Prebiotic effects of inulin and oligofructose
- 格式:pdf
- 大小:271.69 KB
- 文档页数:5
吡仑帕奈中国儿童应用的相关研究发布时间:2023-03-10T14:04:08.756Z 来源:《医师在线》2022年11月22期作者:李冰聂磊通讯作者王兴赵冬梅刘慧敏[导读]吡仑帕奈中国儿童应用的相关研究李冰 聂磊通讯作者王兴 赵冬梅 刘慧敏(佳木斯大学;黑龙江佳木斯154003)摘要:吡仑帕奈(Perampanel,PER)是日本卫材公司于2012年10月研发的 Fycompa品牌。
它是目前为止,惟一对AMPA的受体起效的新一代新药,是第一批用于治疗12岁及以上难治性部分性癫痫发作患者的添加药物,是一种AMPA受体拮抗剂,具有高选择性并调节中枢神经系统中的谷氨酸活性。
临床上可用于单药或联合用药治疗。
常见的不良事件包括头晕、嗜睡、头痛、疲劳、共济失调等。
关键词:吡仑帕奈;AMPA;癫痫1.药物概况吡仑帕奈是突触后神经元上离子型α-氨基-3-羟基-5-甲基-4-异唑丙酸(AMPA)受体拮抗剂,通过与AMPA受体非竞争性结合,抑制谷氨酸诱导的过度神经传递,发挥作用,是第一个获得监管批准的AMPA受体拮抗剂。
2012年,FDA批准吡仑帕奈口服片剂上市,并仅可作为添加治疗用于12岁及以上的局灶性癫痫发作患者。
2019年9月在我国上市,每天一次用于12岁及以上局灶性癫痫的添加治疗。
2.儿童药代学特点PER口服给药后,吸收迅速且完全,空腹状态药物作用的峰值时间为0.5~2.5h。
进食会减慢吸收速度,药物的峰值浓度较空腹状态时低28%~40%,半衰期平均为105h,肝功能不全者半衰期延长;具有较高的蛋白质结合率(>95%)和较长的半衰期(~105h),该药在体内的排泄30%经尿液,约70%经粪便,另有少量可经唾液。
相较于成人,儿童药代动力学有其特殊性,体内药物代谢的速度通常较成人更快。
但是,过高的血药浓度可能带来更高的不良事件发生率。
3.中国儿童临床应用的安全性及有效性PER对儿童癫痫患者的局灶性发作、特发性全面性强直阵挛发作、等多种发作类型均有一定疗效。
不同益生元功效对比益生元,是指可以选择性刺激肠道中已定植的有益菌群的繁殖或活性的一种膳食补充剂。
成功的益生元应是在通过上消化道时,大部分不被消化而能被肠道菌群所发酵的。
最重要的是它不仅刺激有益菌群的生长,而且能抑制有害菌繁殖。
目前市场上常见的益生元有:低聚异麦芽糖( IMO)、低聚果糖(FOS)、低聚半乳糖(GOS)、低聚木糖(XOS )、低聚乳果糖(LACT)、大豆低聚糖(SOS)、菊粉(Inulin)等。
虽然这些低聚糖都属于益生元,但多项研究证明它们的结构、组成及糖苷键都存在差异,最后导致它们的功效也不一样。
下面是现在市面上流行的益生元种类做出的功效对比分析,消费者在购买时应认清各种益生元的功效,有针对性地购买。
一、对双歧杆菌(有益菌)的增殖效果双歧杆菌是肠内最有益的菌群,被誉为“人体健康的晴雨表”。
人体内双歧杆菌数量的减少乃消失是“不健康”状态的标志。
人体肠道内的双歧杆菌共有8种,其中以两歧双歧杆菌、婴儿双歧杆菌、青春双歧杆菌、长双歧杆菌和短双歧杆菌的数量最多。
微生态学研究发现在健康人体的消化道中的细菌数有100种,其数量达100兆以上。
人体肠道内细菌群随着人的年龄增加变化显著。
不同年龄阶段人群的肠内双歧杆菌,其组成和比例有一定不同,如儿童阶段主要是婴儿双歧杆菌、两歧双歧杆菌和长双歧杆菌,青壮年和老年人肠道中则主要是青春双歧杆菌和长双歧杆菌。
随着年龄增长,或不良饮食习惯及疾病等的影响,肠内双歧杆菌数量和比例很有可能会大幅下降,不利于人体健康状态的保持。
众多研究已分别证实:低聚异麦芽糖、低聚果糖、低聚半乳糖、低聚木糖等有明显的双歧杆菌增殖作用。
肠内的不同的双歧杆菌对不同低聚糖的可利用性和利用率也各有不同。
低聚半乳糖和低聚异麦芽糖是能被各种双歧杆菌良好利用,且增殖率较高的益生元,但低聚异麦芽糖被长双歧杆菌和青春双歧杆菌的利用程度更高。
而低聚木糖除了可被青春双歧杆菌和长双歧杆菌所利用外,其它双歧杆菌的可利用性都较差。
Hans Journal of Food and Nutrition Science 食品与营养科学, 2020, 9(3), 229-235Published Online August 2020 in Hans. /journal/hjfnshttps:///10.12677/hjfns.2020.93030Research Progress on PhysiologicalFunction of Probiotics InulinHuan Xiong1,2*, Aibiao Zou1,2, Hualin Wang1,31Wuhan Inuling Biotechnology Co., Ltd., Wuhan Hubei2Cross-Srait Tsinghua Research Institute Medical Nutrition Therapy Research Center, Xiamen Fujian3School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan HubeiReceived: Jul. 11th, 2020; accepted: Jul. 23rd, 2020; published: Jul. 30th, 2020AbstractInulin is one of the most widely studied prebiotics, which is known to have physiological benefits on intestinal health, glycolipid metabolism, obesity and immune system. In this paper, the recent progress of inulin physiological function was reviewed, which can be used as a guide and refer-ence for future research.KeywordsInulin, Prebiotics, Physiological Function益生元菊粉的生理功能研究进展熊欢1,2*,邹爱标1,2,王华林1,31武汉英纽林生物科技有限公司,湖北武汉2清华海峡研究院医学营养(MNT)研究中心,福建厦门3武汉轻工大学生物与制药工程学院,湖北武汉收稿日期:2020年7月11日;录用日期:2020年7月23日;发布日期:2020年7月30日摘要菊粉是研究最广泛的一种益生元,目前已知对肠道健康、糖脂代谢、肥胖、免疫系统等均有生理益处。
菊粉的功能与利用彭英云;郑清;张涛【摘要】菊粉是一种广泛存在于自然界的生物多糖,主要由果糖和葡萄糖构成,其中果糖分子通过β-(2,1)糖苷键连接.作为一种水溶性生物多糖,具有多种生理活性功能,且菊粉凝胶具有类似脂肪的质构与口感,可应用于食品、饲料、生物、化工等多个工业领域.【期刊名称】《食品研究与开发》【年(卷),期】2012(033)010【总页数】5页(P236-240)【关键词】菊粉;膳食纤维;益生素;脂肪替代品【作者】彭英云;郑清;张涛【作者单位】盐城工学院化生学院食品系,江苏盐城224003;盐城工学院化生学院食品系,江苏盐城224003;江南大学食品科学与技术国家重点实验室,江苏无锡214122【正文语种】中文菊粉(inulin)又称菊糖,土木香粉,是一种生物多糖,以能量的形式存在于多种植物和蔬菜里,尤其大量存在于菊科植物例如菊芋,菊苣等的块根中。
它由果糖分子通过β-(2,1)糖苷键连接,聚合程度从2~60,一般平均为10,其终端为葡萄糖单位,分子式可用GFn表示,其中G为终端葡萄糖单位,F代表果糖分子,n则代表果糖分子数。
当聚合度较低时(DP=2~9)可以称为低聚果糖(Fructo Oligo Saccharide)。
菊粉在自然界中分布很广,某些真菌和细菌中含有菊粉,但其主要来源是植物。
全世界超过36000种植物,包括双子叶植物中的菊科、桔梗科、龙胆科等11个科以及单子叶植物的百合科、禾木科,都含有丰富的菊粉。
一些常见植物中的菊粉含量见表1[1-2]。
表1 一些常见植物中的菊粉含量Table 1 The content of inulin in some plants植物名称菊粉含量/% 植物名称菊粉含量/%小麦 1~4 菊苣 13~20洋葱 2~6 婆罗门参 15~20韭葱 10~15 菊芋 15~20芦笋 10~15 大丽花块茎 15~20大蒜15~25 天冬 10~151 菊粉的性质1.1 物理性质从菊芋中提取的菊粉是一种不同聚合度低聚糖的混合物。
中国果菜China Fruit &Vegetable第42卷,第8期2022年8月综合利用Comprehensive Utilization 菊粉又称菊糖,是植物贮藏多糖之一,也是除淀粉外植物的另一种能量储存形式,广泛分布于植物组织中[1-3]。
菊粉是一类天然果糖聚合物(果聚糖,Fructan),属于非消化性碳水化合物,是优质的天然水溶性膳食纤维和益生元(Prebiotic),具有一定的甜度,热量低,与水结合易形成凝胶;同时具有降血糖血脂、调节肠道菌群、增强胃肠功能及促进维生素及微量元素吸收等多种生理功能[4-7]。
菊粉已被美国食品药品监督管理局(FDA)确认菊粉的特性、功能及其在食品中的应用张之握(山东农业大学食品科学与工程学院,山东泰安271018)摘要:菊粉是一类主要由植物产生的果聚糖,也是一种优质的天然水溶性膳食纤维和益生元,具有调节血糖血脂、改善肠道功能等生理功效,在食品、保健品等领域应用前景广阔。
本文概述了菊粉的来源和物化特性,分析了其生理功能和在食品中的应用现状,以促进对菊粉的深入研究及新型菊粉产品的开发。
关键词:菊粉;物化特性;生理功能;应用中图分类号:TS255.2文献标志码:A文章编号:1008-1038(2022)08-0051-05DOI:10.19590/ki.1008-1038.2022.08.008Properties and Functions of Inulin and Its Application in FoodZHANG Zhi-wo(College of Food Science and Engineering,Shandong Agricultural University,Tai’an 271018,China)Abstract:Inulin is a kind of fructan mainly produced by plants and a kind of high-quality natural water-solubledietary fiber and prebiotic.It has many beneficial physiological functions such as regulating blood sugar and blood lipid and improving intestinal function.It has a broad application prospect in food and health products.In this paper,the sources and physicochemical characteristics of inulin were summarized,and its physiological functions and application in food were analyzed,so as to promote the in-depth study of inulin and the development of new types of inulin food.Keywords:Inulin;physicochemical properties;physiological function;application收稿日期:2022-01-18基金项目:山东省自然科学基金青年基金项目(ZR2020QC238)第一作者简介:张之握(2001—),男,在读本科,专业为食品质量与安全中国果菜为GRAS(公认安全物质)[1],并被我国批准为新资源食品[4],目前已在食品、饲料、保健品等领域广泛应用。
每周只需注射一次,3个月即可轻松减掉10斤肥肉。
能让你管住嘴的减肥神药真的来了临床大发现“管住嘴,迈开腿”简简单单六个字,就道出了减肥的真谛。
然而,面对那么多的美食诱惑,光这前三个字就足以让无数人的减肥大业半途而废了。
不过,好消息来了!最近,肥胖研究领域中的著名期刊《糖尿病,肥胖和代谢》杂志刊登的一项临床研究[1]显示,诺和诺德公司开发的索马鲁肽,可以抑制食欲,让你轻松“管住嘴”。
只需一周注射1次,连续注射12周后,就可减重10斤!而且,在这减轻的体重中,主要还是体内的脂肪组织,药物对除脂肪以外的去脂体重影响很小。
不光有效,还很安全!这项研究的通讯作者,来自英国利兹大学的John Blundell 教授表示,“索马鲁肽的作用是非常令人惊讶的,我们在12周内就观察到了其他减肥药物需要6个月才能达到的效果。
它减少了饥饿感和食欲,让患者能更好地控制饮食摄入。
”[2] John Blundell教授索马鲁肽(Semaglutide)本身是一款针对2型糖尿病的降糖药,主要成分为胰高血糖素样肽-1(GLP-1)类似物。
GLP-1是一种由小肠分泌的激素,在血液中葡萄糖水平升高时促进胰岛素的合成和分泌。
GLP-1进入人体后很容易被酶降解,天然的GLP-1半衰期仅有几分钟,所以,为了让它更长久的工作,研究人员会对它进行一些结构上的改造,在保留功能的同时不那么容易被酶降解。
这样得到的GLP-1类似物药物,比如大名鼎鼎的利拉鲁肽,可以将注射频率减缓到每天1~2次。
而索马鲁肽可以说是它们的“升级版”,在经过改造后,它的半衰期可延长至大约1周,因此注射一次的效果可以维持大约一周的时间[3],对于患者来说更方便。
在不久前公布的全球大型III期临床试验中,索马鲁肽表现优秀,既能控制血糖,还可以保护心血管,这为它在上周赢得了FDA内分泌及代谢药物专家咨询委员会16:0的支持率,不出意外的话,索马鲁肽上市在即[4]。
不少分析人士预测它未来十年内的销售峰值将超百亿,成为治疗2型糖尿病中最好的降糖药。
carbohydratesThe food scientist has a many-sided interest in carbohydrates. He is concerned with their amounts in various foods, availability (nutritional and economic), methods of extraction and analysis, commercial forms and purity, nutritional valve, physiological effects, and functional properties in foods. Understanding their functional properties in processed foods requires not only knowledge of the physical and chemical properties of isolated carbohydrates, but also knowledge of the reactions and interactions that occur in situs between carbohydrates and other food constituents and the effects of these changes upon food quality and acceptance. This is a tall order for knowledge. Because processing affects both nutritional and esthetic values of food, knowledge of the changes that carbohydrates undergo during milling, cooking, dehydration, freezing, and storage is especially important.Students are advised to study the fundamental chemistry underlying useful carbohydrates properties Of service will be an understanding of the association of polar molecules through hydrogen bonding, ionic effects, substituent effects, chelation with inorganic ions, complexing with lipids and proteins, and decomposition reaction. This background will provide an understanding of properties that affect the texture and acceptance of processed foods (e.g., solubility, hygroscopicity, diffusion, osmosis, viscosity, plastity, and flavor production), properties that enable the formation or high quality pastries, gels, coatings, confections, and reconstitutable dehydrated and frozen foods.Ability to predict what changes in functional properties are likely to ensue from incorporating various types of carbohydrates into processed foods is a practical goal of the food scientist.Such forecasting requires either a wealth of experience with trial-and-error methods or a deep knowledge of carbohydrate properties as related to structure—perhaps both. However, scientific knowledge of cause and effect is highly respected when it shortens industrial development timeSource, Types, and TerminologyThe layman‟s conception of carbohydrates generally involves only the sugars and starches of foods—those that generate calories and fat. The food chemist knows many other types that are ingested.Because most people enjoy the sweetness of sugars and the mouth feel of cooked starches, they become familiar by association with table sugar (sucrose), invert sugar‟s hydrolyzed sucrose, corn syrup sugars (D-glucose and maltose), milk sugar (lactose), and the more starchy foods. These carbohydrates are nutritionally available; i .e., they are digested (hydrolyzed to component monosaccharides) and utilized by the human body。
菊粉寡糖促进嗜酸乳杆菌生长的研究3张 帆 王建华 刘立恒 杨雅麟 滕 达(中国农业科学院饲料研究所;国家饲料工程技术研究中心,北京,100081)摘 要 对菊粉可促进嗜酸乳杆菌的生长进行了初步研究。
结果表明,用菊粉代替培养基中部分葡萄糖,嗜酸乳杆菌的生长得到明显的促进,当MRS 培养基中葡萄糖与菊粉的质量比为1∶1时,嗜酸乳杆菌的生物量及酸度得到提高,在37℃下培养48h ,活菌的数量及酸度比对照组分别提高1010CFU/m L 和10°T 。
关键词 菊粉,嗜酸乳杆菌 第一作者:学士,助理研究员(王建华为通讯作者)。
3国家863计划2001AA246041和2004AA246040 收稿时间:2003-11-10 嗜酸乳杆菌(Lactobacillus acidophilus )属革兰氏阳性菌,杆状、两端圆,通常为(016~019)×(115~6)μm ,以单个、成双和短链出现,不运动,无鞭毛。
其最适生长温度为35~38℃,最适pH 为512~6118,是人体肠道中的重要微生物,它能调节人体肠道内微生物菌群平衡,增强机体免疫力,降低胆固醇水平,缓解乳糖不耐症以及抑制肿瘤细胞的形成,有利于控制成人和儿童腹泻等,对人体健康特别是对维持胃肠道正常生理功能具有重要作用。
菊粉是果糖聚合物,存在于多种植物和微生物中,可刺激人或动物肠道内双歧杆菌及乳酸菌的增殖,抑制腐生菌和某些病原菌在肠道的生长和繁殖,能够显著降低结肠细胞癌变发生率。
笔者研究了以菊粉作为培养基碳源对嗜酸乳杆菌生物量和产酸量的影响。
1 材料与方法111 培养基11111 菌 种嗜酸乳杆菌(Lactobacillus acidophilus )购于中国农业科学院土肥所,为斜面菌种,代号“土54”,简称LA 21;Mjll 为本室保存的嗜酸乳杆菌菌株,简称LA 22。
11112 培养基MRS (琼脂)培养基:蛋白胨10g ,酵母提取物5g ,牛肉膏10g ,葡萄糖20g ,乙酸钠5g ,柠檬酸二铵2g ,T ween801m L ,MgS O 4・7H 2O 0158g ,MnS O 4・4H 2O 0125g ,K 2HPO 42g ,琼脂粉17g ,水1000m L ,灭菌前自然pH 6112~612,于121℃,1×105Pa 灭菌20min 。
抗性糊精:一种对健康有益的可溶性膳食纤维,营养价值更高引言日前,世界卫生组织粮农署(WHO/FAO 2002)建议,控制在全球蔓延的肥胖病和预防与饮食有关的慢性疾病所需的平衡饮食应包括:热量摄入平衡(55–70% 来自总碳水化合物,15–30%来自总脂肪,10–15% 来自总蛋白);缓慢释放热量的食物,即总热量中仅10%来自快速消化的糖类(单糖和双糖),而约40%来自复糖,如纤维等。
每日摄入纤维的推荐量在各个国家有所不同,但根据中国营养协会制订的《中国居民膳食指南》,中国正常成年人的纤维定量为每日25-30克。
但是,根据‘中国公民营养和健康状况调查’的结果,成年(城乡)中国人平均膳食纤维摄入量仅为12克左右。
经过多年研究,抗性糊精,一种可溶性膳食物质,大部分抗小肠消化,主要在结肠发酵。
根据一种定义(Roberfroid,2005年)以及各国官方委员会公布的不同通告(如意大利和法国),其为可溶性膳食纤维。
因此食品中添加的抗性糊精,可达20-25 %(重量/重量比),而抗性糊精也在许多国家,包括中国,获正式承认并标识为可溶性纤维。
因此,它可以是帮助实现世界卫生组织/粮农组织和中国营养学会的营养'纤维'目标非常有用的工具。
此外,越来越多的证据表明,抗性糊精能够成为均衡饮食的组成部分促进健康,如降低血糖反应和改善肠道的健康等。
其消化耐受阈值也非常突出,使其消化的量最适合于达到期望的肠道生态系统的良性改变。
本文将对已经发表或即将发表的论文中描述的这些和其他的营养特性进行概述。
此外,作为一种可完全溶解的纤维,其温度和处理条件都比较极端,而且服用的耐受性良好,是一种提高食物和饮料纤维含量的理想原料;我们将简要概括其技术和产业优势。
抗性糊精是什么?抗性糊精可以小麦淀粉或玉米淀粉制成,采用的糊精化过程是严密控制的。
在此过程中,淀粉经过了一定程度的水解,其后是再聚合过程。
正是再聚合过程,通过形成不能被消化道内的酶切断因而不可消化的糖苷键,将淀粉转换成纤维,并且还阻碍了可消化连接的裂解。
DOI:10.13995/ki.11-1802/ts.025941引用格式:任春霖,董红丽,王风芹,等.低聚木糖生产技术及其对动物益生作用研究进展[J].食品与发酵工业,2021,47(9):293-298.REN Chunlin,DONG Hongli,WANG Fengqin,et al.Research progress of xylooligosaccharides production technology and its prebiotic effect on animals[J].Food and Fermentation Industries,2021,47(9):293-298.低聚木糖生产技术及其对动物益生作用研究进展任春霖,董红丽,王风芹∗,宋安东(河南农业大学生命科学学院,河南郑州,450002)摘㊀要㊀低聚木糖(xylooligosaccharides ,XOS )是一类具有益生元活性的可溶性膳食纤维,有利于改善动物肠道功能,提高免疫力,现已经被广泛应用于食品㊁医药㊁饲料等方面㊂木质纤维素的主要成分是纤维素㊁半纤维素和木质素,其中半纤维素中含有丰富的木聚糖,可以用作生产XOS 的原料㊂该文总结了近年来XOS 生产技术研究进展,并介绍了XOS 作为饲料添加剂对动物的益生作用,以期为XOS 的工业化生产与应用提供参考㊂关键词㊀木质纤维素;低聚木糖;饲料;肠道微生物;益生元第一作者:硕士研究生(王风芹教授为通讯作者,E-mail:w_fengqin@)㊀㊀基金项目:中原千人计划项目(204200510018)收稿日期:2020-10-20,改回日期:2020-11-09㊀㊀低聚木糖(xylooligosaccharides,XOS)是近年来备受关注的一种功能性低聚糖㊂XOS 的甜度是蔗糖的30%~40%,与其他低聚糖,如低聚果糖(fructo oligo-saccharide)和菊粉(inulin)相比,具有稳定性好㊁耐酸耐高温等优点[1]㊂除此之外,XOS 不能被人体吸收,只能被肠道内的微生物利用,从而促进肠道内双歧杆菌(Bifidobacterium )㊁乳酸菌等有益菌产生对宿主有益的小分子脂肪酸,选择性抑制大肠杆菌(Escherichia co-li )㊁梭状芽孢杆菌(Clostridium )等有害菌和致病菌的生长,因此XOS 被认为是具有益生元活性的可溶性膳食纤维[2-4],已被广泛应用于食品㊁保健品或者饲料添加剂中,且可作为糖尿病患者食品的增味剂㊂XOS 天然存在于水果㊁蔬菜中,也可以通过水解木聚糖(xylan)生产㊂XOS 是由木糖残基链组成的寡糖,一般由2~7个木糖分子聚合而成,主链通过β-1,4-糖苷键连接,有不同的侧基修饰形成支链结构,不同的木聚糖来源和不同的工艺生产出的XOS 的聚合度(degree of polymerization,DP)㊁侧基以及侧基的取代方式差别很大[5-7]㊂DP 为2~4的XOS 具有更高的益生元活性,也因此更受人们青睐[8]㊂本文对近年来XOS 的生产技术研究进展进行了总结,并介绍了XOS 作为饲料添加剂对动物的益生作用,以期为XOS 的工业化生产和应用提供依据㊂1㊀低聚木糖生产原料木质纤维素作为农林业废弃物,其主要由纤维素(cellulose)㊁半纤维素(hemicellulose)和木质素(lignin)3种组分组成㊂XOS 可通过木聚糖水解的方法获得,而木聚糖是木质纤维素中半纤维素的主要成分,因此,在工业生产中大多以农业残余物作为原料生产具有高附加值的XOS㊂表1列举了几种常见木质纤维素原料的组成,其中木聚糖含量在15%~31%,原料的木聚糖含量越高,越有利于低成本地生产XOS,其中玉米芯㊁甘蔗渣㊁小麦秸秆等来源广泛,木聚糖含量相对较高,是XOS 工业生产中普遍使用的原料㊂表1㊀木质纤维素原料的组成成分Table 1㊀Composition of lignocellulosic materials材料纤维素/%木聚糖/%木质素/%参考文献玉米芯32.931.512.5[9]甘蔗渣39.823.622.8[10]小麦秸秆34.922.821.4[9]松木38.820.731.2[11]水曲柳37.020.629.5[11]玉米秸秆30.320.019.6[9]芒草35.919.519.6[12]油茶壳13.419.539.1[13]杨木40.416.926.2[9]杉木48.115.034.1[11]2㊀低聚木糖生产技术研究进展由于木质纤维素中木质素㊁果胶(pectin)等物质会影响木聚糖的提取率,因此需要打破木质纤维素的致密结构,使更多的半纤维素暴露出来,从而提高XOS 的提取效率[14]㊂XOS 可以采用物理㊁化学方法直接生产,也可以在物理㊁化学预处理技术的基础上结合木聚糖酶酶解生产㊂表2和表3总结了近年来文献中报道的XOS生产技术㊂2.1㊀物理、化学生产法2.1.1㊀自水解法在高温高压的环境中,木质纤维素中半纤维素发生水解断裂,使木聚糖发生自身水解反应释放出XOS和木糖[15]㊂SUREK等[16]发现自水解的温度和保温时间对产物产量有极大影响,在190ħ㊁保温5 min的条件下处理榛子(Corylus avellana L)壳,XOS 收率达到原料木聚糖的62%㊂要想使低DP的XOS 的百分比达到最大,在此温度下则需要30min的保温时间,并且木糖㊁乙酸和糠醛浓度随处理强度的增加而增加㊂ZHANG等[17]在200ħ的条件下对甘蔗渣进行自水解,在10min内得到的XOS产率为50.35%,若想生产低DP的XOS则需要更长的反应时间,而随着反应时间的增加,大量的木聚糖和XOS 被降解为木糖和副产物㊂反应时间的延长造成了副产物的大量产生,不仅不能保证XOS的产率,还对XOS的纯度造成影响㊂表2㊀化学/物理法生产XOSTable2㊀XOS production using chemical/physical methods原料处理方法产率参考文献自水解法甘蔗渣200ħ,10min50.35%[17]榛子壳190ħ,5min62.0%[16]芦苇屑170ħ,30min49.5%[28]酸处理法玉米芯pH2.7乙酸,150ħ,30min45.91%[18]葡萄渣8.4%NaOH,固液比1ʒ18(gʒmL),120ħ,90min96.28%[26]葡萄渣0.8%H2SO4,固液比1ʒ18(gʒmL),120ħ,90min74.58%[26]杨木φ(乙酸)=5%,170ħ,30min55.8%[31]甘蔗渣ω(乙酸)=10%,150ħ,45min39.1%[32]玉米芯φ(木糖酸)=5%,145ħ,75min51.24%[9]玉米秸秆φ(木糖酸)=25%,157ħ,35min23.11%[9]小麦秸秆φ(木糖酸)=5%,153ħ,75min35.6%[9]杨木屑φ(木糖酸)=5%,167ħ,35min30.23%[9]甘蔗渣0.64mol/L木糖酸,154ħ,42min44.5%[10]无机盐法油茶壳ω(ZnCl2)=0.5%,170ħ,30min61.38%[19]甘蔗渣0.1mol/L MgCl2,180ħ,10min53.79%[20]甘蔗渣0.1mol/L FeCl2,140ħ,30min41.89%[20]甘蔗渣0.05mol/L FeCl2+0.05mol/L MgCl2,140ħ,30min54.68%[20]其他处理法甘蔗渣0.24mol/L H2SO4微波31min290.2mg/g[25]桉木1%Ca(OH)2,0.8%活性炭,1.4%H2SO4DP2~4含量为9.25g/L[33]油棕榈皮亚临界H2O-CO2,180ħ,60min81.6mg/g[34]甘蔗渣ω(H2SO4)=0.5%,190ħ,5min爆破40%左右[24]芒草15bar,200ħ,10min爆破52%[23]2.1.2㊀酸处理法酸处理的目的是提高半纤维素水解程度,从而提高XOS的产率㊂有研究用玉米芯生产XOS和可发酵糖,使用乙酸㊁HCl和H2SO4三种不同的酸在pH 2.7㊁150ħ㊁30min的相同条件下对玉米芯进行处理,在所选择的酸中,乙酸处理XOS的收率最高达到45.91%,与另外2种酸相比,经过乙酸处理的玉米芯暴露出更大的表面积,而且更粗糙,更有利于后续的纤维素酶解[18]㊂GUO等[9]在不同温度和时间下用自生产的木糖酸共同生产XOS和葡萄糖㊂通过实验发现玉米芯在145ħ反应75min时XOS收率最高为54.16%,并且纤维素酶解效率可达到100%㊂2.1.3㊀无机盐法与酸处理相比,无机盐溶液处理对设备的腐蚀性低,且有更高的催化活性㊂无机盐处理主要利用了路易斯酸(Lewis acid)和酸碱质子理论(Brønsted-Lowryacid-base theory)的特性,在水中添加无机盐发生水解反应,金属离子和水形成复杂的络合物,这些配位化合物和水中的氢键可以帮助半纤维素降解㊂YOU 等[19]使用ZnCl2催化活化油茶壳生产DP为2~5的XOS,发现在质量分数0.5%ZnCl2催化下于170ħ蒸煮30min时XOS的产率最大达到61.38%㊂ZHANG等[20]在140ħ下用MgCl2和FeCl2共催化甘蔗渣30min,得到54.68%的XOS,其中有29.34%的木二糖(xylobiose)和20.94%的木三糖(xylotriose),并且发现无机盐共催化比单种无机盐处理增加了XOS的总产量,并且提高了木二糖和木三糖的产量㊂2.1.4㊀其他处理法除了上述方法之外,还有蒸汽爆破法㊁微波处理法等生产XOS的方法㊂蒸汽爆破对环境污染小成本低㊁处理时间短,在蒸汽爆破期间,将植物生物质进料到爆破容器中通入蒸汽,使木质纤维素经受一段时间的高压和高温,在高温高压的环境中,木质纤维素中半纤维素发生水解破裂,然后快速减压使物料的结构变得分散,实现木质纤维素各个部分的有效分离[15,21-22]㊂BHATIA等[23]通过实验发现蒸汽爆破预处理条件为200ħ,保温10min,芒草爆破产物中最高XOS 收率达到52%㊂CARVALHO等[24]使用质量分数0.5%H2SO4对甘蔗渣进行过夜处理,然后190ħ保温5min爆破,XOS的得率约为40%㊂微波处理法同样是一种绿色高效的生产方法,有能耗低㊁传热均匀㊁反应即关即停等优点㊂BIAN 等[25]用微波辅助酸水解的方法从甘蔗渣的半纤维素组分中制备XOS,当微波加热至90ħ时,用0.24mol/L的H2SO4水解31min,可得到290.2mg/g 的XOS㊂2.2㊀物理/化学-酶解联合生产法酶解法生产XOS是一种反应条件温和,更适合工业生产的方法㊂COSTA等[26]使用H2SO4和NaOH 两种溶剂与酶解法做了比较,证明了酶混合物可作为传统方法的一种替代方法,使用黑曲霉(Aspergillus niger)3T5B8产生的木聚糖酶对葡萄皮渣粉直接进行酶解,得到的XOS收率高达88.68%㊂为了更好地发挥木聚糖酶的作用,更多研究者在酶解前会先用预处理的方式使半纤维素暴露㊂碱预处理的主要作用是去除木质素以及果胶㊁脂肪㊁蛋白质等㊂将木质素溶解除去,然后可以对留下的纤维素和半纤维素进行处理从而得到糖单体和低聚物[27]㊂研究发现,与酸处理和水热处理相比,碱性预处理能更好地去除木质素并暴露出更多木聚糖酶的作用位点,促进后续的酶解过程[28]㊂SINGH等[29]优化了两步碱预处理工艺,槟榔皮在质量分数为10%的NaOH溶液中于65ħ条件下孵育8h,再经过水热处理(121ħ持续1h)的最佳条件下,经过酶水解后产生35g/100g纯木聚糖的XOS㊂HAO等[30]利用过氧化氢-乙酸(HPAC)并以H2SO4为催化剂预处理杨木,通过两步木聚糖酶和纤维素酶处理将固体残留物用于生产XOS和葡萄糖,用添加了50mmol/L H2SO4作为催化剂的30%H2O2和99%乙酸预处理2h,酶解后XOS的产率可以达到16.9g/kg杨木㊂表3㊀化学/物理预处理-酶解联合生产XOSTable3㊀XOS production using chemical/physical pretreatment and enzymatic hydrolysis原料预处理方法酶解条件产量参考文献直接酶解法葡萄渣无pH5.0,40ħ,4h88.68%[26]化学预处理-酶解啤酒糟0.7%Na2CO3,0.1%H2O2,115ħ,30min pH5.5,48ħ,3h23.87mg/g啤酒糟[35]甘蔗渣10%KOH,2.36%H2O2,50ħ,6h pH5.0,36ħ,24h43%[36]槟榔皮10%NaOH,65ħ,8h,121ħ,1h pH4,50ħ,24h35g/100g木聚糖[29]甘蔗渣10%NaOH,1.5%H2O2,70ħ,6h pH5.0,50ħ逐步酶水解 1.78g/L[37]杨木60%HPAC,50mmol/L H2SO4,2h pH5.0,50ħ,24h16.9g/kg[30]杨木60%HPAC,200mmol/L H2SO4,2h pH5.0,50ħ,24h14.2g/kg[30]稻壳pH5.0柠檬酸缓冲液,0.9MPa蒸煮50min pH6.0,50ħ,3h8.26mg/g[38]其他预处理-酶解稻壳微波功率640W,3.2min,pH5.0柠檬酸缓冲液pH5.0,59ħ,3h 4.94mg/g[39]玉米芯196ħ,5min pH7.0,70ħ,2.5h28.6g/100g[40]小麦秆200ħ,加热50s,保温4min pH4.8,50ħ8.9g/100g[41]3㊀低聚木糖对动物的益生作用研究进展3.1㊀改变肠道菌群的组成和代谢活性XOS可以改变肠道微生物的组成,增加益生菌的数量,产生有利于健康的脂肪酸㊂PAN等[42]探讨了日粮XOS对不同年龄猪的肠道微生物组成和活性的影响,发现在育肥期添加XOS会增加猪肠道内容物中乙酸㊁直链脂肪酸和短链脂肪酸的浓度,改变肠道菌群的组成和代谢活性㊂3.2㊀改善肠道屏障,增强免疫功能肠道屏障可以保护宿主不被致病菌危害,肠道微生物对宿主的免疫力有很大影响㊂有研究通过用XOS和对照饮食喂养小鼠进行了肠道微生物评估,证明XOS可以改变肠道微生物群,改善肠道屏障,加强肠道致糖尿病抗原的控制[43]㊂EAIMWORAWU-THIKUL等[44]在雄性Wistar大鼠上证明了XOS可以减少全身性炎症,增加小梁厚度,减少破骨细胞和活跃的糜烂面,并恢复了矿物质沉积和骨形成速率㊂YIN等[45]发现膳食补充XOS对生长性能㊁血细胞㊁生化参数以及肠道形态几乎没有影响,但是XOS喂养的仔猪炎症状态和肠道屏障得到改善㊂菌群分析表明,XOS影响了乳杆菌属(Lactobacillus)㊁链球菌属(Streptococcus)和Turicibacter的相对丰度㊂微生物的改变可能进一步涉及碳水化合物的代谢㊁细胞运动㊁细胞过程和信号传导㊁脂质代谢以及其他氨基酸的代谢㊂3.3㊀增加动物日重,提高饲料效率由于应激反应的影响,在动物饲养中很容易出现料肉比(feed conversion ratio,FCR)过高的现象,XOS 可以降低FCR,增加动物日增质量㊂RIBEIRO等[46]研究了XOS对肉鸡性能的影响,显示掺入XOS的饲喂或外源β-1,4-木聚糖酶的膳食补充均增加了小麦日粮的营养价值,动物性能的改善伴随着在胃肠道上部定居的微生物种群的转移㊂研究发现在饲料中添加XOS喂养的猪具有更高的平均日增重和饲料效率,XOS提高了胰蛋白酶活性,降低粪便中NH3浓度以及粪便大肠杆菌的数量,增加了乳杆菌的数量[47]㊂ABDELMALEK等[48]发现在饲料中添加XOS喂养欧洲鲈鱼(Dicentrarchus la-brax),可显著增加体重,增加蛋白质效率比和饲料转化率,改善生长并刺激免疫力,同时增强抗感染能力㊂3.4㊀改善抗氧化能力ABASUBONG等[49]研究木寡糖对钝嘴鲷(Mega-lobrama amblycephala)的生长性能㊁抗氧化能力和针对嗜水气单胞菌的免疫反应的影响,研究表明,饮食中添加质量分数1.5%XOS可以显著改善钝嘴鲷的生长性能㊁抗氧化能力㊁先天免疫力和嗜水杆菌抗性㊂YU等[50]的数据证明了XOS可增加小鼠粪便中的乳杆菌属和双歧杆菌属含量,降低肠球菌属㊁肠杆菌属和梭状芽胞杆菌属含量,体外抗氧化结果表明,XOS 与植物乳杆菌(Lactobacillus plantarum)均具有自由基清除活性,且联合使用具有更好的抗氧化活性㊂4㊀结语XOS以其良好的稳定性,独特的生理特性获得了人们的青睐㊂XOS作为饲料添加剂能够改善猪的肠道菌群,促进益生菌生长,依靠肠道屏障减少炎症,起到预防疾病的效果,还能增加动物的日重,提高蛋鸡的生产性能,在水产养殖中也能起到一定作用㊂随着人们对XOS功能的探索,XOS的应用会越来越广泛㊂值得注意的是,XOS的制备工艺至今还未成熟,如何更低成本㊁低污染㊁低能耗地生产XOS已经成为研究的热点,而且XOS从生产底物中提纯的成本过高,如何简单快捷㊁低成本地分离XOS也将是未来研究的热点㊂参考文献[1]㊀BHAT M K.Oligosaccharides as functional food ingredients and theirrole in improving the nutritional quality of human food and health [J].Recent Research Developments in Agricultural and Food Chem-istry,1998,2(2):787-802.[2]㊀ROBERFROID M,SLAVIN J.Nondigestible oligosaccharides[J].Critical Reviews in Food Science and Nutrition,2000,40(6):461-480.[3]㊀SOMMER F,BÄCKHED F.The gut microbiota masters of host de-velopment and physiology[J].Nature Reviews Microbiology,2013, 11(4):227-238.[4]㊀CHILDS C E,RÖYTIÖH,ALHONIEMI E,et al.Xylo-oligosaccha-rides alone or in synbiotic combination with Bifidobacterium animalis ctis induce bifidogenesis and modulate markers of immune function in healthy adults:A double-blind,placebo-controlled,ran-domised,factorial cross-over study[J].British Journal of Nutrition, 2014,111(11):1945-1956.[5]㊀PU J H,ZHAO X,WANG Q C,et al.Development and validation ofa HPLC method for determination of degree of polymerization of xylo-oligosaccharides[J].Food Chemistry,2016,213:654-659. [6]㊀VÁZQUEZ M J,ALONSO J L,DOMÍNGUEZ H,et al.Xylooligosac-charides:Manufacture and applications[J].Trends in Food Science &Technology,2000,11(11):387-393.[7]㊀AMORIM C,SILVÉRIO S C,PRATHER K L J,et al.From lignocel-lulosic residues to market:Production and commercial potential of xylooligosaccharides[J].Biotechnology Advances,2019,37(7):107 397.[8]㊀ANTOINE C,PEYRON S,LULLIEN-PELLERIN V,et al.Wheatbran tissue fractionation using biochemical markers[J].Journal of Cereal Science,2004,39(3):387-393.[9]㊀GUO J,CAO R,HUANG K,et parison of selective acidolysisof xylan and enzymatic hydrolysability of cellulose in various ligno-cellulosic materials by a novel xylonic acid catalysis method[J].Bioresource Technology,2020,304:122943.[10]㊀ZHOUX,XU Y.Eco-friendly consolidated process for co-productionof xylooligosaccharides and fermentable sugars using self-providingxylonic acid as key pretreatment catalyst[J].Biotechnology for Bio-fuels,2019,12(1):1-10.[11]㊀李想,陈妮,齐学敏,等.乙醇钠预处理木质纤维素原料的组分及结构特性[J].林业科学,2020,56(2):156-163.LI X,CHEN N,QI X M,et position and structure character-istics of sodium ethoxide pretreated lignocelluloses biomass[J].Scientia Silvae Sinicae,2020,56(2):156-163. [12]㊀CHEN M H,BOWMAN M J,DIEN B S,et al.Autohydrolysis ofMiscanthus x giganteus for the production of xylooligosaccharides(XOS):Kinetics,characterization and recovery[J].BioresourceTechnology,2014,155:359-365.[13]㊀武小芬,陈亮,齐慧,等.辐照协同甲酸分离油茶壳中纤维素㊁木质素和木糖的工艺研究[J].核农学报,2020,34(9):1975-1982.WU X F,CHEN L,QI H,et al.Separation process of cellulose,lig-nin and xylose from Camellia oleifera shell by irradiation and formicacid[J].Journal of Nuclear Agricultural Sciences,2020,34(9):1975-1982.[14]㊀BHATIA L,JOHRI S,AHMAD R.An economic and ecological per-spective of ethanol production from renewable agro waste:A review[J].AMB Express,2012,2(1):65.[15]㊀FANG H,KANDHOLA G,RAJAN K,et al.Effects of oligosaccha-rides isolated from pinewood hot water pre-hydrolyzates on recombi-nant cellulases[J].Frontiers in Bioengineering and Biotechnology,2018,6:55.[16]㊀SUREK E,BUYUKKILECI A O.Production of xylooligosaccharidesby autohydrolysis of hazelnut(Corylus avellana L.)shell[J].Car-bohydrate Polymers,2017,174:565-571.[17]㊀ZHANG W W,YOU Y Z,LEI F H,et al.Acetyl-assisted auto-hydrolysis of sugarcane bagasse for the production of xylo-oligosac-charides without additional chemicals[J].Bioresource Technology,2018,265:387-393.[18]㊀ZHANG H H,XU Y,YU S Y.Co-production of functional xylooli-gosaccharides and fermentable sugars from corncob with effectiveacetic acid prehydrolysis[J].Bioresource Technology,2017,234:343-349.[19]㊀YOU Y Z,ZHANG X K,LI P F,et al.Co-production of xylooligo-saccharides and activated carbons from Camellia oleifera shell trea-ted by the catalysis and activation of zinc chloride[J].BioresourceTechnology,2020,306:123131.[20]㊀ZHANG W W,LEI F H,LI P F,et al.Co-catalysis of magnesiumchloride and ferrous chloride for xylooligosaccharides and glucoseproduction from sugarcane bagasse[J].Bioresource Technology,2019,291:121839.[21]㊀BACOVSKY D,LUDWICZEK N,OGNISSANTO M,et al.Status ofadvanced biofuels demonstration facilities in2012-A report to IEAbioenergy task39[EB/OL].[2017-06-10]http://task39./2013/12/report-on-the-statusof-advanced-biofu-els-demonstration-facilities-in-2012/.[22]㊀邱盼盼,任天宝,王风芹,等.木质纤维原料蒸汽爆破-生物联合预处理及其生物脱毒研究进展[J].生物质化学工程,2013,47(2):23-28.QIU P P,REN T B,WANG F Q,et al.Research progress on steamexplosion-biological pretreatment of the lignocellulose and simulta-neous bio-detoxification[J].Biomass Chemical Engineering,2013,47(2):23-28.[23]㊀BHATIA R,WINTERS A,BRYANT D N,et al.Pilot-scale produc-tion of xylo-oligosaccharides and fermentable sugars from Miscant-hus using steam explosion pretreatment[J].Bioresource Technolo-gy,2020,296:122285.[24]㊀CARVALHO A F A,MARCONDES W F,DE OLIVA NETO P,et al.The potential of tailoring the conditions of steam explosion toproduce xylooligosaccharides from sugarcane bagasse[J].Biore-source Technology,2018,250:221-229.[25]㊀BIAN J,PENG P,PENG F,et al.Microwave-assisted acid hydroly-sis to produce xylooligosaccharides from sugarcane bagasse hemicel-luloses[J].Food Chemistry,2014,156:7-13.[26]㊀COSTA J R,TONON R V,GOTTSCHALK L M F,et al.Enzymaticproduction of xylooligosaccharides from Brazilian Syrah grape pom-ace flour:A green alternative to conventional methods for addingvalue to agricultural by-products[J].Journal of the Science of Foodand Agriculture,2019,99(3):1250-1257.[27]㊀BHATIA L,SHARMA A,BACHHETI R K,et al.Lignocellulosederived functional oligosaccharides:Production,properties,andhealth benefits[J].Preparative Biochemistry&Biotechnology,2019,49(8):744-758.[28]㊀CHEN M X,LU J,CHENG Y,et al.Novel process for the copro-duction of xylooligosaccharide and glucose from reed scraps of reedpulp mill[J].Carbohydrate Polymers,2019,215:82-89. [29]㊀SINGH R D,BANERJEE J,SASMAL S,et al.High xylan recoveryusing two stage alkali pre-treatment process from high lignin bio-mass and its valorisation to xylooligosaccharides of low degree of po-lymerisation[J].Bioresource Technology,2018,256:110-117.[30]㊀HAO X X,WEN P Y,WANG J,et al.Production of xylooligosac-charides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar by two-step enzymatic hydrolysis[J].BioresourceTechnology,2020,297:122349.[31]㊀WEN P Y,ZHANG T,WANG J Y,et al.Production of xylooligosac-charides and monosaccharides from poplar by a two-step acetic acidand peroxide/acetic acid pretreatment[J].Biotechnology for Biofu-els,2019,12(1):1-13.[32]㊀ZHOU X,XU Y.Integrative process for sugarcane bagasse biorefin-ery to co-produce xylooligosaccharides and gluconic acid[J].Biore-source Technology,2019,282:81-87.[33]㊀董吉冉,杨桂花,吉兴香,等.微波辅助酸处理桉木预水解液纯化制备低聚木糖[J].中国造纸,2019,38(6):7-13.DONG J R,YANG G H,JI X X,et al.Improvement of xylooligosac-charides content of Eucalyptus pre-hydrolysis liquor with micro-wave-assisted acid treatment[J].China Pulp&Paper,2019,38(6):7-13.[34]㊀AHMAD N,ZAKARIA M R,MOHD YUSOFF M Z,et al.Subcriti-cal water-carbon dioxide pretreatment of oil palm mesocarp fiber forxylooligosaccharide and glucose production[J].Molecules,2018,23(6):1310.[35]㊀邓元元,胡超,陈思宇,等.啤酒糟制备低聚木糖功能饲料添加剂酶解条件优化[J].中国饲料,2019,9:54-62.DENG Y Y,HU C,CHEN S Y,et al.Enzymolysis process optimiza-tion of xylooligosaccharide functional feed additive from brewersgrains[J].China Feed,2019,9:54-62.[36]㊀蒋随新,卢春艳,李成喜,等.用氢氧化钾和过氧化氢从甘蔗渣中提取木聚糖的条件优化及甘蔗渣木聚糖酶解产低聚木糖的分析[J].基因组学与应用生物学,2017,36(9):3863-3870.JIANG S X,LU C Y,LI C X,et al.The optimization of extractingxylan from sugarcane bagasses by using potassium hydroxide andH2O2and the analysis of xylooligosaccharides produced by xylanasefrom sugarcane bagasse[J].Genomics and Applied Biology,2017,36(9):3863-3870.[37]㊀LI H L,CHEN X D,XIONG L,et al.Stepwise enzymatic hydrolysisof alkaline oxidation treated sugarcane bagasse for the co-productionof functional xylooligosaccharides and fermentable sugars[J].Bioresource Technology,2019,275:345-351.[38]㊀关海宁,赵晓伟,黄秀琦,等.高压蒸煮协同木聚糖酶制备稻壳低聚木糖的研究[J].粮食与油脂,2018,31(7):39-42.GUAN H N,ZHAO X W,HUANG X Q,et al.Study on preparationof xylooligosaccharide from rice husk by high pressure cooking-as-sisted xylanase[J].Cereals&Oils,2018,31(7):39-42. [39]㊀关海宁,赵晓伟,刁小琴,等.响应面优化微波结合木聚糖酶制备稻壳低聚木糖工艺研究[J].中国酿造,2019,38(1):129-133.GUAN H N,ZHAO X W,DIAO X Q,et al,Optimization of prepara-tion process of xylooligosaccharide from rice husk by microwavepretreatment-assisted xylanase[J].China Brewing,2019,38(1):129-133.[40]㊀TENG C,YAN Q J,JIANG Z Q,et al.Production of xylooligosac-charides from the steam explosion liquor of corncobs coupled withenzymatic hydrolysis using a thermostable xylanase[J].BioresourceTechnology,2010,101(19):7679-7682.[41]㊀ÁLVAREZ C,GONZÁLEZ A,NEGRO M J,et al.Optimized use ofhemicellulose within a biorefinery for processing high value-addedxylooligosaccharides[J].Industrial Crops and Products,2017,99:41-48.[42]㊀PAN J,YIN J,ZHANG K,et al.Dietary xylooligosaccharide supple-mentation alters gut microbial composition and activity in pigs ac-cording to age and dose[J].AMB Express,2019,9(1):134. [43]㊀HANSEN C H F,LARSEN C S,PETERSSON H O,et al.Targetinggut microbiota and barrier function with prebiotics to alleviate auto-immune manifestations in NOD mice[J].Diabetologia,2019,62(9):1689-1700.[44]㊀EAIMWORAWUTHIKUL S,TUNAPONG W,CHUNCHAI T,et al.Altered gut microbiota ameliorates bone pathology in the mandibleof obese-insulin-resistant rats[J].European Journal of Nutrition,2020,59(4):1453-1462.[45]㊀YIN J,LI F N,KONG X F,et al.Dietary xylooligosaccharide im-proves intestinal functions in weaned piglets[J].Food&Function,2019,10(5):2701-2709.[46]㊀RIBEIRO T,CARDOSO V,FERREIRA L M A,et al.Xylooligosac-charides display a prebiotic activity when used to supplement wheator corn-based diets for broilers[J].Poultry Science,2018,97(12):4330-4341.[47]㊀LIU J B,CAO S C,LIU J,et al.Effect of probiotics and xylooligo-saccharide supplementation on nutrient digestibility,intestinalhealth and noxious gas emission in weanling pigs[J].Asian-Aus-tralasian Journal of Animal Sciences.2018,31(10):1660-1669.[48]㊀ABDELMALEK B E,DRISS D,KALLEL F,et al.Effect of xylanoligosaccharides generated from corncobs on food acceptability,growth performance,haematology and immunological parameters ofDicentrarchus labrax fingerlings[J].Fish Physiology and Biochem-istry,2015,41(6):1587-1596.[49]㊀ABASUBONG K P,LIU W B,ZHANG D D,et al.Fishmeal re-placement by rice protein concentrate with xylooligosaccharidessupplement benefits the growth performance,antioxidant capabilityand immune responses against Aeromonas hydrophila in blunt snoutbream(Megalobrama amblycephala)[J].Fish&Shellfish Immu-nology,2018,78:177-186.[50]㊀YU X,YIN J,LI L,et al.Prebiotic potential of xylooligosaccharidesderived from corn cobs and their in vitro antioxidant activity whencombined with Lactobacillus[J].Journal of Microbiology and Bio-technology,2015,25(7):1084-1092.Research progress of xylooligosaccharides production technologyand its prebiotic effect on animalsREN Chunlin,DONG Hongli,WANG Fengqin∗,SONG Andong(College of Life Science,Henan Agricultural University,Zhengzhou,450002,China)ABSTRACT㊀Xylooligosaccharides(XOS),a type of soluble dietary fiber with prebiotic activity,is conducive to improve intestinal function and immune function for animals.It has been widely used in food,medicine,feed and other fields.The main components of lignocellulose are cellulose,hemicellulose and lignin.Hemicellulose is rich in xylan,which can be used as raw materials for producing XOS.In order to provide a reference for industrial production and application of XOS,this paper summarized the research progress of XOS production technology in recent years and introduced the prebiotic effect of XOS as a feed additive to animals.Key words㊀lignocellulose;xylooligosaccharides;feed;intestinal microbiota;prebiotics。
低聚果糖和肠道微生态健康江门量子高科生物股份有限公司宋景深摘要:低聚果糖是一种益生元,可通过促进双歧杆菌等有益菌生长、降低肠道pH值而抑制腐败菌等作用来维持肠道微生态平衡。
关键词:低聚果糖有益菌肠道微生态Abstract: Fructooligosaccharide is one kind of prebiotic.It could maintain the balance of gut microflora through promoting the growth of beneficial bacteria, such as bifidobacterium, and reducing the growth of spoilage from the decline of intestinal pH.Key words: fructooligosaccharide beneficial bacteria gut microflora肠道就像一个微生物王国,在这里,既有益生菌,也有中性菌,也有有害菌。
益生菌和有害菌就像矛和盾一样,在王国中进行着残酷而长期的斗争,人体的健康状况也会随着胜利者的不同而不同。
益生菌:每克肠内容物含活菌数为几亿到几千亿,有类杆菌、消化球菌、消化链球菌、真杆菌、双歧杆菌等,为专性厌氧菌。
中性菌:每克肠内容物或大便含10万~1000万个活菌,有乳酸菌、大肠杆菌、肠球菌、韦荣小球菌及酵母菌等,此类菌属于兼性厌氧菌。
有害菌:每克肠内容物或大便含1000个细菌以下,保持在这个数量级内不但无害,而且有益。
因为这些菌群的存在可引起宿主对这些菌产生低水平的免疫屏障,有害菌主要包括需氧芽孢杆菌、产气荚膜杆菌、变形杆菌、假单胞杆菌及需氧球菌等,此派细菌均为需氧菌。
1. 影响肠道健康因素我们体内的肠道菌群有如一个有趣的博弈关系,在博弈中保持着动态的平衡:许多因素可直接或间接影响肠道菌群的平衡,宿主对肠道菌群有影响,肠道菌群又反过来作用于宿主,两者之间相互影响,控制着肠内微生态状况。
益生菌对阿尔茨海默病作用的研究进展发布时间:2021-12-14T06:08:15.523Z 来源:《中国结合医学杂志》2021年12期作者:宋鑫萍1,2,李盛钰2,金清1[导读] 阿尔茨海默病已成为威胁全球老年人生命健康的主要疾病之一,患者数量逐年攀升,其护理的经济成本高,给全球经济造成重大挑战。
近年来研究显示,益生菌在适量使用时作为有益于宿主健康的微生物,在防治阿尔茨海默病方面具有积极影响,其作用机制可能通过调节肠道菌群,影响神经免疫系统,调控神经活性物质以及代谢产物,通过肠-脑轴影响该病发生和发展。
宋鑫萍1,2,李盛钰2,金清11.延边大学农学院,吉林延吉 1330022.吉林省农业科学院农产品加工研究所,吉林长春 130033摘要:阿尔茨海默病已成为威胁全球老年人生命健康的主要疾病之一,患者数量逐年攀升,其护理的经济成本高,给全球经济造成重大挑战。
近年来研究显示,益生菌在适量使用时作为有益于宿主健康的微生物,在防治阿尔茨海默病方面具有积极影响,其作用机制可能通过调节肠道菌群,影响神经免疫系统,调控神经活性物质以及代谢产物,通过肠-脑轴影响该病发生和发展。
本文综述了近几年来国内外益生菌对阿尔茨海默病的作用进展,以及其预防和治疗阿尔茨海默病的潜在作用机制。
关键词:益生菌;阿尔茨海默病;肠道菌群;机制Recent Progress in Research on Probiotics Effect on Alzheimer’s DiseaseSONG Xinping1,2,LI Shengyu2,JI Qing1*(1.College of Agricultural, Yanbian University, Yanji 133002,China)(2.Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Chanchun 130033, China)Abstract:Alzheimer’s disease has become one of the major diseases threatening the life and health of the global elderly. The number of patients is increasing year by year, and the economic cost of nursing is high, which poses a major challenge to the global economy. In recent years, studies have shown that probiotics, as microorganisms beneficial to the health of the host, have a positive impact on the prevention and treatment of Alzheimer’s disease. Its mechanism may be through regulating intestinal flora, affecting the nervous immune system, regulating the neuroactive substances and metabolites, and affecting the occurrence and development of the disease through thegut- brain axis. This paper reviews the progress of probiotics on Alzheimer’s disease at home and abroad in recent years, as well as its potential mechanism of prevention and treatment.Key words:probiotics; Alzheimer’s disease; gut microbiota; mechanism阿尔茨海默病(Alzheimer’s disease, AD),系中枢神经系统退行性疾病,属于老年期痴呆常见类型,临床特征主要包括:记忆力减退、认知功能障碍、行为改变、焦虑和抑郁等。
菊粉部分替代乳脂肪对酸乳品质的影响史碧筠;任大喜【摘要】试验旨在研究菊粉对乳脂肪的替代及其最佳使用量.试验在脱脂乳中添加1%,2%,3%和4%的菊粉,及在不同菊粉(0%,1.5%,3%和4.5%)和乳脂肪(4.5%,3%,1.5%和0)组合下测定酸乳发酵过程中的酸度及冷藏后的理化指标并做感官评价.结果显示脱脂乳中添加4%的菊粉在理化指标和感官上与全脂酸乳最接近,而3%菊粉+1.5%乳脂肪组合的混合乳与全脂酸乳最接近.上述试验结果表明菊粉可部分替代乳脂肪,且能显著改善脱脂酸乳的品质.【期刊名称】《许昌学院学报》【年(卷),期】2016(035)005【总页数】5页(P84-88)【关键词】菊粉;酸乳;脂肪替代;感官评价【作者】史碧筠;任大喜【作者单位】浙江大学动物科学学院,浙江杭州310058;浙江大学动物科学学院,浙江杭州310058【正文语种】中文【中图分类】Q81随着大众生活水平的逐渐提高,肥胖人群比例也逐渐升高.根据2015年中国居民营养与慢性疾病报告显示:我国目前超重的成人在30%以上,其中肥胖比例为11.9%;儿童的超重和肥胖的比例分别为9.6%和6.4%,并呈现上升趋势[1].导致超重和肥胖主要原因是高脂肪和高糖和缺乏锻炼.过度摄入脂肪还会引起脑血栓、高血压及肥胖症等慢性疾病[2-3].在此情况下,国内外的研究者致力于脂肪替代物的筛选和开发,其中菊粉是一种重要的脂肪替代物.菊粉又称菊糖,是D-呋喃果糖经β-(2,1)糖苷键聚合而成的一种果聚糖,是一种自然界广泛存在的天然低聚果聚糖,属优质的功能性膳食纤维,主要存在于多种植物中.包括双子叶植物中的菊科、桔梗科、龙胆科等11个科及单子叶植物中的百合科、禾木科,都含有丰富的菊粉[4].菊粉具有多种保健功能,可以作为益生菌底物,促进有益菌生长,在体内无残留,可以改善人体的脂肪代谢[5],提高矿物质的吸收[6],促进维生素的合成及防治便秘等[7].酸乳是深受人们喜爱的一种食品,具有改善胃肠道、缓解便秘等多种功能.但全脂酸乳脂肪含量在3%~4%,摄入过度也可能导致肥胖.菊粉具有良好的液相结构稳固能力[7],添加到酸奶制品中可改善酸奶的营养价值,增加酸奶凝胶体系的稳定性[8].但其对酸乳品质和风味的作用尚未见报道,其最佳添加量也未确定.本研究拟通过研究菊粉替代乳脂肪后酸乳品质及风味方面的影响来确定菊粉在酸乳中的添加方法,为功能性乳制品的开发提供思路.1.1 材料与设备新鲜牛乳采自杭州乔司牧场,混合发酵剂(丹麦汉生公司),菊粉(VILOF® NanoST P90,丰宁平安高科实业有限公司),稳定剂(上海陆安生物科技有限公司);白糖购自附近超市.仪器:FOSS乳成分分析仪(FT120)、恒温培养箱、水浴锅、乳脂分离机、均质机、pH计、粘度计和低温冷冻离心机.1.2 酸乳的制作将购自牧场的鲜牛乳预热后采用乳成分分析仪测定乳蛋白和脂肪含量,采用乳脂分离机分离稀奶油和脱脂乳.试验一为脱脂乳中添加不同菊粉(1%,2%,3%和4%),以4%全脂酸乳做对照.试验二为脱脂乳添加稀奶油调成乳脂肪含量分别为(0,1.5%,3.0%和4.5%),并添加不同剂量的菊粉(4.5%,3.0%,1.5%和0).将配制好的牛乳,添加0.1%的稳定剂和6%的白糖,经过均质和杀菌冷却至45 ℃左右添加发酵剂(2%),混合均匀后在42 ℃下培养4~5 h,至酸乳凝固,pH在4.6以下.取出后转入4 ℃冰箱过夜.样品的经过1天冷藏后取样进行下列分析.1.3 酸乳的理化指标分析1.3.1 滴定酸度根据国标GB/T5413.34-2010测定酸乳的酸度,称取5组不同脂肪含量的酸乳各10 g于相应烧杯中,分别加入20 mL水,再加入0.5%酚酞2滴.摇匀后用0.1 mol·L-1氢氧化钠溶液滴定并记录数据.发酵3 h、3.5 h、4 h、4.5 h时分别测定,每组做三次平行试验取平均值.冷藏1 d后再次测定,每组做三次重复试验取平均值.1.3.2 持水力分别取4 ℃下5组不同脂肪含量的酸乳各10 g于15 mL离心管内,在4 ℃下使用3 000 g离心机离心10 min,倾去上清液,离心管倒置10 min后立即称重,离心沉淀物与样品质量的比值即为持水力.每组做三次平行试验,取平均值.1.3.3 黏度取每组样品90 g,将样品放置于酸奶杯中,用粘度计进行粘度测定并记录数据.每组做三次平行试验.1.4 酸乳的感官评价由10个人组成感官评价小组,对5组成品酸奶分别进行感官评定,评定人员独立给出对每组酸奶的风味、口感、外形和组织状态的客观评价.评价指标和标准如下表1所示.1.5 统计分析采用SPSS17.0软件对数据结果进行统计分析,采用单因素方差分析比较不同组之间的差异,邓肯检验(P<0.05)表示差异显著.2.1 菊粉添加对脱脂酸乳品质影响各种样品在发酵过程中滴定酸度变化见图1.从图中可以看出滴定酸度随着发酵时间的延长而升高.添加菊粉能改善脱脂乳的滴定酸度,随着菊粉添加量的增加,滴定酸度也随之升高.当菊粉添加量达到4%的时候,其酸度变化曲线与对照(全脂牛乳)最接近.各种样品在发酵过程中理化性质的变化见表2.表中数据显示,经过1天的冷藏后,脱脂乳添加4%的菊粉后在滴定酸度和粘度上与全脂对照最接近,但在持水力上仍显著低于对照组.脱脂乳随着菊粉添加量的增加,其理化性质与全脂对照越来越相近.上述试验结果显示菊粉在脱脂乳中的最佳添加量为4%.2.2 菊粉添加部分脱脂酸乳品质影响不同乳脂肪及菊粉含量的牛乳在发酵过程中酸度变化见图2.从图中可以看出,除脱脂乳之外,其余几组在发酵过程中滴定酸度非常接近.在发酵后期,4.5%菊粉组与全脂乳最接近.不同乳脂肪及菊粉含量的牛乳在冷藏1天后理化指标测定结果见表3.从表中可以看出,与全脂对照组(4.5%)相比,其余各组的持水力显著低.粘度方面,脱脂乳与全脂乳之间差异显著,但添加菊粉和脂肪后粘度与对照组差异不显著,根据结果显示3%菊粉和1.5%的乳脂肪组更接近对照组.2.3 菊粉对酸乳感官评价影响脱脂乳添加不同菊粉后的感官评价见表4,评分依据见表1.根据各组在色泽与气味、组织状态、滋味及总分等比较后可以发现,脱脂乳在添加4%的菊粉后其感官指标与全脂对照组最接近.脱脂乳添加不同菊粉后的感官评价见表5.比较各单项及总分可以发现,3%菊粉+1.5%乳脂肪组与4.5%乳脂肪组最接近,脱脂酸乳与全脂酸乳差异最显著.上述结果表明菊粉可以部分替代乳脂肪.菊粉是一种天然的抗性多聚果糖,它具有可食性纤维的一些性质和代谢方面的特殊作用[9].菊粉不仅有益健康,而且还能作为脂肪替代品而不影响风味[10].它的这种性质是基于它固定水相结构的能力,这就提高了“乳脂状”的口感.表2显示随着菊粉添加量的增加,脱脂酸乳的黏度和持水力均有显著提高,4%的时候与全脂乳接近.上述结果与国外的相关研究成果一致[11-12].这是由于全脂牛乳中蛋白和脂肪等成分构成了复杂的、相对稳定的分散体系,其中脂肪是影响粘度的主要因素.而持水性是由于菊粉容易溶于水,且膳食纤维可以使牛乳具有更高的粘度,从而增加了持水性[13].脱脂乳中添加菊粉和乳脂肪混合物时,菊粉和乳脂肪均能改善脱脂乳质构的持水性和理化品质.表4和表5显示,菊粉的添加改善了脱脂乳的组织状态和滋味,但是气味等评分上还是低于对照全脂酸乳.在4%菊粉添加下,脱脂乳的滋味有明显改善.但如果菊粉添加量过高,比如7%以上则会使酸乳过甜,反而影响口感.而3%菊粉和1.5%乳脂肪在感官评价各方面与全脂酸乳最接近,但仍低于全脂酸乳,说明添加了菊粉之后其感官指标仍会影响酸乳的风味.菊粉能改善脱脂酸乳的粘度和持水性,改善其组织状态和感官品质.脱脂乳中添加4%的菊粉与全脂乳最接近,部分脱脂乳1.5%与3%的菊粉组合在感官及理化上与全脂乳最接近.因此,菊粉可以用于脱脂乳中,并可以部分替代乳脂肪.【相关文献】[1] 国家卫生计生委.中国居民营养与慢性病状况报告(2015年)[S]. 2015.[2] 宫强,阮梦蝶,马丽苹,等.菊粉对小鼠的免疫调节作用[J].食品科学,2016(7):204-208.[3] Pedersen A, Sandstrom B, Amelsvoort V, et al. The effect of ingestion of inulin onblood lipids and gastrointestinal symptoms in healthy females [J]. British Journal of Nutrition,1997,78:215-222.[4] 彭英云,郑清,张涛.菊粉的功能与应用[J].食品研究与开发,2012,33(10):236-239.[5] Brighenti F, Casiraghi M C, Canzi E, et al. Effect of consumption of a ready-to-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteers[J]. Eur J Clin Nun, 1999, 53(9):726-733.[6] Remesy C, Behr S R, Levrat M A, et al. Fiber fermentation in the cecum and its physiological consequences[J]. Nutr Res, 1992, 12(7):1 235-1 244.[7] Maarten A. Mensinka, Henderik W. Frijlinka, Kees van der Voort Maarschalka,b, Wouter L.J. Hinrichs.Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics[J].Carbohydrate Polymers, 2015(130) :405-419.[8] 徐光鹏.菊芋酸奶工艺优化及营养学评价[D].郑州:郑州大学,2011.[9] Guven M, Yasar K, Karaca O B. The effect of inulin as a fat replacer on the quality of set-type low-fat yogurt manufacturer [J].International Journal of Dairy Technology, 2005, 58(3):180-184.[10] Guggisberg D, Cuthbert-Steven J, Piccinali P, et al. Rheological, microstuructural and sensory characterization of low-fat and whole milk set yogurt as influenced by inulin addition [J].International Dairy Journal, 2009, 19:107-115.[11] Ricardo Pinheiro de Souza Oliveira, Patrizia Perego, Marice Nogueira de Oliveira, et al. Effect of inulin as prebiotic and symbiotic interactions between probiotics to improve fermented milk firmness [J].Journal of Food Engineering, 2011, 107(1):36-40[12] Kip P, Meyer D, Jellema R H. Inulin improve sensoric and textural properties of low-fat yogurts [J].International Dairy Journal, 2006, 16(9):1 098-1 103.[13] Toneli JTCL, Murr FEX, Martinelli P, et al. Optimization of a physical concentration process for inulin [J]. Journal of Food Engineer, 2007, 80:832-838.。
18中国兽医杂志2020年(第56卷)第12期Chinese Journal of Vete/nae Medicine重组蛋白牛防御素5微球对BCG免疫小鼠的影响刘一朵1,于国际2,张硕2,梁正敏1,孙星雅1,赵德明1,周向梅1(1.中国农业大学动物医学院,北京海淀100193; 2.北京市动物疫病预防控制中心,北京大兴102629)摘要:为了研究牛防御素5(BNBD5)微球对卡介苗(BCG)免疫小鼠的影响,在表达纯化获得目的蛋白BNBD5后,制备包封BNBD5重组蛋白的聚乳酸-V基乙酸(PLGA)纳米微球,并进行动物试验。
用BCG对BALB/c小鼠免疫后,再用BNBD5纳米微粒对小鼠进行滴鼻,ELISA方法检血清中因抗体的变化,发现BNBD5-FLGA微球能够显著提高促炎因子IL-)P<0.001)和TNF-a(P<0.001)以及抗体IgA(P<0.001)产生;再用牛分枝杆菌(Mycobacterium bovis)滴鼻感染小鼠,BNBD5-FLGA组症状和病理变轻。
表明重组牛防御素5微能刺激小鼠产生较高的非特异性因子以及黏膜免疫抗体IgA水平,对疫促进作用。
关键词:牛分枝杆菌;牛防御素5;乳酸-V基乙酸;卡介苗;细胞因子;黏膜免疫中图分类号:S852.4文献标志码:A文章编号:0529—6005(2020)12—0018—05 Effect of Nanoparticle-BNBD5Complexes on BCG Immunized MiceLIU Yi-duv1,YU Guo-ji2,ZHANG Shuv2,LIANG Zheng-min1,SUN Xing-ya1,ZHAO De-ming1,ZHOU Xiang-mei1(1.CW U/c of Vete/nae Medicine,China Agricultural University,Beijing100193,China;2.Beijing Centec for Animal Disease Control and Prevention,Beijing102629,China)Abstraci:To study the effect of bovine neutrophils0-defensins5(BNBD5)nanoparticles on bacilli-calme/e-cue/n(BCG)immunized mico,we prepared tbe BNBD5-PLGA nanoparticle complexes and conducted animal expe/menW.Aftec immunizing BALB/c mico with BCG,tbe mico were dripped with BNBD5nanoparticles.From tbe results of cytokines and antibodies in the serum oc lung lavage of mico by ELISA,we found tbat the BNBD5-PLGA mice s pheres significantly improved tbe production of pe-inflammatoe factors IT-p(P<0.001),TNF-f(P<0.001)and IgA(P<0.001).The immunized mico were then chtlenged with Mycobacterium olicc.Cecnccaesympeomsand paehoeogccaechang%sw%o o%ecv%d cn eh%BNBD5-PLGA gooup.Th%s%daeaconicom ehaeo%combcnane pooecn bovcn%d%ins%5mccoosph%o%scan secmueaemcc%eopooduc%hcgh%ononsp%ccicccyeokcn%sand mucosaeIgAev%es,sugg%secng ehaecehasacaeaeyecc%i ceon mucosacmmuncey.Key?or@t^Mycobacterium Oovic;bovine neutrophils0-defensins5(BNBD5);poly lactic-yo-ylycolicacid(PLGA);bacilli-caeme e e-gueocn(BCG);cyeokcnes;mucosaecmmuneCorresponding autior;ZHOU Xiang-mei,E-mail:**************.cn,2018年全球新增约50万耐药病病例(其中78%为耐病”1*。
牛蒡低聚果糖生理活性的研究进展郭默然;张鹏英;郭艳玲;陈靠山【摘要】Burdock fructooligosaccharide (BFO) is a fructosan oligomer, which is isolated from the root tissue of Arcitum lappa. BFO has a wide range of biological activity. BFO can improve the activity of animals immune and increase the levels of immune factors. The effects of promoting animal growth and anti-fatigue are obvious. BFO could induce the systemic acquired resistance in plant to enhance the resistance to pathogens, which could be used to controlling disease and preservation of fruit and vegetable.%牛蒡低聚果糖是由本实验室从菊科植物牛蒡中提取并鉴定的低聚果糖.研究表明,牛蒡低聚果糖具有广泛的生理活性.可提高动物的免疫活性,提高若干免疫因子的含量,促进动物生长效应,抗疲劳效果明显.此外,BFO处理可以诱导植物产生系统性抗性,增强植物的抗病性,可用于植物病害防治或果蔬保鲜.【期刊名称】《天然产物研究与开发》【年(卷),期】2013(025)001【总页数】4页(P146-149)【关键词】牛蒡低聚果糖;免疫;抗肿瘤;诱导抗性【作者】郭默然;张鹏英;郭艳玲;陈靠山【作者单位】山东大学生命科学学院和国家糖工程技术研究中心;山东大学微生物技术国家重点实验室,济南250100【正文语种】中文【中图分类】Q946.3牛蒡(Arctium lappa)又名东洋参、大力子、牛鞭菜等,属菊科2年生大型草本植物,在我国从东北到西南均有野生分布,后传入日本驯化成蔬菜种植。
抗性糊精抗性糊精:一种对健康有益的可溶性膳食纤维,营养价值更高引言日前,世界卫生组织粮农署(WHO/FAO 2002)建议,控制在全球蔓延的肥胖病和预防与饮食有关的慢性疾病所需的平衡饮食应包括:热量摄入平衡(55–70% 来自总碳水化合物,15–30%来自总脂肪,10–15% 来自总蛋白);缓慢释放热量的食物,即总热量中仅10%来自快速消化的糖类(单糖和双糖),而约40%来自复糖,如纤维等。
每日摄入纤维的推荐量在各个国家有所不同,但根据中国营养协会制订的《中国居民膳食指南》,中国正常成年人的纤维定量为每日25-30克。
但是,根据‘中国公民营养和健康状况调查’的结果,成年(城乡)中国人平均膳食纤维摄入量仅为12克左右。
经过多年研究,抗性糊精,一种可溶性膳食物质,大部分抗小肠消化,主要在结肠发酵。
根据一种定义(Roberfroid,2005年)以及各国官方委员会公布的不同通告(如意大利和法国),其为可溶性膳食纤维。
因此食品中添加的抗性糊精,可达20-25 %(重量/重量比),而抗性糊精也在许多国家,包括中国,获正式承认并标识为可溶性纤维。
因此,它可以是帮助实现世界卫生组织/粮农组织和中国营养学会的营养'纤维'目标非常有用的工具。
此外,越来越多的证据表明,抗性糊精能够成为均衡饮食的组成部分促进健康,如降低血糖反应和改善肠道的健康等。
其消化耐受阈值也非常突出,使其消化的量最适合于达到期望的肠道生态系统的良性改变。
本文将对已经发表或即将发表的论文中描述的这些和其他的营养特性进行概述。
此外,作为一种可完全溶解的纤维,其温度和处理条件都比较极端,而且服用的耐受性良好,是一种提高食物和饮料纤维含量的理想原料;我们将简要概括其技术和产业优势。
抗性糊精是什么?抗性糊精可以小麦淀粉或玉米淀粉制成,采用的糊精化过程是严密控制的。
在此过程中,淀粉经过了一定程度的水解,其后是再聚合过程。
正是再聚合过程,通过形成不能被消化道内的酶切断因而不可消化的糖苷键,将淀粉转换成纤维,并且还阻碍了可消化连接的裂解。
Prebiotic effects of inulin and oligofructoseS.Kolida*,K.Tuohy and G.R.GibsonFood Microbial Sciences Unit,School of Food Biosciences,The University of Reading,Whiteknights,Reading,RG66AP,UKPrebiotics are non-digestible food ingredients that target certain components within the micro-biota of the human large intestine.Efficient prebiotics need to have a specific fermentation therein and thereby have the ability to alter the faecal microflora composition towards a more ‘beneficial’community structure.This should occur by the stimulation of benign or poten-tially health promoting genera but not the harmful groups.Because of their positive attributes bifidobacteria and lactobacilli are the most frequent target organisms.Both inulin and oligofruc-tose have been demonstrated to be effective prebiotics.This has been shown through both in vitro and in vivo assessments in different laboratories.Because of their recognised prebiotic properties,principally the selective stimulation of colonic bifidobacteria,both inulin and oligo-fructose are increasingly used in new food product developments.Examples include drinks,yoghurts,biscuits and table spreads.Because of the recognised inhibitory effects that bifidobac-teria can exert against gut pathogens,one of the most important aspects of prebiotic ingestion is fortification of the gut flora to resist acute infections.Human gut microflora:Prebiotics:InulinIntroductionOligosaccharides are major components of various dietary products (e.g.plant cells,milk)and since 1980their use in functional foods has been increasingly researched (Rober-froid,2002).Certain non-digestible (in the upper gastro-intestinal tract)oligosaccharides are prebiotics.A prebiotic is a non-digestible food ingredient that benefi-cially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bac-teria in the colon,that can improve the host health (Gibson &Roberfroid,1995).For a food ingredient to be classified as a prebiotic it must fulfil the following criteria:.Neither be hydrolyzed,nor absorbed in the upper part of the gastrointestinal tract..Be selectively fermented by one or a limited number of potentially beneficial bacteria commensal to the colon,e.g.bifidobacteria and lactobacilli,which are stimulated to grow and/or become metabolically activated..Prebiotics must be able to alter the colonic microflora towards a healthier composition,for example by increasing numbers of saccharolytic species while redu-cing putrefactive microorganisms.Thus,prebiotic fermentation should be directed towards bacteria seen as health promoting,with indigenous lacto-bacilli and bifidobacteria currently being the preferred tar-gets (Gibson,1998).The ultimate aim of supplementation of the human diet with prebiotics is beneficial management of the gut micro-biota.The resident bacterial microflora of the human colon comprises approximately 95%of the total cells of the body and plays a key role in the host nutrition,health and dis-ease.More than 500different bacterial species have been cultured from human faeces belonging to fifty different genera (Blaut et al.2002;Tannock,2002).Of these,there are indications that bifidobacteria are the main health promoting group.Bifidobacteria are thought to play an important role in the improved health and develop-ment of breast-fed infants as compared to those which are formula-fed.Bifidobacterium sp.dominate the gut micro-flora of breast-fed infants.Among the beneficial effects of bifidobacteria are thought to be:.Protection from enteric infection..Lowering of intestinal pH by formation of acids after assimilation of carbohydrates..Suppression of putrefactive and pathogenic bacteria..Production of vitamins..Activation of intestinal function,assistance of digestion and absorption..Stimulation of the immune response.Note:For the definition of the terms inulin and oligofructose please refer to the introductory paper (p.S139)and its footnote.*Corresponding author:Dr S.Kolida,fax +44(0)1189357222,email afr99sk@Abbreviations:GOS,galacto-oligosaccharide;SCFA,short-chain fatty acid;TOS,transgalactosylated oligosaccharide.British Journal of Nutrition (2002),87,Suppl.2,S193–S197DOI:10.1079/BJN/2002537q The Authors 2002Because bifidobacteria are susceptible to oxygen and heat,their application in foods,as probiotics,has been lim-ited in comparison to the lactobacilli.Therefore,there has been much interest in food-grade bifidogenic factors,which endure normal processing and show effectiveness in the human body after ingestionThe prebiotic market is expanding rapidly and the demand for novel compounds may not be limited to oligo-saccharides although these are the current market leaders (Crittenden &Playne,1996).A variety of products con-taining inulin and/or oligofructose formulations,claiming to have beneficial effects on gut health and general well-being,are starting to become prevalent in the European market.Table 1gives examples of foodstuffs containing the ingredients,whilst numerous other products existing in supplement form are available in many health food stores.Inulin and oligofructose are legally classified as food or food ingredients in all countries in which they are used.They are well accepted for food use without limitations (Coussement,1999).Inulin and oligofructose are amongst the most studied and well-established prebiotics.Fig.1summarises their behaviour and effects in the gastrointestinal tract.As previously mentioned inulin and oligofrustose escape digestion in the upper gastrointestinal tract and reach the large intestine virtually intact.This attribute constitutes them as being ideal for fermentation in the colon by the saccharolytic resident microbiota.Whilst variable data have ensued on the different application of inulin and oligo-fructose,it is incontestable that they act as prebiotics.The effects of inulin and oligofructose on the human gut micro-biota has been extensively studied both in vivo and in vitro and the majority of the studies report selective fermentation by the beneficial flora,namely bifidobacteria and to lesser extent lactobacilli (Table 2).Gibson &Wang (1994)confirmed the prebiotic effects of inulin and oligofructose in an in vitro study.The fer-mentability was compared to a range of reference carbo-hydrates in batch culture.Bacterial growth data showed preferential fermentation by bifidobacteria while popu-lations of Escherichia coli and Clostridium perfringens were maintained at relatively low levels.Further pure cul-ture studies confirmed increased ability of bifidobacteria populations to ferment these substrates when compared to glucose.In a later study,Gibson &Wang (1994)deter-mined the bifidogenic effect of oligofructose in single stage continuous culture systems containing human faecal bacteria.Oligofructose preferentially enriched for bifido-bacteria when compared to inulin and sucrose.Experi-ments with a three-stage continuous culture model of the human colon further confirmed the bifidogenic effect of oligofructose.Karppinen et al.(2000)compared the in vitro fermentability of inulin by human faecal bacteria to that of rye,wheat and oat bran.Inulin was the most rapidly fermented of the test substrates giving most butyrate pro-duction and the largest decrease in pH,but also the highest and fastest gas production.Again,the butyrate generating capacity,as well as increased gas formation,does not agree with metabolic profiles exhibited by bifidobacteria.Kaplan &Hutkins (2000)screened a selection of twenty-eight lactic acid bacteria and bifidobacteria for their ability to ferment inulin and oligofructose on MRS agar.Twelve of sixteen Lactobacillus strains and seven of eight Bifido-bacterium strains tested were able to ferment the sub-strates.Hopkins et al.(1998)also documented the ability of seven Bifidobacterium isolates to utilise a selection of fifteen different carbohydrate sources in 48h batch culture experiments.In a continuous culture study Sghir et al.(1998)demonstrated,through molecular techniques,that inulin and oligofructose were selectively fermented not only by bifidobacteria but also by lactobacilli.Oligofruc-tose and galacto-oligosaccharides preferentially supported growth of the test bacteria.The effect of inulin on faecal bifidobacteria in eight healthy free living humans was investigated by Kruse et al.(1999).Subjects consumed a typical Western diet (45%energy as fat,40%energy as carbohydrate)followed by a reduced fat diet (30%energy as fat)using inulin as fat replacement (maximum inulin consumed 34g per day).Controls consumed identical diets but without inulin sup-plementation.The effect on faecal flora was monitored using fluorescent probes targeting diagnostic regions of the 16S rRNA molecule.A significant increase in bifido-bacterial populations was observed,while short-chain fatty acids (SCFA),blood lipids and gas production remained unaffected.Bouhnik et al.(1999)assessed the tolerance and threshold dose of oligofructose (from sucrose)that significantly increased faecal bifidobacteria counts in a 7-day study of forty healthy human volunteers.They reported that the optimal dose for increased bifido-genesis without significant side effects,such as flatulence,was 10g per day.Gibson et al.(1995)studied the selective stimulation of bifidobacteria by inulin and oligofructose inTable 1.Examples of fructo-oligosaccharide containing foodstuffs in the European market (after Young,1998)ProductCompanyActive IngredientsSymbalance (yogurt)Tonilait (Switzerland)Three Lactobacillus strains plus inulinJour apres Jour (milk)Lactel (France)Vitamins plus oligofructose (from sucrose)Probiotic plus Oligofructose (yogurt)Bauer (Germany)Two Lactobacillus strains plus oligofructose Actiline (spread)Vamdermoortele (Belgium)inulinLigne Bifide dietetic range (biscuits,ready meals)Vivis (France)Oligofructose (from sucrose)Aviva (biscuits and chocolate drink)Novartis (Switzerland)Oligofructose (from sucrose)Low-sugar sorbetThiriet (France)Oligofructose (from sucrose)Actimel (Cholesterol control yogurt)Danone (Belgium)L.acidophilus plus oligofructose (from sucrose)Fysiq (dairy drink)Mona (Holland)L.acidophilus plus inulinS.Kolida et al.S194a 45-day study of eight healthy male human subjects.Vol-unteers were fed controlled diets of 15g/d sucrose for the first 15days followed by 15g/d oligofructose for a further 15days.Four volunteers went on to consume 15g/d inulin for the final 15days of the study.Both oligofructose and inulin caused significant increases in faecal bifidobacteria.Bacteroides,clostridia and fusobacteria all decreased during oligofructose supplementation and Gram-positive cocci were reduced during inulin supplementation.Total bacterial levels remained unaffected,while little change was observed in faecal SCFA and breath CH 4.Wet and dry matter nitrogen and energy excretion was increased with both inulin and oligofructose.Kleessen et al.(1997)studied the effect of dietary supplementation on faecal flora,microbial activity and bowel habit in thirty-five elderly constipated patients.Groups of fifteen and ten patients received lactose and inulin supplements,respect-ively for 19days.They were initially administered a 20g/d dose for days 1–8which was gradually increased to 40g/d during days 9–11and was maintained at these levels until the end of the study.A significant increase was observed in bifidobacterial levels in the inulin group while a decrease in enterococci numbers and enterobacteria ctose had no effect on bifidobacteria while it increased enterococci counts and decreased lactobacilli levels.A better laxative effect was reported with inulin.Den Hond et al.(2000)investigated the effect of high per-formance inulin on constipation in six healthy humans with a low stool frequency in a double-blind placebo control crossover study.Subjects consumed an active diet of 15g/d inulin and a placebo of 15g/d sucrose.A significant increase in stool frequency and faecal bulk was observed with inulin administration.Hunter et al.(1993)carried out a double-blind crossover trial using oligofructose against sucrose,at a dose of 6g/d,for the management of irritable bowel syndrome,but no gastrointestinal effects were evident.In a double-blind placebo controlled cross-over study of thirty-one healthy human volunteers,the pre-biotic effects of biscuits containing a blend of partially hydrolysed guar gum and oligofructose were confirmed using fluorescently labelled molecular probes targeting 16S rRNA for the bacteriology.A significant increase in bifidobacterial numbers occurred while bacteroides,lacto-bacilli,clostridia and total bacteria remained unaffected throughout the study (Tuohy et al.2001).Bouhnik et al.(1996)studied the effect of a fermented milk product contain-ing Bifidobacterium sp.with or without inulin on faecal bac-teriology of twelve healthy human volunteers.The authors observed that addition of the Bifidobacterium fermented milk substantially increased bifidobacterial levels after 12days,but addition of 18g/d inulin to this formulation did not enhance the effect.Buddington et al.(1996)studied the influence of oligofructose (from sucrose)supplementation on the faecal flora of twelve healthy adult humans.Subjects were fed a controlled diet for 42days which was sup-plemented with 4g/d oligofructose (from sucrose)between days 7and 32.The controlled diet increased bifidobacterial levels but highest increases were observed during oligofruc-tose (from sucrose)supplementation.In a similar study on the effects of 4g/d oligofructose (from sucrose)on ten healthy adult humans,Williams et al.(1994)reported a significant increase in bifidobacteria levels and an increase in lactobacilli in six volunteers.Le Blay et al.(1999)studied the effect of the prolonged intake of oligofructose (from sucrose)in rats.Subjects were fed either a low fibre diet (basal)or the basal diet supplemented with 9g/100g body weight daily for 2,8or 27-week periods.Supplementation with oligofructose (from sucrose)led to an increase in lactic acid bacteria after 2weeks without changing total anaerobic bacterial levels.The majority of the effects were however abolished by weeks 8and 27of oligofructose (from sucrose)consump-tion.Djouzi &Andrieux (1997)performed a trial on germ-free rats inoculated with human faecal flora fed either control or active diets with 40g/kg of oligofructose,galacto-oligo-saccharide (GOS),or transgalactosylated oligosaccharide (TOS).A significant increase in bifidobacterial levels was observed with oligofructose and TOS as well as increases in H 2and CH 4excretion.In two studies,the effect of inulin on dextran sulphate sodium (DSS)induced colitis rats was reported (Videla et al.1998;Videla,1999).It was established that dietary inulin promoted growth of lactobacilli in the rat colon,reduced the severity of DSS induced colitis and reduced the luminal pH in a wide area extending from left to rightcolon.Fig.1.Behaviour of inulin and oligofructose,as prebiotics,in the human gut.Prebiotic effects of inulin and oligofructose S195ConclusionThe prebiotic effects of inulin and oligofructose have been confirmed in numerous laboratory and human trials.New developments in molecular procedures for diagnostic bac-teriology will help determine health applications,and explain mechanisms of effect.A further desirable attribute for prebiotics is the ability to persist towards the distal region of the colon.This is the site of origin of several chronic disease states including colon cancer and ulcerative colitis.It is thought that the microflora in this region of the gut may play an important role in the onset or maintenance of such disorders.Dietary carbohydrate is the main fermen-table substrate in the proximal colon and as this is degraded during bacterial fermentation,protein takes over as the dominant fermentable substrate towards distal areas.The products of bacterial protein metabolism include toxic and potentially carcinogenic compounds such as amines,ammonia and phenolic compounds.There is cur-rently much scientific interest in developing prebiotics, which target this region of the colon.This may include FOS of differing molecular sizes,such that the lower degree of polymerisation oligomers are proximally fermen-ted thereby leaving the longer chain prebiotic for more distal colonic activity.ReferencesBlaut M,Criggs C,Collins MD,Welling GW,Dore´J,Van Loo J &de Vos W(2002)Molecular biological methods for studying the gut microbiota:the EU human gutflora project.British Journal of Nutrition87,S203–S211,this issue.Bouhnik Y,Flourie B,Andrieux C,Bisetti N,Briet F&Rambaud JC(1996)Effects of Bifidobacterium sp.fermented milk ingested with or without inulin on colonic bacteria and enzy-matic activities in healthy humans.European Journal of Clini-cal Nutrition50,269–273.Bouhnik Y,Vahedi K,Achour L,Attar A,Salfati J,Pochart P, Marteau P,Flourie B,Bornet F&Rambaud JC(1999)Short-chain fructo-oligosaccharide administration dose dependently increases fecal bifidobacteria in healthy humans.Journal of Nutrition129,113–116.Buddington RK,Williams CH,Chen SC&Witherly SA(1996) Dietary supplement of neosugar alters the faecalflora and decreases the activities of some reductive enzymes in human subjects.American Journal of Clinical Nutrition63,709–716. Coussement PAA(1999)Inulin and oligofructose:Safe intakes and legal status.Journal of Nutrition129,S1412–S1417. Crittenden RG&Playne MJ(1996)Production,properties and applications of food-grade oligosaccharides.Trends in Food Science and Technology7,353–361.Den Hond E,Geypens B&Ghoos Y(2000)Effect if high per-formance chicory inulin on constipation.Nutrition Research 20,731–736.Djouzi Z&Andrieux C(1997)Compared effects of three oligo-saccharides on metabolism of intestinal microflora in rats inoculated with a human faecalflora.British Journal of Nutri-tion78,313–324.Gibson GR(1998)Dietary modulation of the human gut micro-flora using prebiotics.British Journal of Nutrition80, S209–S212.Gibson GR&Roberfroid MB(1995)Dietary modulation of the human colonic microflora:introducing the concept of prebio-tics.Journal of Nutrition125,1401–1412.Gibson GR&Wang X(1994)Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiology Letters118,121–128.Gibson GR,Berry Ottaway P&Rastall RA(2000)Prebiotics: New Developments in Functional Foods.Oxford:Chandos Publishing Limited.Gibson GR,Beatty ER,Wang X&Cummings JH(1995)Select-ive stimulation of bifidobacteria in the human colon by oligo-fructose and inulin.Gastroenterology108,975–982. Hopkins MJ,Cummings JH&Macfarlane GT(1998)Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources.Journal of Applied Micro-biology85,381–386.Hunter JO,Tuffnel Q&Lee AJ(1993)Controlled trial of oligo-fructose management of irritable bowel syndrome.Journal of Nutrition129,1451–1453.Kaplan H&Hutkins RW(2000)Fermentation of fructooligosac-charides by lactic acid bacteria and bifidobacteria.Applied and Environmental Microbiology66,2682–2684.Karppinen S,Liukkonen K,Aura AM,Forsell P&Poutanen K (2000)In vitro fermentation of polysacharides of rye,wheat and oat brans and inulin by human faecal bacteria.Journal of the Science of Food and Agriculture80,1469–1476. Kleessen B,Sykura B,Zunft HJ&Blaut M(1997)Effects of inulin and lactose on faecal microflora,microbial activity and bowel habit in elderly constipated persons.American Journal of Clinical Nutrition65,1397–1402.Kruse HP,Kleessen B&Blaut M(1999)Effects of inulin on faecal bifidobacteria in human subjects.British Journal of Nutrition82,375–382.Le Blay G,Michael C,Blottiere HM&Cherbut C(1999)Pro-longed intake of fructo-oligosaccharides induces a short–term elevation of lactic acid producing bacteria and a persistent increase in cecal butyrate in rats.Journal of Nutrition129, 2231–2235.Roberfroid MB(2002)Functional foods:concepts and application to inulin and oligofructose.British Journal of Nutrition87, S139–S143,this issue.Sghir A,Chow JM&Mackie RI(1998)Continuous culture selection of bifidobacteria and lactobacilli from human faecal samples using fructooligosaccharide as selective substrate. Journal of Applied Microbiology85,769–777.Tannock G(2002)Methodologies for quantification of faecal bac-teria:application to prebiotic effects.British Journal of Nutri-tion87,S199–S201,this issue.Tuohy KM,Kolida S,Lustenberger A&Gibson GR(2001)The prebiotic effects of biscuits containing partially hydrolyzed guar gum and fructooligosaccharides—a human volunteer study.British Journal of Nutrition86,341–348.Videla S(1999)Deranged luminal pH homeostasis in experimen-tal colitis can be restored by a prebiotic.Gastroenterology116, A942.Videla S,Vilaseca J,Garcia-Lafuente A,Antolin M,Crespo E, Guarner F&Malagelada JR(1998)Dietary inulin prevents distal colitis induced by dextran sulfate sodium(DSS).Gastro-enterology114,A1110.Wang X&Gibson GR(1993)Effects of the in vivo fermentation of oligofructose and inulin by bacteria growing in the human large intestine.Journal of Applied Bacteriology75,373–380. Williams CH,Witherly SA&Buddington RK(1994)Influence of dietary Neosugar on selected bacteria groups of the human fecal microbiota.Microbial Ecology in Health and Disease7, 91–97.Young J(1998)European market developments in prebiotic-and probiotic-containing foodstuffs.British Journal of Nutrition80, S231–S233.Prebiotic effects of inulin and oligofructose S197。