请写出不等式3a ≤的6个解: ,其中,正整数的解有 个,负整数解有 个,非负整数解有 个.3. 在数轴上表示不等式30x -<的解集,并写出这个不等式的正整数解.4. 在数轴上表示不等式x +3>0的解集,并写出这个不等式的负整数解.5. 在数轴上表示不等式x +4≥0的解集,并写出这个不等式的非负整数解.五、当堂检测1. 在数轴上表示下列不等式的解集:(1)1x <;(2)3x ≤-;(3)1x >-;(4)2x ≥-.解:(1) (2)(3) (4)2. 写出下列各数轴所表示的不等式的解集:(1) (2)1 1 1 1111 1 0 0 0 0 0 0 0 03. 写出不等式30x +≥的负整数解.4. 写出不等式x -5<0的正整数解.5. 请你根据非负数的意义和不等式的解集的意义,讨论以下问题:(1)不等式x 2 > 0 的解集是 ;不等式| x | > 0 的解集是 ;(2)不等式20x ≥的解集是 ;不等式| x | ≥ 0 的解集是 .(二)不等式性质的运用1. 已知a >b ,用不等号填空:(1)a +2 b +2; (2)a -2 b -2; (3)2a 2b ; (4)-2a -2b ;(5)-a -b ;(6)3+2a 3+2b ;(7)3a -1 3b -1;(8)1-2a 1-2b .(9)1-a 1-b ;(10)1+a 1+b ; (11)a -1 b -1;(12)1-a 1-b .2. 将下列各式化成x > a 或 x < a 的形式,并说明理由.(1)x – 2 < – 5. 解:两边同加2,得x < – 3(不等式两边都加上同一个数,不等号的方向不变).(2)112x >-. 解:(3) 26x -> 解:(4) 1124x -<. 解:(5)1124x +<-. 解:(6)124x >-. 解:(7) 35x -> 解:(8) 1144x -<. 解:(9)112x +<-. 解:3. 小明步行到6km 远的学校,从早晨6点出发,要在8点前到达,如果他每小时走x km ,可以得到怎样的不等式?根据这个不等式,判断x 的取值范围.五、当堂检测1.用“>”或“<”填空:(1)若a b >,则a c + b c +; (2)若22m n +<+,则4m - 4n -;(3)若1b >-,则1b + 0; (4)若a b <,则3a - 3b -;(5)若44ab>,则a b ; (6)若a b <,则21a -+ 21b -+.2.下列不等式变形正确的是( )A .由412x ->,得41x >B .由53x >,得53x >C .由02y>,得2y > D .由24x -<,得2x >-3. 请在每步的后面写出变形的根据:已知534x x >+,54344x x x x ->+-,( )3x > . ( 合并同类项 )4. 我班有50个座位,现已有46名学生,这学期要转入x 名学生,可以得到怎样的不等式,并判断x 的取值范围.5. 一辆12个座位的汽车上已有4名乘客,到一个站后又上来x 个人,车上仍有空位,可以得到怎样的不等式?并判断x 的取值范围.4. 解下列不等式,并将不等式的解集在数轴上表示出来.(1)14-2x >6 (2) 2+2x >65. 解下列不等式:(1) 5-x <1 (2) 4x ≤2x +3(3) 1--1>22x (4) 1--2<13x6. 下面是解不等式的部分过程,如果错,说明错误原因并改正,如果对,说明理由.(1) 由2x >-4,得x <-2.(2) 由1683224x x ->-,得2143x x ->-.(3) 由-2x >4,得x <-2.7. 求不等式4125x x-<+的正整数解.8. x取何值时,代数式32x+的值不大于代数式43x+的值.五、当堂检测1. 解下列一元一次不等式,并将解集在数轴上表示出来.:(1)236x+>;(2)734 22x x->-.2. x取何值时,代数式32x+的值不小于代数式43x+的值.3. 求不等式235x-<的最大整数解.解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,不等式两边同除以未知数的系数.1. 解不等式:34212-63x xx-+≤.解去分母,3412-2(21)x x x-≤+. 去括号,3-4x≤12x-4x-2.移项,-4x-12x+4x≤-2-3.合并同类项,-12x≤-5.两边同除以-12,512 x≥.原不等式的解集是512x≥.2. 解下列不等式,并把它的解集在数轴上表示出来:(1) 4 -2(x -3)≥4(x +1) (2)+421-23x x +≥(3) -2>4-32xx (4)214-432x x --+≤体会: 解不等式的过程中,你有什么错误?要注意什么?3. 下面是解一元一次不等式的部分步骤,如果正确,说明理由;如果错误,找出错误原因,并改正.(1)由2x >-2,得x <-1.(2)由-2x >-2,得x >1.(3)由8x +24>32x -16,得 x +3>4x -2.(4)由531132x x +--<,得2(5)3(31)1x x +--<.(5) 由531132x x +--<,得25916x x ++-<.4. 下列不等式的解法是否有错.解不等式:3421263xx x -+≤-.解 去分母,得34122(21)x x x -≤-+ .去括号,得341242x x x -≤--.合并同类项,得3482x x -≤-.移项,得3248x x +≤+.合并同类项,得512x ≤,即125x ≥.系数化为1,得512x ≥.五、当堂检测1. 与不等式2533x-≥-的解集相同的一个不等式是 ( )A .259x -≤B .259x -≤-C .529x -≤D .529x -≤-2. 解不等式:21511 32x x-+-≤.3. 求不等式334642x x--<-, 并将解集在数轴上表示出来,再求出这个不等式的最小整数解.4.a取什么值时,解方程32x a-=得到的x的值.(1)是正数;(2)是负数.解:由方程32x a-=,得23ax+ =.(1) 当x 是正数时,23a+>, 解得a > - 2.(2)(自己做)。