七年级上册 有理数的除法 同步练习
- 格式:doc
- 大小:319.27 KB
- 文档页数:4
人教版七年级数学(sh ùxu é)上册第一章 1.4.2.1有理数的除法(chúfǎ)法则 同步(t óngb ù)测试题一、选择题1.下列(xiàliè)说法正确的是( ) A .零除以任何(rènhé)数都等于零 B .1除以一个数就等于乘这个数的倒数C .一个不等于零的有理数除以它的相反数等于-1D .两数相除,商一定小于被除数2.两个不为零的有理数相除,如果交换它们的位置,商不变,那么( ) A .两数相等 B .两数互为相反数 C .两数互为倒数 D .两数相等或互为相反数 3.计算(-18)÷6的结果等于( ) A .-3 B .3 C .-13 D .134.计算1÷(-345)时,除法变为乘法正确的是( )A .1×(-345)B .1×(+195)C .1×(+519)D .1×(-519)5.若两个数的商为正数,则这两个数( ) A .都为正 B .都为负 C .同号 D .异号 6.下列计算正确的是( )A .0÷(-3)=0×(-13)=-13 B .(-2)÷(-2)=-2×2=4C .(-36)÷(-9)=-36÷9=-4D .1÷(-19)=1×(-9)=-97.如果( )×(-23)=-1,那么( )内应填的数是( )A .32B .23C .-32D .-23 二、填空题 8.计算(jì suàn):(1)-81÷(-3)=+(______÷3)=______;(2)(-1)÷18=______(1÷______)=______(1×______)=______;(3)(-9)÷(-125)=______(______÷______)=+(9×512)=______.9.计算(jì suàn):(1)-153=(______)÷______=______;(2)-60-15=(______)÷(______)=______.10.化简:-497=______,4-16=______,-15-24=______.11.小明在做除法(chúfǎ)运算(-27)÷( )时,将除法(chúfǎ)变成乘法时,除数(chú shù)没有变成其倒数,算出结果为-18,则( )中的数为23,正确的结果为______.12.在如图所示的运算流程中,若输入的数为3,则输出的数为______.三、解答题 13. 计算: (1)(-227)÷11;(2)1÷(-227);(3)213÷(-116).14.化简下列(xiàliè)分数: (1)-1255; (2)4-36.15.化简下列(xiàliè)分数: (1)-3-12;(2)5-0.2; (3)--13-5.16.计算(jì suàn): (1)0÷(-2);(2)(-0.75)÷0.25;(3)(-2.4)÷(-115);(4)(-1)÷(312)÷17;(5)(-23)÷85÷(-0.25).17.若规定(guīdìng):aΔb =(-1a )÷b 2,例如(lìrú):2Δ3=(-12)÷32=-13,试求(2Δ7)Δ4的值.18.阅读(yuèdú)下列材料: 计算(jì suàn):124÷(13-14+112).解法(jiě fǎ)一:原式=124÷13-124÷14+124÷112=124×3-124×4+124×12=1124.解法(jiě fǎ)二:原式=124÷(412-312+112)=124÷212=124×6=14.解法(jiě fǎ)三:原式的倒数=(13-14+112)÷124=(13-14+112)×24=13×24-14×24+112×24=4.所以(suǒyǐ)原式=14.(1)上述得到(dé dào)的结果不同,你认为(rènwéi)解法一是错误的; (2)请你选择合适的解法计算:(-142)÷(16-314+23-27).参考答案一、选择题1.下列说法正确的是(C ) A .零除以任何数都等于零B .1除以一个数就等于乘这个数的倒数C .一个不等于零的有理数除以它的相反数等于-1D .两数相除,商一定小于被除数2.两个不为零的有理数相除,如果交换它们的位置,商不变,那么(D) A .两数相等 B .两数互为相反数 C .两数互为倒数 D .两数相等或互为相反数3.计算(-18)÷6的结果等于(A ) A .-3 B .3 C .-13 D .134.计算(jì suàn)1÷(-345)时,除法(chúfǎ)变为乘法正确的是(D )A .1×(-345)B .1×(+195)C .1×(+519)D .1×(-519)5.若两个(liǎnɡ ɡè)数的商为正数,则这两个(liǎnɡ ɡè)数(C ) A .都为正 B .都为负 C .同号 D .异号 6.下列(xiàliè)计算正确的是(D )A .0÷(-3)=0×(-13)=-13 B .(-2)÷(-2)=-2×2=4C .(-36)÷(-9)=-36÷9=-4D .1÷(-19)=1×(-9)=-97.如果( )×(-23)=-1,那么( )内应填的数是(A )A .32B .23C .-32D .-23 二、填空题 8.计算:(1)-81÷(-3)=+(81÷3)=27;(2)(-1)÷18=-(1÷18)=-(1×8)=-8;(3)(-9)÷(-125)=+(9÷125)=+(9×512)=334.9.计算:(1)-153=(-15)÷3=-5;(2)-60-15=(-60)÷(-15)=4.10.化简:-497=-7,4-16=-14,-15-24=58.11.小明在做除法运算(-27)÷( )时,将除法变成乘法时,除数没有变成其倒数,算出结果为-18,则( )中的数为23,正确的结果为-812.12.在如图所示的运算(yùn suàn)流程中,若输入(shūrù)的数为3,则输出(shūchū)的数为-2.三、解答(ji ěd á)题 13. 计算(jì suàn): (1)(-227)÷11;解:原式=-227×111=-27.(2)1÷(-227);解:原式=1×(-722)=-722.(3)213÷(-116).解:原式=73×(-67)=-2.14.化简下列(xiàliè)分数: (1)-1255; (2)4-36.解:原式=-25. 解:原式=-19.15.化简下列(xiàliè)分数: (1)-3-12;解:原式=6.(2)5-0.2; 解:原式=-25. (3)--13-5.解:原式=-115.16.计算(jì suàn): (1)0÷(-2); 解:原式=0.(2)(-0.75)÷0.25;解:原式=-(0.75÷0.25)=-3.(3)(-2.4)÷(-115);解:原式=125×56=2.(4)(-1)÷(312)÷17;解:原式=-(1×27×7)=-2.(5)(-23)÷85÷(-0.25).解:原式=-23×58×(-4)=5317.若规定(guīdìng):aΔb =(-1a )÷b 2,例如(lìrú):2Δ3=(-12)÷32=-13,试求(2Δ7)Δ4的值.解:因为(yīn wèi)2Δ7=(-12)÷72=-17,所以(suǒyǐ)(2Δ7)Δ4=-17Δ4=-1-17÷42=7×12=72.18.阅读(yuèdú)下列材料: 计算:124÷(13-14+112).解法一:原式=124÷13-124÷14+124÷112=124×3-124×4+124×12=1124.解法二:原式=124÷(412-312+112)=124÷212=124×6=14.解法三:原式的倒数=(13-14+112)÷124=(13-14+112)×24=13×24-14×24+112×24=4.所以原式=14.(1)上述得到的结果不同,你认为解法一是错误的; (2)请你选择合适的解法计算:(-142)÷(16-314+23-27).解:原式的倒数为:精品 Word 可修改 欢迎下载 (16-314+23-27)÷(-142) =(16-314+23-27)×(-42) =-7+9-28+12 =-35+21=-14,所以(suǒyǐ)原式=-114.内容总结(1)1、在最软入的时候,你会想起谁 1、在最软入的时候,你会想起谁。
人教新版七年级上学期《1.4.2 有理数的除法》同步练习组卷一.选择题(共11小题)1.乘积为﹣1的两个数叫做互为负倒数,则﹣2的负倒数是()A.﹣2 B.C.D.22.计算(﹣1)÷(﹣5)×的结果是()A.﹣1 B.1 C.D.﹣253.下列说法正确的是()A.一个数的绝对值一定比0大B.倒数等于它本身的数是±1C.绝对值等于它本身的数一定是正数D.一个数的相反数一定比它本身小4.计算(﹣3)×÷(﹣)×3的结果是()A.﹣9 B.9 C.1 D.﹣15.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数()A.一定相等B.一定互为倒数C.一定互为相反数 D.相等或互为相反数6.下列说法中:①﹣a一定是负数;②|a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1.其中正确的个数是()A.1个 B.2个 C.3个 D.4个7.下列各数中,互为倒数的是()A.0和0 B.1和﹣1 C.﹣1和﹣1 D.﹣0.75与8.﹣4的倒数是()A.﹣4 B.4 C.﹣ D.9.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是()A.相等B.互为相反数C.互为倒数D.相等或互为相反数10.下列说法中①﹣a一定是负数;②|﹣a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是正数;⑤相反数等于本身的数是0,其中正确的个数是()A.1个 B.2个 C.3个 D.4个11.若两个有理数的商是正数,和为负数,则这两个数()A.一正一负B.都是正数C.都是负数D.不能确定二.填空题(共25小题)12.﹣7的倒数是.13.若a≠b,且a、b互为相反数,则=.14.﹣的倒数是.15.的倒数是.16.﹣8的倒数是.17.若a、b是互为倒数,则2ab﹣5=.18.计算:﹣9÷×=.19.|﹣3|的倒数是.20.若a,b互为倒数,则a2b﹣(a﹣2017)值为.21.﹣0.5的倒数是,3﹣π的绝对值是.22.﹣的倒数是.23.﹣0.2的倒数是;﹣|﹣2|的相反数是;﹣6的绝对值是.24.一个数的倒数是它本身,这个数是.25.计算:(1)0﹣(﹣22)=;(2)(﹣48)÷(﹣6)=.26.﹣的绝对值是,﹣的相反数是,﹣的倒数是.27.﹣3的相反数是,﹣2018的倒数是.28.两个有理数之积是1,已知一个数是﹣,则另一个数是.29.的倒数是.30.﹣2倒数是,﹣2绝对值是.31.﹣2的倒数是,相反数是,﹣3的绝对值是.32.的相反数是,的倒数是,+(﹣5)的绝对值为.33.﹣的相反数的倒数是.34.﹣1.8的倒数是.35.﹣3的倒数是.36.﹣1的倒数是,1的相反数是,﹣1的绝对值是.三.解答题(共9小题)37.(﹣﹣+)÷.38.计算:.39.(﹣18)÷2×(1﹣)40.计算:(1)(﹣85)×(﹣25)×(﹣4);(2)﹣;(3);(4).41.(﹣)÷(﹣+﹣)42..43..44.计算:.45.计算:.人教新版七年级上学期《1.4.2 有理数的除法》2018年同步练习组卷参考答案与试题解析一.选择题(共11小题)1.乘积为﹣1的两个数叫做互为负倒数,则﹣2的负倒数是()A.﹣2 B.C.D.2【分析】根据负倒数的定义,可得出﹣2的负倒数.【解答】解:与﹣2乘积为﹣1的数为.﹣2的负倒数为.故选:C.【点评】此题考查了倒数的知识,解答本题的关键是理解题意,理解负倒数的定义,属于基础题,难度一般.2.计算(﹣1)÷(﹣5)×的结果是()A.﹣1 B.1 C.D.﹣25【分析】根据除以一个数等于乘以这数的倒数,把除法转化为乘法运算,然后根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣1)÷(﹣5)×,=(﹣1)×(﹣)×,=.故选:C.【点评】本题考查了有理数的除法,有理数的乘法,乘除同一级运算,要按照从左到右的顺序依次进行计算.3.下列说法正确的是()A.一个数的绝对值一定比0大B.倒数等于它本身的数是±1C.绝对值等于它本身的数一定是正数D.一个数的相反数一定比它本身小【分析】根据倒数的意义,绝对值的性质,相反数的意义,可得答案.【解答】解:A、0的绝对值等于零,故A错误;B、倒数等于它本身的数是±1,故B正确;C、绝对值等于它本身的数一定是非负数,故C错误;D、0等相反数等于零,故D错误;故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.4.计算(﹣3)×÷(﹣)×3的结果是()A.﹣9 B.9 C.1 D.﹣1【分析】原式从左到右依次计算即可得到结果.【解答】解:原式=3××3×3=9,故选:B.【点评】此题考查了有理数的乘除法,熟练掌握运算法则是解本题的关键.5.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数()A.一定相等B.一定互为倒数C.一定互为相反数 D.相等或互为相反数【分析】两个不为零的有理数相除,如果交换被除数与除数的位置,根据有理数的除法运算法则,可知它们的商互为倒数,又它们的商不变,由倒数是它本身的数是±1,可知它们的商为±1,从而得出被除数与除数相等或互为相反数.【解答】解:如果交换被除数与除数的位置,它们的商不变,这两个数一定相等或互为相反数.故选:D.【点评】根据有理数的除法运算法则,不要漏掉互为相反数这种情况.6.下列说法中:①﹣a一定是负数;②|a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【分析】根据倒数、相反数以及绝对值的性质对各小题分析判断即可得解.【解答】解:①﹣a不一定是负数,故本选项错误;②|a|是非负数,故本选项错误;③倒数等于它本身的数是±1,正确;④绝对值等于它本身的数是0和1,故本选项错误;其中正确的个数有1个.故选:A.【点评】此题考查了倒数、相反数和绝对值,解题时应熟练掌握倒数、相反数和绝对值的定义是本题的关键,此题难度不大,易于掌握.7.下列各数中,互为倒数的是()A.0和0 B.1和﹣1 C.﹣1和﹣1 D.﹣0.75与【分析】根据倒数的定义作答.【解答】解:A、0乘以任何数都得0,而不是1,选项错误;B、1×(﹣1)=﹣1,选项错误;C、﹣1×(﹣1)=1,选项正确;D、﹣0.75×(﹣)=,选项错误.故选:C.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.注意0没有倒数.8.﹣4的倒数是()A.﹣4 B.4 C.﹣ D.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣4的倒数是﹣,故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.9.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是()A.相等B.互为相反数C.互为倒数D.相等或互为相反数【分析】设这两个数分别为a、b,根据题意得到,从而可得到a2=b2,从而可判断出a、b之间的关系.【解答】解:根据题意得,由比例的性质得:a2=b2.∴a2﹣b2=0.∴(a+b)(a﹣b)=0.∴a=b或a=﹣b.故选:D.【点评】本题主要考查的是有理数的除法、平方差公式的应用,得到(a+b)(a ﹣b)=0是解题的关键.10.下列说法中①﹣a一定是负数;②|﹣a|一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是正数;⑤相反数等于本身的数是0,其中正确的个数是()A.1个 B.2个 C.3个 D.4个【分析】根据①由a的符号不确定,则﹣a的符号不确定;②|﹣a|≥0;③倒数等它本身的数是±1;④绝对值等于它本身的数是非负数;⑤相反数等于本身的数是0;进行选择.【解答】解:①﹣a一定是负数,当a=0,错误;②|﹣a|一定是正数,当a=0,错误;③倒数等它本身的数是±1,正确;④绝对值等于它本身的数是正数,|0|=0,则错误;⑤相反数等于本身的数是0,正确;正确的有2个,故选B.【点评】主要考查倒数、相反数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.相反数的定义,只有符号不同的两个数是互为相反数;特别要注意“0”这个数.11.若两个有理数的商是正数,和为负数,则这两个数()A.一正一负B.都是正数C.都是负数D.不能确定【分析】从商为正数得出两个数同号,从和为负数得出两个数都为负数,若两个数都为正数,和只能为正数.【解答】解:两个有理数的商是正数,和为负数,则这两个数都是负数.故选:C.【点评】本题属于基础题,考查了对有理数的除法及加法运算法则掌握的程度.二.填空题(共25小题)12.﹣7的倒数是﹣.【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).【解答】解:﹣7的倒数为:1÷(﹣7)=﹣.故答案为:﹣.【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).13.若a≠b,且a、b互为相反数,则=﹣1.【分析】由a、b互为相反数可知a=﹣b,然后代入计算即可.【解答】解:∵a、b互为相反数,∴a=﹣b.∴.故答案为:﹣1.【点评】本题主要考查的是相反数的定义、有理数的除法,根据相反数的定义得到a=﹣b是解题的关键.14.﹣的倒数是﹣2.【分析】乘积是1的两数互为倒数.【解答】解:﹣的倒数是﹣2.故答案为:﹣2.【点评】本题主要考查的是倒数的定义,熟练掌握倒数的概念是解题的关键.15.的倒数是.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:根据倒数的定义得:的倒数是.故答案为:.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.16.﹣8的倒数是.【分析】根据倒数的定义,互为倒数的两数乘积为1,﹣8×(﹣)=1,即可解答.【解答】解:根据倒数的定义得:﹣8×(﹣)=1,因此倒数是﹣.故答案为:﹣【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.17.若a、b是互为倒数,则2ab﹣5=﹣3.【分析】互为倒数的两数之积为1,从而代入运算即可.【解答】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为:﹣3.【点评】本题考查了倒数的定义,属于基础题,注意互为倒数的两数之积为1.18.计算:﹣9÷×=﹣4.【分析】根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.【解答】解:原式=﹣9××=﹣4,故答案为:﹣4.【点评】本题考查了有理数的除法,利用有理数的除法是解题关键.19.|﹣3|的倒数是.【分析】先计算|﹣3|,再求|﹣3|的倒数.【解答】解:∵|﹣3|=3,∴|﹣3|的倒数是.故答案为.【点评】本题是基础题,考查了倒数、绝对值的概念,要熟练掌握.20.若a,b互为倒数,则a2b﹣(a﹣2017)值为2017.【分析】根据乘积为1的数互为倒数,即可解答.【解答】解:∵a,b互为倒数,∴ab=1,∴a2b﹣(a﹣2017)=ab•a﹣(a﹣2017)=a﹣a+2017=2017.故答案为:2017.【点评】本题考查了倒数,解决本题的关键是熟记乘积为1的数互为倒数.21.﹣0.5的倒数是﹣2,3﹣π的绝对值是π﹣3.【分析】根据绝对值,倒数的概念及性质解题.【解答】解:﹣0.5的倒数是1÷(﹣0.5)=﹣2,∵π>3,∴3﹣π的绝对值是|3﹣π|=π﹣3,故答案为:﹣2,π﹣3.【点评】此题考查了绝对值、倒数的定义,注意区分概念,不要混淆.22.﹣的倒数是.【分析】根据倒数的定义,互为倒数的两数积为1.【解答】解:﹣2(﹣)=1,因此它的倒数是﹣.【点评】本题考查倒数的定义,较为简单.23.﹣0.2的倒数是﹣5;﹣|﹣2|的相反数是2;﹣6的绝对值是6.【分析】根据相反数的性质,互为相反数的两个数和为0,倒数的性质,互为倒数的两个数积为1,绝对值的定义,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,求解即可.【解答】解:﹣0.2的倒数是﹣5;﹣|﹣2|的相反数是2;﹣6的绝对值是6,故答案为:﹣5,2,6.【点评】本题主要考查了绝对值、相反数、倒数的定义,a的相反数是﹣a,a的倒数是,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.24.一个数的倒数是它本身,这个数是1或﹣1.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.25.计算:(1)0﹣(﹣22)=22;(2)(﹣48)÷(﹣6)=8.【分析】(1)根据减去一个数等于加上这个数的相反数进行计算即可得解;(2)根据有理数的除法运算法则进行计算即可得解.【解答】解:(1)0﹣(﹣22)=0+22=22;(2)(﹣48)÷(﹣6)=8.故答案为:22;8.【点评】本题考查了有理数的除法,有理数的减法,熟记运算法则是解题的关键.26.﹣的绝对值是,﹣的相反数是,﹣的倒数是﹣.【分析】根据负数的绝对值是它的相反数,可得一个负数的绝对值;根据只有符号不同的两个数互为相反数,可得一个数的相反数;根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣的绝对值是,﹣的相反数是,﹣的倒数是﹣,故答案为:,,﹣.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.27.﹣3的相反数是3,﹣2018的倒数是﹣.【分析】根据倒数的定义,相反数的意义,可得答案.【解答】解:﹣3的相反数是3,﹣2018的倒数是﹣,故答案为:3,﹣.【点评】本题考查了倒数,分子分母交换位置是求一数的倒数的关键.28.两个有理数之积是1,已知一个数是﹣,则另一个数是﹣.【分析】两个有理数之积是1,则这两个有理数互为倒数,本题即求﹣的倒数.【解答】解:∵﹣×(﹣)=1,∴﹣的倒数是﹣.答:另一个数是﹣.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.29.的倒数是.【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣1的倒数为1÷(﹣1).【解答】解:﹣1的倒数为:1÷(﹣1)=1÷(﹣)=﹣.故答案为:﹣.【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数.30.﹣2倒数是﹣,﹣2绝对值是2.【分析】分别根据倒数的定义以及绝对值的意义即可得到答案.【解答】解:﹣2的倒数为﹣,﹣2的绝对值为2.故答案为﹣;2.【点评】本题考查了倒数的定义:a与互为倒数(a≠0).也考查了绝对值的意义.31.﹣2的倒数是﹣,相反数是2,﹣3的绝对值是3.【分析】根据相反数的性质,互为相反数的两个数和为0,倒数的性质,互为倒数的两个数积为1,绝对值的定义,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,求解即可.【解答】解:﹣2的倒数是﹣,相反数是2,﹣3的绝对值是3,故答案为:﹣,2,3.【点评】此题考查了绝对值、相反数、倒数的定义,注意区分概念,不要混淆.32.的相反数是,的倒数是2,+(﹣5)的绝对值为5.【分析】根据相反数的性质,互为相反数的两个数和为0;倒数的性质,互为倒数的两个数积为1;绝对值的定义,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.求解即可.【解答】解:的相反数是,=,的倒数是2,+(﹣5)=﹣5,﹣5的绝对值5.故答案为:,2,5.【点评】考查了相反数,倒数,绝对值的定义.a的相反数是﹣a,a的倒数是;一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.33.﹣的相反数的倒数是.【分析】根据相反数和倒数的概念求解.【解答】解:﹣的相反数为,倒数为:.故答案为:.【点评】本题考查了倒数和相反数的知识,乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数.34.﹣1.8的倒数是.【分析】首先将﹣1.8化为分数形式,再利用倒数的性质可求出.【解答】解:∵﹣1.8=﹣,∴﹣的倒数为:﹣,故答案为:﹣.【点评】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.35.﹣3的倒数是﹣.【分析】根据倒数的定义直接求解.【解答】解:﹣3的倒数是﹣.【点评】主要考查倒数的概念.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.36.﹣1的倒数是﹣,1的相反数是﹣1,﹣1的绝对值是1.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数;根据负数的绝对值是它的相反数,可得一个数的绝对值.【解答】解:﹣1的倒数是﹣,1的相反数是﹣1,﹣1的绝对值是1,故答案为:﹣,.【点评】本题考查了倒数,先把带分数化成假分数再求倒数.三.解答题(共9小题)37.(﹣﹣+)÷.【分析】原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:原式=(﹣﹣+)×36=﹣27﹣20+21=﹣26.【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.38.计算:.【分析】先根据有理数的除法法则将除法变为乘法,再根据乘法分配律简便计算.【解答】解:原式===﹣14+18﹣4=0.【点评】本题考查了有理数的除法,有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.注意运用运算律采取适当的形式简便计算.39.(﹣18)÷2×(1﹣)【分析】根据除以一个数等于乘以这个数的倒数,可把除法转化成乘法,根据有理数的乘法运算,可得答案.【解答】解:原式=(﹣18)×=﹣2.【点评】本题考查了有理数的除法,注意乘除时先把带分数化成假分数,再乘除.40.计算:(1)(﹣85)×(﹣25)×(﹣4);(2)﹣;(3);(4).【分析】(1)把后两项结合,利用乘法结合律进行计算即可得解;(2)把带分数化为假分数,除法转化为乘法,然后进行计算即可得解;(3)先通分计算括号里面的,再根据除以一个数等于乘以这数的倒数进行计算即可得解;(4)利用乘法分配律进行计算即可得解.【解答】解:(1)(﹣85)×(﹣25)×(﹣4),=(﹣85)×[(﹣25)×(﹣4)],=﹣85×100,=﹣8500;(2)﹣2×2÷(﹣2),=﹣××(﹣),=2;(3)(﹣)÷(1﹣+),=(﹣)÷(﹣+),=(﹣)÷,=(﹣)×,=﹣;(4)(﹣+﹣)×36,=×36﹣×36+×36﹣×36,=28﹣30+27﹣14,=55﹣44,=11.【点评】本题考查了有理数的除法,有理数的乘法,利用运算定律可以使计算更加简便,(3)需要注意除法没有分配律.41.(﹣)÷(﹣+﹣)【分析】把第二个括号内的分数通分并计算,再利用有理数的除法运算法则进行计算即可得解.【解答】解:(﹣)÷(﹣+﹣),=(﹣)÷(﹣+﹣),=(﹣)÷,=﹣×3,=﹣.【点评】本题考查了有理数的除法,难点在于通分并进行分数的加减运算,切忌利用乘法分配律.42..【分析】把除法转化为乘法运算,然后利用乘法分配律进行计算即可得解.【解答】解:(﹣+)÷,=(﹣+)×30,=×30﹣×30+×30,=6﹣10+2,=8﹣10,=﹣2.【点评】本题考查了有理数的除法,根据除以一个数等于乘以这数的倒数把除法转化为乘法运算是解题的关键,利用运算定律可以使计算更加简便.43..【分析】把括号内分数通分并计算,然后根据有理数的除法运算法则进行计算即可得解.【解答】解:﹣÷(+﹣),=﹣÷(+﹣),=﹣÷,=﹣×10,=﹣.【点评】本题考查了有理数的乘法,容易效仿乘法分配律计算而导致出错.44.计算:.【分析】把小数化为分数,再根据除以一个数等于乘以这数的倒数把除法运算转化为乘法,然后约分进行计算即可得解.【解答】解:﹣2.5÷×(﹣)÷(﹣4)=﹣×××=﹣.【点评】本题考查了有理数的除法,有理数的乘法,此类题目常用的方法是把小数化为分数,除法化为乘法进行运算.45.计算:.【分析】先把除法变成乘法(除以一个数,等于乘以这个数的倒数),再按乘法法则进行计算即可.【解答】解:原式=(﹣2)×(﹣)×(﹣)×3=﹣2×2×3×3=﹣36.【点评】本题考查了有理数的混合运算,注意计算时的步骤:一般是先把除法变成乘法,再按有理数的乘法法则进行计算,除以一个数,等于乘以这个数的倒数.第21页(共21页)。
人教版数学七年级上册第1章1-4-2有理数的除法同步练习(解析版)一、单选题(共12题;共24分)1、两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数()A、一定相等B、一定互为倒数C、一定互为相反数D、相等或互为相反数2、下列运算中没有意义的是()A、﹣2006÷[(﹣)×3+7]B、[(﹣)×3+7]÷(﹣2006)C、(﹣)÷[0﹣(﹣4)]×(﹣2)D、2 ÷(3 ×6﹣18)3、小虎做了以下4道计算题:①0﹣(﹣1)=1;②;③;④(﹣1)2015=﹣2015,请你帮他检查一下,他一共做对了()A、1题B、2题C、3题D、4题4、下列运算正确的是()A、﹣(﹣1)=﹣1B、|﹣3|=﹣3C、﹣22=4D、(﹣3)÷(﹣)=95、计算:的结果是()A、±2B、0C、±2或0D、26、若a+b<0,且,则()A、a,b异号且负数的绝对值大B、a,b异号且正数的绝对值大C、a>0,b>0D、a<0,b<07、计算:1÷(﹣5)×(﹣)的结果是()A、1B、﹣1C、D、﹣8、36÷(﹣9)的值是()A、4B、18C、﹣18D、﹣49、计算×(﹣8)÷(﹣)结果等于()A、8B、﹣8C、D、110、计算:﹣15÷(﹣5)结果正确的是()A、75B、﹣75C、3D、﹣311、下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)= ;④(﹣4)÷ ×(﹣2)=16.其中正确的个数()A、4个B、3个C、2个D、1个12、下列是一名同学做的6道练习题:①(﹣3)0=1;②a3+a3=a6;③(﹣a5)÷(﹣a3)=﹣a2;④4m﹣2= ;⑤(xy2)3=x3y6;⑥22+23=25,其中做对的题有()A、1道B、2道C、3道D、4道二、填空题(共5题;共5分)13、计算:﹣12÷(﹣3)=________.14、如果>0,>0,那么7ac________0.15、计算:6÷(﹣)×2÷(﹣2)=________.16、计算:﹣2÷|﹣|=________.17、已知:13=1= ×1×2213+23=9= ×22×3213+23+33=36=×32×4213+23+33+43=100= ×42×52…根据上述规律计算:13+23+33+…+193+203=________.三、计算题(共4题;共30分)18、计算:(+ ﹣)÷(﹣)19、计算:(﹣3)2÷2 ﹣(﹣)×(﹣).20、计算:(1)(﹣36 )÷9(2)(﹣)×(﹣3 )÷(﹣1 )÷3.21、综合题。
有理数的乘法与除法 同步训练第Ⅰ卷(选择题 共30分)一 选择题(共10小题,每小题3分,共30分)1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D.可能为正,也可能为负2.如果|x-1|+|y+2|+|z-3|=0,则(x+1)(y-2)(z+3)的值是( )A. 48B. -48C. 0D.xyz3. 下列说法中,错误的是( )A.一个非零数与其倒数之积为1B.一个数与其相反数商为-1C.若两个数的积为1,则这两个数互为倒数D.若两个数的商为-1,则这两个数互为相反数4.两个有理数的商为正,则( )A.和为正B.和为负C.至少一个为正D.积为正数5.一个数加上5,减去2然后除以4得7,这个数是( )A.35B.31C.25D.286.2008个数的乘积为0,则( )A.均为0 B.最多有一个为0 C. 至少有一个为0 D.有两个数是相反数7.下列计算正确的是( ) A.43143-=÷⨯- B.4)151(5=-÷- C.91)53()52()65()32(-=-÷---⨯- D.4)2()32()3(-=+⨯+⨯+ 8.114-的倒数与4的相反数的商为( ) A .+5 B .15C .-5 D .15- 9.若a+b <0,ab <0,则 ( )A.a >0,b >0B. a <0,b <0C.a,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a,b 两数一正一负,且负数的绝对值大于正数的绝对值10.一服装店进了一批单价50元衬衫,标价80元,为了促销五一期间打7折销售,那么该商店每件( )A. 赚6元B. 亏了6元C. 赚了30元D. 亏了26 元第Ⅱ卷(非选择题 共90分)二、填空题(共8小题,每小题3分,共24分)11.已知:0,0≠=+b b a ,则=-b a ________;已知:1||-=ba ,则=+||ab ________. 12.有理数m<n<0时,(m+n )(m-n)的符号是__________.#13.规定a ﹡b=5a+2b-1,则(-4)﹡6的值为 .14.如果b a ⋅<0,那么=++abab b b a a.#15.在一次“节约用水,保护水资源”的活动中,学校提倡每人每天节约0.1升水,如果该市约有5万学生,估计该市全体学生一年的节水量为___________.#16.根据二十四点算法,现有四个数-2、4、-5、-10,每个数用且只用一次进行加、减、乘除,使其结果等于24,则列式为=24. &17. 若2||=a ,3||=b ,a ,b 异号,则-ab =______________18. 根据如图所示的程序计算,若输入x 的值为3,则输出y 的值为.三、解答题(共7小题,共66分)19.(8分)(1)38()(4)(2)4⨯-⨯-⨯-(2)12(13)(5)(6)(5)33-÷-+-÷-&20. (9分)现定义两种运算:“”,“”,对于任意两个整数a ,b ,a b=a+b-1,a b =a ×b-1,求4【(68)(35)】的值.21.(10分)()322492249524()836532125(⨯+⨯-⨯⨯+-+-22.在5.10与它的倒数之间有a 个整数,在5.10与它的相反数之间有b 个整数. 求2)()(+-÷+b a b a 的值.23.(10分)(8分)某超市以50元进了A 、B 两种商品,然后以A 商品提价20%,B 商品降价10%出售,在某一天中,A 商品10件,B 商品20件, 问这一天里超市作这两种买卖是赚了还是赔了?并说明理由.#24.(10分 )王明再一次期中考试时,若以语文90分为标准,其他科分数和语文成绩的相差分数如下表求:(1)数学的分数;(2)若七科平均分数是95分,生物的分数是多少?科目 语文 数学 英语 历史 地理 生物政治 相差分数0 +9 +6 -4 +3 ?+2#25.观察下列等式 111122=-⨯,1112323=-⨯,1113434=-⨯, 输入x 输出y 平方 乘以2 减去4 若结果大于0 否则将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:1(1)n n =+. (2)直接写出下列各式的计算结果: ①111112233420072008++++=⨯⨯⨯⨯; ②1111122334(1)n n ++++=⨯⨯⨯+.答案:一、选择题1. A2. B 提示:根据题意 x-1=0,y+2=0,z-3=0,即x=1,y=-2,z=3.3.B4. D 提示:商的符号与积的符号一样,既然两数商为正,则它们积也为正.5. C6. C 提示:几个因数相乘,如果有一个数是0,则积为0 ,所以至少有一个是0 .7. D 8.B9. D 提示: 因为 ab <0,可知a,b 异号,a+b <0,所以负数的绝对值大于正数的绝对值.10. A 提示:销售结果是80×0.7-50=+6(元).二、填空题11. 1,0 12. + 13.– 9 14 .-115. 1 825 000升 16. (-2)×(-5)-(-10)+ 4=24 17. 618.2三 、解答题19.解:(1)38()(4)(2)4⨯-⨯-⨯-38424⨯⨯⨯=-48-= (2)原式=121356533÷+÷11211363535⨯+⨯= 121136)335+⨯=(145⨯=20= 20.解:根据新运算的定义,(68)=6+8-1=13, (35)=3×5-1=14,则(68)(3 5)=1314=13+14-1=26 则4【(68)(35)】=4 26=4×26-1=10321. 解:通过细心观察算式的数值之间的关系,可先对第2个括号逆用乘法分配律,简便运算后,再对第1个括号正用乘法分配律,再次进行简便运算,使问题巧妙获解.)322492249524()836532125(⨯+⨯-⨯⨯+-+-=124)836532125()]329295(24[)836532125(⨯⨯+-+-=+-⨯+-+-=5920161024832465243224125-=+-+-=⨯+⨯-⨯+⨯-. 22.解:a=10,b=21,(a+b )÷(a -b )+2的值为119-. 23.解:在一天的两种商品的买卖中,超市不赚不赔.(2分)理由:10件A 商品一共卖了10×(1+20%)×50=600(元),20件B 商品一共卖了20×(1-10%)×50=900(元)则这30件商品一共卖了600+900=1500(元),而这30件商品的进价为1500元,超市不赚不赔.24.解:(1)90+(+9)=99(分)答:数学分数是99分.(2)93×7-(90×6+0+9+6-4+3+2)=651-(540+0+9+6-4+3+2)=651-556=95(分)答:生物的分数是95分.(3)99-86=13(分)答:最高分和最低分相差13分.25. 解:(1)1n -11n + (2)200720081n n +。
新人教版七年级上册《1.4.2 有理数的除法》同步练习卷(2)一、选择题1. 如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数( )A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零2. 把(−34)÷(−23)转化为乘法是( ) A.(−34)×23 B.(−34)×32 C.(−34)×(−23) D.(−34)×(−32)3. 计算(−1)÷(−5)×(−15)的结果是( )A.−1B.−125C.−25D.14. 非零且互为相反数的两个数的商是( )A.0B.1C.−1D.不能确定5. 下列运算正确的是( )A.1÷(−5)×(−15)=1÷1=1B.−130÷(16÷15)=−130×6×5=−1C.8÷(14−4)=8÷14−8÷4=32−2=30D.2÷(−12)÷(−13)=2×(−2)×(−3)=126. 计算(−1)÷(−10)×110的结果是( )A.1B.−1C.1100D.−11007. 正整数x 、y 满足(2x −5)(2y −5)=25,则x +y 等于( )A.18或10B.18C.10D.268. 计算(−48)÷74÷(−12)×74的结果是( )A.1621B.4C.494D.39. 如果a +b <0,b a >0,那么下列结论成立的是( )A.a >0,b >0B.a <0,b <0C.a >0,b <0D.a <0,b >010. 若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,则m 2−c ×d +a+b m 的值为( )A.−3B.3C.−5D.3或−5二、填空题两个有理数之积是−1,已知一个数是−217,则另一个数是________.计算:(−42)÷14=________;−18÷0.6=________.17.48×(−37)−174.8×1.9−8.74×8.8=________.若a ⋅(−5)=85,则a =________.计算:(−15)×(−5)÷(−15)×(−5)=________.两个有理数,它们的商是−1,则这两个有理数的关系是________.三、解答题计算:(−6)×313+2×313−5×313(用简便方法计算).简便运算:(1)(56−37+13−914)÷(−142);(2)32×57−(−57)×52+(−12)÷75.计算:(1)−2.5÷58×(−14);(2)−27÷214×49÷(−24);(3)(−35)×(−312)÷(−114)÷3×(−312)÷(−114)÷3;(4)−4×12÷(−12)×2;(5)−5÷(−127)×45×(−214)÷7;(6)|−118|÷34×43×|−12|.阅读下面的解题过程:计算:5÷(13−212−2)×6.解:5÷(13−212−2)×6=5÷(−256)×6…① =5÷(−25)…②=−15⋯③回答:(1)上面的解题过程是从第________步开始出现错误的,错误的原因是________;(2)请你给出正确的解题过程.参考答案与试题解析新人教版七年级上册《1.4.2 有理数的除法》同步练习卷(2)一、选择题1.【答案】A【考点】有理数的除法有理数的乘法【解析】由两个有理数的和除以它们的积,所得的商为零,可得这两个有理数的和为0,且它们的积不等于0,继而可求得答案.【解答】∵ 两个有理数的和除以它们的积,所得的商为零,∴ 这两个有理数的和为0,且它们的积不等于0,∴ 这两个有理数:互为相反数但不等于零.2.【答案】D【考点】有理数的除法有理数的乘法【解析】根据除以一个不等于0的数,等于乘这个数的倒数可得.【解答】把(−34)÷(−23)转化为乘法是(−34)×(−32), 3.【答案】B【考点】有理数的混合运算【解析】除以一个数等于乘以这个数的倒数,再确定符号,约分即可.【解答】解:原式=−1×15×15 =−125.故选B .4.【答案】C相反数有理数的除法有理数的概念及分类【解析】根据相反数的定义以及有理数的除法法则解答即可.【解答】非零且互为相反数的两个数的商是−1.5.【答案】D【考点】有理数的混合运算【解析】A 、从左往右依次计算即可求解;B 、先算小括号里面的除法,再算括号外面的除法;C 、先算小括号里面的减法,再算括号外面的除法;D 、从左往右依次计算即可求解.【解答】B 、−130÷(16÷15)=−130÷56=−125,故选项错误(1)C 、8÷(14−4)=8÷(−154)=−3215,故选项错误(2)D 、2÷(−12)÷(−13)=2×(−2)×(−3)=12,故选项正确. 故选:D .6.【答案】C【考点】有理数的除法【解析】乘除是同级运算,按照从左往右的顺序进行.【解答】(−1)÷(−10)×110 =(−1)×(−110)×110 =1100.7.【答案】A 【考点】有理数的乘法【解析】易得(2x −5)、(2y −5)均为整数,分类讨论即可求得x 、y 的值即可解题.∵x、y是正整数,且最小的正整数为1,∴2x−5是整数且最小整数为−3,2y−5是整数且最小的整数为−3∵25=1×25,或25=5×5,∴存在两种情况:①2x−5=1,2y−5=25,解得:x=3,y=15,;②2x−5=2y−5=5,解得:x=y=5;∴x+y=18或10,8.【答案】B【考点】有理数的除法有理数的乘法【解析】先把除法变成乘法,再根据有理数的乘法法则计算即可.【解答】(−48)÷74÷(−12)×74=48×47×112×74=4.9.【答案】B【考点】有理数的除法有理数的加法【解析】根据有理数的除法法则以及加法法则即可作出判断.【解答】∵ba>0,∴a和b同号.又∵a+b<0,∴a<0,且b<0.10.【答案】B【考点】有理数的混合运算【解析】直接利用互为相反数、互为倒数的定义结合绝对值的性质分别代入求出答案.【解答】∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1,m=±2,∴m2−cd+a+bm=4−1+0=3.二、填空题【答案】715【考点】有理数的乘法【解析】已知积和其中的一个因数,求另一个因数用除法.根据题意先列出除法算式,再计算出结果.【解答】−1÷(−21 7 )=−1÷(−157)=7 15【答案】−3,−30【考点】有理数的除法【解析】根据有理数的除法法则计算即可.【解答】(−42)÷14=−(42÷14)=−3;−18÷0.6=−(18÷0.6)=−30.【答案】−1055.792【考点】有理数的乘法【解析】根据有理数的乘法,即可解答.【解答】17.48×(−37)−174.8×1.9−8.74×8.8=17.48×(−37)−17.48×19−17.48×4.4=17.48×(−37−19−4.4)=−1055.792.【答案】−8 25【考点】有理数的除法【解析】根据题意,将乘法转化为除法,计算可得a的值.【解答】a⋅(−5)=85,则a=85÷(−5)=−825,【答案】25【考点】有理数的除法有理数的乘法【解析】根据乘除同级运算,从左到右的顺序根据法则依次计算即可.【解答】原式=1×(−5)×(−5)=25,【答案】互为相反数【考点】有理数的除法【解析】两个有理数,它们的商是1时,这两个有理数相等;商是−1时,这个有理数的关系是互为相反数.【解答】两个有理数,商是−1,则这个有理数的关系是互为相反数.故这两个有理数的关系是互为相反数.三、解答题【答案】(−6)×313+2×313−5×313=313×[(−6)+2−5]=103×(−9)=−30【考点】有理数的混合运算【解析】根据乘法分配律可以解答本题.【解答】(−6)×313+2×313−5×313=313×[(−6)+2−5]=103×(−9)=−30【答案】(56−37+13−914)÷(−142) =(56−37+13−914)×(−42)=(−35)+18+(−14)+27=−4;32×57−(−57)×52+(−12)÷75=32×57+57×52+(−12)×57=[32+52+(−12)]×57=72×57=52.【考点】有理数的混合运算【解析】(1)先把除法转化为乘法,然后根据乘法分配律可以解答本题;(2)根据乘法分配律可以解答本题.【解答】(56−37+13−914)÷(−142) =(56−37+13−914)×(−42)=(−35)+18+(−14)+27=−4;32×57−(−57)×52+(−12)÷75=32×57+57×52+(−12)×57=[32+52+(−12)]×57=72×57=52.【答案】−2.5÷58×(−14)=52×85×14=1;−27÷214×49÷(−24)=27×49×49×124=29;(−35)×(−312)÷(−114)÷3×(−312)÷(−114)÷3=−35×72×45×13=−1425;−4×12÷(−12)×2=2×2×2=8; −5÷(−127)×45×(−214)÷7=−5×79×45×94×17=−1;(1)|−118|÷34×43×|−12|=98×43×43×12=1. 【考点】有理数的混合运算【解析】(1)先确定符号,再把小数化为分数、除法化为乘法,约分计算;(2)(3)(4)(5)先确定符号,再把除法化为乘法,约分计算;(6)先算绝对值,再做乘除.【解答】−2.5÷58×(−14)=52×85×14=1; −27÷214×49÷(−24)=27×49×49×124=29;(−35)×(−312)÷(−114)÷3×(−312)÷(−114)÷3=−35×72×45×13=−1425; −4×12÷(−12)×2=2×2×2=8;−5÷(−127)×45×(−214)÷7=−5×79×45×94×17=−1;(1)|−118|÷34×43×|−12|=98×43×43×12=1. 【答案】②,同级运算没有按从左到右的顺序依次进行计算5÷(13−212−2)×6 =5÷(−256)×6=5×(−625)×6 =−65×6 =−365.【考点】有理数的混合运算【解析】(1)根据题目中的解答过程,可知上面的解题过程是从第②步开始出现错误的,错误的原因是同级运算没有按从左到右的顺序依次进行计算;(2)根据有理数的减法和乘除法可以解答本题.【解答】上面的解题过程是从第②步开始出现错误的,错误的原因是同级运算没有按从左到右的顺序依次进行计算,故答案为:②,同级运算没有按从左到右的顺序依次进行计算;5÷(13−212−2)×6=5÷(−256)×6=5×(−625)×6=−65×6=−365.试卷第11页,总11页。
七年级数学上册《第二章有理数的除法》练习题及答案-浙教版一、选择题1.的倒数是( )A. B.﹣ C.﹣ D.2.下列计算结果为负数的是( )A.﹣1+3B.5﹣2C.﹣1×(﹣2)D.﹣4÷23.下列运算结果等于1的是( )A.(﹣3)+(﹣3)B.(﹣3)﹣(﹣3)C.﹣3×(﹣3)D.(﹣3)÷(﹣3)4.若a+b<0,ba>0,则下列结论成立的是( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>05.-4÷49×(-94)的值为( )A.4B.-4C.814D.-8146.两个数之和为负,商为负,则这两个数应是( )A.同为负数B.同为正数C.一正一负且正数的绝对值较大D.一正一负且负数的绝对值较大7.下列运算:①1÷(-2)=-2;②(-2)÷12=1;③(-12)÷13×3=-12;④(-13)÷(-6)=2.其中正确的有( )A.0个B.1个C.2个D.3个8.已知a和b一正一负,则|a|a+|b|b的值为( )A.0B.2C.-2D.根据a,b的值确定二、填空题9.若a、b互为倒数,则4ab= .10.填空:(____________)÷7=-3;11.计算:1-(-2)÷(-3)×3=____________.12.一个数与-34的积为12,则这个数是_________13.-214除以一个数的商为-9,则这个数是_________14.已知|a|=4,|b|=12,且ab<0,则ab的值等于_____.三、解答题15.计算:(-12)÷(-14 );16.计算:(-3)×6÷(-2)×1 2;17.计算:(﹣4)×|﹣3|﹣4÷(﹣2)﹣|﹣5|18.计算:(﹣+﹣+)÷19.小明和小亮利用温差来测量山峰的高度.小明在山脚测得的温度是9℃,小亮在山顶测得的温度是﹣3℃,已知该地区高度每升高1000米,气温就会下降6℃,求这个山峰的高度.20.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)这10名同学中,低于80分所占的百分比是多少?(3)这10名同学的平均成绩是多少?21.用加、减、乘、除号和括号将3,6,-8,5这四个数(每个数都要用且只用一次)进行加减乘除四则运算使结果为24,请你写出两个算式.22.阅读理解小华在课外书中看到这样一道题:计算:136÷(14+112-718-136)+(14+112-718-136)÷136.她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题.(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并计算比较简便的那部分;(3)利用(1)中的关系,直接写出另一部分的值;(4)根据以上分析,求出原式的结果.参考答案1.A2.D3.D.4.B5.C6.D7.A8.A9.答案为:4.10.答案为:-21;11.答案为:-112.答案为:-2 313.答案为:1 414.答案为:±8.15.解:原式=4816.解:原式=(-3)×6×(-12)×12=3×6×12×12=92.17.解:原式=﹣12+2﹣5=﹣15.18.解:原式=﹣45+50﹣35+12=﹣80+62=﹣1819.解:根据题意得:[9﹣(﹣3)]÷6×1000=12÷6×1000=2000(米).答:这个山峰高2000米.20.解:(1)最高分是80+12=92(分),最低分是80-10=70(分).(2)低于80分的有5个,所占的百分比是5÷10×100%=50%.(3)平均分是80+(8-3+12-7-10-3-8+1+0+10)÷10=80(分).21.解:答案不唯一,如(-8)÷(3-5)×6=24,6÷(3-5)×(-8)=24等.22.解:(1)前后两部分的值互为倒数;(2)先计算后一部分比较简便. ÷136=×36=9+3-14-1=-3.(3)因为前后两部分的值互为倒数,所以136÷=-13. (4)根据以上分析,可知原式=-13+(-3)=-313.。
人教新版七年级上学期《1.4.2 有理数的除法》同步练习组卷一.选择题(共2小题)1.下列说法中正确的是()A.除以一个不等于0的数,等于乘这个数的相反数B.乘积是1的两个数互为相反数C.积比每个因数都大D.几个不是0的数相乘,负因数的个数是偶数时,积为正2.下列结论:①若ab>0,则a>0,b>0;②若a÷b<0,则a>0,b<0;③若a>0,b>0,则ab>0;④若a<0,b<0,则a÷b>0,其中,正确的个数是()A.1 B.2 C.3 D.4二.解答题(共13小题)3.数学活动课上,小明遇到这样一个问题:一个数乘2后减去8,然后除以4,再减去这个数的,则结果为多少?他让小组内5成员分别取这个数为﹣5、3、﹣4、6、2,发现计算后的结果一样.(1)请从上述5个数中任取一个数,计算出这个结果;(2)小明产生了这样的猜想:无论这个数是几,其计算结果都一样,这个猜想对吗?请说明理由.4.0÷.5.小明对小丽说:“请你任意想一个数,把这个数乘2后加12,然后除以6,再减去你原来所想的那个数与6的差的三分之一,我可以知道你计算的结果.”请你根据小明的说法探索:(1)如果小丽一开始想的那个数是﹣5,请列式并计算结果;(2)如果小丽一开始想的那个数是2m﹣3n,请列式并计算结果;(3)根据(1)、(2),尝试写出一个结论.6.阅读下列材料:计算:÷﹙﹣+﹚.解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷﹙﹣+﹚=÷=×6=.解法三:原式的倒数=﹙﹣+﹚÷=﹙﹣+﹚×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:﹙﹣﹚÷﹙﹣+﹣﹚.7.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.8.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.9.数学老师布置了一道思考题“计算:(﹣)”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为()=()×(﹣12)=﹣4+10=6,所以(﹣)=.(1)请你判断小明的解答是否正确,并说明理由.(2)请你运用小明的解法解答下面的问题.计算:(﹣).10.如图是小明的计算过程,请仔细阅读,并解答下列问题.回答:(1)解题过程中有两处错误:第1处是第步,错误原因是.第2处是第步,错误原因是.(2)请写出正确的解答过程.11.计算:(﹣)÷(﹣+﹣)解法1:原式=(﹣)÷[(+)+(﹣﹣)]=(﹣)÷(﹣)=﹣×3=﹣解法2:原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20+3﹣5+12=﹣10故原式=﹣请阅读上述材料,选择合适的方法计算:(﹣)÷(﹣+﹣)12.阅读材料,回答问题.计算:(﹣)÷(﹣).解:方法一:原式=(﹣)÷(﹣)=(﹣)÷(﹣)=.方法二:原式的倒数为:(﹣)÷(﹣)=(﹣)×(﹣15)=×(﹣15)﹣×(﹣15)=﹣3+5=2故原式=.用适当的方法计算:(﹣)÷(﹣+﹣).13.甲,乙两人同时从相距4千米的两地出发,甲每小时走2千米,乙每小时走3千米,小狗随甲一起同向出发,每小时跑5千米.(1)若甲、乙两人相向而行(如图①),经过多少时间后小狗先与乙相遇?(2)若甲、乙两人同时同向而行(如图②),小狗在C地碰到乙时,甲是否到达了B地?请说明理由.(3)若甲、乙两人相向而行,小狗碰到乙的时候它就往甲这边跑,碰到甲时又往乙这边跑,碰到乙的时候再往甲这边跑…就这样一直跑下去,直到甲乙两人相遇为止,问这只狗一共跑了多少路程?14.小宇在做分数乘除法练习时,把一个数乘以2错写成除以2,得到的结果是,这道题的正确结果应当是多少?15.一家商店将某种电器按进价加价20%作为标价.随后又打出九折(即按标价的90%)优惠大促销的广告.小明在优惠大促销的广告单上看到的该电器的价格是2700元,这种电器进价是多少元?人教新版七年级上学期《1.4.2 有理数的除法》2018年同步练习组卷参考答案与试题解析一.选择题(共2小题)1.下列说法中正确的是()A.除以一个不等于0的数,等于乘这个数的相反数B.乘积是1的两个数互为相反数C.积比每个因数都大D.几个不是0的数相乘,负因数的个数是偶数时,积为正【分析】根据有理数的除法、相反数、有理数的乘法,逐项判断即可.【解答】解:A、除以一个不等于0的数,就等于这个数的倒数,故A选项错误;B、乘积是1的两个数是互为倒数,故B选项错误;C、积不一定比每个因数大,故C选项错误;D、几个不是0的数相乘,负因数的个数是偶数时,积为正,故D选项正确;故选:D.【点评】本题主要考查有理数的乘法、除法及相反数,解决此题时要注意选项中的关键字眼,如:A选项中的相反数等.2.下列结论:①若ab>0,则a>0,b>0;②若a÷b<0,则a>0,b<0;③若a>0,b>0,则ab>0;④若a<0,b<0,则a÷b>0,其中,正确的个数是()A.1 B.2 C.3 D.4【分析】根据有理数的乘法法则和除法法则判断即可.【解答】解:若ab>0,则a>0,b>0或a<0,b<0,①错误;若a÷b<0,则a>0,b<0或a<0,b>0,②错误;若a>0,b>0,则ab>0,③正确;若a<0,b<0,则a÷b>0,④正确,故选:B.【点评】本题考查的是有理数的乘法和除法,掌握有理数的乘法法则和除法法则是解题的关键.二.解答题(共13小题)3.数学活动课上,小明遇到这样一个问题:一个数乘2后减去8,然后除以4,再减去这个数的,则结果为多少?他让小组内5成员分别取这个数为﹣5、3、﹣4、6、2,发现计算后的结果一样.(1)请从上述5个数中任取一个数,计算出这个结果;(2)小明产生了这样的猜想:无论这个数是几,其计算结果都一样,这个猜想对吗?请说明理由.【分析】(1)取﹣5,列出算式,计算即可求出值;(2)设这个数为x,根据题意列出关系式,化简即可得到结果.【解答】解:(1)取﹣5,[(﹣5)×2﹣8]÷4﹣(﹣5)×=﹣+=﹣2;(2)对,设这个数为x,根据题意得:(2x﹣8)÷4﹣x=x﹣2﹣x=﹣2.【点评】此题考查了有理数的乘除法,以及有理数的减法,熟练掌握运算法则是解本题的关键.4.0÷.【分析】依据有理数的运算法则进行计算即可.【解答】解:0÷.=0×[15×(2﹣4)÷×]2=0.【点评】本题主要考查的是有理数的乘法和除法,熟练掌握想法法则是解题的关键.5.小明对小丽说:“请你任意想一个数,把这个数乘2后加12,然后除以6,再减去你原来所想的那个数与6的差的三分之一,我可以知道你计算的结果.”请你根据小明的说法探索:(1)如果小丽一开始想的那个数是﹣5,请列式并计算结果;(2)如果小丽一开始想的那个数是2m﹣3n,请列式并计算结果;(3)根据(1)、(2),尝试写出一个结论.【分析】(1)把﹣5乘2后加12,然后除以6,再减去﹣5与6的差的三分之一即可.(2)把2m﹣3n乘2后加12,然后除以6,再减去2m﹣3n与6的差的三分之一即可.(3)根据(1)、(2)的计算结果,写出一个结论即可.【解答】解:(1)(﹣5×2+12)÷6﹣(﹣5﹣6)=+=4(2)[2(2m﹣3n)+12)]÷6﹣[(2m+3n)﹣6)]==4(3)结论:无论小丽一开始想的数是多少,得出的结果都是4.【点评】此题主要考查了有理数加减法的运算方法,以及有理数的乘除法的运算方法,要熟练掌握.6.阅读下列材料:计算:÷﹙﹣+﹚.解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷﹙﹣+﹚=÷=×6=.解法三:原式的倒数=﹙﹣+﹚÷=﹙﹣+﹚×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法一是错误的;(2)请你选择合适的解法计算:﹙﹣﹚÷﹙﹣+﹣﹚.【分析】(1)我认为解法一是错误的;(2)选择解法三求出值即可.【解答】解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.【点评】此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.7.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.【分析】根据相反数之和为0,倒数之积等于1,可得a+b=0,cd=1,再根据绝对值的性质可得m=±2,然后代入计算即可.【解答】解:∵a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,∴当m=2时,原式=0+2﹣1+2=3;当m=﹣2时,原式=0﹣2﹣1﹣2=﹣5.【点评】此题主要考查了代数式求值,关键是掌握相反数之和为0,倒数之积等于1是解题的关键.8.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.【分析】设此整数是a,再根据题意列出式子即可.【解答】解:正确.理由:设此整数是a,=18.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.9.数学老师布置了一道思考题“计算:(﹣)”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为()=()×(﹣12)=﹣4+10=6,所以(﹣)=.(1)请你判断小明的解答是否正确,并说明理由.(2)请你运用小明的解法解答下面的问题.计算:(﹣).【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【解答】解:(1)正确,理由为:一个数的倒数的倒数等于原数;(2)原式的倒数为(﹣+)÷(﹣)=(﹣+)×(﹣24)=﹣8+4﹣9=﹣13,则(﹣)÷(﹣+)=﹣.【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.10.如图是小明的计算过程,请仔细阅读,并解答下列问题.回答:(1)解题过程中有两处错误:第1处是第二步,错误原因是运算顺序错误.第2处是第三步,错误原因是符号错误.(2)请写出正确的解答过程.【分析】(1)首先根据有理数四则混合运算的运算顺序,从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是符号错误.(2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.【解答】解:(1)根据分析,可得第1处是第二步,错误原因是运算顺序错误.第2处是第三步,错误原因是符号错误.(2)(﹣15)÷()×6=(﹣15)÷(﹣)×6==故答案为:二、运算顺序错误;三、符号错误.【点评】(1)此题主要考查了有理数除法的运算方法,要熟练掌握,解答此题的关键是要明确:除以一个不等于0的数,等于乘这个数的倒数.(2)此题还考查了有理数乘法的运算方法,要熟练掌握,解答此题的关键是要明确:两数相乘,同号得正,异号得负,并把绝对值相乘.11.计算:(﹣)÷(﹣+﹣)解法1:原式=(﹣)÷[(+)+(﹣﹣)]=(﹣)÷(﹣)=﹣×3=﹣解法2:原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20+3﹣5+12=﹣10故原式=﹣请阅读上述材料,选择合适的方法计算:(﹣)÷(﹣+﹣)【分析】原式合适的方法为法2,求出原式的倒数,即可确定出原式的值.【解答】解:原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.【点评】此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.12.阅读材料,回答问题.计算:(﹣)÷(﹣).解:方法一:原式=(﹣)÷(﹣)=(﹣)÷(﹣)=.方法二:原式的倒数为:(﹣)÷(﹣)=(﹣)×(﹣15)=×(﹣15)﹣×(﹣15)=﹣3+5=2故原式=.用适当的方法计算:(﹣)÷(﹣+﹣).【分析】求出原式的倒数,即可确定出原式的值.【解答】解:∵(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10,∴原式=﹣.【点评】此题考查了有理数的乘除法,熟练掌握运算法则是解本题的关键.13.甲,乙两人同时从相距4千米的两地出发,甲每小时走2千米,乙每小时走3千米,小狗随甲一起同向出发,每小时跑5千米.(1)若甲、乙两人相向而行(如图①),经过多少时间后小狗先与乙相遇?(2)若甲、乙两人同时同向而行(如图②),小狗在C地碰到乙时,甲是否到达了B地?请说明理由.(3)若甲、乙两人相向而行,小狗碰到乙的时候它就往甲这边跑,碰到甲时又往乙这边跑,碰到乙的时候再往甲这边跑…就这样一直跑下去,直到甲乙两人相遇为止,问这只狗一共跑了多少路程?【分析】本题考查了有理数的除法的实际运用和相遇及追及问题,结合示意图直接列式计算即可.【解答】解:(1)小狗与乙相遇时间:(小时).(2)小狗在C地碰到乙时所用时间为此时甲走的路程为s=2×2=4(千米),甲说明小狗在C地碰到乙时,甲正好到达B地.(3)甲与乙相遇时间:(小时)小狗跑的路程为s=0.8×5=4(千米).【点评】本题属于基础题,考查了对有理数的除法运算的实际运用知识.14.小宇在做分数乘除法练习时,把一个数乘以2错写成除以2,得到的结果是,这道题的正确结果应当是多少?【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:××=.【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.15.一家商店将某种电器按进价加价20%作为标价.随后又打出九折(即按标价的90%)优惠大促销的广告.小明在优惠大促销的广告单上看到的该电器的价格是2700元,这种电器进价是多少元?【分析】首先设电器进价是x元,根据题意可得等量关系:进价×(1+20%)×打折=售价,根据等量关系列出方程即可.【解答】解:设电器进价是x元,由题意得:(1+20%)x×90%=2700,解得:x=2500.答:这种电器进价是2500元.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.。
2023-2024学年七年级数学上册《第一章有理数的乘除法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.﹣8的相反数的倒数是()A.B.﹣8 C.8 D.﹣2.在有理数1,- 与,-3中,倒数最小的是()A.1 B.- C.D.-33.在算式-27×24+16×24-79×24=(-27+16-79)×24中运用了()A.加法交换律B.加法结合律C.乘法结合律D.乘法分配律4.若|a|=5,|b|=3,那么a•b的值是()A.15 B.-15 C.±15 D.以上都不对5.如图是制作果冻的食谱,傅妈妈想根据此食谱内容制作六份果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加糖浆()A.15匙B.18匙C.21匙D.24匙6.下列说法中,正确的有()①任何数乘以0,其积为0;②任何数乘以1,积等于这个数本身;③0除以任何一个数,商为0;④任何一个数除以﹣1,商为这个数的相反数.A.2个B.3个C.4个D.1个7.七(1)班学雷锋小组整理校实验室,已知6个人共要做4小时完成,则每人每小时的工作效率是()A.B.C.D.8.对于有理数a、b,如果ab<0,a+b<0.则下列各式成立的是()A.a<0,b<0 B.a>0,b<0且|b|<aC.a<0,b>0且|a|<b D.a>0,b<0且|b|>a二、填空题:(本题共5小题,每小题3分,共15分.)9.直接写出计算结果:.10.绝对值小于4的所有整数的积为.11. 2003个-3与2004个-5相乘的结果的符号是号.12.在如右图所示的运算流程中,若输出的数y=7,则输入的数n= .13.三味书屋推出售书优惠方案:(1)一次性购书不超过100元,不享受优惠;(2)一次性购书超过100元但不超过200元一律打九折;(3)一次性购书超过200元及以上一律打八折。
2019-2019学年度浙教版数学七年级上册同步练习2.4 有理数的除法学校:___________姓名:___________班级:___________ 一.选择题(共12小题)1.8的倒数是()A.﹣8 B.8 C.﹣D.2.若a与﹣3互为倒数,则a等于()A.B.C.3 D.﹣33.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和04.下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.﹣1的倒数是﹣15.下列说法中①相反数等于本身的数是0,②绝对值等于本身的是正数,③倒数等于本身的数是±1,正确的个数为()A.3个B.2个C.1个D.0个6.下列各对数中,互为倒数的一对是()A.4和﹣4 B.﹣2和﹣C.﹣3和D.0和07.若﹣的倒数与m+4互为相反数,那么m的值是()A.m=1 B.m=﹣1 C.m=2 D.m=﹣28.计算(﹣18)÷9的值是()A.﹣27 B.﹣9 C.﹣2 D.29.如果a+b>0,且ab<0,那么()A.a>0,b>0B.a<0,b<0C.a、b异号且正数的绝对值较大D.a,b异号且正数的绝对值较小10.计算:的结果是()A.±2 B.0 C.±2或0 D.211.在下列各题中,结论正确的是()A.若a>0,b<0,则>0 B.若a>b,则a﹣b>0 C.若a<0,b<0,则ab<0 D.若a>b,a<0,则<0 12.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题(共10小题)13.﹣的倒数=.14.若a≠b,且a、b互为相反数,则=.15.若a、b是互为倒数,则2ab﹣5=.16.已知﹣的倒数是p,且m、n互为相反数,则p+m+n=.17.如果一个数的倒数是3,那么这个数的相反数是.18.计算:﹣9÷×=.19.被除数是﹣5,除数是﹣,则商是.20.有理数的除法法则,除以一个数等于乘以这个数的.21.若=2,=6,则=.22.若a,b互为倒数,则a2b﹣(a﹣2019)值为.三.解答题(共4小题)23.计算:(1)100÷×(﹣8);(2).24.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.25.如图,小明有4张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题.(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?26.若a、b、c都不等于0,且++的最大值是m,最小值是n,求m+n的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:8的倒数是,故选:D.2.【解答】解:﹣与﹣3互为倒数,∴a=﹣.故选:B.3.【解答】解:∵1×1=1,(﹣1)×(﹣1)=1,∴一个数和它的倒数相等的数是±1.故选:C.4.【解答】解:A、负数有倒数,例如﹣1的倒数是﹣1,选项错误;B、正数的倒数不一定比自身小,例如0.5的倒数是2,选项错误;C、0没有倒数,选项错误;D、﹣1的倒数是﹣1,正确.故选:D.5.【解答】解:①相反数等于本身的数是0,故①符合题意,②绝对值等于本身的是非负数,故②不符合题意,③倒数等于本身的数是±1,故③符合题意,故选:B.6.【解答】解:A、4和﹣4互为相反数,此选项不符合题意;B、﹣2和﹣互为倒数,此选项符合题意;C、﹣3和不是互为倒数,此选项不符合题意;D、0没有倒数,此选项不符合题意;故选:B.7.【解答】解:﹣的倒数与m+4互为相反数,得m+4=2,解得m=﹣2,故选:D.8.【解答】解:(﹣18)÷9=﹣2.故选:C.9.【解答】解:根据题意,ab<0,则a、b异号,a+b>0可得,正数的绝对值较大,但无法确定a、b哪个为正,哪个为负,故选:C.10.【解答】解:当a>0,b>0时,+=+=2,当a>0,b<0时,+=+=0,当a<0,b<0时,+=+=﹣2,当a<0,b>0时,+=+=0,故选:C.11.【解答】解:A、两数相除,异号得负,故选项错误;B、大数减小数,一定大于0,故选项正确;C、两数相乘,同号得正,故选项错误;D、若a>b,a<0,则>0,故选项错误.故选:B.12.【解答】解:①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则=﹣1,正确;③若a2=b2,则a=b或a=﹣b,错误;④若a<0,b<0,所以ab﹣a>0,则|ab﹣a|=ab﹣a,正确;故选:B.二.填空题(共10小题)13.【解答】解:﹣的倒数是:﹣5.故答案为:﹣5.14.【解答】解:∵a、b互为相反数,∴a=﹣b.故答案为:﹣1.15.【解答】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为:﹣3.16.【解答】解:依题意的:p=﹣,m+n=0,所以p+m+n=﹣.故答案是:﹣.17.【解答】解:的倒数是3,的相反数是﹣.故答案为:﹣.18.【解答】解:原式=﹣9××=﹣4,故答案为:﹣4.19.【解答】解:﹣5=﹣×(﹣)=6,故答案为:6.20.【解答】解:有理数的除法法则,除以一个数等于乘以这个数的倒数,故答案为:倒数21.【解答】解:∵=2,=6,∴a=2b,c=,∴=12,故答案为12.22.【解答】解:∵a,b互为倒数,∴ab=1,∴a2b﹣(a﹣2019)=ab•a﹣(a﹣2019)=a﹣a+2019=2019.故答案为:2019.三.解答题(共4小题)23.【解答】解:(1)100÷×(﹣8)=100×8×(﹣8)=800×(﹣8)=﹣6400(2)=﹣16×(20﹣)=﹣320+1=﹣31924.【解答】解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.25.【解答】解:(1)抽﹣3和﹣5,最大值为:﹣3×(﹣5)=15;(2)抽1和﹣5,最小值为:(﹣5)÷1=﹣5;26.【解答】解:由题知,,依次计算++可知m=3,n=﹣3,所以m+n=3+(﹣3)=3﹣3=0.。
七年级数学上册《第一章 有理数的除法》同步练习带答案-人教版学校:___________班级:___________姓名:___________考号:___________基础巩固练习一、选择题1.﹣54的倒数是( ) A.﹣54 B. 54 C.﹣45 D. 452.计算36÷(﹣9)的值是( ) A.4 B.18 C.﹣18 D.﹣43.计算-4÷49×94的结果是( )A.4B.- 4C.2014D.- 20144.两个因数相乘,其中一个因数是35,积是-1,那么另一个因数是( ) A.35 B.53 C.-35 D.-535.在计算时,有四名同学给出了以下四种计算步骤,其中正确的是( )A.原式=1÷(- 2)×12- 9×(2- 13 - 29) B.原式=- 4+5÷(- 1)- 9×(2- 13 - 29) C.原式=- 4+5÷(- 2)×12- 18- 3- 2 D.原式=- 4- 54 - 18+3+26.在算式4-∣-3□5∣中的□所在位置,填入下列哪种运算符号,计算出来值最小( )A.+B.-C.×D.÷7.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是( )[A.a+b<0B.a>|﹣2|C.b>πD.8.在算式4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小( )A.+B.-C.×D.÷二、填空题9.若a、b互为倒数,则4ab= .10.一个数与-34的积为12,则这个数是____________11.填空:(____________)÷7=-3;12.一个数的25是-165,则这个数是_________13.-114的倒数与4的相反数的商是____________.14.将0.5的倒数减去-1,再除以-4的绝对值,结果为.三、解答题15.计算:(-12)÷(-14 );16.计算:-1+5÷(-61)×(-6);17.计算:(-10)÷(-8)÷(-0.25).18.计算:42×(-71)+(-0.25)÷34;19.小明在计算 (-6)÷(12+13-34)时,他是这样计算的: (-6)÷(12+13-34)=(-6)÷12+(-6)÷13+(-6)÷(-34)=-12-18+8=-22. 他做得对吗?如果不对,请你写出正确的计算过程.20.一天,小明与小强利用温度计测量山峰的高度,小明在山顶测得温度是-2 ℃,小强此时在山脚测得温度是4 ℃.已知该地区高度每增加100 m ,气温大约降低0.6 ℃,这个山峰的高度大约是多少?21.自来水费采取阶梯式计价,第一阶梯为月总用水量不超过34m 3的用户,自来水价格为2.40元/m3,第二阶梯为月总用水量超过34m3的用户,前34m3水价为2.40元/m3,超出部分的水价为3.35元/m3.小敏家上月总用水量为50m3,求小敏家上月应交多少水费.能力提升练习一 、选择题1.下列各式的运算结果为负的是( )A.1×(-2)÷(-3)B.(-1)×2÷(-3)C.(-1)×(-2)÷(-3)D.(-1)÷2×02.两个有理数的商为正数,则( )A.它们的和为正数B.它们的和为负数C.至少有一个数为正数D.它们的积为正数3.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.- 1的倒数是- 14.两个数之和为负,商为负,则这两个数应是( )A.同为负数B.同为正数C.一正一负且正数的绝对值较大D.一正一负且负数的绝对值较大5.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数( )A.一定相等B.一定互为倒数C.一定互为相反数D.相等或互为相反数6.如图,在数轴上点A ,B 对应的数分别为a ,b ,则下列结论:①b a >0;②a b>0;③-b a >0;④-a b>0.其中,正确的有( )A.1个B.2个C.3个D.4个二 、填空题7.-214除以一个数的商为-9,则这个数是_________8.一个数的25是-165,则这个数是_________9.甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.10.设a+b+c=0,abc<0,则的值是 .三、解答题11.计算:(-1.5)×45÷(-25)×34;12.计算:-34÷38×(-49)÷(-23);13.计算:-112÷34×(-0.2)×134÷1.4×(-35).14.计算:1÷(16-13)×16;15.分类讨论题:已知a,b,c是非零有理数,求式子a|a|+b|b|+c|c|的值.16.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14524÷=14342÷=所以14是“差一数”;19534÷=但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.答案基础巩固练习1.C.2.D3.C4.D5.D6.C.7.D8.C9.答案为:4.10.答案为:-2 311.答案为:-21;12.答案为:-813.答案为:1 514.答案为:0.7515.解:原式=4816.:原式=17917.解:原式=-5.18.解:原式=-61 319.解:不对.正确的计算过程如下:原式=(-6)÷=(-6)÷1 12=(-6)×12=-72.20.解:[4-(-2)]÷0.6=10,10×100=1000(m).答:这个山峰的高度大约是1000 m.21.解:由题意得:34×2.4+3.35×(50-34)=34×2.4+16×3.35=135.2(元). 答:小敏家上月应交135.2元的水费.能力提升练习1.C2.D3.D4.D5.D6.B.7.答案为:148.答案为:-89.答案为:4.10.答案为:-111.解:原式=32×45×52×34=94. 12.解:原式=-43. 13.解:原式=-31014.解:原式=-115.解:①当a ,b ,c 三个数都为正数时a |a|+b |b|+c |c|=a a +b b +c c=1+1+1=3; ②当a ,b ,c 三个数中有两个为正数,一个为负数时,不妨设a 为负数,b ,c 为正数则a |a|+b |b|+c |c|=a -a +b b +c c=-1+1+1=1; ③当a ,b ,c 三个数中有一个为正数,两个为负数时,不妨设a 为正数,b ,c 为负数则a|a|+b|b|+c|c|=aa+b-b+c-c=1-1-1=-1;④当a,b,c三个数都为负数时,a|a|+b|b|+c|c|=a-a+b-b+c-c=-1-1-1=-3.综上所述,式子a|a|+b|b|+c|c|的值为3或-3或1或-1.16.解:(1)∵49594÷=;493161÷=∴49不是“差一数”∵745144÷=;743242÷=∴74是“差一数”;(2)解法一:∵“差一数”这个数除以5余数为4∴“差一数”这个数的个位数字为4或9∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399∵“差一数”这个数除以3余数为2∴“差一数”这个数的各位数字之和被3除余2∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.解法二:∵“差一数”这个数除以5余数为4,且除以3余数为2∴这个数加1能被15整除∵大于300且小于400的能被15整除的数为315、330、345、360、375、390∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.。
有理数的除法 1.16的倒数是( ) A .6 B .-6 C .16 D .-162与-2的乘积为1的数是( )A .2B .-2C .12D .-123.下列各式中,计算正确的有( )①(-24)÷(-8)=-3;②(+32)÷(-8)=-4;③⎝ ⎛⎭⎪⎫-45÷⎝ ⎛⎭⎪⎫-45=1; ④⎝ ⎛⎭⎪⎫-334÷(-1.25)=-3. A .1个 B .2个 C .3个 D .4个4.计算(-21)÷7的结果是( )A .3B .-3C .13D .-135.计算24÷(-4)×(-3)的结果是( )A .-18B .18C .-2D .26.计算(-2)÷⎝ ⎛⎭⎪⎫-116÷(-4)得( ) A .-8 B .8 C .-14 D .-1327.计算(-1)÷(-5)×15的结果是( ) A .-1 B .1 C .125D .-25 8.计算12+(-18)÷(-6)-(-3)×2的结果是( )A .7B .8C .21D .369.计算:(1)(-12)÷3;(2)(-16)÷⎝ ⎛⎭⎪⎫-14; (3)(-12)÷⎝ ⎛⎭⎪⎫-12÷(-10).10.化简下列分数: (1)-162; (2)-1248; (3)-54-6; (4)-9-0.3. 11.一列数a1,a2,a3,…满足条件:a1=12,an =11-an -1(n≥2,且n 为整数),则a2 019=____. 12.用“<”“>”或“=”填空.(1)当m>0,n<0时,n m____0; (2)当m<0,n>0时,n m____0; (3)当m<0,n<0时,n m____0; (4)当m<0,n =0时,n m____0. 13.计算:(1)⎝ ⎛⎭⎪⎫-1747÷(-6)-3.5÷78×⎝ ⎛⎭⎪⎫-34; (2)-32÷2×12÷(-4); (3)(-5)÷⎝ ⎛⎭⎪⎫-97×45×⎝ ⎛⎭⎪⎫-94÷7; (4)⎝ ⎛⎭⎪⎫-1313×15+⎝ ⎛⎭⎪⎫-523×15+⎝ ⎛⎭⎪⎫-7717÷5+⎝⎛⎭⎪⎫+7617÷5. 14.已知A.b 互为相反数,C.d 互为倒数,m 的绝对值等于2,求a +b c +d+m -2cd 的值.15.阅读下列材料:计算:124÷⎝ ⎛⎭⎪⎫13-14+112. 解法一:原式=124÷13-124÷14+124÷112=124×3-124×4+124×12 =1124. 解法二:原式=124÷⎝ ⎛⎭⎪⎫412-312+112 =124÷212=124×6=14. 解法三:原式的倒数=⎝ ⎛⎭⎪⎫13-14+112÷124=⎝ ⎛⎭⎪⎫13-14+112×24 =13×24-14×24+112×24 =4.所以,原式=14. (1)上述的三种解法中有错误的解法,你认为哪一种解法是错误的?(2)通过上述解题过程,请你根据解法三计算:⎝ ⎛⎭⎪⎫-142÷⎝ ⎛⎭⎪⎫16-314+23-27.参考答案 A D BBBAC C9.解:(1)原式=-4; (2)原式=16×4=64;(3)原式=-12×2×110=-2.4. 10. 解:(1)原式=-8;(2)原式=-14; (3)原式=9; (4)原式=30.11. -1【解析】 a1=12,a2=11-12=2, a3=11-2=-1,a4=11-(-1)=12,… 可以发现:数列以12、2、-1循环出现, ∵2 019÷3=673,∴a2 019=-1.12.< < > =13. 解:(1)原式=-1747×⎝ ⎛⎭⎪⎫-16-72×87×⎝ ⎛⎭⎪⎫-34=297+3=507; (2)原式=-32×12×12×⎝ ⎛⎭⎪⎫-14=332; (3)原式=-5×⎝ ⎛⎭⎪⎫-79×45×⎝ ⎛⎭⎪⎫-94×17=-1; (4)原式=⎝ ⎛⎭⎪⎫-403×15+⎝ ⎛⎭⎪⎫-173×15+⎝⎛⎭⎪⎫-7717×15+⎝ ⎛⎭⎪⎫+7617×15=15×⎝ ⎛⎭⎪⎫-403-173+15×⎝⎛⎭⎪⎫-7717+7617 =15×(-19)+15×(-1) =15×(-19-1) =15×(-20) =-4.14. 解: 由已知条件可得a +b =0,cd =1, m =±2,当m =2时,原式=0c +d+2-2×1=0; 当m =-2时,原式=0c +d+(-2)-2×1=-4. 所以a +b c +d+m -2cd 的值为0或-4. 15. 解:(1)一;(2)原式的倒数为原式的倒数为⎝ ⎛⎭⎪⎫16-314+23-27÷⎝ ⎛⎭⎪⎫-142 =-7+9-28+12=-35+21=-14,则原式=-114.。
1.4.2有理数除法第一课时一.选择题1.计算(-16)÷8的结果等于( )A.12B.-2 C.3 D.-1A.-12B.12C.-2 D.23.两个不为零的有理数相除,如果交换它们的位置,商不变,那么( )A.两数相等B.两数互为相反数C.两数互为倒数D.两数相等或互为相反数A.-1 B.1 C.118D.-118A.−−aB.−aC.−aD.a+A.3 B.-1 C.-3 D.3或-1二.填空题三.解答题11.化简下列分数.12.计算:答案:1.B2.C3.D解析:交换它们的位置,商不变则两数相等或互为相反数.4.C=b=111.解:(1)原式=-3;(2)原式(3)原式=6×5=30;12.解:(1)原式=0;1.4.2有理数的除法第二课时一.选择题1.计算-1-2×(-3)的结果等于( )A.5 B.-5 C.7 D.-72.计算:12-7×(-4)+8÷(-2)的结果是( )A.-24 B.-20 C.6 D.36)的结果是( )A.24 B.-12 C.-9 D.64.某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年平均每月的盈亏(精确到0.001万元)是( )A.盈利3.7万元B.亏损0.008万元C.盈利0.308万元D.亏损0.308万元A.1 B.-1 C.-11 D.116.蜗牛在井里距井口1米处,它每天白天向上爬行30cm,但每天晚上又下滑20cm.蜗牛爬出井口需要的天数是( )A.8天B.9天C.10天D.11天二.填空题1-13三.解答题11.阅读下列材料:解法一:原式=50÷故原式=300.上述得出的结果不同,肯定有错误的解法,你认为解法______是错误的.在正确的解法中,你认为解法最简捷.然后,请你解答下列问题:12.计算题(1)6-|-12|÷(-3).(2)(-48)÷8-(-25)×(-6)答案:1.A2.D3.B4.C解析:根据题意列式-1.5×3+2×3+1.7×4-2.3×2=-4.5+6+6.8-4.6=-9.1+12.8=3.7(万元).3.7÷12≈0.308(万元).所以这个公司去年平均每月盈利约0.308万元.5.B6.A解析:∵30cm=0.3m,20cm=0.2m,∴蜗牛每天向上实际爬0.3-0.2=0.1米,蜗牛最后一天可以爬出井,在此之前它要爬1-0.3=0.7(米),∴蜗牛要先爬7天,加上最后一天,总共是8天.=27+16-15=28.11.解:上述得出的结果不同,肯定有错误的解法,我认为解法一是错误的.在正确的解法中,你认为解法三最简捷;原式的倒数为(=-12.解:(1)原式=6-12÷(-3)=6+4=10.。
人教新版七年级上学期《1.4.2 有理数的除法》同步练习组卷一.选择题(共1小题)1.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则()A.①,②都不对; B.①对,②不对; C.①,②都对;D.①不对,②对二.填空题(共7小题)2.﹣5的倒数是;﹣的相反数是.3.的倒数是.4.﹣2的倒数是;﹣2的相反数是.5.一个数的倒数的绝对值是4,则这个数是.6.若x,y互为倒数,则(﹣xy)2017=.7.如果﹣3与a互为倒数,那么a=.8.﹣1.3的倒数是:.三.解答题(共32小题)9.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.10.填表.111.写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.12.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,(1)a2是a1的差倒数,求a2;(2)a3是a2的差倒数,则a3;是a n的差倒数,直接写出a2015.(3)a4是a3的差倒数,…依此类推a n+113.如图是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)(1)你认为当输入什么数时,其输出结果是0?(2)你认为这个“有理数转换器”不可能输出什么数?(3)当小明输入3;;﹣201这三个数时,这三次输出的结果分别是:.(4)有一次,小明在操作的时候,输出的结果是2,你判断一下,小明可能输入的是什么数?14.填表:15.结合具体的数,通过特例进行归纳,然后判断下列说法的对错,认为对的,说明理由,认为错的,举出反例.(1)任何一个数与它的相反数的和都为O;(2)任何一个数a(a≠0)与它的倒数的积可能是1也可能是﹣1;(3)如果a大于b(a<0,b<0).那么a的倒数大于b的倒数.16.如图,是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)(1)当小明输入3;﹣4;;﹣201这四个数时,这四次输出的结果分别是?(2)你认为当输入什么数时,其输出结果是0?(3)你认为这个“有理数转换器”不可能输出什么数?(4)有一次,小明在操作的时候,输出的结果是2,你判断一下,小明可能输入的数是什么数?17.填空:18.如图是一个“数值转换机”(箭头是指数进入转换机的路径,方框是对进入的数进行转换的转换机).(1)当小明输入4,7这两个数时,则两次输出的结果依次为,;(2)你认为当输入数等于时(写出一个即可),其输出结果为0;(3)你认为这个“数值转换机”不可能输出数;(4)有一次,小明操作的时候,输出的结果是2,聪明的你判断一下,小明输入的正整数是(用含自然数n的代数式表示).19.有三个有理数a,b,c,已知a=,(n为正整数)且a与b互为相反数,b与c互为倒数.(1)当n为奇数时你能求出a,b,c各是几吗?(2)当n为偶数时,你能求a,b,c三数吗?若能请算出结果,不能请说明理由.(3)根据(1)中的结论,求:ab﹣b n﹣(b﹣c)2015的值.20.写出下列各数的倒数:(1)﹣15;(2);(3)﹣0.25;(4)0.13;(5)4;(6)﹣5.21.写出下列各数的倒数:(1)﹣15;(2)﹣;(3)﹣0.25;(4)0.17;(5)4;(6)﹣5.22.求下列各数的倒数..(1)(﹣)÷(﹣)×();(2)(﹣)×(﹣1)÷(+2);(3)(﹣1)÷(﹣)÷(﹣0.25);(4)7×(﹣)÷(+÷)24.直接写出计算结果(1)×6=(2)×=(3)÷5=(4)÷1=25.(1)×56×(2)4.75×37.5%+×5.25(3)95%+10÷200(4)×÷×.26.计算:(1)﹣91÷13;(2)﹣56÷(﹣14);(3)16÷(﹣3);(4)(﹣48)÷(﹣16);(5)÷(﹣1);(6)﹣0.25÷.27.怎样算简便就怎样算(1)2÷+3×(2)÷25%﹣÷0.75.(1)()×(2)×÷()(3)()÷(4)÷()(5)×(﹣5)(6)÷(﹣5)29.计算.(1)()÷(﹣5)×();(2)÷×(﹣0.6)×÷1.4×();(3).30.计算.(1)()÷();(2)(﹣2.7)÷(﹣0.4);(3)()÷;(4)15÷().31.计算:(1)(﹣8)÷×(﹣7);(2)﹣×(﹣)÷;(3)(﹣1)÷(﹣5)×(﹣);(4)(﹣)÷÷(﹣);(5)(﹣1155)÷[(﹣11)×(+3)×(﹣5)];(6)﹣5×(﹣)+13×(﹣)﹣3×(﹣).32.计算:(1)(﹣3)÷(﹣)×0.75÷(﹣)×(﹣6);(2)(﹣)×(﹣0.1)÷×(﹣10);(3)[(﹣72)×(﹣)]×[(﹣)÷(﹣)].33.用符号M表示一种运算,它对整数和分数的运算结果分别如下:M(1)=﹣2,M(2)=﹣1,M(3)=0,M(4)=1…M()=﹣,M()=﹣,M()=﹣,…利用以上规律计算:(1)M(28)×M();(2)﹣1÷M(39)÷[﹣M()].34.化简下列分数:(1);(2);(3);(4).35.计算:①(﹣16.8)÷(﹣3);②;③;④;⑤﹣18÷(+3.25)÷.36.对于任意的两个实数对(a,b)和(c,d),规定:当a=c,b=d时,有(a,b)=(c,d);运算“⊗”为:(a,b)⊗(c,d)=(ac,bd);运算“⊕”为:(a,b)⊕(c,d)=(a+c,b+d).设p,q都是实数,如果(1,2)⊗(p,q)=(2,﹣4),请计算:(1,2)⊕(p,q).37.计算:(1)(﹣84)÷(﹣7).(2)()÷11(3)1(4)2(5)(﹣36)÷9(6)()(7)(﹣3)×0.75×÷3.38.计算:(1)﹣8+(﹣15)÷(﹣5)(2)()×(3)5(4)(﹣24).39.阅读下列材料,回答问题.【材料1】乘积是1的两个数互为倒数,即与互为倒数,也就是说,a÷b=x.则b÷a=.【材料2】乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把所得的积相加,即(a+b)c=ac+bc.利用上述材料,巧解下题:.40.计算(1)(﹣)×(﹣)×0×(2)(3)(﹣﹣)×(﹣24)(4).人教新版七年级上学期《1.4.2 有理数的除法》2018年同步练习组卷参考答案与试题解析一.选择题(共1小题)1.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则()A.①,②都不对; B.①对,②不对; C.①,②都对;D.①不对,②对【分析】根据相反数和倒数的概念,结合有理数的定义进行判断.【解答】解:①因0的相反数是0,0和0之间没有有理数,故错误;②因1的倒数是1,1和1之间没有有理数,故错误;故选:A.【点评】考查了倒数和相反数的定义,相反数等于它本身的数是0,倒数等于它本身的数是±1.二.填空题(共7小题)2.﹣5的倒数是﹣;﹣的相反数是.【分析】根据倒数和相反数的定义进行解答即可.【解答】解:﹣5的倒数是﹣;﹣的相反数是.故答案为:﹣;.【点评】主要考查倒数和相反数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;只有符号不同的两个数互为相反数.3.的倒数是.【分析】先计算绝对值,再根据倒数的定义求解即可.【解答】解:=4,4的倒数是.故答案为:.【点评】考查了绝对值,倒数,考察了学生对概念的记忆,属于基础题.4.﹣2的倒数是﹣;﹣2的相反数是2.【分析】首先根据求一个整数的倒数,就是写成这个整数分之一,可得:﹣2的倒数是﹣;然后根据相反数的含义和求法,可得:﹣2的相反数是2.【解答】解:﹣2的倒数是﹣;﹣2的相反数是2.故答案为:﹣、2.【点评】此题主要考查了一个数的倒数的求法,以及相反数的含义和求法,要熟练掌握,解答此题的关键是要明确:①求一个整数的倒数,就是写成这个整数分之一.②求一个分数的倒数,就是调换分子和分母的位置.5.一个数的倒数的绝对值是4,则这个数是.【分析】根据绝对值性质可得这个数的倒数是±4,再根据倒数定义可得这个数为.【解答】解:±的倒数的绝对值是4,故答案为:.【点评】此题主要考查了倒数,以及绝对值,关键是掌握绝对值等于一个正数的数有两个,乘积是1的两数互为倒数.6.若x,y互为倒数,则(﹣xy)2017=﹣1.【分析】根据乘积是1的两个数互为倒数,可得xy=1,根据﹣1的奇次幂,可得(﹣xy)2017.【解答】解:∵x、y互为倒数,∴(﹣xy)2017=(﹣1)2017=﹣1,故答案为:﹣1.【点评】本题考查了倒数,注意﹣1的2017次幂是负数.7.如果﹣3与a互为倒数,那么a=﹣.【分析】根据倒数的定义回答即可.【解答】解:∵﹣3的倒数是﹣,∴a=﹣.故答案为:﹣.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.8.﹣1.3的倒数是:﹣.【分析】依据倒数的定义求解即可.【解答】解:﹣1.3的倒数是﹣.故答案为:﹣.【点评】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.三.解答题(共32小题)9.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3;当m=﹣2时,m+cd+=﹣2+1+0=﹣1.【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.10.填表.111﹣﹣【分析】直接利用的定义分别分析得出答案.【解答】解:111【点评】此题主要考查了倒数、绝对值以及相反数,正确把握相关定义是解题关键.11.写出符合下列条件的数:(1)最小的正整数:1;(2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6;(5)倒数等于本身的数:±1;(6)绝对值等于它的相反数的数:0或负数.【分析】根据正整数、绝对值、负整数、倒数、相反数的定义结合数轴进行解答.【解答】解:如图.(1)最小的正整数:1;(2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6;(5)倒数等于本身的数:±1;(6)绝对值等于它的相反数的数:0或负数.故答案为:1;0;﹣4,﹣5;4,﹣6;±1;0或负数.【点评】本题考查了正整数、绝对值、负整数、倒数、相反数的定义,利用数形结合是解题的关键.12.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,(1)a2是a1的差倒数,求a2;(2)a3是a2的差倒数,则a3;(3)a4是a3的差倒数,…依此类推a n是a n的差倒数,直接写出a2015.+1【分析】(1)根据差倒数的定义,即可解答;(2)根据差倒数的定义,即可解答;(3)根据定义计算前几个数,直到计算到循环时,根据几个一循环,即可得到结果.【解答】解:(1)根据题意,得:.(2)根据题意,得:=4.(3)由,,a3=4,,2015÷3=671…2,∴.【点评】本题考查了倒数,解决本题的关键是读懂题意,找到规律.13.如图是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)(1)你认为当输入什么数时,其输出结果是0?(2)你认为这个“有理数转换器”不可能输出什么数?(3)当小明输入3;;﹣201这三个数时,这三次输出的结果分别是:,,.(4)有一次,小明在操作的时候,输出的结果是2,你判断一下,小明可能输入的是什么数?【分析】(1)由此程序可知,当输出0时,因为0的相反数及绝对值均为0,所以应输入0;(2)由已知输出的各数可找出规律;(3)先判断出3、、﹣201与2的大小,再根据所给程序图找出合适的程序进行计算即可;(4)设输入的数为x,分2<x<7、0<x<2、当x<0及x>7四种情况进行讨论,按输入程序进行解答.【解答】解:(1)∵输出数为0,0的相反数及绝对值均为0,当输入5的倍数时也输出0.∴应输入0或5n(n为自然数);(2)由(1)中输出的各数均为非负数可知,输出的数应为非负数;(3)∵3>2,∴输入3时的程序为:(3﹣5)=﹣2<0,∴﹣2的相反数是2>0,2的倒数是,∴当输入3时,输出;当输入时,<2,∴其相反数是﹣,其绝对值是,∴当输入时,输出;当输入﹣201时,﹣201<2,∴其相反数是201>0,其倒数是,∴当输入﹣201时,输出;故答案为:,,;(4)由输出的数为2,设输入的数为x,①当2<x<7时,(x﹣5)<0,其相反数是5﹣x>0,其倒数是=2,解得x=;②当0<x<2时,其相反数是﹣x<0,其绝对值是x=2,故x=2;③当x<0时,其相反数为﹣x>0,其倒数是﹣=2,x=﹣.④当x>7时,按①的程序可知x=+…2n.总上所述,x的可能值为:,2,﹣…,即x=+…2n.【点评】本题考查的是倒数、绝对值及相反数的概念,解答此题的关键是弄清图表中所给的程序,在解(4)时要注意分类讨论.14.填表:﹣﹣【分析】根据相反数的意义、倒数的意义、绝对值的意义,可得答案.【解答】解:﹣【点评】本题考查了倒数,根据意义解题是解题关键.15.结合具体的数,通过特例进行归纳,然后判断下列说法的对错,认为对的,说明理由,认为错的,举出反例.(1)任何一个数与它的相反数的和都为O;(2)任何一个数a(a≠0)与它的倒数的积可能是1也可能是﹣1;(3)如果a大于b(a<0,b<0).那么a的倒数大于b的倒数.【分析】(1)假设a为任意有理数,则它的相反数是﹣a,再根据+(﹣a)=0即可得出结论;(2)根据倒数的定义得出a的倒数是,则a×=1进行解答即可;‘(3)假设a=﹣1,b=﹣2,则a>b,而﹣1的倒数是﹣1,﹣2的倒数是,再比较出其大小即可.【解答】解:(1)是正确的.假设a为任意有理数,则它的相反数是﹣a,所以a+(﹣a)=0,所以(1)的说法是正确的;(2)是错误的.例如:a的倒数是,则a×=1,﹣a的倒数是﹣则,(7分)a(a≠o)的倒数与a的积只能是1,所以(2)的说法是错误的;(3)是错误的.例如:a=﹣1,b=﹣2,则a>b,而﹣1的倒数是﹣1,﹣2的倒数是,显然:﹣1<,即<,所以(3)的说法是错误的.【点评】本题考查的是倒数、相反数的定义及有理数的大小比较,熟知以上知识是解答此题的关键.16.如图,是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)(1)当小明输入3;﹣4;;﹣201这四个数时,这四次输出的结果分别是?(2)你认为当输入什么数时,其输出结果是0?(3)你认为这个“有理数转换器”不可能输出什么数?(4)有一次,小明在操作的时候,输出的结果是2,你判断一下,小明可能输入的数是什么数?【分析】(1)先判断出3、﹣4、、201与2的大小,再根据所给程序图找出合适的程序进行计算即可;(2)由此程序可知,当输出0时,因为0的相反数及绝对值均为0,所以应输入0;(3)由(1)中输出的各数可找出规律;(4)设输入的数为x,分2<x<7、0≤x≤2、当x<0及x≥7四种情况进行讨论,按输入程序进行解答.【解答】解:(1)∵3>2,∴输入3时的程序为:(3﹣5)=﹣2<0,∴﹣2的相反数是2>0,2的倒数是,∴当输入3时,输出;当输入﹣4时,∵﹣4<2,∴﹣4的相反数是4>0,4的倒数是,∴当输入﹣4时,输出;当输入时,<2,∴其相反数是﹣,其绝对值是,∴当输入时,输出;当输入﹣201时,﹣201<2,∴其相反数是201>0,其倒数是,∴当输入﹣201时,输出;(2)∵输出数为0,0的相反数及绝对值均为0,当输入5的倍数时也输出0.∴应输入0或5n(n为自然数);(3)由(1)中输出的各数均为非负数可知,输出的数应为非负数;(4)∵输出的数为2,设输入的数为x,①当2<x<7时,(x﹣5)<0,其相反数是5﹣x>0,其倒数是=2,解得x=;②当0≤x≤2时,其相反数是﹣x<0,其绝对值是x=2,故x=2;③当x<0时,其相反数为﹣x>0,其倒数是﹣=2,x=﹣.④当x≥7时,按①的程序可知x=+…5n.总上所述,x的可能值为:,2,﹣…x=+…5n.【点评】本题考查的是倒数、绝对值及相反数的概念,解答此题的关键是弄清图表中所给的程序,在解(4)时要注意分类讨论.17.填空:﹣【分析】依据相反数、倒数、绝对值的性质求解即可.【解答】解:【点评】本题主要考查的是相反数、倒数、绝对值的性质,熟练掌握相关知识是解题的关键.18.如图是一个“数值转换机”(箭头是指数进入转换机的路径,方框是对进入的数进行转换的转换机).(1)当小明输入4,7这两个数时,则两次输出的结果依次为1,2;(2)你认为当输入数等于0时(写出一个即可),其输出结果为0;(3)你认为这个“数值转换机”不可能输出负数;(4)有一次,小明操作的时候,输出的结果是2,聪明的你判断一下,小明输入的正整数是5n+2(用含自然数n的代数式表示).【分析】(1)分别将4、7代入数值转换机,计算即可得到输出结果;(2)当输入数字为0得到结果为0;(3)数值转换机不可能输出负数;(4)根据数轴转换机的规律表示出结果即可.【解答】解:(1)若输入的数字为4时,4>2,得到4+(﹣5)=﹣1,﹣1<2,得到相反数为1,倒数为1,输出结果为1;若输入数字为7时,7>2,得到7+(﹣5)=2,得到相反数为﹣2,绝对值为2,输出结果为2;(2)根据题意得:输入数字为0(5、10、15…5的倍数均可),结果为0;(3)这个“数值转换机”不可能输出负数;(4)归纳总结得:小明输入的正整数是5n+2.故答案为:1,2;0;负;5n+2.【点评】此题考查了倒数、相反数和绝对值的知识,弄清题中的图表表示的意义是解本题的关键.19.有三个有理数a,b,c,已知a=,(n为正整数)且a与b互为相反数,b与c互为倒数.(1)当n为奇数时你能求出a,b,c各是几吗?(2)当n为偶数时,你能求a,b,c三数吗?若能请算出结果,不能请说明理由.(3)根据(1)中的结论,求:ab﹣b n﹣(b﹣c)2015的值.【分析】(1)当n为奇数时,先求出a,再根据相反数和倒数的定义可求b,c 各是几;(2)当n为偶数时,先求出a,再根据相反数和倒数的定义可求b,c各是几;(3)根据(1)中的结论代入计算即可求解.【解答】解:(1)当n为奇数时,a==2,∵a与b互为相反数,b与c互为倒数,∴b=﹣2,c=﹣;(2)当n为偶数时,a==﹣2,∵a与b互为相反数,b与c互为倒数,∴b=2,c=;(3)∵a=2,b=﹣2,c=﹣,∵ab﹣b n﹣(b﹣c)2015=2×(﹣2)+2n﹣(﹣2+)2015=﹣4+2n+()2015.【点评】本题考查倒数、相反数、本题的关键是明确题意,找出所求问题需要的条件.20.写出下列各数的倒数:(1)﹣15;(2);(3)﹣0.25;(4)0.13;(5)4;(6)﹣5.【分析】根据乘积是1的两数互为倒数,求解即可.【解答】解:(1)﹣15的倒数为:﹣;(2)的倒数为:;(3)﹣0.25的倒数为:﹣4;(4)0.13的倒数为:;(5)4的倒数为:;(6)﹣5的倒数为:﹣.【点评】此题考查倒数的意义和求法:乘积是1的两个数互为倒数,一般在求小数的倒数,先把小数化为分数再求解.21.写出下列各数的倒数:(1)﹣15;(2)﹣;(3)﹣0.25;(4)0.17;(5)4;(6)﹣5.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:(1)﹣15的倒数是﹣;(2)﹣的倒数是﹣;(3)﹣0.25的倒数是﹣4;(4)0.17的倒数是;(5)4的倒数是;(6)﹣5的倒数是﹣.【点评】本题考查了倒数,先把带分数化成假分数在求倒数.22.求下列各数的倒数..【分析】根据倒数的定义求解即可.【解答】解:(1)的倒数是;(2),故的倒数是;(3)﹣1.25=﹣1=﹣,故﹣1.25的倒数是﹣;(4)5的倒数是.【点评】本题主要考查倒数的概念及性质,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.23.计算:(1)(﹣)÷(﹣)×();(2)(﹣)×(﹣1)÷(+2);(3)(﹣1)÷(﹣)÷(﹣0.25);(4)7×(﹣)÷(+÷)【分析】(1)原式利用除法法则变形,约分即可得到结果;(2)原式利用除法法则变形,约分即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=××=1;(2)原式=××=;(3)原式=﹣××4=﹣;(4)原式=﹣××=.【点评】此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.24.直接写出计算结果(1)×6=(2)×=(3)÷5=(4)÷1=【分析】根据有理数的乘法法则、除法法则计算即可.【解答】解:(1)×6=4;(2)×=;(3)÷5=×=;(4)÷1=×=.【点评】本题考查的是有理数的乘除法计算,掌握有理数的乘法法则、除法法则是解题的关键.25.(1)×56×(2)4.75×37.5%+×5.25(3)95%+10÷200(4)×÷×.【分析】(1)从左往右依次算起;(2)先计算,再逆用乘法对加法的分配律;(3)先算除法,再加减;(4)把除法统一成乘法,再约分计算.【解答】解:(1)×56×=7×=2;(2)4.75×37.5%+×5.25=4.75×0.375+0.375×5.25=0.375×(4.75+5.25)=0.375×10=3.75;(3)95%+10÷200=+=1;(4)×÷×=×××=.【点评】本题考查了有理数的加减乘除混合运算.对于有理数的混合运算,先乘除再加减;运用运算律可以使运算简便.26.计算:(1)﹣91÷13;(2)﹣56÷(﹣14);(3)16÷(﹣3);(4)(﹣48)÷(﹣16);(5)÷(﹣1);(6)﹣0.25÷.【分析】根据有理数的除法:同号得正异号得负,绝对值相除,可得答案.【解答】解:(1)原式=﹣(91÷13)=﹣7;(2)原式=56÷14=4;(3)原式=16×(﹣)=﹣;(4)原式=48÷16=3;(5)原式=×(﹣1)=﹣;(6)原式=﹣×=﹣.【点评】本题考查了有理数的除法,同号得正异号得负绝对值相除;除以一个数等于乘以这个数的倒数.27.怎样算简便就怎样算(1)2÷+3×(2)÷25%﹣÷0.75.【分析】(1)利用有理数乘除法的法则求解即可,(2)利用有理数乘除法的法则求解即可.【解答】解:(1)2÷+3×=2×+3×,=3+1,=4,(2)÷25%﹣÷0.75.=÷﹣÷,=1﹣1,=0.【点评】本题主要考查了有理数的除法及有理数的乘法,解题的关键是熟记有理数乘除法的法则.28.计算:(1)()×(2)×÷()(3)()÷(4)÷()(5)×(﹣5)(6)÷(﹣5)【分析】原式各项利用除法法则变形,再计算乘法法则计算即可得到结果.【解答】解:(1)原式=﹣×=﹣;(2)原式=﹣××(﹣)=2;(3)原式=(1﹣+)×(﹣24)=﹣42+21﹣14=﹣35;(4)原式=﹣÷=﹣×=﹣;(5)原式=(50﹣)×(﹣5)=﹣250+=﹣249;(6)原式=(﹣30+)×(﹣)=6﹣=5.【点评】此题考查了有理数的乘除法,熟练掌握运算法则是解本题的关键.29.计算.(1)()÷(﹣5)×();(2)÷×(﹣0.6)×÷1.4×();(3).【分析】(1)原式利用除法法则变形,约分即可得到结果;(2)原式利用除法法则变形,约分即可得到结果;(3)原式中括号中利用减法法则变形,计算后利用除法法则计算即可得到结果.【解答】解:(1)原式=﹣×(﹣)×(﹣)=﹣;(2)原式=﹣××(﹣)×××(﹣)=﹣;(3)原式=﹣÷(+﹣)=﹣÷=﹣×9=﹣.【点评】此题考查了有理数的乘除法,熟练掌握运算法则是解本题的关键.30.计算.(1)()÷();(2)(﹣2.7)÷(﹣0.4);(3)()÷;(4)15÷().【分析】(1)原式利用除法法则计算即可得到结果;(2)原式利用除法法则计算即可得到结果;(3)原式先计算括号中的运算,约分即可得到结果;(4)原式先计算括号中的运算,再计算除法运算即可得到结果.【解答】解:(1)原式=×=;(2)原式=;(3)原式=(﹣﹣)×=﹣×=﹣;(4)原式=15÷(﹣)=15×(﹣)=﹣.【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.31.计算:(1)(﹣8)÷×(﹣7);(2)﹣×(﹣)÷;(3)(﹣1)÷(﹣5)×(﹣);(4)(﹣)÷÷(﹣);(5)(﹣1155)÷[(﹣11)×(+3)×(﹣5)];(6)﹣5×(﹣)+13×(﹣)﹣3×(﹣).【分析】(1)先把除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解;(2)把除法转化为乘法,带分数化为假分数,然后根据有理数的乘法运算法则进行计算即可得解;(3)把除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解;(4)把除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解;(5)先算括号里面的,再根据有理数的除法进行计算即可得解;(6)逆运用乘法分配律进行计算即可得解.【解答】解:1)(﹣8)÷×(﹣7)=8××7=84;(2))﹣×(﹣)÷=××=;(3))(﹣1)÷(﹣5)×(﹣)=﹣1××=﹣;(4)(﹣)÷÷(﹣)=﹣×4×(﹣)=×4×=;(5)(﹣1155)÷[(﹣11)×(+3)×(﹣5)]=(﹣1155)÷165=﹣7;(6)﹣5×(﹣)+13×(﹣)﹣3×(﹣)=(﹣5+13﹣3)×(﹣)=5×(﹣)=﹣11.【点评】本题考查了有理数的除法,乘除同一级运算,要按照从左到右的顺序依次进行运算,把带分数互为假分数约分更加简便.32.计算:(1)(﹣3)÷(﹣)×0.75÷(﹣)×(﹣6);(2)(﹣)×(﹣0.1)÷×(﹣10);(3)[(﹣72)×(﹣)]×[(﹣)÷(﹣)].【分析】(1)首先确定结果的符号,再把除法变为乘法,先约分,后相乘进行计算即可;(2)首先确定结果的符号,再把除法变为乘法,约分后相乘进行计算即可;(3)首先计算括号里面的,再计算括号外面的乘法即可.【解答】解:(1)原式=3××××6=18;(2)原式=﹣(××25×10)=﹣5;(3)原式=(72×)×(×)=48×=54.【点评】此题主要考查了乘除混合运算,乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.33.用符号M表示一种运算,它对整数和分数的运算结果分别如下:M(1)=﹣2,M(2)=﹣1,M(3)=0,M(4)=1…M()=﹣,M()=﹣,M()=﹣,…利用以上规律计算:(1)M(28)×M();(2)﹣1÷M(39)÷[﹣M()].【分析】(1)根据M(1)=﹣2,M(2)=﹣1,M(3)=0,M(4)=1…,可得M(n)=n﹣3,根据M()=﹣,M()=﹣,M()=﹣,…,可得M()=﹣()2,再根据有理数的乘法,可得答案;(2)根据M(1)=﹣2,M(2)=﹣1,M(3)=0,M(4)=1…,可得M(n)=n﹣3,根据M()=﹣,M()=﹣,M()=﹣,…,可得M()=﹣()2,再根据有理数的除法,可得答案.【解答】解:(1)原式=(28﹣3)×[﹣()2]=25×(﹣)=﹣1;(2)原式=﹣1÷(39﹣3)÷{﹣[﹣()2]}=﹣1××36=﹣1.【点评】本题考查了有理数的除法,利用M(n)=n﹣3,M()=﹣()2得出有理数的乘除法是解题关键.34.化简下列分数:(1);(2);(3);(4).【分析】利用分数的基本性质和有理数的除法法则计算即可.【解答】解:(1)=;(2)=﹣3;(3)=;(4)==3.【点评】本题主要考查的是有理数的除法法则和分数的化简,掌握分数的约分方法是解题的关键.35.计算:①(﹣16.8)÷(﹣3);②;③;④;⑤﹣18÷(+3.25)÷.【分析】①②③根据有理数的除法运算法则:两数相除,同号得正,异号得负,并把绝对值相除;④⑤几个数相除,先把除法化为乘法,再按乘法法则进行计算.【解答】解:①原式=16.8÷3,=16.8×,=5.6;②原式=,=,=;③原式=﹣,=﹣,=;④原式=1.25÷0.5÷,=,=4;⑤原式=18÷3.25÷2,=18××,=.【点评】本题考查了有理数的除法运算法则:两数相除,同号得正,异号得负,并把绝对值相除,特别注意有多个数相除时法则.36.对于任意的两个实数对(a,b)和(c,d),规定:当a=c,b=d时,有(a,b)=(c,d);运算“⊗”为:(a,b)⊗(c,d)=(ac,bd);运算“⊕”为:(a,b)⊕(c,d)=(a+c,b+d).设p,q都是实数,如果(1,2)⊗(p,q)=(2,﹣4),请计算:(1,2)⊕(p,q).【分析】先根据运算“⊗”求出p、q,然后根据运算“⊕”列式计算即可得解.【解答】解:∵(1,2)⊗(p,q)=(1•p,2q)=(2,﹣4),∴p=2,q=﹣2,∴(1,2)⊕(p,q)=(1,2)⊕(2,﹣2)=(1+2,2+(﹣2))=(3,0).【点评】本题考查了有理数的除法,读懂题目信息理解两种运算“⊗”和“⊕”的运算方法是解题的关键.37.计算:(1)(﹣84)÷(﹣7).(2)()÷11(3)1(4)2(5)(﹣36)÷9(6)()(7)(﹣3)×0.75×÷3.【分析】(1)根据有理数混合运算法则先算乘除,后算加减,除以一个数等于乘以这个数的倒数,进而求出即可;(2)根据有理数除法运算法则,除以一个数等于乘以这个数的倒数,进而求出即可;(3)根据有理数混合运算法则先算乘除,后算加减,除以一个数等于乘以这个数的倒数,进而求出即可;(4)根据有理数混合运算法则先算括号里面的,再算乘除,除以一个数等于乘以这个数的倒数,进而求出即可.(5)根据有理数除法运算法则,除以一个数等于乘以这个数的倒数,进而求出即可;(6)首先统一成乘法,再约分,相乘即可;(7)首先统一成乘法,再约分,相乘即可,注意结果符号的判断;【解答】解:(1)(﹣84)÷(﹣7)=12;(2)()÷11=﹣×=﹣;(3)1=1×(﹣)=﹣;(4)2=×(﹣)=﹣2;(5)(﹣36)÷9=(﹣36﹣)×=﹣4﹣=﹣4;(6)()=﹣×(﹣)×(_)=﹣;(7)(﹣3)×0.75×÷3=﹣3×(﹣)×××=1.【点评】此题主要考查了有理数的混合运算,注意运算顺序以及运算法则,结果符号的判断是解题关键.38.计算:(1)﹣8+(﹣15)÷(﹣5)(2)()×(3)5(4)(﹣24).【分析】(1)根据有理数混合运算法则先算乘除,后算加减,除以一个数等于乘以这个数的倒数,进而求出即可;(2)根据有理数除法运算法则,除以一个数等于乘以这个数的倒数,进而求出即可;(3)根据有理数混合运算法则先算乘除,后算加减,除以一个数等于乘以这个数的倒数,进而求出即可;(4)根据有理数混合运算法则先算括号里面的,再算乘除,除以一个数等于乘以这个数的倒数,进而求出即可.【解答】解:(1)﹣8+(﹣15)÷(﹣5)=﹣8+3=﹣5;(2)()×=(﹣)×(﹣)××=;(3)5=5﹣3××﹣2×(﹣2)=8;(4)(﹣24)=﹣24÷=﹣144.【点评】此题主要考查了有理数的混合运算,注意运算顺序以及运算法则是解题关键.39.阅读下列材料,回答问题.【材料1】乘积是1的两个数互为倒数,即与互为倒数,也就是说,a÷b=x.则b÷a=.【材料2】乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把所得的积相加,即(a+b)c=ac+bc.利用上述材料,巧解下题:.【分析】根据所给材料,先算(﹣+﹣)÷(﹣)的值,再根据倒数的定义即可求解.【解答】解:有误(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20+3﹣5+12=﹣10,所以=﹣.【点评】考查了有理数的除法,本题关键是看懂材料,灵活运用运算律简便计算.40.计算(1)(﹣)×(﹣)×0×(2)(3)(﹣﹣)×(﹣24)(4).【分析】(1)根据任何数同零相乘,都得0可直接得到答案;(2)首先把除法统一成乘法再进行计算;(3)利用乘法分配律用﹣24分别乘以括号里的每一项,再约分计算有理数的加减即可;(4)首先把乘除混合运算统一成乘法,再确定积的符号,把绝对值相乘即可.【解答】解:(1)原式=0;(2)原式=(﹣)×(﹣)×(﹣4)=﹣(××4)=﹣;(3)原式=×(﹣24)﹣×(﹣24)﹣×(﹣24)=﹣20+18+8=6;(4)原式=3×(﹣)××(﹣)=3×××=.【点评】此题主要考查了有理数的乘除法,关键是掌握乘除法法则,注意结果符号的判断.。
1.4.2 有理数的除法一.选择题(共6小题).1.关于“0”,下列说法不正确的是()A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数2.下列运算有错误的是()A.÷(﹣3)=3×(﹣3)B.C.8﹣(﹣2)=8+2D.2﹣7=(+2)+(﹣7)3.下列运算正确的是()A.﹣3﹣(﹣)=4B.0﹣2=﹣2C.×(﹣)=1D.﹣2÷(﹣4)=24.已知a<0.且|a|<1,那么的值()A.等于1B.小于零C.等于﹣1D.大于零5.两个不为零的有理数相除,如果交换它们的位置,商不变,那么()A.两数相等B.两数互为相反数C.两数互为倒数D.两数相等或互为相反数6.计算(﹣1)÷(﹣9)×的结果是()A.﹣1B.1C.D.﹣二.填空题7.若a=﹣,b=﹣,c=,则=.8.已知a为有理数,且a≠0,则=.9.若=0,则一定有m,n.10.化简:=;=.11.计算:(﹣9)×÷(﹣2)=;(+)÷(﹣6)=.12.在如图所示的运算流程中,若输出的数y=3,则输入的数x=.13.若a>0,则=;若a<0,则=.14.如果>0,>0,那么0.三、解答题15.计算:(1);(2).16.当x=1,y=﹣3时,求[x÷(y﹣1)]×(﹣4)﹣[xy÷(﹣3)]÷(﹣1)的值.17.已知M=﹣++3(1)当a=3,b为a的倒数时,求M的值;(2)当a=﹣5时,b为a的相反数时,求M的值.18一天,小红与小莉利用温差测量山峰的高度,小红在山顶测得温度是﹣1℃,小莉此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?参考答案与试题解析一.选择题1.关于“0”,下列说法不正确的是()A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数【分析】分别根据相反数、绝对值和倒数的定义判断.解:A、0的相反数为0,所以A选项的说法正确;B、0的绝对值为0,所以B选项的说法正确;C、0没有倒数,所以C选项的说法错误;D、0的绝对值和相反数都等于0,所以D选项的说法正确.故选:C.2.下列运算有错误的是()A.÷(﹣3)=3×(﹣3)B.C.8﹣(﹣2)=8+2D.2﹣7=(+2)+(﹣7)【分析】根据有理数的运算法则判断各选项的计算过程.减去一个数等于加上这个数的相反数;除以一个数等于乘以这个数的倒数.解:只有A中的计算是错误的,理由:÷(﹣3)=×(﹣)=﹣,3×(﹣3)=﹣9.故选:A.3.下列运算正确的是()A.﹣3﹣(﹣)=4B.0﹣2=﹣2C.×(﹣)=1D.﹣2÷(﹣4)=2【分析】原式各项计算得到结果,即可做出判断.解:A、原式=﹣3+=﹣3,错误;B、原式=﹣2,正确;C、原式=﹣1,错误;D、原式=,错误,故选:B.4.已知a<0.且|a|<1,那么的值()A.等于1B.小于零C.等于﹣1D.大于零【分析】先根据a的取值范围确定a﹣1及a的符号,再根据绝对值的性质去掉绝对值符号,最后根据分式的性质进行化简.解:∵a<0.且|a|<1,∴﹣1<a<0,∴|a﹣1|=1﹣a>0,|a|﹣1=﹣a﹣1<0,∴=<0.故选:B.5.两个不为零的有理数相除,如果交换它们的位置,商不变,那么()A.两数相等B.两数互为相反数C.两数互为倒数D.两数相等或互为相反数【分析】根据相反数(0除外)的商为﹣1,以及相同两数(0除外)的商为1可得答案.解:交换它们的位置,商不变则两数相等或互为相反数,故选:D.6.计算(﹣1)÷(﹣9)×的结果是()A.﹣1B.1C.D.﹣【分析】根据除以一个数等于乘以这个数的倒数,可转化成有理数的乘法,根据有理数的乘法,可得答案.解:(﹣1)÷(﹣9)×=﹣1×(﹣)×=,故选:C.二.填空题7.若a=﹣,b=﹣,c=,则=﹣.【分析】将a、b、c的值代入所求式子,然后计算即可.解:∵a=﹣,b=﹣,c=,∴===﹣×4=﹣,故答案为:﹣.8.已知a为有理数,且a≠0,则=1或﹣1.【分析】由于a为有理数且a≠0,所以可分a为正数和负数两种情况,去绝对值符号后约分即可求解.解:(1)当a>0时,==1;(2)当a<0时,==﹣1.则=1或﹣1.故答案为:1或﹣1.9.若=0,则一定有m=0,n≠0.【分析】根据0除以任何一个不等于0的数,都得0,即可得出答案.解:若=0,则一定有m=0,n≠0.故答案为:=0,≠0.10.化简:=﹣;=.【分析】根据分数的基本性质化简即可求解.解:=﹣;=.故答案为:﹣;.11.计算:(﹣9)×÷(﹣2)=6;(+)÷(﹣6)=﹣.【分析】将除法变为乘法,再约分计算即可求解;先算小括号里面的加法,再算括号外面的除法.解:(﹣9)×÷(﹣2)=(﹣9)××(﹣)=6;(+)÷(﹣6)=÷(﹣6)=﹣.故答案为:6;﹣.12.在如图所示的运算流程中,若输出的数y=3,则输入的数x=5或6.【分析】根据所给的图可知,若x为偶数,则x=2y,若x不是偶数,则x=2y﹣1,分两种情况计算x的值.解:当x是偶数时,有x=2×3=6,当x是奇数时,有x=2×3﹣1=5.故本题答案为:5或6.13.若a>0,则=;若a<0,则=.【考点】绝对值;有理数的除法.【答案】见试题解答内容【分析】由绝对值的性质化简求解,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.若a>0,则求得的值;若a<0,则可求得的值.解:∵a>0,∴==1;∵a<0,∴==﹣1.14.如果>0,>0,那么0.【考点】有理数的除法.【答案】见试题解答内容【分析】求出a>0,b>0,然后根据同号得正解答.解:∵>0,>0,∴a>0,b>0,∴>0.故答案为:>.三、解答题15.计算:(1);(2).【考点】有理数的混合运算.【专题】计算题;实数;运算能力.【答案】(1)﹣1;(2)﹣.【分析】(1)先算乘除,后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的灵活运用;(2)先算乘除,后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.解:(1)=(1﹣×24﹣×24+×24)÷(﹣5)=(1﹣9﹣4+18)÷(﹣5)=6÷(﹣5)=﹣1;(2)=×(﹣)××=﹣.16.当x=1,y=﹣3时,求[x÷(y﹣1)]×(﹣4)﹣[xy÷(﹣3)]÷(﹣1)的值.【考点】有理数的混合运算.【专题】实数;运算能力.【答案】.【分析】将x、y的值代入原式,再根据有理数的混合运算顺序和运算法则依次计算即可.解:当x=1=,y=﹣3时,原式=[÷(﹣3﹣1)]×(﹣4)﹣[×(﹣3)÷(﹣3)]÷(﹣1)=×(﹣)×(﹣4)﹣×3××(﹣1)=+=.17.已知M=﹣++3(1)当a=3,b为a的倒数时,求M的值;(2)当a=﹣5时,b为a的相反数时,求M的值.【考点】相反数;倒数.【专题】实数;数感;运算能力.【答案】(1);(2).【分析】(1)根据倒数的意义得出ab=1,求出a、b的值代入计算即可;(2)根据互为相反数的意义,求出a、b的值代入计算即可.解:(1)∵a=3,b为a的倒数,∴ab=1,b=,∴M=﹣++3=﹣++3=;(2)∵a=﹣5时,b为a的相反数,∴b=5,∴M=﹣++3=.18一天,小红与小莉利用温差测量山峰的高度,小红在山顶测得温度是﹣1℃,小莉此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?【考点】一元一次方程的应用.【专题】应用题.【答案】见试题解答内容【分析】根据题意,找到等量关系式:山顶温度=山脚温度﹣山高÷100×0.8.【解答】设这个山峰的高度大约是x米,根据题意得:5﹣×0.8=﹣1,解得:x=750.即这个山峰大约是750米;。
人教版七年级数学上册《2.2 有理数的乘法与除法》同步练习-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算:(−2)×5=()A.3 B.−3C.10 D.−102.下列各式的值最大的是()A.1+(−1)B.1−(−1)C.1×(−1)D.1÷(−1)3.下列说法错误的是()A.几个有理数相乘,如果积为负数,则负因数的个数为奇数个B.一个有理数的绝对值一定不是负数C.互为相反数的两个数的绝对值一定相等D.一个数的相反数一定是负数4.汽车油箱中有汽油20L,行驶的平均耗油量为0.1L/km,则汽车最多能行驶()A.100km B.200km C.300km D.400km5.某市区今年共购买了13辆电动清洁能源车,至少在同一个月购买车的辆数为()A.1 B.2 C.3 D.46.高度每增加1千米,气温就下降2℃,现在地面气温是−10℃,那么离地面高度为7千米的高空的气温是().A.−4℃B.−14℃C.−24℃D.14℃7.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.若在该快递公司寄一件9千克的物品,则需要付费( )A.17元B.19元C.21元D.23元8.某人在甲、乙、丙、丁四个超市购买某品牌商品的总价和购买数量如图所示,按平均单价计算,购买该品牌商品最划算的超市是()A.甲B.乙C.丙D.丁二、填空题9.计算:−2×(−5)+3=.10.若|a|=4,|b|=6且ab<0,则|a−b|=.11.一件商品原价为300元,现打七五折出售,则顾客打折后购买可节省元.12.商店一周共亏损840元,平均每天的利润是元.(记盈利额为正数,亏损额为负数.)13.小明在电脑中设置了一个有理数运算程序:输入数a,加*键,再输入数b,就可以得到运算a*b=3a+2b,请照此程序运算(−4)*3= .14.我国古代科举制度始于隋,成于唐,兴于明.明代会试分南卷、北卷、中卷,按11:7:2的比例录取.若某年会试录取人数为300,则北卷录取的人数为.15.如图,在长为 20 米,宽为 15 米的池塘上修建宽为2 米的横向与纵向的观景道路,则道路的面积为平方米.16.随着人们环保意识的提高,新能源汽车市场持续增长.下面是某款新能源汽车充满电量状态下,汽车行驶过程中仪表盘显示电量y(%)与行驶里程s(千米)之间的一组数据∶已行驶里程s(千米)0 80 100 140电量y(%)100 60 50 30当显示电量20%时,已行驶里程为千米.17.深圳市出租车的收费标准是起步价10元(行程小于或等于2千米),超过2千米每增加1千米(不足1千米按1千米计算)加收2.7元,小鸣从深圳市体育中心打车去深圳图书馆,百度地图显示行程约为5.6千米,则出租车费约为元.18.当温度上升1°C时,某种金属丝伸长0.002mm,反之,当温度每下降1°C时,金属丝缩短0.002mm.把15°C的这种金属丝加热到50°C,再使它冷却降温到5°C,最后的长度比原长度伸长mm.三、解答题19.计算:(1)(−3)+40+(−32)+(−8);(2)25−|−112|−(+214)−(−2.75); (3)(−37)×16×(−815)÷(121); (4)(12−23−56)×(−36).20.临潼的石榴享誉九州,驰名海外,现有7筐临潼石榴,标准质量为每筐15千克,实际每筐与标准质量的差值如下(单位:千克,超过15千克的部分用正数表示,不足15千克的部分用负数表示):+0.6,﹣0.1,+0.25,﹣0.2,﹣0.5,+1.1,﹣0.8.求这7筐石榴平均每筐有多少千克?21.一辆出租车在一条东西走向的大街上行驶,这辆出租车连续送客20次,其中8次向东行驶,12次向西行驶,向东每次行驶10km ,向西每次行驶7km. (1)该出租车连续20次送客后,停在何处? (2)该出租车一共行驶了多少千米的路程?22.某次数学单元检测,七年级二班第一小组六名同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,成绩记录如下:﹣10,﹣2,+15,﹣9,﹣13,+7.(1)本次检测成绩最高分为 分,最低分为 分; (2)该小组实际平均成绩是多少分?23.有20箱石榴,以每箱25kg 为标准,超过或不足的千克数分别用正、负来表示,记录如表:与标准质量的差值(单位:kg) −3 −2 −1.5 0 1 2.5 箱数142328(1)20箱石榴中,最重的一箱比最轻的一箱多多少千克? (2)与标准质量比较,20箱石榴总计超过或不足多少千克?(3)若石榴每千克售价8元,购进这批石榴一共花了3000元,则售出这20箱石榴可赚多少元? 24. 外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定送餐量超过50单(送一次外卖称为一单) 的部分记为“+”,低于 50单的部分记为“ -”,如表是该外卖小哥一周的送餐量:星期 一 二 三 四 五 六 日 送餐量(单位:单)-3+4-5+14-8+7+12(1)该外卖小哥这一周送餐量最多一天比最少一天多送 单; (2) 求该外卖小哥这一周平均每天送餐多少单?(3)外卖小哥每天的工资由底薪60元加上送单补贴构成,送单补贴的方案如下:每天送餐量不超过 50单的部分,每单补贴2元;超过50单但不超过60单的部分,每单补贴4元;超过60单的部分,每单补贴6元. 求该外卖小哥这一周工资收入多少元?参考答案1.D2.B3.D4.B5.B6.C7.C8.C9.1310.1011.7512.−12013.−614.10515.9216.16017.20.818.−0.0219.(1)−3(2)−35(3)45(4)3620.解:[0.6+(﹣0.1)+0.25+(﹣0.2)+(﹣0.5)+1.1+(﹣0.8)+15×7]÷7=(0.35+105)÷7=105.35÷7=15.05(千克)答:这7筐石榴平均每筐有15.05千克21.(1)解:以向东行驶为正方向,则8×(+10)+12×(−7)=80−84=−4(km). 即该车停在出发点西边4km处.(2)解:8×|+10|+12×|−7|=80+84=164(km).答:该出租车一共行驶了164km的路程.22.(1)95;67(2)解:(﹣10)+(﹣2)+15+(﹣9)+(﹣13)+7=﹣12(分)80+(﹣12)÷6=80﹣2=78(分)即该小组实际平均成绩为78分.23.(1)解:最重的一箱比最轻的一箱多重2.5−(−3)=2.5+3=5.5(千克)答:20箱石榴中,最重的一箱比最轻的一箱多重5.5千克(2)解:−3×1+(−2)×4+(−1.5)×2+0×3+1×2+2.5×8=8(千克)答:20箱石榴总计超过8千克;(3)解:(25×20+8)×8−3000=508×8−3000=1064(元)答:售出这20箱石榴可赚1064元.24.(1)22(2)解:由题意,得:50+[ (-3) + (+4) + (-5) + (+14) + (-8) + (+7) + (+12)]÷7=50+3=53 (单)答:该外卖小哥这一周平均每天送餐53单;(3)解:由题意,得:(50×7-3-5-8) ×2+(4+7+10×2) ×4+ (4+2) ×6+60×7=668+124+36+420=1248(元)答:该外卖小哥这一周工资收入1248元。
人教版七年级数学(上)第一章《有理数》1.4有理数的乘除法同步练习题学校:___________姓名:___________班级:___________成绩:___________一、选择题(本大题共10小题,共30分)1.下列运算正确的是 ( )A.-0.2×(-1)=-0.2B.12×(-3)=36C.×=-1D.40×(-0.125)=-52.计算÷÷的结果是 ( )A.-B.-C.-D.-3.下列说法中正确的是 ( )A.几个有理数相乘,当负因数有奇数个时,积为负B.几个有理数相乘,当积为负数时,负因数有奇数个C.几个有理数相乘,当正因数有奇数个时,积为负D.几个有理数相乘,当因数有奇数个时,积为负4.对于式子-(-8),下列理解:(1)可表示-8的相反数;(2)可表示-1与-8的乘积;(3)可表示为-8的绝对值;(4)运算结果等于8.其中理解错误的个数是( )A.0个B.1个C.2个D.3个5.如果一个数除以它的倒数,商是1,那么这个数是( )A.1B.2C.-1D.±16.2018个数相乘,若积为0,那么这2018个数()A.都为0B.只有一个为0C.至少一个为0D.有两个数互为倒数7.已知,则的值为()A.1B.-1C.0D.±18.若,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a+b>0D.ab>09.若abc>0,则a,b,c中负数的个数为()A.3个B.1个C.1个或3个D.0个或2个10.已知abc>0,a>c,ac<0,则下列结论正确的是()A.a<0,b<0,c<0B.a>0,b>0,c<0C.a>0,b<0,c<0D.a<0,b>0,c>0二、填空题(本大题共5小题,共15分)11.计算:若a=25.6,b=-0.064,c=0.1,则(-a)÷(-b)÷c=__________.12.计算:(-8)×(-12)×(-0.125)××(-0.001)=__________.13.若a与b互为相反数,c与d互为倒数,则5(a+b)-6cd=________.14.计算:(-22)××(-)×(-21)=______.15.已知a,b互为倒数,|c|=3.则abc的值是________.三、计算题(本大题共2小题,共16分)16.计算下列各题:(1)-98×(-32.7)(2)36÷7.2+(-48.6)÷2.417.计算下列各题:(1)(2)四、解答题(本大题共6小题,共59分)18.(10分)计算(-4)÷2,4÷(-2),(-4)÷(-2)联系这类具体的数的除法,你认为下列式子是否成立(a,b是有理数,b≠0)?从它们可以总结什么规律?(1);(2).19.(10分)利用分配律可以得到-2×6+3×6=(-2+3)×6.如果用a表示任意一个数,那么利用分配律可以得到-2a+3a等于什么?20.(10分)若a,b互为相反数,c,d互为倒数,m的倒数是2,求的值。
有理数的除法 同步练习一、选择题(每小题4分,共20分) 1.411-的倒数与4的相反数的商为( )A +5B -5C 51D 51-2.如果,1-=aa 那么a 是( )A 正数B 负数C 非负数D 非正数3.如果两个非零数互为相反数,那么下列说法中错误的是( ) A 它们的和一定为零 B 它们的差一定是正数 C 它们的积一定是负数 D 它们的商一定等于-14.两个不为0的有理数相除,如果交换被除数与除数的位置,它们的商不便,则( )A 两数相等B 两数互为相反数C 两数互为倒数D 两数相等或互为相反数 5.若0≠mn ,则nnmm +的值不可能是( ) A 0 B 1 C 2 D -2 二、填空题(每小题6分,共30分)6.当=x 时,x-33没有意义。
7.用计算器计算:=÷⎪⎭⎫⎝⎛-311192;()=-÷25.04 。
8.若,0,0<>c b b a 则ac 0;若,,0b a ba<<则b - 0。
9.已知:,324,712==n m 则=nm 1: 。
10.一个数的相反数的倒数是314,则这个数为 。
三、解答题(每小题10分,共50分, 奥赛题不计入总分) 11.计算:(1)()9221441254⨯⎪⎭⎫ ⎝⎛-÷⨯- (2)1999110011011÷⎪⎭⎫ ⎝⎛-÷÷-12.某冷冻厂的一个冷库的室温是C ︒-2,现有一批食品需要在C ︒-28冷藏,如果每小时降温C ︒4,问几小时能降到所需要的温度? 13.5611]731)71[()9.142017(÷--⨯+14.已知:a,b 互为相反数,c,d 互为倒数,x 的绝对值是2, 求:()cdba cdx b a x 2222+-++-的值。
15.(1)若0<a ,则=aa ; (2) 若0<ab ,则=+bbaa (3) 若0<abc ,则=++ccb b aa16.对于有理数a,b,定义运算ba ba b a 33-+=∆,计算:)]6(7[)2(-∆∆-参考答案1~5. CBBDB 6. 3 7. 16,111--8. < , < 9. 10:1 10. 133-11. 6 , 1999000 12. 分析:解答应用题时,必须仔细阅读题目,审准题意,从中找出解决的未知数,把它列成数学问题求解。
七年级上册有理数的除法练习题
班级 姓名 等级
◆随堂检测
1. 倒数是2的数是( ) A.2 B.21 C. -2 D. 21
2. 5÷51等于( )
A.1
B. 25
C.1或25
D.-1或-25 3. -32的倒数是 。
4. 倒数等于它本身的数是 。
5. 求下列各数的倒数。
(1) -10 (2)
75 (3) -0.25 (4) 213
◆典型计算
计算:(-53)÷3×321÷(-4
3)
●拓展提高
1.下列说法正确的是( )
A.任何有理数都有倒数
B.一个数的倒数小与它本身
C.0除以任何数都得0
D.两个数的商为0,只有被除数为0
2.已知有两个有理数的商为负数,那么( )
A.它们的和为负数
B.它们的差为负数
C.它们的积为负数
D.它们的积为正数
3.(1)(-811)÷(911)=____; (2)(-8
113)÷(-7)=____. 4.某校招收实验班学生,从5个报名的学生中录取3人,如果有100人报名,那么____人可能被录取。
5.两数的商是-165,被除数是2
12,则除数是____。
6.计算:
(1)2÷(-73)×74÷(-715); (2)-(31-
215+143-72)÷(-421)。
7.有两个数-4和+6,它们相反数的和除以它们倒数的和的值为多少?
●体验中考
1、(2009年黄石市)12-的倒数是( )
A .2
B .12
C .12
- D .2-
2.(2008年资阳)2008年5月5日,奥运火炬手携带者象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登。
他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点。
而此时“珠峰大本营”的温度为-4℃,峰顶的温度为(结果保留整数)( )。
A.-26℃
B.-22℃
C.-18℃
D.22℃
参考答案:
◆随堂检测
第一节
B 解析:若a ·b=1则a ,b 互为倒数。
第二节
B 解析:5÷51=5×5=25,故选B 。
第三节 -23 解析:按倒数的求法求解,不要与相反数的意义混淆。
第四节
1或-1 第五节 (1)-10的倒数是-
101.(2) 75的倒数是57.(3) -0.25的倒数是-4.(4) 21
3的倒数是72.
●拓展提高
1.D 解析:零没有倒数,故A 错;大于0小于1的数的倒数比它本身大,故B 错;除0之外,0除以任何有理数都0,故C 错,因而选D 。
2. C 解析:如果两个有理数的商是负数,说明这两个数异号,所以它们的积是负数,故选C 。
3.(1)-
8081(2)8
15 解析:(1)(-811)÷(911)=(-89)÷910=-89×109=-80
81; (2)(-8113)÷(-7)=8105×71=815 4. 60 解析:因为每5人中录取3人,则100人中录取的人数为(100÷5)×3=60(人)。
5. -8 解析:2
12÷(-165)=25×(-5
16)=-8。
6. (1)2÷(-73)×74÷(-715)=2×37×74×367=27
14; (2)-(31-215+143-72)÷(-421)=(31-215+143-72)×42=31×42-215×42+14
3×42-72×42=14-10+9-12=1。
7.由题意知,÷⎪⎭⎫ ⎝⎛+-6141=-2÷⎪⎭⎫ ⎝⎛+-122123=-2÷⎪⎭
⎫ ⎝⎛-121=2×12=24。
●体验中考
1. D
2.A 解析:因为“珠峰大本营”与峰顶的高度差为8844.43-5200=3644.43(米),所以温度差为3644.43÷100×0.6≈-26(℃),故选A 。