2020年华东师大版八年级数学上册 期末复习检测卷三(含答案)
- 格式:doc
- 大小:135.00 KB
- 文档页数:7
2020年华东师大版八年级数学上册期末复习检测卷一一、选择题(每小题3分,共30分)1.下列说法正确的是()A.0的平方根是0 B.1的平方根是1C.﹣1的平方根是﹣1 D.(﹣1)2的平方根是﹣12.已知a+b=6,a﹣b=5,则a2﹣b2的值是()A.11 B.15 C.30 D.603.已知等腰三角形的一边等于3,一边等于6,则它的周长等于()A.12 B.15 C.12或15 D.15或184.下列定理中,没有逆定理的是()A.同旁内角互补,两直线平行B.直角三角形的两锐角互余C.互为相反数的两个数的绝对值相等D.同位角相等,两直线平行5.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°6.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,已知∠CAD:∠DAB=1:2,则∠B=()A.34°B.36°C.60°D.72°7.下列各组数据分别为三角形的三边长,不能组成直角三角形的是()A.9,12,15 B.7,24,25 C.6,8,10 D.3,5,78.在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A.4个B.6个C.34个D.36个9.如图是两户居民家庭全年各项支出的统计图,根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲,乙两户一样大D.无法确定哪一户大10.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2二、填空题(每小题3分,共15分)11.△ABC中,∠C=90°,a=6,c=10,则b= .12.已知+|y﹣4|+(z﹣3)2=0,则以x,y,z为三边的三角形为三角形.13.已知数据,﹣7,﹣7.5,π,﹣2017,其中出现负数的频率是.14.如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长是12cm,AC=5cm,则AB+BD+AD= cm;AB+BD+DC= cm;△ABC的周长是cm.15.如图所示,折叠长方形的一边AD,使点D落在边BC上的点F处,已知AB=5cm,BC=13cm,则EC的长为cm.三、解答题(本大题共8个小题,共75分)16.(8分)先化简,再求值:(a+b)(a﹣b)+(a+b)2﹣2a2,其中a=3,b=﹣.17.(9分)证明:在一个三角形中,至少有一个内角小于或等于60度.18.(9分)已知△ABC,AB=n2﹣1,BC=2n,AC=n2+1(n为大于1的正整数),试问△ABC是直角三角形吗?若是,哪条边所对的角是直角?请说明理由.19.(9分)学习了统计知识后,班主任王老师叫班长就本班同学的上学方式进行了一次调查统计,图1和图2是他通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)在扇形统计图中,计算出“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图1中,将表示“乘车”的部分补充完整.20.(9分)如图,一个长为10米的梯子AB斜靠在墙上,梯子的顶端A距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么它的底端B也滑动1米吗?试说明理由.21.(10分)若△ABC的三边长a、b、c满足6a+8b+10c﹣50=a2+b2+c2,试判断△ABC的形状.22.(10分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.(1)请判断△EDC的形状并说明理由;(2)求证OE是线段CD的垂直平分线.23.(11分)如图,在△ABC中,∠CAB的平分线AD与BC垂直平分线DE交于点D,DM⊥AB于点M,DN⊥AC,交AC的延长线于点N,求证:BM=CN.参考答案1.A.2.C.3.B.4.C.5.C.6.B.7.D.8.B.9.B.10.A.11.答案是:8.12.答案为直角.13.答案为:0.6.14.答案为:12、12、17.15.答案为2.4.16.解:(a+b)(a﹣b)+(a+b)2﹣2a2=a2﹣b2+a2+2ab+b2﹣2a2=2ab,当a=3,b=﹣时,原式=2×3×(﹣)=﹣2.17.证明:假设在一个三角形中没有一个角小于或等于60°,即都大于60°;那么,这个三角形的三个内角之和就会大于180°;这与定理“三角形的三个内角之和等于180°”相矛盾,原命题正确.18.解:△ABC是直角三角形,理由是:∵△ABC中,AB=n2﹣1,BC=2n,AC=n2+1(n>1),∴AB2+BC2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2,=(n2+1)2=AC2即BC2+AC2=AB2,∴这个三角形是直角三形,边AC所对的角是直角.19.解:(1)(1﹣20%﹣50%)×360°=108°,即“步行”部分所对应的圆心角的度数是108度.(2)20÷50%=40(人),即该班共有40名学生.(3)乘车的人数=40﹣20﹣12=8人,如图所示.20.解:底端B滑动距离不是1米.理由:在RT△ACB中,∠C=90°,AB=10米,AC=8米,由勾股定理得CB=6米,RT△A′CB′中,∠C=90°,A′B′=10米,CA′=7米,由勾股定理得CB′=米,∴BB′=CB′﹣CB=(﹣6)米,答:它的底端B滑动距离为(﹣6)米.21.解:∵6a+8b+10c﹣50=a2+b2+c2,∴(a2﹣6a+9)+(b2﹣8b+16)+(c2﹣10c+25)=0,∴(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∵(a﹣3)2≥0,(b﹣4)2≥0,(c﹣5)2≥0,∴a﹣3=0,得a=3;b﹣4=0,得b=4;c﹣5=0,得c=5.又∵52=32+42,即a2+b2=c2,∴△ABC是直角三角形.22.(1)解:△EDC是等腰三角形,理由是:∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D,∴DE=CE,∴△EDC是等腰三角形;(2)证明:∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D,∴DE=CE,∠EDO=∠ECO=90°,在Rt△ODE与Rt△OCE中,∴Rt△ODE≌Rt△OCE,∴OD=OC,∵DE=EC,∴OE是线段CD的垂直平分线.23.证明:连接BD,∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,∴DM=DN,∵DE垂直平分线BC,∴DB=DC,在Rt△DMB和Rt△DNC中,∴Rt△DMB≌Rt△DNC(HL),∴BM=CN.。
2020-2021学年华东师大新版八年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣52.下列计算中正确的是()A.b3•b2=b6B.x3+x3=x6C.a2÷a2=0D.(﹣a3)2=a6 3.在下列考察中,是抽样调查的是()A.了解全校学生人数B.调查某厂生产的鱼罐头质量C.调查杭州市出租车数量D.了解全班同学的家庭经济状况4.要使(﹣6x3)(x2+ax﹣3)的展开式中不含x4项,则a=()A.1B.0C.﹣1D.5.下列各式从左到右的变形是因式分解的是()A.6x+9y+3=3(2x+3y)B.x2﹣1=(x﹣1)2C.(x+y)(x﹣y)=x2﹣y2D.2x2﹣2=2(x﹣1)(x+1)6.已知△ABC的三边分别为a、b、c,下列条件中,不能判定△ABC为直角三角形的是()A.∠A=∠B+∠C B.a:b:c=1:1:C.∠A:∠B:∠C=3:4:5D.b2=a2+c27.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数B.互为倒数C.相等D.a比b大8.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.B.C.D.9.下列选项中的尺规作图(各图中的点P都在△ABC的边上),能推出PA=PC的是()A.B.C.D.10.如图,矩形ABCD中,CD=6,E为BC边上一点,且EC=2,将△DEC沿DE折叠,点C落在点C'.若折叠后点A,C',E恰好在同一直线上,则AD的长为()A.8B.9C.D.10二.填空题(共6小题,满分18分,每小题3分)11.在实数0.23,4.,π,﹣,,0.3030030003…(每两个3之间增加1个0)中,无理数的个数是个.12.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为,频率为.13.分解因式:2x2﹣8a4=.14.对于两个非零实数x,y,定义一种新的运算:x△y=+1,若1△(﹣1)=6,则(﹣2)△2的值是.15.如图,在△ABC中,AB=AC,AD为BC上的高线,E为AC上一点,且有AE=AD.已知∠EDC=12°,则∠B=.16.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E,若AB=6,AC=5,则△ADE的周长是.三.解答题(共8小题,满分52分)17.计算:(﹣2x2)2+x3•x﹣x5÷x18.先化简,再求值:[(2x+y)(2x﹣y)﹣3(2x2﹣xy)+y2]÷(﹣x),其中x=2,y =﹣1.19.如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点.试探索BM和BN的关系,并证明你的结论.20.已知x=2y﹣6,求﹣3x2+12xy﹣12y2的值.21.《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.22.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?23.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且CE=CF.(1)求证:BE=DF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?24.如图,已知∠MAN=30°,点B在射线AM上,且AB=6,点C在射线AN上.(1)若△ABC是直角三角形,求AC的长;(2)若△ABC是等腰三角形,则满足条件的C点有个;(3)设BC=x,当△ABC唯一确定时,直接写出x的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.2.解:b3•b2=b5,故选项A不合题意;x3+x3=2x3,故选项B不合题意;a2÷a2=1,故选项C不合题意;(﹣a3)2=a6,正确,故选项D符合题意.故选:D.3.解:A.了解全校学生人数,适合普查,故本选项不合题意;B.调查某厂生产的鱼罐头质量,适合抽样调查,故本选项符合题意;C.调查杭州市出租车数量,适合普查,故本选项不合题意;D.了解全班同学的家庭经济状况,适合普查,故本选项不合题意;故选:B.4.解:原式=﹣6x5﹣6ax4+18x3,由展开式不含x4项,得到a=0,故选:B.5.解:A、6x+9y+3=3(2x+3y+1),因式分解错误,故本选项不符合题意;B、x2﹣1=(x﹣1)(x+1),因式分解错误,故本选项不符合题意;C、是整式的乘法,不是因式分解,故本选项不符合题意;D、是正确的因式分解,故本选项符合题意;故选:D.6.解:A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC为直角三角形,故此选项不合题意;B、∵()2=12+12,∴能构成直角三角形,故此选项不合题意;C、设∠A=3x°,∠B=4x°,∠C=5x°,3x+4x+5x=180,解得:x=15,则5x°=75°,∴△ABC不是直角三角形,故此选项符合题意;D、∵b2=a2+c2,∴能构成直角三角形,故此选项不符合题意.故选:C.7.解:(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab,由结果中不含x的一次项,得到a+b=0,即a与b一定是互为相反数.故选:A.8.解:如图,过F作FN⊥BC,交BC延长线于N点,连接AC.∵DE的中点为G,EG绕E顺时针旋转90°得EF,∴DE:EF=2:1.∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∴CE:FN=DE:EF=DC:NE=2:1,∴CE=2NF,NE=CD=.∵∠ACB=45°,∴当∠NCF=45°时,A、C、F在一条直线上.则△CNF是等腰直角三角形,∴CN=NF,∴CE=2CN,∴CE=NE=×=,∴CE=时,A、C、F在一条直线上.故选:D.9.解:A.由此作图知CA=CP,不符合题意;B.由此作图知BA=BP,不符合题意;C.由此作图知∠ABP=∠CBP,不能得到PA=PC,不符合题意;D.由此作图知PA=PC,符合题意;故选:D.10.解:如图,连接AC',∵将△DEC沿DE折叠,∴CE=C'E,∠C=∠DC'E=90°,∵点A,C',E恰好在同一直线上,∴∠AC'D=90°设AD=x,则BE=x﹣2,AB=DC=C'D=6,∵AD∥BE,∴∠DAE=∠AEB,又∵∠B=∠AC'D=90°,∴Rt△AC'D≌Rt△EBA(AAS),∴BE=AC'=x﹣2,在Rt△AC'D中,AD2=AC'2+C'D2,即x2=(x﹣2)2+62,解得x=10,∴AD=10,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:在实数0.23,4.,π,﹣,,0.3030030003…(每两个3之间增加1个0)中,无理数有π,﹣,0.3030030003…(每两个3之间增加1个0)共3个.故答案为:312.解:根据题意,发现数据中在64.5﹣66.5之间的有8个数据,故64.5~66.5这一小组的频数为8,频率为=0.4;故答案为:8,0.4.13.解:原式=2(x2﹣4a4)=2(x+2a2)(x﹣2a2),故答案为:2(x+2a2)(x﹣2a2)14.解:∵x△y=+1,∴1△(﹣1)=6=++1,则3a﹣2b=5,∴(﹣2)△2=++1=﹣(3a﹣2b)+1=﹣+1=﹣.故答案为:﹣.15.解:∵AD=AE,∴∠ADE=∠AED,∵AD⊥BC,∴∠ADC=90°,∵∠EDC=12°,∴∠ADE=∠AED=78°,∴∠C=66°,∵AB=AC,∴∠B=∠C=66°,故答案为66°.16.解:∵在△ABC中,∠BAC与∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,∴BD=OD,CE=OE,∴△ADE的周长是:AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=6+5=11.故答案为:11.三.解答题(共8小题,满分52分)17.解:原式=4x4+x4﹣x4=4x418.解:原式=(4x2﹣y2﹣6x2+3xy+y2)÷(﹣x)=(﹣2x2+3xy)÷(﹣x)=4x﹣6y,当x=2,y=﹣1时,原式=8+6=14.19.解:BM=BN,BM⊥BN.理由如下:在△ABE和△DBC中,∴△ABE≌△DBC(SAS),∴∠BAE=∠BDC,∴AE=CD,∵M、N分别是AE、CD的中点,∴AM=DN,在△ABM和△DBN中,,∴△BAM≌△BDN(SAS),∴BM=BN,∠ABM=∠DBN,∵∠ABD=∠DBC,∠ABD+∠DBC=180°∴∠ABD=∠ABM+∠MBE=90°,∴∠MBE+∠DBN=90°,即:BM⊥BN,∴BM=BN,BM⊥BN.20.解:由x=2y﹣6得x﹣2y=﹣6,∴﹣3x2+12xy﹣12y2=﹣3(x2﹣4xy+4y2)=﹣3(x﹣2y)2=﹣3×(﹣6)2=﹣108.21.解:(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°,故答案为:35%,126;(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全图形如下:;(3)根据题意得:2100×=1344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.22.解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.23.(1)证明:∵四边形ABCD是正方形,∴BC=DC,∠B=∠CDA=90°,∵F是AD延长线上一点,∴∠CDF=180˚﹣∠CDA=90°,在Rt△CBE和Rt△CDF中,,∴Rt△CBE≌Rt△CDF(HL),∴BE=DF;(2)GE=BE+GD成立,理由:∵△CBE≌△CDF,∴∠BCE=∠DCF,又∵∠BCD=∠BCE+∠DCE=90°,∴∠ECF=∠DCF+∠DCE=90°,∵∠GCE=45°,∴∠GCF=∠ECF﹣∠GCE=45°,在△ECG和△FCG中,,∴△ECG≌△FCG(SAS),∴GE=GF,∵GF=DF+DG,BE=DF∴GF=BE+DG,∴GE=BE+GD成立.24.解:(1)当∠ABC=90°时,∵∠A=30°,∴BC=,∴设BC=x,则AC=2x,在Rt△ABC中,由勾股定理得36+x2=4x2,解得x=2,x=﹣2(舍去).∴AC=4,当∠ACB=90°时,∵∠A=30°∴BC=,∴AC=3.(2)如图3,当AC=BC时,满足题意.如图4,当AC=AB时,满足题意.如图3,当AB=BC时,满足题意.故答案为:3.(3)当BC≥6或BC=3时,△ABC唯一确定.即x=3或x≥6.。
华东师大版八年级数学上册期末考试(及答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若二次根式x 1-有意义,则x 的取值范围是 ▲ .3.分解因式:3x -x=__________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3=_________度。
华东师大版八年级数学上册期末考试卷含答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.比较大小:3133.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE=,则GE的长为__________.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解方程组:4311 213x yx y-=⎧⎨+=⎩2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.已知,a、b互为倒数,c、d互为相反数,求31ab c d+的值.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、B5、B6、B7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、<3、如果两个角互为对顶角,那么这两个角相等4、﹣2<x<25、49 136、6三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、22x-,12-.3、0.4、(1)略;(2)45°;(3)略.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
2020-2021学年华东师大新版八年级上册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣52.下列计算正确的是()A.(a4b)3=a7b3B.﹣2b(4a﹣1)=﹣8ab﹣2bC.a×a3+(a2)2=2a4D.(a﹣1)2=a2﹣13.“早发现,早报告,早隔离,早治疗”是我国抗击“新冠肺炎”的宝贵经验,其中“早”字出现的频率是()A.B.C.D.4.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是()A.SAS B.ASA C.AAS D.SSS5.下列说法中,错误的有()①面积相等的两个三角形是全等三角形②三个角分别相等的两个三角形是全等三角形③全等三角形的周长相等④有两边及其中一边的对角分别对应相等的两个△全等.A.1个B.2个C.3个D.4个6.如图,实数3﹣在数轴上的大致位置是()A.点A B.点B C.点C D.点D7.如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12,试判定△ABC的形状()A.直角三角形B.等边三角形C.等腰三角形D.以上都不对8.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169B.25C.19D.139.如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF,若EF=3,则FG为()A.4B.3C.5D.1.510.如图,一个长、宽、高分别为6、3、2的长方体,一只蚂蚁从下底面长边中点P处爬向顶点Q处,在所有爬行路线中,最短的一条长度是()A.B.3C.2D.二.填空题(共6小题,满分24分,每小题4分)11.计算:(12a3+6a2﹣3a)÷3a=12.“等腰三角形两腰上的高相等”的逆命题是.13.超速行驶是交通事故频发的主要原因之一.交警部门统计某日7:00~9:00经过高速公路某测速点的汽车的速度,得到如下频数分布折线图,若该路段汽车限速为110km/h,则超速行驶的汽车有辆.14.如图,在△ABC中,AB,BC边的垂直平分线分别交AC于点E,D,若AC=15cm,则△EBD的周长为cm.15.如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=,CD=8,则四边形ABCD的面积为.16.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于cm.三.解答题(共9小题,满分86分)17.(16分)数学上,我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,例:=2×5﹣3×4=﹣2,请根据阅读理解上述材料解答下列各题:(1)=;(2)计算:++……+;(3)已知实数a,b满足行列式例=5,求代数式的值.18.(8分)先化简,再求值:(x+3)(x﹣3)+x(4﹣x),其中x=.19.(8分)分解因式:(1)﹣x2+4xy﹣4y2;(2)a3b﹣ab.20.(8分)已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.(1)求证:△ADE≌△ABC;(2)求证:AE=CE.21.(8分)为了了解某地区初二学生课余时间活动安排情况,现对学生课余时间活动安排进行调查,根据调查的部分数据绘制成如图所示的扇形统计图和条形统计图(均不完整),请根据图中所给信息解答下列问题:(1)求调查中,一共抽查了多少名初二同学?(2)求所调查的初二学生课余时间用于安排“读书”活动人数,并补全条形统计图;(3)如果该地区现有初二学生12000人,那么利用课余时间参加“体育”锻炼活动的大约有多少人?22.(8分)如图,两条公路相交于点O,在交角侧有A、B两个村庄,现在要建一加油站P,使得加油站P到两条公路的距离和到A、B两个村庄的距离相等,请画出加油站P的位置.(用尺规作图,保留作图痕迹,不写作法和证明过程).23.(8分)如图,每个小正方形的边长为1,四边形ABCD的每个顶点都在格点上,且AB =,AD=.(1)请在图中补齐四边形ABCD,并求其面积;(2)判断∠BCD是直角吗?请说明理由;(3)直接写出点C到BD的距离为.24.(10分)任何一个整数N,可以用一个多项式来表示:N==a n×10n+a n×10n﹣1+…+a1×10+a0.﹣1例如:325=3×102+2×10+5.已知是一个三位数.(1)可以用一个多项式来表示为.(2)小明猜想:“与的差一定是9的倍数”,请你帮助小明说明理由.(3)在一次游戏中,小明算出,,,与这5个数和是3470,请你求出这个三位数.25.(12分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C 的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(Ⅰ)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.2.解:A、(a4b)3=a12b3,故此选项错误;B、﹣2b(4a﹣1)=﹣8ab+2b,故此选项错误;C、a×a3+(a2)2=2a4,正确;D、(a﹣1)2=a2﹣2a+1,故此选项错误;故选:C.3.解:“早”字出现的频率是:=,故选:D.4.解:设已知角为∠O,以顶点O为圆心,任意长为半径画弧,交角的两边分别为A,B 两点;画一条射线b,端点为M;以M为圆心,OA长为半径画弧,交射线b于C点;以C为圆心,AB长为半径画弧,两弧交于点D;作射线MD.则∠COD就是所求的角.由以上过程不难看出两个三角形中有三条边对应相等,∴证明全等的方法是SSS.故选:D.5.解:①面积相等的两个三角形不一定重合,所以不一定全等,故此选项是假命题;②角应相等的两个三角形,边不一定相等,两三角形也不一定全等;故此选项是假命题;③全等三角形的周长相等,根据全等三角形性质是正确的,故此选项正确,是真命题;④有两边及其中一边的对角对应相等的两个三角形,满足SSA时不能证明三角形全等的,故此选项是假命题,故假命题有3个,故选:C.6.解:由3<4,得﹣4<﹣<﹣3,﹣1<3﹣<0,故选:C.7.解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13,∴△ABC的形状是等腰三角形,故选:C.8.解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选:B.9.解:∵EG平分∠BEF,∴∠GEB=∠GEF,∵∠1=∠BEF,∴CD∥AB,∴∠EGF=∠GEB,∴∠GEF=∠EGF,∴△EFG是等腰三角形,∴FG=EF=3,故选:B.10.解:如图①,把我们所看到的前面和上面组成一个平面,则这个矩形的边长为6和5,∴PQ==,如图②,把我们所看到的前面和右面组成一个长方形,则这个矩形的边长为9和2,∴PQ==2,∵<2,∴在所有爬行路线中,最短的一条长度是,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=4a2+2a﹣1.12.解:命题的条件是“一个三角形是等腰三角形”,结论是“两腰上的高相等”.将条件和结论互换得逆命题为:如果一个三角形两边上的高相等,那么这个三角形是等腰三角形.13.解:读图可知:超过限速110km/h的有60+20=80(辆).故答案为:80.14.解:∵AB,BC边的垂直平分线分别交AC于点E,D,∴AE=BE,BD=CD,∵△EBD 的周长=BE +DE +BD =AE +DE +CD =AC =15cm , 故答案为:15. 15.解:连接BD .∵AD =AB =4,∠A =60°, ∴△ABD 是等边三角形, ∴BD =AD =4, ∵BC =4,CD =8,∴BC 2=BD 2+CD 2, ∴∠BDC =90°,∴S 四边形ABCD =S △ABD +S △BDC =×42+×4×8=4+16,故答案为4+16.16.解:由折叠的性质知,AE =CE ,∴△ABE 的周长=AB +BE +AE =AB +BE +CE =AB +BC =3+4=7cm . 故答案为:7.三.解答题(共9小题,满分86分)17.解:(1)根据题中的新定义得:原式=﹣6×﹣3×4=﹣3﹣12=﹣15; 故答案为:﹣15;(2)根据题中的新定义得:原式=1×4﹣2×3+5×8﹣6×7+…+97×100﹣98×99 =4﹣6+40﹣42+…+9700﹣9702 =﹣2﹣2…﹣2 =﹣2×25 =﹣50;(3)已知等式整理得:a (a ﹣1)﹣(a 2+b )=a 2﹣a +a 2+b =﹣a +b =5,即a ﹣b =﹣5, 则原式===(a ﹣b )+2=﹣×5+2=﹣.18.解:原式=x 2﹣9+4x ﹣x 2 =4x ﹣9,当x=时,原式=1﹣9=﹣8.19.解:(1)原式=﹣(x2﹣4xy+4y2)=﹣(x﹣2y)2;(2)原式=ab(a2﹣1)=ab(a﹣1)(a+1).20.(1)证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠BAC,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA);(2)证明:由(1)得△ABC≌△ADE,∴AE=AC,∵∠2=60°,∴△ACE是等边三角形,∴AE=CE.21.解:(1)50÷20%=250(名),即调查中,一共抽查了250名初二同学;(2)安排“体育”活动的学生有:250×28%=70(名),安排“读书”活动的学生有:250﹣70﹣50﹣30=100(名),补全的条形统计图如右图所示;(3)12000×28%=3360(人),即利用课余时间参加“体育”锻炼活动的大约有3360人.22.解:如图,点P即为所求.23.解:(1)如图所示,四边形ABCD即为所求,其面积为5×5﹣×5×1﹣×2×4﹣×1×4﹣×(1+3)×1=14;(2)是,∵BC2=22+42=20,CD2=12+22=5,BD2=32+42=25,∴BC2+CD2=BD2,∴△BCD是直角三角形,且∠BCD=90°,(3)设点C到BD的距离为d,由(2)知,BC=2,CD=,BD=5,=BC•CD=BD•d,根据S△BCD则d===2.故答案为:2.24.解:(1)可以用一个多项式来表示为100a+10b+c.故答案为:100a+10b+c;(2)∵﹣=100a+10b+c﹣(100c+10b+a)=99(a﹣c)=9×11(a﹣c),∴与的差一定是9的倍数;(3)∵+++++=3470+,由已知条件可得+++++=100a+10b+c+100a+10c+b+100b+10a+c+100c+10a+b+100b+10c+a+100c+10b+a =222a+222b+222c=222(a+b+c),即222(a+b+c)=222×15+140+,是个三位数a+b+c至少从16开始,经尝试发现,只有a+b+c=19 满足条件,此时=748,∴这个三位数为748.25.解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠AOC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).。
八年级数学上册压轴题期末复习试卷测试卷(含答案解析)一、压轴题1.在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:222110a b a b--++-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(-3,m),如图(1)所示.若SΔABC=16,求点D 的坐标;(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.求证:∠BCD=3(∠CEP-∠OPE).2.已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM =BM,连接AD.(1)如图①,求证:DAM≌BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:ACN≌BCM;②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.3.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式;②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.4.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度;(2)当2t =时,请说明//PQ BC ;(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式.5.如图,已知A(3,0),B(0,-1),连接AB ,过B 点作AB 的垂线段BC ,使BA=BC ,连接AC(1)如图1,求C 点坐标;(2)如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ ,连接CQ ,当点P 在线段OA 上,求证:PA=CQ ;(3)在(2)的条件下若C 、P ,Q 三点共线,直接写出此时∠APB 的度数及P 点坐标6.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).7.在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).(1)如图2,点B的坐标为(b,0).①若b=﹣2,则点A,B的“相关矩形”的面积是;②若点A,B的“相关矩形”的面积是8,则b的值为.(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.8.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.9.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则△ABD ≌△ACE .(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,连接AO ,下列结论:①BD =EC ;②∠BOC =60°;③∠AOE =60°;④EO =CO ,其中正确的有 .(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.10.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.11.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.12.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF ,BP ,BD 三者之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)A (0,3),B (4,0);(2)D (1,-265);(3)见解析【解析】【分析】(1)根据非负数的性质求解;(2)如图1中,设直线CD交y轴于E.首先求出点E的坐标,再求出直线CD的解析式以及点C坐标,利用平移的性质得到点D坐标;(3)如图2中,延长AB交CE的延长线于M.利用平行线的性质以及三角形的外角的性质求证;【详解】(1)∵222110a b a b--++-=,∴220,2110a b a b--=+-=,∴2202110a ba b--=⎧⎨+-=⎩,∴34ab=⎧⎨=⎩,∴A(0,3),B(4,0);(2)如图1中,设直线CD交y轴于E.∵CD//AB,∴S△ACB=S△ABE,∴12AE×BO=16,∴12×AE×4=16,∴AE=8,∴E(0,-5),设直线AB的解析式为y=kx+b,将点A(0,3),(4,0)代入解析式中得:343kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为y=334x-+,∵AB//CD , ∴直线CD 的解析式为y=34x c -+, 又∵点E (0,-5)在直线CD 上,∴c=5,即直线CD 的解析式为y=354x --, 又∵点C (-3,m )在直线CD 上,∴m=115, ∴C (-3, 115), ∵点A (0,3)平移后的对应点为C (-3,115), ∴直线AB 向下平移了265个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D ,∴点D 的坐标为(1,-265); (3)如图2中,延长AB 交CE 的延长线于点M .∵AM ∥CD ,∴∠DCM=∠M ,∵∠BCE=2∠ECD ,∴∠BCD=3∠DCM=3∠M ,∵∠M=∠PEC-∠MPE ,∠MPE=∠OPE ,∴∠BCD=3(∠CEP-∠OPE ).【点睛】考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.2.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC 即可得证;②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM即可得证.【详解】解:(1)∵点M是AC中点,∴AM=CM,在△DAM和△BCM中,∵AM CMAMD CMBDM BM=⎧⎪∠=∠⎨⎪=⎩,∴△DAM≌△BCM(SAS);(2)①∵点M是AC中点,点N是BC中点,∴CM=12AC,CN=12BC,∵△ABC是等腰直角三角形,∴AC=BC,∴CM=CN,在△BCM和△ACN中,∵CM CNC CBC AC=⎧⎪∠=∠⎨⎪=⎩,∴△BCM≌△ACN(SAS);②证明:取AD中点F,连接EF,则AD=2AF,∵△BCM≌△ACN,∴AN=BM,∠CBM=∠CAN,∵△DAM≌△BCM,∴∠CBM=∠ADM,AD=BC=2CN,∴AF=CN,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC ,由(1)知,△DAM ≌△BCM ,∴∠DBC=∠ADB ,∴AD ∥BC ,∴∠EAF=∠ANC ,在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.3.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-, 解得t =6.故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.4.(1)CP=3t,BQ=8-t;(2)见解析;(3)S=16-2t.【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC≅,得到∠PQC=∠BCQ,即可求证;(3)过点C作CM⊥AB,垂足为M,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t,BQ=8-t;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC≅∴∠PQC=∠BCQ∴PQ∥BC(3)过点C作CM⊥AB,垂足为M∵AC=BC,CM⊥AB∴AM=118422AB=⨯=(cm)∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm ) ∴118t 416222BCQ S BQ CM t ==⨯-⨯=- 因此,S 与t 之间的关系式为S=16-2t .【点睛】 此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.5.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒∠= 【解析】【分析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【详解】解:(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,因为AB BC ⊥,所以.∠ABO+∠CBH=90°,所以∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABO BCH ∴∆≅∆:BH=OA=3,CH=OB=1,:OH=OB+BH=4,所以C 点的坐标为(1,-4);(2)因为∠PBQ=∠ABC=90°,,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩PBA QBC ∴∆≅∆:.PA=CQ ;(3) ()135,1,0APB P ︒∠= BPQ ∆是等腰直角三角形,:所以∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,PBA QBC ∴∆≅∆;所以∠BPA=∠BQC=135°,所以∠OPB=45°,所以.OP=OB=1,所以P 点坐标为(1,0) .【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.6.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE ≌△CBD 得到∠ACE=∠CBD ,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF ;②先证明△ACE ≌△CBD 得∠ACE=∠CBD=∠DCF ,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA ;(2)证明△AEC ≌△CDB 得到∠E=∠D ,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∵AE=CD ,∴△ACE ≌△CBD ,∴∠ACE=∠CBD ,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.7.(1)①6;②5或﹣3;(2)直线AC的表达式为:y=﹣x+3或y=x+1;(3)m的取值范围为﹣3≤m≤﹣323m≤3.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3求出正方形AGCH的边长为3,分两种情况求出直线AC的表达式即可;(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=12DE=1,EF=DF=DE=2,得出OF OD①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2);得出m的取值范围为﹣3≤m≤﹣或2﹣≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(22);得出m的取值范围为2≤m≤3或2﹣≤m≤1;即可得出结论.【详解】解:(1)①∵b=﹣2,∴点B的坐标为(﹣2,0),如图2﹣1所示:∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则214k ak a=+⎧⎨-=+⎩,解得;13ka=-⎧⎨=⎩,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则212k bk b=+⎧⎨-=-+''⎩,解得:k1 b1=⎧⎨='⎩,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=12DE=1,EF=DF=DE=2,∴OF=3OD=3,分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2+3,2)或(2﹣3,2);∴m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(2﹣3,2)或(﹣2+3,2);∴m的取值范围为2﹣3≤m≤3或﹣1≤m≤﹣2+3;综上所述,m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.8.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD =∠CAD =α,∠ACE =∠AEC =β,∴∠CAE =180°-2β,∴∠BAE =2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE 为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD =∠BEF ,在AF 上截取AG =EF ,连接BG ,BF ,又AB=BE ,∴△ABG ≌△EBF (SAS ),∴BG =BF ,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.9.(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE ,即可得出结论;(2)同(1)的方法判断出△ABD ≌△ACE ,得出BD=CE ,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF ≌△ACO ,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF <CF ,进而判断出∠OBC >30°,即可得出结论;(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE ,∴∠BAC+∠CAD=∠DAE+∠CAD ,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ;(2)如图2,∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO ,∵AB=AC ,∴△BCF ≌△ACO (SAS ),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF ,要使OC=OE ,则有OC=12CE , ∵BD=CE , ∴CF=OF=12BD , ∴OF=BF+OD ,∴BF <CF , ∴∠OBC >∠BCF ,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC >30°,而没办法判断∠OBC 大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC 至P ,使DP=DB ,∵∠BDC=60°,∴△BDP 是等边三角形,∴BD=BP ,∠DBP=60°,∵∠BAC=60°=∠DBP ,∴∠ABD=∠CBP ,∵AB=CB ,∴△ABD ≌△CBP (SAS ),∴∠BCP=∠A , ∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.10.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.11.(123【解析】【分析】(1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中,===AMB CNA MAB NCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B ,C 向l 1作垂线,交l 1于P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC ,在△AMB 和△CNA 中,===AMB CNA ABM NAC AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△AMB ≌△CNA (AAS ),∴CN=AM ,∵∠AMB=∠ANC=120°, ∴∠PMB=∠QNC=60°,∴PM=12BM ,NQ=12NC , ∵PB=1,CQ=2,设PM=a ,NQ=b , ∴2221=4a a +,2222=4b b +,解得:3=3a ,23=3b , ∴CN=AM=222323⎛⎫+ ⎪ ⎪⎝⎭=43, ∴AB=22AP BP +=()22AM PM BP ++=2213;(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM ,在△BCN 和△CAM 中,BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCN ≌△CAM (AAS ),∴CN=AM ,BN=CM ,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP ,在△BPN 中,222BP NP BN +=,即22224NP NP +=,解得:NP=233, ∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM ,在△AQM 中,222AQ QM AM +=,即22234QM QM +=,解得:QM=3,∴AM=23=CN ,∴PC=CN-NP=AM-NP=43, 在△BPC 中,BP 2+CP 2=BC 2,即BC=22224322123BP CP ⎛⎫+=+= ⎪ ⎪⎝⎭, ∴AB=BC=221.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.12.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BP BC +=,BF BP BC ∴+=,BC BD =,BF BP BD ∴+=;(3)如图③,BF BD BP =+,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点, BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠+∠=∠+∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中,DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BC BP =+,BF BC BP ∴=+,BC BD =,BF BD BP ∴=+.【点睛】此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF ∆≅∆,是一道中等难度的中考常考题.。
2020-2021学年八年级上学期数学期末仿真必刷模拟卷【华东师大版】期末检测卷06姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知△ABC的三边a,b,c满足(a﹣4)2++|c﹣4|=0,那么△ABC是()A.不等边三角形B.等边三角形C.等腰三角形D.不能判断【解答】解:∵(a﹣4)2++|c﹣4|=0,∴a﹣4=0,b﹣4=0,c﹣4=0,∴a=b=c=4,∴△ABC的形状是等边三角形,故选:B.【知识点】非负数的性质:算术平方根、等腰三角形的判定、等边三角形的判定、非负数的性质:偶次方、非负数的性质:绝对值2.已知m=+,则()1/ 212 / 21A .4<m <5B .5<m <6C .6<m <7D .7<m <8【解答】解:m =+=4+,∵2<<3,∴6<4+<7,∴6<m <7, 故选:C .【知识点】估算无理数的大小3.某一餐桌的表面如图所示(单位:m ),设图中阴影部分面积S 1,餐桌面积为S 2,则=( )A .B .C .D .【解答】解:∵S 1=(a ﹣)(b ﹣b )+[(b •a )﹣(×)]=×+[ab ﹣]=ab ,S 2=ab ,∴==,故选:C .【知识点】整式的混合运算4.已知ab=﹣2,a﹣3b=5,则a3b﹣6a2b2+9ab3的值为()A.﹣10B.20C.﹣50D.40【解答】解:a3b﹣6a2b2+9ab3=ab(a2﹣6ab+9b2)=ab(a﹣3b)2,将ab=﹣2,a﹣3b=5代入得ab(a﹣3b)2=﹣2×52=﹣50.故a3b﹣6a2b2+9ab3的值为﹣50.故选:C.【知识点】提公因式法与公式法的综合运用5.已知:如图,∠MCN=42°,点P在∠MCN内部,P A⊥CM,PB⊥CN,垂足分别为A、B,P A=PB,则∠MCP的度数为()A.21°B.24°C.42°D.48°【解答】解:∵P A⊥CM,PB⊥CN,∴∠P AC=∠PBC=90°,3/ 21在Rt△P AC和Rt△PBC中,,∴Rt△P AC≌Rt△PBC(HL),∴∠PCM=∠PCN=∠MCN=21°;故选:A.【知识点】角平分线的性质、全等三角形的判定与性质6.在△ABC中,与∠A相邻的外角是130°,要使△ABC为等腰三角形,则∠B的度数是()A.50°B.65°C.50°或65°D.50°或65°或80°【解答】解:∠A=180°﹣130°=50°.当AB=AC时,∠B=∠C=(180°﹣50°)=65°;当BC=BA时,∠A=∠C=70°,则∠B=180°﹣50°﹣50°=80°;当CA=CB时,∠A=∠B=50°.∠B的度数为50°或65°或80°,故选:D.【知识点】等腰三角形的判定、三角形的外角性质7.在△ABC中,BC=a,AC=b,AB=c,根据下列条件不能判断△ABC是直角三角形的是()A.∠B=50°,∠C=40°B.∠A:∠B:∠C=1:2:2C.a=4,b=,c=5D.a :b :c =1:1:4/ 21【解答】解:A、∵∠B=50°,∠C=40°,∴∠A=180°﹣50°﹣40°=90°,∴△ABC是直角三角形;B、∵∠A:∠B:∠C=1:2:2∴∠A=36°,∠B=∠C=90°∴△ABC不是直角三角形;C、∵a=4,b=,c=5,∴a2+c2=b2,∴∠B=90°,∴△ABC是直角三角形.D、∵a:b:c=1:1:,∴可以假设a=b=k,c=k,∴a2+b2=c2,∴∠C=90°,∴△ABC是直角三角形,故选:B.【知识点】勾股定理的逆定理8.下列是勾股数的有()①3,4,5 ②5、12、13 ③9,40,41④13、14、15 ⑤⑥11、60、61A.6组B.5组C.4组D.3组5/ 216 / 21【解答】解:①32+42=52,是勾股数;②52+122=132,是勾股数; ③92+402=412,是勾股数; ④132+142≠152,不是勾股数; ⑤不是正整数,不是勾股数; ⑥32+42=52,是勾股数; 故是勾股数的有4组. 故选:C .【知识点】勾股数9.如图,AB ,BC 是⊙O 的两条弦,AO ⊥BC ,垂足为D ,若⊙O 的直径为5,BC =4,则AB 的长为( )A .2B .2C .4D .5【解答】解:连接OB ,∵AO ⊥BC ,AO 过O ,BC =4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故选:A.【知识点】垂径定理、勾股定理10.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:估计出售2000件衬衣,其中次品大约是()A.50件B.100件C.150件D.200件【解答】解:2000×(1﹣)≈200件,故选:D.【知识点】频数(率)分布表、用样本估计总体二、填空题(本大题共6小题,每小题2分,共124分.不需写出解答过程,请把答案直接填写在横线上)11.﹣的立方根是﹣.【解答】解:∵(﹣)3=﹣,∴﹣的立方根是﹣.7/ 21故答案为:﹣.【知识点】立方根12.已知a﹣1=20172+20182,则=.【解答】解:∵a﹣1=20172+20182,∴a=20172+20182+1,∴=====4035.故答案为:4035.【知识点】算术平方根13.分解因式:﹣x2+4x﹣4=﹣﹣.【解答】解:﹣x2+4x﹣4=﹣(x2﹣4x+4)=﹣(x﹣2)2.故答案为:﹣(x﹣2)2.【知识点】因式分解-运用公式法14.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=6.如果点M是OP的中点,则DM的长是.8/ 219 / 21【解答】解:∵OP 平分∠AOB ,PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°, ∴CE ===,∵CP ∥OA , ∴∠OPC =∠AOP , ∴∠OPC =∠BOP , ∴CO =CP =,∴OE =CE +CO =+=8,∴OP ===10,在Rt △OPD 中,点M 是OP 的中点, ∴DM =OP =5; 故答案为:5.【知识点】角平分线的性质、直角三角形斜边上的中线、勾股定理的应用、等腰三角形的判定与性质15.直角三角形的两边长为3cm ,4cm ,则第三边边长为.10 / 21【解答】解:(1)若把两边都看作是直角边,那么据已知和勾股定理,设第三边长为xcm ,则:x 2=32+42=25, ∴x =5;(2)若把4cm 长的边看作斜边,设第三边长为xcm , 则:x 2+32=42, x 2=42﹣32=7, ∴x =.故答案为:5或.【知识点】勾股定理16.如图的折线统计图分别表示我市A 县和B 县在4月份的日平均气温的情况,记该月A 县和B 县日平均气温是12℃的天数分别为a 天和b 天,则a +b = .【解答】解:根据图表可得:a =7,b =5,则a +b =7+5=12. 故答案为:12.11 / 21【知识点】折线统计图三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CF 于点F . (1)求证:△ABC ≌△ADE ;(2)已知BF 的长为2,DE 的长为6,求CD 的长.【解答】(1)证明:∵∠BAD =∠CAE =90°∴∠BAC =90°﹣∠CAD ,∠DAE =90°∠CAD ,即∠BAC =∠DAE在△BAC 和△DAE 中,,∴△BAC ≌△DAE (SAS );(2)解:∵∠CAE =90°,AE =AC , ∴∠E =45°,由(1)可知:△ABC ≌△ADE ,∴∠BCA =∠E =45°,∠CBA =∠EDA ,CB =ED , 延长BF 到G ,使得FG =FB ,连接AG ,如图所示:12 / 21∵AF ⊥CF ,∴∠AFG =∠AFB =90°,在△AFB 和△AFG 中,,∴△AFB ≌△AFG (SAS ),∴AB =AG =AD ,∠ABF =∠G =∠CDA在△CGA 和△CDA 中,,∴△CGA ≌△CDA (AAS ), ∴CD =CG∴CD =CB +BF +FG =CB +2BF =DE +2BF =6+2×2=10.【知识点】等腰直角三角形、全等三角形的判定与性质18.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点都在格点上(网格线的交点). (1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A 坐标为(﹣1,2),点B 的坐标为(﹣5,2);(画出直角坐标系)(2)点C 的坐标为( ﹣ , )(直接写出结果)(3)把△ABC 先向下平移6个单位后得到对应的△A 1B 1C 1,再将△A 1B 1C 1沿y 轴翻折至△A 2B 2C 2;13 / 21①请在坐标系中画出△A 2B 2C 2;②若点P (m ,n )是△ABC 边上任意一点,P 2是△A 2B 2C 2边上与P 对应的点,写出点P 2的坐标为( ﹣ , ﹣ );(直接写出结果)③试在y 轴上找一点Q ,使得点Q 到A 2,C 2两点的距离之和最小,此时,QA 2+QC 2的长度之和最小值为 .(在图中画出点Q 的位置,并直接写出最小值答案)【解答】解:(1)∵点A 坐标为(﹣1,2),点B 的坐标为(﹣5,2),如图所示:即为所画出的直角坐标系; (2)根据坐标系可知:14 / 21点C 的坐标为(﹣2,5), 故答案为:﹣2,5;(3)把△ABC 先向下平移6个单位后得到对应的△A 1B 1C 1, 再将△A 1B 1C 1沿y 轴翻折至△A 2B 2C 2; ①如图即为坐标系中画出的△A 2B 2C 2; ②点P (m ,n )是△ABC 边上任意一点, P 2是△A 2B 2C 2边上与P 对应的点, ∴点P 2的坐标为(﹣m ,n ﹣6), 故答案为:﹣m ,n ﹣6; ③根据对称性可知:在y 轴上找一点Q ,使得点Q 到A 2,C 2两点的距离之和最小, ∴连接A 2C 1交y 轴于点Q ,此时QA 2+QC 2的长度之和最小, 即为A 2C 1的长,A 2C 1=3,∴QA 2+QC 2的长度之和最小值为3.故答案为:3.【知识点】勾股定理、翻折变换(折叠问题)、作图-平移变换、轴对称-最短路线问题19.一辆卡车装满货物后,高4m 、宽2.4m ,这辆卡车能通过截面如图所示(上方是一个半圆)的隧道吗?15 / 21【解答】解:如图,由图形得半圆O 的半径为2m ,作弦EF ∥AD ,且EF =2.4m ,作OH ⊥EF 于H ,连接OF ,由OH ⊥EF ,得HF =1.2m , 在Rt △OHF 中,OH ===1.6m ,∵1.6+2=3.6<4,∴这辆卡车不能通过截面如图所示的隧道.【知识点】垂径定理、勾股定理的应用20.已知,在△ABC 中,AC =BC .分别过A ,B 点作互相平行的直线AM 和BN .过点C 的直线分别交直线AM ,BN 于点D ,E .(1)如图1.若CD =CE .求∠ABE 的大小;(2)如图2.∠ABC =∠DEB =60°.求证:AD +DC =BE .【解答】(1)解:如图1,延长AC 交BN 于点F ,∵AM∥BN,∴∠DAF=∠AFB,在△ADC和△FEC中,,∴△ADC≌△FEC(AAS),∴AC=FC,∵AC=BC,∴BC=AC=FC=AF,∴△ABF是直角三角形,∴∠ABE=90°;(2)证明:如图2,在EB上截取EH=EC,连CH,∵AC=BC,∠ABC=60°,∴△ABC为等边三角形,∵∠DEB=60°,∴△CHE是等边三角形,∴∠CHE=60°,∠HCE=60°,∴∠BHC=120°,∵AM∥BN,∴∠ADC+∠BEC=180°,∴∠ADC=120°,∴∠DAC+∠DCA=60°,又∵∠DCA+∠ACB+∠BCH+∠HCE=180°,∴∠DCA+∠BCH=60°,16/ 2117 / 21∴∠DAC =∠BCH ,在△DAC 与△HCB 中,,∴△DAC ≌△HCB (AAS ), ∴AD =CH ,DC =BH , 又∵CH =CE =HE , ∴BE =BH +HE =DC +AD , 即AD +DC =BE .【知识点】全等三角形的判定与性质21.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为S 1,S 2.(1)填空:S 1﹣S 2=﹣(用含m 的代数式表示);(2)若一个正方形的周长等于甲、乙两个长方形的周长之和.①设该正方形的边长为x,求x的值(用含m的代数式表示);②设该正方形的面积为S3,试探究:S3与2(S1+S2)的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由,(3)若另一个正方形的边长为正整数n,并且满足条件1≤n<S1﹣S2的n有且只有4个,求m的值.【解答】解:(1)S1﹣S2=(m+7)(m+1)﹣(m+4)(m+2)=2m+1.故答案为2m+1.(2)①根据题意,得4x=2(m+7+m+1)+2(m+4+m+2)解得x=2m+7.答;x的值为2m+7.②∵S1+S2=2m2+14m+15,S3﹣2(S1+S2)=(2m+7)2﹣2(2m2+14m+15)=4m2+28m+49﹣4m2﹣28m﹣30=19.答:S3与2(S1+S2)的差是常数:19.(3)∵1≤n<2m﹣1,由题意,得5≤2m﹣1<6,解得3≤m<.∵m是整数,∴m=3.答:m的值为3.18/ 21【知识点】整式的加减、多项式乘多项式22.计算(1)﹣12+(﹣)﹣2×π0(2)1232﹣124×122(用简便方法计算)(3)(x+2y+3z)(x+2y﹣3z)(4)(4a3b﹣6a2b2+12b3)÷2ab【解答】解:(1)﹣12+(﹣)﹣2×π0=﹣1+4×1=﹣1+4=3;(2)1232﹣124×122=1232﹣(123+1)×(123﹣1)=1232﹣1232+1=1;(3)(x+2y+3z)(x+2y﹣3z)=[(x+2y)+3z][(x+2y)﹣3z]=(x+2y)2﹣9z2=x2+4xy+4y2﹣9z2;(4)(4a3b﹣6a 2b 2+12b3)÷2ab19/ 21=2a2﹣3ab+.【知识点】整式的混合运算、零指数幂、负整数指数幂、实数的运算23.计算:(1)4(x﹣1)2﹣(2x﹣5)(2x+5);(2)(﹣2)﹣2﹣(﹣1)2019﹣(π﹣2018)0;(3)(4a4b7﹣a6b7)÷(﹣ab2)3;(4)÷+•【解答】解:(1)4(x﹣1)2﹣(2x﹣5)(2x+5)=4(x2﹣2x+1)﹣(4x2﹣25)=4x2﹣8x+4﹣4x2+25=﹣8x+29(2)(﹣2)﹣2﹣(﹣1)2019﹣(π﹣2018)0;=+1﹣1=(3)(4a4b7﹣a6b7)÷(﹣ab2)3;=(4a4b7﹣a6b7)÷(﹣a3b6)=﹣4ab +a3b20/ 21(4)÷+•=×+•=+=【知识点】负整数指数幂、分式的混合运算、整式的混合运算、实数的运算、零指数幂21/ 21原创原创精品资源学科网独家享有版权,侵权必究!。
2019-2020学年八年级数学上册期末模拟测试题考试时间:120分钟满分:150分姓名:__________班级:__________考号:__________题号评分第Ⅰ卷的注释阅卷人一二三四五六总分第Ⅰ卷客观题一、单选题(共10题;共30分)得分1.(3分) -64的立方根是()A. -8B.8C. -4D.42.(3分)将数49开平方,其结果是()A.±7B. -7C.7D.3.(3分)下列各数的相反数中,最大的数是()A.-1B.0C.1D.4.(3分)下列运算正确的是()A. B. C. D.5.(3分)如图,数轴上点N表示的数可能是()A. B. C. D.6.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式().A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+b)(a-2b)=a2-ab-2b27.(3分)有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为()A.3B.C.和3D.不确定8.(3分)在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1B.2C.3D.49.(3分)某校初一新生来自甲、乙、丙三所不同小学,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲小学的为180人,则下列说法不正确的是()A.扇形甲的圆心角是72°B.学生的总人数是900人C.丙校的人数比乙校的人数多180人D.甲校的人数比丙校的人数少180人10.(3分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6第Ⅱ卷主观题第Ⅱ卷的注释阅卷人二、填空题(共10题;共30分)得分11.(3分)分解因式:ax+ay=________.12.(3分)已知a m=4,a n=3,则a2m+n=________.13.(3分)若m=4n+3,则m2﹣8mn+16n2的值是________.14.(3分)化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.15.(3分)命题“同位角相等”的逆命题是________”16.(3分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________°17.(3分)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL△判定ABC≌△DBE,则需要添加的一个条件是________18.(3分)如图,在△ABC中,D,E分别是AB,AC的中点,延长DE至F,使EF=DE,若AB=10,BC=8,则四边形BCFD的周长为________19.(3分)如图,E为正方形ABCD中CD边上一点,∠DAE=30°,P为AE的中点,过点P作直线分别与AD、BC相交于点M、N.若MN=AE,则∠AMN等于________20.(3分)如图,已知AB∥CF,E为DF的中点,若AB=11cm,CF=5cm,则BD=________cm.阅卷人三、计算题(共6题;共46分)得分21.(5分)求值:(﹣1)2018+|1﹣|﹣22.(5分)计算:(a+b)2﹣a(a+2b+1)23.(7分)计算下列各式:(1)1-=________;(2)=________;(3)=________;(4)你能根据所学知识找到计算上面的算式的简便方法吗?请你利用你找到的简便方法计算下式:24.(15分)因式分解:(1)3x2﹣6xy+x;(2)﹣4m3+16m2﹣28m;(3)18(a﹣b)2﹣12(b﹣a)3.25.(6分)已知() ()的积不含项与项,求() ()的值是多少?26.(8分)设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).阅卷人四、解答题(共2题;共22分)得分27.(10分)为了解“数学思想作文对学习帮助有多大?”研究员随机抽取了一定数量的高校大一学生进行了问卷调查,并将调查得到的数据用下面的扇形图和如表来表示(图、表都没制作完成).选项帮助很大帮助较大帮助不大几乎没有帮助人数a540270b根据上面图、表提供的信息,解决下列问题:(1)这次共有多少名学生参与了问卷调查?(2)求a、b的值.28.(12分)如图,点O△是ABC边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(Ⅰ)求证:OE=OF;(Ⅱ)若CE=8,CF=6,求OC的长;阅卷人五、作图题(共1题;共8分)得分29.(8分)如图,在方格纸中,点A,D都在格点上,作三角形ABC,使其满足下列条件.(点B,C不与点D重合)(1)在图甲中,作格点等腰△ABC,使AD△为ABC的高线.(2)在图乙中,作格点钝角△ABC,使AD△为ABC的角平分线阅卷人六、综合题(共1题;共14分)得分30.(14分)如图,AB⊥BC,射线CM⊥BC,且BC=4,AB=1,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,若BP=3△,求ABP的周长;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3△)若PDC是等腰三角形,作点B关于AP的对称点B′,连结B′D,则B′D=________.(请直接写出答案)答案解析部分一、单选题1.【答案】C【考点】立方根【解析】【解答】∵-4的立方等于-64,∴-64的立方根等于-4.故选C.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.【答案】A【考点】平方根【解析】【分析】根据平方根的定义进行解答.【解答】∵(±7)2=49,∴±=±7.故选A.【点评】本题考查的是平方根的定义,解答此题的关键是熟知一个正数的平方根有两个,这两个数互为相反数.3.【答案】D【考点】实数大小比较【解析】【分析】根据以下法则即可求解.负数小于正数;两个负数,绝对值大的反而小;底数是正数的同次根式,底数越大,根式的值越大.【解答】从题意,A中-1的相反数为1;B中0没有正负之分;C中1的相反数为-1;D中的相反数为,四个数中D选项中的最大.故选D.4.【答案】D【考点】幂的乘方与积的乘方,同底数幂的除法,单项式乘单项式,去括号法则及应用,合并同类项法则及应用【解析】【分析】选项A中,所以A错误;选项B中,所以B错误,选项C中,所以C错误,选项D中,因此选D。
八年级数学期末复习练习(7)(期末质量检查)(满分:150分;考试时间:120分钟)一、选择题(每题3分,共21分): 1.9的算术平方根是( ) A .3-B . 3C .3±D .312.下列命题是假.命题的是( ) A .所有的实数都可用数轴上的点表示B .等角的补角相等C .无理数包括正无理数,0,负无理数D .两点之间,线段最短 3.下列计算正确的是( ) A .232a a a =+B .623a a a =⋅ C .22)(+=m m aaD .3632)(b a b a =4.要反映我市某一周每天的最高气温的变化趋势,宜采用( ) A .条形统计图B .扇形统计图C .折线统计图D .频数分布统计图5.如图,点C 在AOB ∠的边OB 上,用尺规作出了AOC BCN ∠=∠,作图痕迹中,弧FG 是( )A .以点C 为圆心,OD 为半径的弧B . 以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧D . 以点E 为圆心,DM 为半径的弧6.已知等腰三角形的顶角为50°,则这个等腰三角形的底角为( ).A .50°B .65°C .80°D .50°或657.如图一,在边长为a 的正方形中,挖掉一个边长为b 的小正方形(b a >),把余下的部分剪成一个矩形(如图二),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A .))((22b a b a b a -+=-B .2222)(b ab a b a ++=+ C .2222)(b ab a b a +-=- D .222))(2(b ab a b a b a -+=-+ 二、填空题(每题4分,共40分) 8.大于且小于的整数是.9.计算:327-=.10.命题“如果y x =,那么22y x =”的逆命题是.11.已知直角三角形的两直角边分别为5㎝和12㎝.则它的斜边长为㎝. 12.已知3-=+b a ,1=ab ,则22b a + =.13.如图,在△ABC 中,AC AB =,8=BC ,AD 平分BAC ∠,则______=BD .14.如图,在△ABC 中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD 。
华东师大版八年级数学上册期末试卷【及参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y -4.在△ABC 中,AB=10,,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x =,则x=__________2.若二次根式x 1-有意义,则x 的取值范围是 ▲ .3.使x 2-有意义的x 的取值范围是________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、A6、A7、D8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、x1≥.3、x2≥4、145、1 (21,2) n n--6、32°三、解答题(本大题共6小题,共72分)1、2x=2、-3.3、(1)1;(2)m>2;(3)-2<2m-3n<184、略5、24°.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
华东师大新版八年级上册数学期末复习试题一.选择题(共8小题,满分16分,每小题2分)1.化简(﹣a)2a3所得的结果是()A.a5B.﹣a5C.a6D.﹣a62.对于,,,,,,其中分式有()A.1个B.2个C.3个D.4个3.小东5分钟内共投篮60次,共进球15个,则小东进球的频率是()A.0.25B.60C.0.26D.154.解分式方程时,去分母变形正确的是()A.﹣1+x=1+3(2﹣x)B.﹣1+x=﹣1﹣3(x﹣2)C.1﹣x=﹣1﹣3(x﹣2)D.1﹣x=1﹣3(x﹣2)5.已知△ABC中,AB=AC,求证:∠B<90°,运用反证法证明这个结论,第一步应先假设()成立.A.∠B≥90°B.∠B>90°C.∠A>90°D.∠A≥90°6.如图,线段AB=、CD=,那么,线段EF的长度为()A.B.C.D.7.如图,△ABC为等边三角形,要在△ABC外部取一点D,使得△ABC和△DBC全等,下面是两名同学做法:()甲:①作∠A的角平分线l;②以B为圆心,BC长为半径画弧,交l于点D,点D即为所求;乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确8.如图,在△ABC中,∠C=90°,DE⊥AB于点E,CD=DE,∠CBD=26°,则∠A的度数为()A.40°B.34°C.36°D.38°二.填空题(共7小题,满分21分,每小题3分)9.计算(π﹣3.14)0+()﹣2=.10.4a2﹣12a+9分解因式得.11.用科学记数法表示:﹣0.00000202=.12.计算:(18x3y2﹣12x2y3+x2y2)÷(﹣6x2y2)=.13.如图,在△ABC中,∠BAC=45°,CD⊥AB于点D,AE⊥BC于点E,连接BF,DE,下列结论中:①AF=BC;②∠DEB=45°;③AE=CE+2BD;④若∠CAE=30°,则=1.正确的有(填序号).14.如图,在△ABC中,AE=DE=BD,AD=EC,∠1=17°,则∠EBC的度数是.15.如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD 上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是.三.解答题(共9小题,满分63分)16.解分式方程:(1)=1+;(2)﹣1=.17.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值;(2)已知x﹣=2,求x2+的值.18.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.19.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.点A、B、C是格点,D为线段AC与某一格线的交点.(1)AB=;=;(2)请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.试找一点M使DM∥AB,且DM=AB.20.甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做多少个零件?21.已知将(x2+nx+3)(x2﹣2x﹣m)乘开的结果不含x3和x2项.(1)求m、n的值;(2)当m、n取第(1)小题的值时,求①(m﹣n)(m2+mn+n2)的值.②(m+n)(m2﹣mn+n2)的值.22.某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.23.(1)如图1,等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,B,E,D三点在同一直线上,求证:∠BDC=90°;(2)如图2,等腰△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且∠BDC =90°,求证:∠ADB=45°;(3)如图3,等边△ABC中,D是△ABC外一点,且∠BDC=60°,①∠ADB的度数;②DA,DB,DC之间的关系.24.已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试用等式表示AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.参考答案与试题解析一.选择题(共8小题,满分16分,每小题2分)1.解:(﹣a)2a3=a2•a3=a5.故选:A.2.解:,,,是分式,共4个;故选:D.3.解:∵小东5分钟内共投篮60次,共进球15个,∴小东进球的频率是:=0.25.故选:A.4.解:方程整理得:=﹣﹣3,去分母得:1﹣x=﹣1﹣3(x﹣2),故选:C.5.解:已知△ABC中,AB=AC,求证:∠B<90°,运用反证法证明这个结论,第一步应先假设∠B≥90°,故选:A.6.解:∵AB==,CD==,∴图形中的网格是由边长为1的小正方形构成的,则EF==.故选:C.7.解:(甲)如图一所示,∵△ABC为等边三角形,AD是∠BAC的角平分线,∴∠BEA=90°,∴∠BED=90°,∴∠BEA=∠BED=90°,由甲的作法可知,AB=BD,∴∠ABC=∠DBC,在△ABC与△DCB中,,∴△ABC≌△DCB,故甲的作法正确;(乙)如图二所示,∵BD∥AC,CD∥AB,∴∠ABC=DCB,∠ACB=∠DBC,在△ABC和△DCB中,,∴△ABC≌△DCB(ASA),∴乙的作法是正确的.故选:A.8.解:∵DE⊥AB,DC⊥BC,DE=DC,∴BD平分∠ABC,∴∠EBD=∠CBD=26°,∴∠A=90°﹣∠ABC=90°﹣2×26°=38°.故选:D.二.填空题(共7小题,满分21分,每小题3分)9.解:原式=1+9=10,故答案为10.10.解:4a2﹣12a+9=(2a﹣3)2,故答案为:(2a﹣3)2.11.解:﹣0.00000202=﹣2.02×10﹣6.故答案为:﹣2.02×10﹣6.12.解:(18x3y2﹣12x2y3+x2y2)÷(﹣6x2y2)=﹣3x+2y﹣;故答案为:﹣3x+2y﹣.13.解:∵AE⊥BC,∴∠AEC=∠ADC=∠CDB=90°,∵∠AFD=∠CFE,∴∠DAF=∠DCB,在△ADF和△CDB中,,∴△ADF≌△CDB(ASA),∵AF=BC,D F=DB,故①正确,∴∠DFB=∠DBF=45°,取BF的中点O,连接OD、OE.∵∠BDF=∠BEF=90°,∴OE=OF=OB=OD,∴E、F、D、B四点共圆,∴∠DEB=∠DFB=45°,故②正确,如图1中,作DM⊥AE于M,DN⊥BC于N,易证△DMF≌△DNB,四边形DMEN是正方形,∴MF=BN,EM=EN,∴EF+EB=EM﹣FM+EN+NB=2EM=2DN,∵AE﹣CE=BC+EF﹣EC=EF+BE=2DN<2BD,∴AE﹣CE<2BD,即AE<EC+2BD,故③错误,方法二:如图2中,作DM⊥AE于M,DN⊥BC于N.易证△DMF≌△DNB,四边形DMEN是正方形,∴FM=BN,EM=EN=DN,∴EF+EB=EM﹣MF+EN+BN=2EN=2DN≤2BD,∵AE﹣EC=ADF+EF﹣EC=BC_EF﹣EC=EF+BE≤2BD,∴AE≤EC+2BD,故③错误,如图2中,延长FE到H,使得FH=FB.连接HC、BH.∵∠CAE=30°,∠CAD=45°,∠ADF=90°,∴∠DAF=15°,∠AFD=75°,∵∠DFB=45°,∴∠AFB=120°,∴∠BFH=60°,∵FH=BF,∴△BFH是等边三角形,∴BF=BH,∵BC⊥FH,∴FE=EH,∴CF=CH,∴∠CFH=∠CHF=∠AFD=75°,∴∠ACH=75°,∴∠ACH=∠AHC=75°,∴AC=AH,∵AF+FB=AF+FH=AH,∴AF+BF=AC,∴=1,故④正确,故答案为:①②④.14.解:∵BD=DE,∴∠DEB=∠1=17°,∴∠ADE=∠1+∠DEB=34°,∵AE=DE,∴∠A=∠ADE=34°,∵BD=AE,AD=CE,∴AD+BD=CE+AE,即AB=AC,∴∠ABC=∠C=73°,∴∠CBE=∠ABC﹣∠1=56°,故答案为:56°.15.解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,∴AB=2BM,∠A′MB=90°,MN∥BC.∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.∴A′B=AB=2BM.在Rt△A′MB中,∵∠A′MB=90°,∴sin∠MA′B=,∴∠MA′B=30°,∵MN∥BC,∴∠CBA′=∠MA′B=30°,∵∠ABC=90°,∴∠ABA′=60°,∴∠ABE=∠EBA′=30°,∴BE==.故答案为:.三.解答题(共9小题,满分63分)16.解:(1)=1+;去分母得,x﹣3=(x﹣3)(2x﹣6)﹣(2x﹣3)(2x﹣6),去括号得,x﹣3=2x2﹣12x+18﹣4x2+18x﹣18,移项得,2x2﹣12x+18x﹣4x2﹣x=18﹣18﹣3,合并同类项得,2x2﹣5x﹣3=0,系数化为1得,x1=3,x2=﹣,经检验,x1=3不是原方程的根,是增根,x2=﹣是原方程的根,所以原方程的解为x=﹣.(2)﹣1=.去分母得,x(x+3)﹣(x﹣1)(x+3)=4,去括号得,x2+3x﹣x2﹣2x+3=4,移项得,x2+3x﹣x2﹣2x=4﹣3,合并同类项得,x=1,经检验,x=1是原方程的增根,所以原方程的无实数根.17.解:(1)∵ab=3,∴(2a3b2﹣3a2b+4a)•(﹣2b)=﹣4a3b3+6a2b2﹣8ab=﹣4(ab)3+6(ab)2﹣8ab=﹣4×33+6×32﹣8×3=﹣68;(2)∵x﹣=2,∴x2+=x2﹣2++2=(x﹣)2+2=22+2=6.18.证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).19.解:(1)AB==,由平行线等分线段定理可知:=2故答案为:,2.(2)如图,线段DM即为所求.20.解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件,甲每小时做18个零件.21.解:(1)原式=x4﹣2x3﹣mx2+nx3﹣2nx2﹣mnx+3x2﹣6x﹣3m=x4+(n﹣2)x3+(3﹣m ﹣2n)x2﹣(mn+6)x﹣3m,由乘开的结果不含x3和x2项,得到n﹣2=0,3﹣m﹣2n=0,解得:m=﹣1,n=2;(2)当m=﹣1,n=2时,①(m﹣n)(m2+mn+n2)=m3+m2n+mn2﹣m2n﹣mn2﹣n3=m3﹣n3=﹣1﹣8=﹣9.②(m+n)(m2﹣mn+n2)=m3﹣m2n+mn2+m2n﹣mn2+n3=m3+n3=﹣1+8=7.22.解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:23.(1)证明:如图1,设BD与AC交于点F,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠ABE+∠AFB=90°,∠AFB=∠CFD,∴∠ACD+∠CFD=90°,∴∠BDC=90°;(2)如图2,过A作AE⊥AD交BD于E,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,∵∠BAC=∠BDC=90°,∠AFB=∠CFD,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AE=AD,∴∠ADE=∠AED=45°;(3)①如图3,在形内作∠DAE=60°,AE交BD于E点,与(2)同理△ABE≌△ACD,∴AE=DA,∴△ADE是等边三角形,∴∠ADE=60°;②∵BE=DC,∴DB=BE+DE=DA+DC.24.(1)①证明:∵△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,∴∠DCE=45°=∠A,CD=AB=AD,CD⊥AB,∴∠ADC=90°,∵DF⊥DE,∴∠FDE=90°,∴∠ADC=∠FDE,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE(ASA),∴AF=CE;②解:AF2+EB2=EF2,理由如下:由①得:△ADF≌△CDE(ASA),∴AF=CE;同理:△CDF≌△BDE(ASA),∴CF=BE,在Rt△CEF中,由勾股定理得:CE2+CF2=EF2,∴AF2+EB2=EF2;(2)解:分两种情况:①点E在线段CB上时,∵BE=3,BC=4,∴CE=BC﹣BE=1,由(1)得:AF=CE=1,AF2+EB2=EF2,∴EF==;②点E在线段CB延长线上时,如图2所示:∵BE=3,BC=4,∴CE=BC+BE=7,同(1)得:△ADF≌△CDE(ASA),∴AF=CE,∴CF=BE=3,在Rt△EF中,由勾股定理得:CF2+CE2=EF2,∴EF==;综上所述,当EB=3时,EF的长为或.。
华师大版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.等腰三角形的两个底角相等C.顶角相等的两个等腰三角形全等D.等腰三角形一边不可以是另一边的2倍2、下列计算正确的是()A. =±3B.a 0=1C.3 -2 =1D.2÷3× =3、下列说法正确的是()A.同位角相等B.矩形对角线垂直C.对角线相等且垂直的四边形是正方形D.等腰三角形两腰上的高相等4、下面各式计算正确的是()A. B. C. D.5、一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间6、 =()A. B. C. D.7、如图,已知等边三角形△ABC边长为a,等腰三角形△BDC中,∠BDC=120º,∠MDN=60º,角的两边分别交AB,AC于点M,N,连结MN.则△AMN的周长为()A. aB.2 aC.3 aD.4 a8、若x,y均为正整数,且2x+1•4y=128,则x+y的值为()A.4B.5C.4或5D.69、下列计算结果正确的是()A. B. C. ÷ D.10、下列等式成立的是()A. B. C. D.11、方程的根为()A. B. C. 或 D.以上都不对12、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =3,b=4,则该矩形的面积为( )A.20B.24C.D.13、若a2=4,b2=9,且ab<0,则a-b的值为()A.-2B.±5C.-5D.514、如图,在中,,以点为旋转中心,把顺时针旋转得,记旋转角为, 为,当旋转后满足时,与之间的数量关系为()A. B. C. D.15、如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.2 <r<B. <r<3C. <r<5D.5<r<二、填空题(共10题,共计30分)16、计算:(﹣3xy2)2÷(2xy)=________.17、分解因式:2a2-a=________.18、某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B处,然后再沿水平方向行走4米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度为________.19、如图,在菱形ABCD中,,对角线,则菱形ABCD的面积为________.20、如图,DE是⊙O的直径,弦AB⊥CD,垂足为C,若AB=6,CE=1,则OC=________,CD=________.21、如图,△ABC中,∠BAC=110°,AB、AC的垂直平分线分别交BC于点E、F,则∠EAF的度数为________.22、如图,商场(点M)距公路(直线l)的距离(MA)为3km,在公路上有一车站(点N),车站距商场(NM)为4km,公交公司拟在公路上建一个公交车站停靠站(点P),要求停靠站到商场与到车站的距离相等,则停靠站到车站的距离(NP)的长为________.23、如图,AC与BD交于点P,AP=CP,从以下四个论断①AB=CD,②BP=DP,③∠B=∠D,④∠A=∠C中选择一个论断作为条件,则不一定能使△APB≌△CPD 的论断是________(限填序号).24、因式分解:9a3b-ab________.25、若a+ =3,则a﹣=________.三、解答题(共5题,共计25分)26、计算:.27、如图,已知在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于D,交AB 于E,求证:BE2﹣EA2=AC2.28、“尊敬的老师:因为我家里有事了,所以向老师请假了,请假2天了,请老师准假了,谢谢了.”这是小明同学向老师写的请假条.老师见后,对此请假条马上批注,“小明同学:你的请假条中了字用了太多了,以后少用了,明白没有了现在准假了,就这样了.”问请假条和批语中“了”的频数各是多少?频率各是多少?是小明还是老师用“了”更频繁?29、如图,点C是AB的中点,AD=CE,CD=BE,求证:∠D=∠E.30、如图:在平行四边形ABCD中,对角线AC与BD交于点O,过点O的直线EF 分别与AD、BC交于点E、F,EF⊥AC,连结AF、CE.(1)求证:OE=OF;(2)请判断四边形AECF是什么特殊四边形,请证明你的结论.参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、B5、B6、A7、B8、C9、D10、C11、C12、B13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
八年级数学期末试卷(华东师大版)一. 选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的。
1. 不等式36x <的解集是A. x>2B. x>3C. x<2D. x<32. 如图1,E 、F 为矩形ABCD 的对角线AC 上两点,且AE =CF ,则图中全等三角形有图1 A. 1对B. 2对C. 3对D. 4对3. 不等式组x x -≤+>⎧⎨⎩2010的解集在数轴上表示为4. 下列运算结果正确的是 A. a a a 3412⋅= B. ()-=a a 326C. 235a b ab +=D. ()ab ab 326=5. 将多项式x x 22--进行因式分解,结论正确的为 A. ()()x x +-12 B. ()()x x ++12 C. ()()x x --12D. ()()x x -+126. 如图2,∆∆ABC DCB ≅,若∠=A 80,∠=ACB 40,则∠BCD 等于图2 A. 80°B. 60°C. 40°D. 20°7. 将多项式x y y 24-分解因式,其中结果正确的是 A. y x x ()()+-22B. y x x ()()+-44C.y x x ()()2222+-D. y x ()-228. 平行四边形ABCD 的对角线相交于点O ,AC =6,BD =4,∆COD 的周长为9,则AB 的长为A. 6B. 4C. 3D. 29. 如图3,在边长为a 的正方形中挖掉一个边长为b 的小正方形(如图I ),将剩余部分沿虚线剪开后拼接(如图II )。
通过计算,用拼接前后两个图形中阴影部分的面积可以验证等式图3A. a b a b a b 22-=+-()()B. ()a b a ab b +=++2222C. ()()a b a b a ab b +-=+-2222D. ()a b a ab b -=-+222210. 如图4是某种手机游戏的一个画面,网格由等边三角形构成。
2020年华东师大版八年级数学上册期末复习检测卷二一、选择题(每小题3分,共21分)1.(3分)计算的结果是()A.8 B.﹣4 C.4 D.±42.(3分)下列各等式正确的是()A.a3•a2=a6B.(x3)2=x6C.(mn)3=mn3D.b8÷b4=b23.(3分)如图是某国产品牌手机专卖店今年8﹣12月高清大屏手机销售额折线统计图.根据图中信息,可以判断相邻两个月高清大屏手机销售额变化最大的是()A.8﹣9月B.9﹣10月C.10﹣11月D.11﹣12月4.(3分)实数的绝对值是()A.B.C.D.15.(3分)如图,已知∠CAB=∠DAB,则下列不能判定△ABC≌△ABD的条件是()A.∠C=∠D B.AC=AD C.∠CBA=∠DBA D.BC=BD6.(3分)下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=27.(3分)若一个直角三角形的面积为6cm2,斜边长为5cm,则该直角三角形的周长是()A.7cm B.10cm C.cm D.12cm二、填空题(每小题4分,共40分)8.(4分)9的平方根是.9.(4分)如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB的距离是 cm.10.(4分)小明在纸上随手写下一串数字“1010010001”,则数字“1”出现的频率是.11.(4分)在实数、、中,无理数是.12.(4分)如图,△ACB≌△DCE,∠ACD=50°,则∠BCE的度数为.13.(4分)若△ABC的三边长分别为5、13、12,则△ABC的形状是.14.(4分)用4张全等的长方形拼成一个如图所示的正方形,利用面积的不同表示方法可以写出一个代数恒等式.若长方形的长和宽分别为a、b,则该图可表示的代数恒等式是.15.(4分)已知m2﹣n2=16,m+n=5,则m﹣n= .16.(4分)如图所示,把边长为1的正方形放在数轴上,以数1表示的点为圆心,正方形的对角线长为半径作弧,交数轴于点A,则点A表示的数是.17.(4分)如图所示的“贾宪三角”告诉了我们二项式乘方展开式的系数规律,如:第四行的四个数恰好对应着(a+b)3的展开式a3+3a2b+3a b2+b3的系数;第五行的五个数恰好对应着(a+b)4的展开式a4+4a3b+6a2b2+4ab3+b4的系数;根据数表中前五行的数字所反映的规律,回答:(1)图中第七行正中间的数字是;(2)(a+b)6的展开式是.三、解答题(共89分)18.(9分)计算:6a6b4÷3a3b4+a2•(﹣5a).19.(9分)计算:(x﹣2)(x+5)﹣x(x﹣2).20.(9分)因式分解:9a3+6a2b+ab2.21.(9分)先化简,再求值:(x﹣2y)2+(2x3﹣14x2y+8xy2)÷(﹣2x),其中x=﹣,y=5.22.(9分)如图,点C、B、E、F在同一直线上,CE=BF,AC∥DF,AC=DF.求证:△ABC≌△DEF.23.(9分)某校在2014-2015学年八年级(1)班学生中开展对于“我国国家公祭日”知晓情况的问卷调查.问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图.请根据上述信息解答下列问题:(1)该班参与问卷调查的人数有人;补全条形统计图;(2)求出C类人数占总调查人数的百分比及扇形统计图中A类所对应扇形圆心角的度数.24.(9分)如图,在△ABC中,∠ACB=105°,AC边上的垂直平分线交AB边于点D,交AC边于点E,连结CD.(1)若AB=10,BC=6,求△BCD的周长;(2)若AD=BC,试求∠A的度数.25.(12分)请阅读下列材料:问题:如图(1),圆柱的底面半径为4cm,圆柱高AB为2c m,BC是底面直径,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图(1)所示.路线2:侧面展开图中的线段AC,如图(2)所示.设路线1的长度为l1,则l1=AB+BC=2+8=10;设路线2的长度为l2,则l2===;∵=102﹣(4+16π2)=96﹣16π2=16(6﹣π2)<0∴即l1<l2所以选择路线1较短.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为2cm,高AB为4cm”继续按前面的路线进行计算.(结果保留π)①此时,路线1:l1=.路线2:l2=.②所以选择哪条路线较短?试说明理由.(2)请你帮小明继续研究:当圆柱的底面半径为2cm,高为hcm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.26.(14分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD是∠ACB的角平分线,点E、F分别是边AC、BC上的动点.AB=,设AE=x,BF=y.(1)AC的长是;(2)若x+y=3,求四边形CEDF的面积;(3)当DE⊥DF时,试探索x、y的数量关系.参考答案1.C.2.B.3.C.4.B.5.D.6.A.7.D.8.答案为:±3.9.答案为:6.10.答案是:40%.11.答案为:.12.答案为:50°.13.答案为:直角三角形.14.答案为:4ab=(a+b)2﹣(a﹣b)2.15.答案是:.16.答案为:.17.1)答案为:20;2)答案为:a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.18.解:原式=2a3﹣5a3=﹣3a3.19.解:原式=x2+5x﹣2x﹣10﹣x2+2x=5x﹣10.20.解:9a3+6a2b+ab2,=a(9a2+6ab+b2),=a(3a+b)2.21.解:原式=x2﹣4xy+4y2﹣x2+7xy﹣4y2=3xy,当x=﹣,y=5时,原式=3×(﹣)×5=﹣10.22.证明:∵CE=BF,∴CE﹣BE=BF﹣BE,即CB=FE.∵AC∥DF,∴∠C=∠F.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).23.解:(1)该班参与问卷调查的人数有:20÷40%=50(人),C类的人数为:50﹣15﹣20﹣5=10(人),条形统计图补充如下:(2)C类人数占总调查人数的百分比是:10÷50=20%,扇形统计图中A类所对应扇形圆心角的度数是:15÷50×360°=108°.故答案为50.24.解:(1)∵DE是AC的垂直平分线,∴AD=CD.∵C△BCD=BC+BD+CD=BC+BD+AD=BC+AB,又∵AB=10,BC=6,∴C△BCD=16;(2)∵AD=CD∴∠A=∠ACD,设∠A=x,∵AD=CB,∴CD=CB,∴∠CDB=∠CBD.∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=2x,∵∠A、∠B、∠ACB是三角形的内角,∵∠A+∠B+∠ACB=180°,∴x+2x+105°=180°,解得x=25°∴∠A=25°.25.解:(1)①l1=4+2×2=8,l2==;②∵=82﹣(16+4π2)=48﹣4π2=4(12﹣π2)>0,∴,即l1>l2,所以选择路线2较短.(2)当圆柱的底面半径为2cm,高为hcm时,路线1:l1=4+h,路线2:l2=,∵=(4+h)2﹣(h2+4π2)=16+8h+h2﹣h2﹣4π2=16+8h﹣4π2=4(2h+4﹣π2)∴当2h+4﹣π2=0时,即h=时,l1=l2,两条路线一样长,选择哪条路线都可以;当2h+4﹣π2>0时,即h>时,l1>l2,选择路线2较短;当2h+4﹣π2<0时,即h<时,l1<l2,选择路线1较短.26.解:(1)在Rt△ABC中,∠ACB=90°,AC=BC,∴AC=AB,∵AB=,∴AC=4;(2)如图,过点D作DG⊥AC于点G,DH⊥BC于点H∵∠ACB=90°,AC=BC,CD是∠ACB的角平分线∴∠A=∠B=∠ACD=∠BCD=45°,CD⊥AB∴AD=CD=BD∵在等腰直角三角形ACD中,DG⊥AC,∠A=45°∴DG=AG=AC=2同理DH=2∵S△CDE=CE•DG=4﹣x,S△CDF=CF•DH=4﹣y,∴S四边形CEDF=S△CDE+S△CDF=(4﹣x)(4﹣y)=8﹣(x+y)=5;(3)当DE⊥DF时,∠EDF=90°∵CD⊥AB∴∠ADE+∠EDC=∠EDC+∠CDF=90°∴∠ADE=∠CDF,又∵∠A=∠DCF=45°,AD=CD在△ADE与△CDF中,,∴△ADE≌△CDF∴AE=CF∴AE+BF=CF+BF=BC即x+y=4.。
2022-2023学年华东师大新版八年级上数学期末复习试卷一.选择题(共8小题,满分24分,每小题3分)1.若=x﹣1成立,则x满足()A.x≥0B.x≥1C.x≤1D.x<12.已知:a m=﹣3,a n=2,则a m+n=()A.﹣1B.﹣5C.6D.﹣63.在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为()A.9B.8C.7D.64.下列各组数中,不能作为一个直角三角形的三边长的是()A.3,4,5B.8,6,10C.5,12,17D.9,40,415.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分成15和18两部分,则这个三角形底边的长为()A.9B.9或13C.10D.10或126.如图,在Rt△ABC中,∠C=90°,分别以点A,B为圆心,大于AB长为半径画弧,两弧分别相交于AB两侧的M,N两点,直线MN交AB于点D,交AC于点E.若∠B=55°,则∠CBE=()A.20°B.35°C.55°D.65°7.如图所示,已知AB=AC,PB=PC,下面的结论:①BE=CE;②AP⊥BC;③AE平分∠BEC;④∠PEC =∠PCE,其中正确结论的个数有()A.1个B.2个C.3个D.4个8.一个数a与这个数的的差可以表示为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)9.我们用符号[x]表示一个不大于实数x的最大的整数,如:[2.78]=2,[﹣0.23]=﹣1,则按这个规律,[﹣1﹣]=.10.把多项式3x3﹣12x分解因式的结果是.11.以下4个命题:①三角形的一条中线将三角形分成面积相等的两部分;②三角形的三条高所在的直线的交点一定在三角形的内部;③多边形的所有内角中最多有3个锐角;④△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形.其中真命题的是.(填序号)12.如图,已知在Rt△ABC中,∠ACB=90°,AB=3,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于.13.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=.14.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为.三.解答题(共10小题,满分78分)15.(6分)已知x、y是有理数,且(4+)x+(3﹣3)y=4+,求x,y的值.16.(6分)化简求值:(1)[(a+b)2﹣(a﹣b)2]÷(﹣4ab)(2)已知x﹣2y=﹣3,求(x+2)2﹣6x+4y(y﹣x+1)的值17.(6分)某中学为了了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了如表:类别频数(人数)频率文学m0.42艺术220.11科普66n其他合计1(1)上表中m=.n=.(2)在这次抽样调查中,哪类读物最受学生欢迎?哪类读物受欢迎程度最少?(3)若学校计划购买3000册图书,你对购书计划能提出什么好的建议吗?18.(7分)如图,AC∥BE,点D在BC上,AB=DE,∠ABE=∠CDE.求证:DC=BE﹣AC.19.(7分)如图,某花园护栏是用直径为100厘米的半圆形条钢制成,且每增加一个半圆形条钢,护栏长度就增加a(a>0)厘米,设半圆形条钢的总个数为x(x为正整数).(1)当a=70,x=3时,护栏总长度为厘米;(2)当a=80时,用含x的代数式表示护栏总长度(结果要求化简);(3)在(2)的条件下,当护栏总长度为2020厘米时,求半圆形条钢的总个数.20.(7分)已知:如图,四边形ABCD中,AB∥CD,AM平分∠DAB,DM平分∠ADC,点M恰好在BC 上.(1)求证:AM⊥DM;(2)若M是BC的中点,猜想AD、AB、CD之间有何数量关系?请证明你的结论.21.(8分)图①、图②、图③均是3×3的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画△ABC.要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.22.(9分)如图,有两条公路OM和ON相交成30°角,沿公路OM方向离两条公路的交叉处O点160米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁100米内会受到噪声影响.已知有一台拖拉机正沿ON方向行驶,速度为5米/秒.(1)该小学是否受到噪声的影响,并说明理由.(2)若该小学要受到噪声的影响,则这台拖拉机沿ON方向行驶时给小学带来噪声影响的时间是多少?23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,E为线段CD上一点(不含端点),连接AE,设F为AE的中点,作CG⊥CF交直线AB于点G.(1)猜想:线段AG、BC、EC之间有何等量关系?并加以证明;(2)如果将题设中的条件“E为线段CD上一点(不含端点)”改变为“E为直线CD上任意一点”,试探究发现线段AG、BC、EC之间有怎样的等量关系,请直接写出你的结论,不用证明.24.(12分)实践操作:在矩形ABCD纸片中,AB=8,AD=4,现将纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形的边的交点),再将纸片还原.初步思考:(1)若点P落在矩形ABCD的边AB上(如图①).①当点P与点A重合时,∠DEF=°;当点E与点A重合时,∠DEF=°;②当点E在AB上,点F在DC上(如图②),AP=6时,求EP的长;深入探究:(2)若点P落在矩形ABCD的内部(如图③),且点E、F分别在AD、DC边上,请直接写出AP的最小值;拓展延伸:(3)若点F与点C重合,点E在AD上,边AB与CP交于点M(如图④).在各种不同的折叠位置中,是否存在某一情况,使得线段AM与线段DE的长度相等?若存在,请求线段AE的长度;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:∵=x﹣1,∴x﹣1≥0,解得:x≥1.故选:B.2.解:因为a m=﹣3,a n=2,所以a m+n=a m•a n=(﹣3)×2=﹣6.故选:D.3.解:根据题意,第四组的频数为40﹣(2+7+11+12)=8,故选:B.4.解:A、∵32+42=52,∴能够成直角三角形,故本选项错误;B、∵62+82=102,∴能够成直角三角形,故本选项错误;C、∵52+122≠172,∴不能够成直角三角形,故本选项正确;D、∵92+402=412,∴能够成直角三角形,故本选项错误.故选:C.5.解:设等腰三角形的底边长为x,腰长为y,则根据题意,得或,解得或,经检验,这两组解均能构成三角形,所以底边长为9或13.故选:B.6.解:如图,连接BE,∵∠C=90°,∠B=55°,∴∠A=35°,据作图过程可知:ED是AB的垂直平分线,∴EA=EB,∴∠A=∠EBA=35°,∴∠CBE=55°﹣35°=20°.故选:A.7.解:∵AB=AC,PB=PC,∴AP⊥BC,AE平分∠BEC(三线合一),故②③正确,∵BP=PC,∠BPE=∠CPE=90°,PE=PE,∴△BPE≌△CPE,∴BE=EC,故①正确,④无法证明,故选:C.8.解:一个数a与这个数的的差可以表示为a﹣a=a.故选:D.二.填空题(共6小题,满分18分,每小题3分)9.解:∵2<<3,∴﹣4<﹣1﹣<﹣3,∴[﹣1﹣]=﹣4.故答案为:﹣4.10.解:3x3﹣12x=3x(x2﹣4)=3x(x﹣2)(x+2).故答案为:3x(x﹣2)(x+2).11.解:①三角形的一条中线将三角形分成面积相等的两部分,正确,是真命题;②三角形的三条高所在的直线的交点一定在三角形的内部,错误,钝角三角形三条高的交点在三角形的外部,是假命题;③多边形的所有内角中最多有3个锐角,正确,是真命题;④△ABC中,若∠A=2∠B=3∠C,则△ABC不是直角三角形,故错误,是假命题;真命题有①③,故答案为:①③.12.解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=.故答案为:13.解:设∠A=x°,∵BD=AD,∴∠ABD=∠A=x°,∴∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠C=∠BDC=2x°,∵AB=AC,∴∠ABC=∠C=2x°,∵在△ABC中,∠A+∠ABC+∠C=180°,∴x+2x+2x=180,解得:x=36,∴∠A=36°,故本题答案为:36°.14.解:根据勾股定理分两种情况:(1)当第三边为斜边时,第三边长==2;(2)当斜边为6时,第三边长==4;故答案为:2或4.三.解答题(共10小题,满分78分)15.解:因为(4+)x+(3﹣3)y=4+,所以(4x+3y)+(x﹣3y)=4+,所以,解得.故x,y的值分别是1,0.16.解:(1)原式=(a2+2ab+b2﹣a2+2ab﹣b2)÷(﹣4ab)=4ab÷(﹣4ab)=﹣1;(2)原式=x2+4x+4﹣6x+4y2﹣4xy+4y=(x﹣2y)2﹣2(x﹣2y)+4,当x﹣2y=﹣3时,原式=9+6+4=19.17.解:(1)22÷0.11=200人,m=200×0.42=84(人),n=66÷200=0.33,故答案为:84,0.33;(2)“其它”的频数为:200﹣84﹣22﹣66=28(人),频率为:28÷200=0.14,因为“文学”占比最高,因此“文学”读物最受学生欢迎,“艺术”读物占比最小,仅为11%,因此“艺术”读物受欢迎程度最小,(3)“文学”读物:3000×0.42=1260本,“艺术”读物:3000×0.11=330本,“科普”读物:3000×0.33=990本,“其它”读物:3000×0.14=420本,因此,在购书时,“文学”类的读物购买1260本,“艺术”类的读物购买330本,“科普”类的读物购买990本,“其它”类读物购买420本.18.证明:∵AC∥BE,∴∠C=∠CBE,∠ABE+∠A=180°,∵∠CDE+∠BDE=180°,∵∠ABE=∠CDE,∴∠A=∠BDE,在△ABC与△DEB中,∴△ABC≌△DEB(AAS),∴BC=BE,BD=AC,∵BC﹣BD=DC,∴DC=BE﹣AC.19.解:(1)由题意得,护栏总长度为[100+a(x﹣1)]厘米,当a=70,x=3时,原式=100+70×(3﹣1)=240.故答案为:240;(2)当a=80时,护栏总长度为100+80(x﹣1)=(80x+20)厘米;(3)由题意得80x+20=2020,解得x=25.故半圆形条钢的总个数是25.20.证明:(1)∵AB∥CD,∴∠CDA+∠DAB=180°.∵AM平分∠DAB,DM平分∠ADC,∴∠ADM=∠ADC,∠DAM=∠DAB,∴∠ADM+∠DAM=(∠CDA+∠DAB)=×180°=90°,∴∠AMD=90°,∴AM⊥DM;(2)AD=CD+AB.理由:如图2,延长DM、AB相交于点F,∵M是BC的中点,∴CM=BM.∵AB∥CD,∴∠C=∠B,∠CDM=∠F.在△DCM和△FBM中,,∴△DCM≌△FBM(AAS),∴CD=BF,DM=FM.∵AM⊥DM,∴AD=AF.∵AF=AB+BF,∴AF=AB+CD,∴AD=AB+CD.21.解:如图所示:即为符合条件的三角形.22.解:如图所示:过点A作AC⊥ON于点C,∵∠MON=30°,OA=160米,∴AC=OA=80米,∵80m<100m,∴该小学会受到噪声影响;(2)以A为圆心,半径长为100m画圆与ON交B,D两点,连接AB,AD,在B到D范围内,小学都会受到影响,∴AB=AD=100米,由勾股定理得:BC=(米),∴BD=2BC=120米,CD=60米∴影响的时间应是:t==24(秒);答:拖拉机沿ON方向行驶时给小学带来噪声影响的时间是24秒.23.解:(1)结论:AG=BC+EC.理由:如图1中,延长CF到M,使得FM=CF.∵AF=EF,∠AFM=∠EFC,FM=FC,∴△AFM≌△EFC(SAS),∴EC=AM,∠M=∠ECF,∵GC⊥CF,∴∠GCF=∠ACB=90°,∴∠ACM=∠BCG,∵CD⊥AB,∴∠G+∠GCD=90°,∠GCD+∠ECF=90°,∴∠G=∠ECF=∠M,∵CA=CB,∴△ACM≌△BCG(AAS),∴AM=BG,∴EC=BG,∵CA=CB,∠ACB=90°,∴AB=BC,∴AG=AB+BG=BC+EC.(2)①如图2﹣1中,当点E在线段DC的延长线上时,AG=|BC﹣EC|.理由:延长CF到H,使得FH=CF.同法可证,△AFH≌△EFC(SAS),△ACH≌△BCG(AAS),∴EC=AH,AH=BG,∵AB=BC,∴AG=|BC﹣EC|.②如图2﹣2中,当等E在线段CD的延长线上时,AG=BC+CE.证明方法类似(1).24.解:(1)①当点P与点A重合时,如图1:∴EF是AD的中垂线,∴∠DEF=90°,当点E与点A重合时,如图2,此时∠DEF=∠DAB=45°,故答案为:90,45;②当点E在AB上,点F在DC上时,如图3,∵EF是PD的中垂线,∴DO=PO,EF⊥PD,∵四边形ABCD是矩形,∴DC∥AB,∴∠FDO=∠EPO,∵∠DOF=∠EOP,∴△DOF≌△POE(ASA),∴DF=PE,∵DF∥PE,∴四边形DEPF是平行四边形,∵EF⊥PD,∴▱DEPF为菱形,当AP=6时,设菱形的边长为x,则AE=6﹣x,DE=x,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴42+(6﹣x)2=x2,x=4,∴当AP=6时,菱形的边长为4;(2)若点P落在矩形ABCD的内部,且点E、F分别在AD、DC边上,如图4,设DF=PF=x,则AF=,当A,P,F在一直线上时,AP最小,最小值为,所以当x最大取8时,AP最小值为4﹣8;(3)情况一:如图5,连接EM,∵DE=EP=AM,在Rt△EAM与Rt△MPE中,,∴Rt△EAM≌Rt△MPE(HL),设AE=x,则AM=DE=4﹣x,则BM=x+4,∵MP=EA=x,CP=CD=8,∴MC=8﹣x,∴(x+4)2+42=(8﹣x)2,解得:x=;情况二,如图6,∵DE=EP=AM,在△GAM与△GPE中,,∴△GAM≌△GPE(AAS),设AE=x,则DE=4﹣x,则AM=PE=DE=4﹣x,MP=AE=x,则MC=MP+PC=x+8,BC=4,BM=12﹣x,∴(12﹣x)2+42=(x+8)2,解得:x=4.。
八年级数学(上)期末模拟测试题(本卷满分110分,限时100分钟)第Ⅰ卷一、选择题(每小题2分,共20分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在答题卷相应的题号的方格内。
1 )A.4B.4-C.4±D.162.下列可用平方差公式计算的是( )A.(a + b)(a + b)B.(a -b)(b -a)C.(a -b)(-b + a)D.(a -b)(-a -b)3.求121的平方根的正确表达式是( ) A.11121=; B. 11121±=; C. 11121=±; D. 11121±=±4.下列计算正确的是A.235x y xy +=B.2245x y xy xy -=-C.236236x x x=D.43334(2)2x y xy x ÷-=-5.如图,在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( )A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格6.一个直角三角形,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形的周长为25 C .斜边长为5 D .三角形面积为207.如图,在等腰直角△ABC 中, B =90°,将△ABC时针方向旋转60°后得到△AB ′C ′则∠BAC ′等于( A. 60° B. 105° C. 120° D. 135°8.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.1∶1∶2∶2D.2∶1∶2∶19.如图,EF 过平行四边形对角线的交点O ,且分别交AD 、BC 于E 、F ,若平行四边形的面积为12,则△AOE 与△BOF 的面积之和等于( )A.2 B.3 C.4 D.无法确定10.如图所示,把一个正方形纸片三次对折后沿虚线剪开,则剩余图形展开后得到的图形是( )二、填空题(每小题3分,共24分) 11.实数711, π, 32-, 4 ,0, 3, 0.1010010001…… 中,无理数有________个。
2020年华东师大版八年级数学上册期末复习检测卷三
一、选择题(每小题3分,共21分)
1.(3分)25的平方根是()
A.±5 B.﹣5 C.5 D.25
2.(3分)计算(﹣x3)2的结果是()
A.﹣x5B.x5C.﹣x6D.x6
3.(3分)记录一天气温的变化情况,选用比较合适的统计图是()
A.条形统计图B.扇形统计图C.折线统计图D.都不可以
4.(3分)对x2﹣3x+2分解因式,结果为()
A.x(x﹣3)+2 B.(x﹣1)(x﹣2)C.(x﹣1)(x+2)D.(x+1)(x﹣2)
5.(3分)如图,AB=AC,若要使△ABE≌△ACD,则添加的一个条件不能是()
A.∠B=∠C B.BE=CD C.BD=CE D.∠ADC=∠AEB
6.(3分)若x+y=3且xy=1,则代数式(2﹣x)(2﹣y)的值等于()
A.2 B.1 C.0 D.﹣1
7.(3分)如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()
A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2
C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b2
二、填空题(每小题4分,共40分)
8.(4分)计算:= .
9.(4分)因式分解:3x+6y= .
10.(4分)比较大小:4 (填“>”或“<”)
11.(4分)计算:(x+1)(x﹣2)= .
12.(4分)“命题”的英文单词为progosition,在该单词中字母p出现的频数是.
13.(4分)若△OAB≌△OCD,且∠B=52°,则∠D= °.
14.(4分)命题“如果两个角都是直角,那么这两个角相等”的逆命题是.
15.(4分)我们用反证法证明命题“在一个三角形中,至少有一个内角小于或等于60°”时,应先假设.
16.(4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是.
17.(4分)将两个斜边长相等的直角三角形纸片如图①放置,其中∠ACB=∠CED=90°.∠A=45°,∠D=30°(1)∠CBA= °;
(2)把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B= .
三、解答题(共89分)
18.(12分)计算:
(1)3x2(3x﹣4);(2)(10x3﹣15x2)÷5x.
19.(12分)因式分解:
(1)x2﹣64;(2)3m2﹣30m+75.
20.(8分)先化简,再求值:(a+2b)(a﹣2b)+(a﹣2b)2,其中a=3,b=﹣.
21.(8分)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.
22.(8分)如图,已知△ABC.
(1)作边AB的垂直平分线;
(2)作∠C的平分线;
(要求:不写作法,保留作图痕迹)
23.(8分)为了解市民的学习爱好,有关部门统计了最近6个月到图书馆的读者的职业分布情况,并作了下列两个不完整的统计图.
(1)本次共调查了多少人?
(2)将条形统计图补充完整;
(3)求“其它”所在扇形的圆心角的度数.
24.(8分)如图,在△ABC中,∠B=90°,AB=BC=4,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点F处.
(1)求BE的长;
(2)判断△CEF是什么特殊三角形.
25.(13分)(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD 上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为.
(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,
线段BE、EF、FD之间存在什么数量关系,为什么?
(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,根据(2)的结论求E、F之间的距离.
参考答案
1.A.
2.D.
3.C.
4.B.
5.B.
6.D.
7.C.
8.答案为:3.
9.答案为:3(x+2y).
10.答案为:>.
11.答案为x2﹣x﹣2.
12.答案为:1.
13.答案为:52.
14.答案为:如果两个角相等,那么两个角都是直角.15.三个内角都大于60°.
16.答案是:10.
17.1)答案为45.2)答案为15°.
18.解:(1)原式=9x3﹣12x2;(2)原式=2x2﹣3x.19.解:(1)原式=(x+8)(x﹣8);
(2)原式=3(m2﹣10m+25)=3(m﹣5)2.
20.解:(a+2b)(a﹣2b)+(a﹣2b)2
=a2﹣4b2+a2﹣4ab+4b2
=2a2﹣4ab,
当a=3,b=﹣时,原式=2×32﹣4×3×(﹣)=22.21.证明:在△ADB和△BAC中,
,
∴△ADB≌△BAC(SAS),
∴AC=BD.
22.解:(1)(2)如图所示:
23.解:(1)4÷25%=16(万人),即本次共调查了16万人;
(2)职工人数是16﹣4﹣2﹣4=6(万人).条形统计图补充如下:
(3)×360°=90°,即“其它”所在扇形的圆心角的度数为90°.
25.解:(1)EF=BE+DF;
证明:如图1,延长FD到G,使DG=BE,连接AG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△GAF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
故答案为:EF=BE+DF;
(2)EF=BE+DF仍然成立.
证明:如图2,延长FD到G,使DG=BE,连接AG,
∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,
∴∠B=∠ADG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△GAF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
(3)如图3,连接EF,延长AE、BF相交于点C,
∵∠AOB=20°+90°+(90°﹣60°)=140°,
∠EOF=70°,
∴∠EOF=∠AOB,
又∵OA=OB,
∠OAC+∠OBC=(90°﹣20°)+(60°+50°)=180°,∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=583米.。