第9-1章 透射电子显微镜
- 格式:ppt
- 大小:11.50 MB
- 文档页数:87
透射电子显微镜1.工作条件:1.1电力供应:220V(±10%),50Hz,单相;380V(±10%),50Hz,三相1.2工作温度:15︒C-25︒C1.3工作湿度:< 60%1.4仪器运行的持久性:连续使用1.5独立地线:≤100欧姆2.设备用途和功能:用于金属材料、无机非金属材料、生物材料、化工材料、高分子材料等材料的微观精细结构、形貌观察,衍射花样分析,成分分析,高分辨成像等。
3. 技术规格:3.1 六硼化镧透射电镜基本单元3.1.1 电子枪:六硼化镧型*3.1.2 分辨率点分辨率:≤0.23nm线分辨率:≤0.14nm3.1.3 加速电压最高加速电压: 200kV*3.1.4 稳定度加速电压稳定性:≤2 ppm/min物镜电流稳定性:≤1 ppm/min*3.1.5 放大倍数50×—1,500,000×*3.1.6 物镜球差系数:≤1.0mm色差系数:≤1.4mm最小聚焦步长:≤1.5nm3.1.7束斑尺寸TEM模式:≥20nmEDS/NBD/CBD模式:≤1.0nm3.1.8相机长度: 80~2000mm3.1.9 样品移动:X: ≤2mm ;Y: ≤2mm;Z:≤0.4mm3.1.10 最大倾斜角:≥+35°3.1.11 X射线能谱分析固体角:≥0.13sr*3.1.12 取出角:≥25°*3.1.13 计算机控制系统操作系统:Windows XP及以上,控制系统采用分级分块方式控制,即使计算机死机,高压系统、真空系统、操作面板系统仍能正常工作。
实验状态(电子光学状态)记忆功能:可多用户储存各自的实验状态并随时恢复样品位置记忆功能:具备计算机工作站:i3及以上处理器,内存4GB以上,硬盘500GB,专业的图形处理用显示卡,DVD刻录功能,所有声音、网络以及输出功能俱全,19寸及以上专业图形液晶显示器3.1.14 真空系统: 自动控制样品室真空度:好于2.7 ×10-5Pa3.1.15 透射电镜具备自动断电、断水保护功能,具备自动诊断功能*3.1.16 透射电镜具备自动烘烤功能3.1.17 扫描透射附件明场分辨率:≤1.0nm暗场分辨率:≤1.0nm可采集明场像、暗场像和HAADF像3.2 能谱仪(EDS)的技术规格3.2.1 功能:该附件是透射电镜的必要附件,用于材料微区的定性、定量成份分析*3.2.2探测器:电制冷*3.2.3 探测器面积:≥60mm23.2.4 分辨率:≤133eV(Mn K 线)3.2.5 分辨元素范围:5B -U923.2.6 峰背比:≥18,000:13.2.7系统工作站:i3-2100处理器,内存4GB以上,硬盘2×250GB,专业的图形处理用显示卡,所有声音、网络以及输出功能俱全,22寸液晶显示器3.2.8 软件:导航分析器,全中文软件操作界面及中文实时帮助系统,实时帮助系统,信息管理系统,实验报告系统等3.3 数字化CCD相机技术规格3.3.1 功能:该附件是透射电镜的必要附件,用于透射电镜形貌像和电子衍射花样的数字化图像的记录,具有数字化图像处理的功能*3.3.2像素尺寸≥9 μm x 9 μm3.3.4视野范围41 mm x 41 mm3.3.5分辨率2048 x 2048 Pixel*3.3.6耦合方式2:1光纤耦合3.3.7动态范围≥14位3.3.8曝光时间 1 ms - 100 s3.3.9双制冷系统芯片温度15度在室温25度时3.3.10安装位置底部同轴3.3.10抗光晕指数100x3.3.11操作界面可选中文、英文等语言3.4 冷却循环水(原装进口,匹配电镜)3.4.1冷却能力:5230 W (4500 kca l/h)3.4.2控温精度:0.1︒C/h3.4.3流量:7.5 L/min3.4.4水温:15-20℃3.4.5水压:0.2 to 0.3 M Pa3.5稳压电源(原装进口,可以匹配电镜)3.5.1 输出电压: 单相 200 V AC3.5.2 输入电压波动范围: ±10%3.5.3 频率: 50/60 Hz4. 离子减薄仪4.1 离子枪:潘宁式离子枪,装载微小磁铁,聚焦离子束设计,无耗件。
透射电子显微镜的原理透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种利用电子束来观察物质微观结构的工具。
相对于光学显微镜,TEM可以提供更高的分辨率和更大的放大倍数,因此在研究纳米尺度物体和物质的晶体结构等方面具有独特的优势。
下面将介绍TEM的原理以及工作过程。
TEM的主要组成部分包括电子源、电子光学系统、样品台以及探测器。
第一部分是电子源。
TEM使用的是热阴极电子源,通过加热材料产生的电子可以使它们跨越电子能障形成电子束。
电子束的形成需要经过一系列的加速器和准直透镜等装置,以确保电子束稳定的强度和方向。
第二部分是电子光学系统。
TEM的电子光学系统由一个或多个透镜组成,包括准直透镜、磁透镜和目标透镜。
准直透镜用于平行化电子束,磁透镜用于对电子束进行聚焦,目标透镜用于调整电子束的焦距。
这些透镜的组合可以将电子束聚焦到非常小的尺寸上,从而实现高分辨率的成像。
第三部分是样品台。
样品台是放置待观察样品的平台,可以通过控制样品的位置、倾斜角度等参数来调节观察角度和焦距。
第四部分是探测器。
探测器是接收和记录电子束穿过样品时所发生的相互作用的装置,常用的探测器包括像差探测器(Diffraction Contrast Detector)和投影光学探测器(Projection Optics Detector)。
像差探测器可以测量样品中的晶体缺陷和晶体结构,而投影光学探测器可以获得样品的原子分布图像。
TEM的工作过程如下:首先,样品被制成非常薄的切片,并被放置在样品台上。
然后,电子束由电子源发出,并通过光学系统的透镜进行聚焦。
接下来,聚焦的电子束穿过样品,并与样品中的原子和分子发生相互作用。
这种相互作用包括电子-电子相互作用、电子-晶格相互作用和电子-原子核相互作用。
然后,电子束到达探测器,根据不同的探测器可以得到不同的信息。
像差探测器可以根据电子束的衍射来获得样品中的晶体结构信息,而投影光学探测器则可以获得样品的原子分布图像。
透射电子显微镜透射电子显微镜(Transmission electron microscopy,缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。
散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件(如荧光屏、胶片、以及感光耦合组件)上显示出来。
由于电子的德布罗意波长非常短,透射电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2nm,放大倍数为几万~百万倍。
因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构,比光学显微镜所能够观察到的最小的结构小数万倍。
TEM在中和物理学和生物学相关的许多科学领域都是重要的分析方法,如癌症研究、病毒学、材料科学、以及纳米技术、半导体研究等等。
在放大倍数较低的时候,TEM成像的对比度主要是由于材料不同的厚度和成分造成对电子的吸收不同而造成的。
而当放大率倍数较高的时候,复杂的波动作用会造成成像的亮度的不同,因此需要专业知识来对所得到的像进行分析。
通过使用TEM不同的模式,可以通过物质的化学特性、晶体方向、电子结构、样品造成的电子相移以及通常的对电子吸收对样品成像。
第一台TEM由马克斯·克诺尔和恩斯特·鲁斯卡在1931年研制,这个研究组于1933年研制了第一台分辨率超过可见光的TEM,而第一台商用TEM于1939年研制成功。
第一部实际工作的TEM,现在在德国慕尼黑的的遗址博物馆展出。
恩斯特·阿贝最开始指出,对物体细节的分辨率受到用于成像的光波波长的限制,因此使用光学显微镜仅能对微米级的结构进行放大观察。
通过使用由奥古斯特·柯勒和莫里茨·冯·罗尔研制的紫外光显微镜,可以将极限分辨率提升约一倍[1]。
然而,由于常用的玻璃会吸收紫外线,这种方法需要更昂贵的石英光学元件。
透射电子显微镜及其应用读书报告姓名:孙家宝学号:DG1022076电子科学与工程学院2021年3月31日目录第一章透射电子显微镜 (1)1.1 透射电子显微镜的结构 (1)1.1.1.电子光学部分 (1)1.1.2.真空系统 (3)1.1.3.供电控制系统 (4)1.2 透射电子显微镜主要的性能参数 (4)1.2.1 分辨率 (4)1.2.2 放大倍数 (4)1.2.3 加速电压 (5)1.3 透射电镜的成像原理 (5)1.3.1 透射电镜的成像方式 (5)1.3.2 衬度理论 (6)1.4 透射电镜的电子衍射花样 (6)1.4.1 电子衍射花样 (6)1.4.2电子衍射与X射线衍射相比的优点 (7)1.4.3电子衍射与X射线衍射相比的不足之处 (7)1.4.4选区电子衍射 (7)1.4.5常见的几种衍射图谱 (8)1.4.6单晶电子衍射花样的标定 (8)第二章透射电子显微镜分析样品制备 (10)2.1 透射电镜复型技术(间接样品) (10)2.1.1塑料——碳二级复型 (10)2.1.1萃取复型(半直接样品) (11)2.2 金属薄膜样品的制备 (11)1.2 电子显微镜中的电光学问题 (13)1.2.1 电子射线(束)的特性 (13)第一章 透射电子显微镜1.1 透射电子显微镜的结构透射电子显微镜(TEM )是观察和分析材料的形貌、组织和结构的有效工具。
TEM 用聚焦电子束作照明源,使用对电子束透明的薄膜试样,以透过试样的透射电子束或衍射电子束所形成的图像来分析试样内部的显微组织结构。
图 1.1(a )(b )是两种典型的透射电镜的实物照片。
透射电子显微镜的光路原理图如图1.2所示。
透射电镜一般是由电子光学部分、真空系统和供电系统三大部分组成。
1.1.1.电子光学部分(a) Philips CM12透射电镜(b) JEM-2010透射电镜 图1.1 透射电子显微镜图1.2透射电子显微镜的光路原理图图1.3透射电镜电子光学部分示意图整个电子光学部分完全置于镜筒之内,自上而下顺序排列着电子枪、聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏、照相机构等装置。
透射电子显微镜原理
透射电子显微镜(Transmission Electron Microscope,TEM)
是利用电子束取代光束进行观察和研究物质微观结构的高分辨率显微镜。
透射电子显微镜的原理基于电子的波粒二象性。
电子具有很短的波长,远小于可见光的波长,因此可以获得更高的分辨率。
透射电子显微镜利用聚焦和成像系统将电子束聚焦到样品上,并通过样品传输的电子束进行观察。
首先,电子枪产生高能电子束,经过一系列的透镜系统,使电子束变得较为平行和聚焦。
然后,电子束直接照射在样品上。
样品是非晶态薄片或超薄金属晶片,电子束在样品中透射、发生散射或被吸收。
透射的电子被投射到一个投影和透镜系统中。
透射电子显微镜中的投影和透镜系统主要包括两个关键元素:物镜和目镜。
物镜具有较高的放大倍数,将透射的电子束转换为放大的显微图像。
目镜则进一步放大物镜所得到的显微图像,使其可以被人眼观察。
通过调整投影和透镜系统的电位差,可以控制电子束的聚焦、放大和成像效果。
同时,样品本身的性质也会影响到电子束的透射和散射行为,进而影响到显微图像的质量。
透射电子显微镜可以提供非常高的分辨率,在纳米尺度下观察和研究物质的微观结构。
它广泛应用于材料科学、生物学、纳
米技术等领域,在研究和开发新材料、探索生物分子结构以及研究纳米尺度现象方面发挥着重要作用。
透射电镜组织处理
透射电子显微镜(Transmission Electron Microscope,TEM)是一种强大的显微镜技术,可以对材料的内部结构和组织进行高分辨率的观察。
为了进行透射电镜观察,材料通常需要经过一系列处理步骤以准备样品。
下面是一般的透射电镜组织处理步骤:
1.采样和切片:从原始材料中采集要观察的样品,并使用显
微切割机或离心切片机将样品切片成适当的厚度(通常是
几十到几百纳米)。
2.修剪和固定:根据需要,选择感兴趣的样品区域,修剪并
将其固定在载玻片或网状膜上,以便在电镜中进行观察。
3.固定剂处理:为了保持样品的原始结构和形态,通常使用
特定的固定剂处理样品。
例如,常用的固定剂有冷冻醇、
蛋白质交联剂(如缩醛或戊二醛)等。
4.重金属染色:为增加样品的对比度,某些样品可能需要进
行染色处理。
重金属染色剂(如铀酸或铋酸)通常用于染
色,以增强电子束与样品的相互作用。
5.脱水和浸透:为了进一步固化样品并保持其结构,通常使
用乙醇或丙酮等有机溶剂进行脱水处理,并使用一些合适
的浸透剂(如酮树脂或环氧树脂)浸透样品。
6.切片和显影:将浸透好的样品切成适当的薄片(通常是50
至100纳米),并使用硝酸铋等显影剂处理样品,以增强
对比度。
7.观察:将处理好的样品放入透射电镜中,利用电子束穿过
样品观察样品的内部结构和组织。
需要注意的是,透射电镜组织处理的具体步骤和条件可能会根据不同的样品类型和目的而有所不同。