10--2杨氏干涉
- 格式:ppt
- 大小:1.62 MB
- 文档页数:12
外界条件对杨式双缝干涉的影响摘要本文讨论了在杨氏双缝实验的基础下,不同入射方式、介质、光线下干涉条纹的变化。
1、引言1801年,杨氏巧妙的设计了一种把单个波阵面分解为两个波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现象。
杨氏用叠加原理解释了干涉现象,在历史上第一次测定了光的波长,为光的波动学说的确立奠定了基础。
如图为杨氏双缝的实验装置针对杨氏双缝干涉出现的明暗交替的图纹现象,我们将讨论干涉条纹的移动问题及其光强分布。
2、平行光平行入射双缝因为平行光由同一单缝射出,所以同时到达双缝,有相同的相位,所以S、2S,同相,光屏上干涉效果只有两列光的光程差决定,设缝1屏距为D ,双缝间距为d ,分别从两缝到P 点距离为1r 、2r ,两列光的光程差为δ=21r r -≈d sin θ≈d/D x,当δ=±k λ(k=0,1,2,……)时为明纹中心,当δ=±(2k-1)λ/2(k=1,2,3……)为暗纹中心,则 明纹中心:x=±k λ D/d (k=0,1,2……) 暗纹中心:x=±(2k-1)λ/2 D/d (k=1,2,3……) 条纹等间距,且相邻明纹(暗纹)间距为:△x=D/d λ。
3、平行光斜入射双缝若平行光与水平面夹角α射向双缝,则此时1S 、2S 不再是同相点,2S 与S 初相相同,所以考虑两点的光程差时须考虑1S 到S 的距离,设为△1r ,2S 到S 的距离为△2r ,则 △r=△1r -△r2≈d sin θ-d sin α明纹中心:x=±k λ D/d+D sin α(k=0,1,2,……)暗纹中心:x=±(2k-1)λ/2 D/d + D sin α(k=1,2,3……) 条纹间距:△x=D/d λ由以上可知:平行光以α角斜射入双缝时,1S 、2S 初相位不同,所以零级明纹不在光屏中央,所有条纹发生平移,但间距不变。
4、介质变化对双缝干涉的影响(1)用透明介质折射率为n(n 〉1)的介质遮住1S , 双缝在插入透明介质后中央明纹上移,此时光程差δ= 2r - [( n-1)d+1r ]=12r r --(n-1)d,中央条纹满足的光程差的条件:δ=k λ=d/D x=0,即12r r --(n-1)d=0,则k'=(n-1) d/λ, x'=D(n-1),可得:k'>0,x'>0。
2020实验报告初中物理杨氏干涉实验报告范文_03EDUCATION WORD实验报告初中物理杨氏干涉实验报告范文_03前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。
其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰富自己的人生体验,也支撑整个社会的运作和发展。
本文内容如下:【下载该文档后使用Word打开】光学中研究光的本性以及光在媒质中传播时各种性质的学科。
物理光学过去也称“波动光学”,从光是一种波动出发,能说明光的干涉、衍射和偏振等现象。
而在赫兹用实验证实了麦克斯韦关于光是电磁波的假说以后,物理光学也能在这个基础上解释光在传播过程中与物质发生相互作用时的部分现象,如吸收,散射和色散等,而且获得一定成功。
但光的电磁理论不能解释光和物质相互作用的另一些现象,如光电效应、康普顿效应及各种原子和分子发射的特征光谱的规律等;在这些现象中,光表现出它的粒子性。
本世纪以来,这方面的研究形成了物理光学的另一部门“量子光学”。
杨格于1801年设法稳定两光源之相位差,首次做出可见光之干涉实验,并由此求出可见光波之波长。
其方法是,使太阳光通过一挡板上之小孔使成单一光源,再使此单一光源射到另一挡板上,此板上有两相隔很近的小孔,且各与单光源等距离,则此两同相位之两光源在屏幕上形成干涉条纹。
因为通过第二挡板上两小孔之光因来自同一光源,故其波长相等,并且维持一定的相位关系(一般均维持同相),因而能在屏幕上形成固定不变的干涉条纹。
若X为屏幕上某一明(或暗)条纹与中心点O的距离,D为双孔所在面与屏幕之间的距离,2a为两针孔S1,S2间之距离(通常小于1毫米),λ为S光源及副光源S1、S2所发出的光之波长。
两光源发出的两列光源必然在空间相迭加,在传播中两波各有各的波峰和波谷。
当两列波的波峰和波峰或波谷和波谷相重叠之点必为亮点。
光的干涉与杨氏双缝实验光的干涉是指两束或多束光波相互叠加而产生干涉现象的现象。
其中,杨氏双缝实验是最经典的光的干涉实验之一。
本文将对光的干涉和杨氏双缝实验进行详细介绍。
一、光的干涉光的干涉是由于光波是一种具有波动性质的电磁波,当两束或多束光波相互叠加时,会出现干涉现象。
干涉分为构造干涉和暗纹干涉两种。
1. 构造干涉构造干涉是指当两束或多束光波相遇时,产生增强或减弱的亮度分布的现象。
这种干涉是由于光的波峰和波谷相互重叠或相互抵消而形成的。
典型的例子是杨氏双缝实验。
2. 暗纹干涉暗纹干涉是指在干涉中出现明显的暗纹现象。
这是由于两束或多束光波相遇时,波峰和波谷产生相互抵消,光的亮度降低而形成的。
二、杨氏双缝实验杨氏双缝实验是由英国科学家杨振宁于1801年设计并进行的实验。
它是用来证明光是一种波动性质的经典实验之一。
1. 实验装置杨氏双缝实验的装置非常简单,由一个准直光源照射到一个板上有两个小孔的屏幕上,光通过两个小孔后再投射到远离屏幕的墙上形成干涉条纹。
通常,光源使用单色光源,以便更好地观察干涉现象。
2. 实验原理杨氏双缝实验的实验原理是,当光波通过两个小孔后投射到墙上时,两个光波相互叠加形成干涉现象。
根据光的波动性质,在某些特定的位置,光的波峰和波谷相互重叠,形成增强的亮纹,而在其他位置则形成减弱的暗纹。
3. 实验结果与分析在杨氏双缝实验中,观察到的干涉条纹为一组明纹和暗纹相间的条纹。
通过观察并测量干涉条纹的宽度和间距,可以计算出光的波长和光的相干长度。
4. 应用与意义杨氏双缝实验不仅是一种常用的实验方法,还有重要的应用价值。
例如,可以通过杨氏双缝实验对光波的性质进行研究,还可以通过杨氏双缝实验测量光的相干性和波长。
总结:光的干涉是由于光波的波动性质,两束或多束光波相互叠加产生的干涉现象。
杨氏双缝实验是光的干涉实验中最经典的实验之一。
通过杨氏双缝实验可以观察到光的干涉条纹,并利用这些条纹进行光波性质的研究和测量。
1、杨氏双缝干涉(1)杨氏简介托马斯·杨(Thomas Young),英国物理学家、医师、考古学家,波动光学的伟大奠基人,在光学、生理光学、材料力学等方面都有重要的贡献。
●波动光学——双缝干涉十八世纪前后,牛顿的“光的微粒说”在光学研究中占统治地位。
杨氏在德国留学期间便对光的微粒说提出了怀疑。
他在哥丁根的博士论文中提出了关于声和光都是波动,不同颜色的光和不同频率的声都是一样的观点。
他认为,正如惠更斯以前所说的那样,光是一种波动。
1801年,杨氏出版了《声和光的实验和探索概要》一书,系统地论述了光的波动观点,向牛顿提出了挑战。
杨氏认为,解释强光和弱光的传播速度一样,用波动说比用微粒说更有效。
他还证明了惠更斯在冰洲石中所看到的双折射现象是正确的。
为了证实光的波动说的正确性,托马斯·杨用非常巧妙的方法得到了两个相干光源,并进行了著名的光的干涉实验。
他最初的实验方法是用强光照射小孔,以孔作为点光源,发出球面波,在离开小孔一定距离的地方放置另外两个小孔,它们把前一小孔发出的球面波分离成两个很小的部分作为相干光源。
于是在这两个小孔发出的光波相遇区域产生了干涉现象,在双孔后面的屏幕上得到了干涉图样。
●生理光学——三原色原理托马斯·杨在生理光学方面也有深入的研究。
他的光学理论研究也是从这里开始的。
他把光学理论应用于医学之中,奠定了生理光学的基础。
他提出了眼睛观察不同距离的物体是靠改变眼球水晶体的曲度来调节的观点,这是最早的眼睛光学原理的解释。
他还提出了人们对颜色的辨别是由于视网膜上有几种不同的结构,分别感受红、绿、蓝光线的假设,以此可以说明色盲的成因。
他还建立了三原色原理,认为一切色彩都是有红、绿、蓝三种原色按不同的比例混合而成的。
这一原理已成为现代颜色理论的基础。
●材料力学——杨氏模量托马斯·杨在材料力学方面最早提出弹性模量的概念,并认为剪应力也是一种弹性形变。
后来以他的名字命名了弹性模量,称为杨氏模量。
一、实验目的1. 了解杨氏干涉实验原理,验证光的波动性。
2. 学习双缝干涉实验装置的组装和使用方法。
3. 掌握干涉条纹的观察、测量和分析方法。
二、实验原理杨氏干涉实验是英国物理学家托马斯·杨在1801年提出的。
实验原理是利用两个狭缝作为两个相干光源,通过光的干涉现象,在屏幕上形成明暗相间的干涉条纹。
根据光的波动理论,当两束光波在空间中相遇时,会发生干涉现象。
当两束光波的相位差为整数倍波长时,光波相互加强,形成亮条纹;当相位差为奇数倍半波长时,光波相互减弱,形成暗条纹。
三、实验装置1. 杨氏干涉实验装置包括:光源、单缝、双缝、屏幕、光具座等。
2. 实验装置的组装:将光源、单缝、双缝、屏幕依次安装在光具座上,确保各部件对齐。
四、实验步骤1. 调整光源,使光线垂直照射在单缝上。
2. 调整双缝与单缝的距离,使双缝与单缝对齐。
3. 调整屏幕与双缝的距离,使屏幕与双缝对齐。
4. 观察屏幕上的干涉条纹,并记录条纹的形状、间距等特征。
5. 改变双缝与单缝的距离,观察干涉条纹的变化,并记录数据。
6. 改变光源的波长,观察干涉条纹的变化,并记录数据。
五、实验结果与分析1. 在实验过程中,观察到屏幕上出现明暗相间的干涉条纹,条纹间距随着双缝与单缝距离的变化而变化。
2. 当双缝与单缝的距离增加时,干涉条纹间距增大;当双缝与单缝的距离减小时,干涉条纹间距减小。
3. 当光源的波长增加时,干涉条纹间距增大;当光源的波长减小时,干涉条纹间距减小。
根据实验结果,可以得出以下结论:1. 光的波动性得到了验证,因为干涉条纹的形成证明了光具有波动性质。
2. 干涉条纹间距与双缝与单缝的距离和光源的波长有关。
当双缝与单缝的距离增加或光源的波长增加时,干涉条纹间距增大;反之,干涉条纹间距减小。
六、实验讨论1. 实验过程中,观察到干涉条纹的对比度受到光源的非单色性和光具的成像质量等因素的影响。
2. 实验过程中,为了提高干涉条纹的对比度,可以采取以下措施:选择单色光源、减小光具的像差、调整光源和光具的位置等。
杨氏双缝干涉实验公式杨氏双缝干涉实验是一种利用光分束成2条平行光线,接受光线在2个缝隙中经过干涉现象产生出来的纹理。
比较两个缝隙中的光出现的光晕结果,可以测量出真实光线的振幅关系,在极大程度上便于了解视觉物质波的性质。
它是关于光的一个经典实验,也被称为斯帕斯基实验,是物理学家杨慎侯用来研究光的一种实验,由他在1801年发明的。
杨氏双缝干涉实验的原理是:当使用一个半透明镜片将一束光分成两条平行光,两条光线经过2个有相同深度的缝隙,然后再经由镜子聚焦到平面上,最后在平面上形成的一组交汇点就是干涉图景,可以观察到明暗变化的纹理。
杨氏双缝干涉实验的构成包括照相机、分束镜片、缝隙和棱镜。
照相机用来将干涉图景记录下来;分束镜片将一束光线分成两束,两束光线分别穿过2个缝隙,缝隙的厚度作为干涉实验的变量,也就是干涉图景的呈现细节,相应的便可以得到干涉图景的变化;棱镜则利用聚变技术,将两束光线聚焦到光学台上;最后,照相机就能记录下来干涉图景。
杨氏双缝干涉实验的数学描述见_D/i=nda_cosa___ sin(b-a)___cos(b+a),其中,i是一个取值范围内的正数,表示纹理变化的量度;n为经过缝隙的光的波数;后面3个angle分别代表:a,b为缝隙中光的贵宾角;a-b衞表示两缝隙光的差角,越大交叉点的间距越大。
杨氏双缝干涉实验在实际生活中有着广泛的应用,例如:在工业上,可用杨氏双缝干涉实验来测量镜子和镜片的高度,以及它们的表面的曲面特性,这样就可以更精确地测量出它们的与光有关的特性;在医学上,杨氏双缝干涉实验也可以在荧光显微镜中研究出细胞结构,查看它们的形状、大小,也便于更准确的探测出细胞内部的构成元素;在天文学中,杨氏双缝干涉实验也可用于测量太阳的光的特性,以及在望远镜中。