含重金属离子酸性废水石灰法处理后回用技术研究
- 格式:pdf
- 大小:178.66 KB
- 文档页数:4
重金属废水反应原理及控制条件1.含铬废水 (2)2.含氰废水 (3)3.含镍废水 (4)4.含锌废水 (5)5.含铜废水 (6)6.含砷废水 (8)7.含银废水 (9)8.含氟废水 (10)9.含磷废水 (11)10.含汞废水 (11)11.氢氟酸回收 (13)12.研磨废水 (14)13.晶体硅废水 (15)14.含铅废水 (17)15.含镉废水 (17)前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。
电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。
含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。
电镀废水中的六价铬主要以CrO42-和Cr2O72-两种形式存在,在酸性条件下,六价铬主要以Cr2O72-形式存在,碱性条件下则以CrO42-形式存在。
六价铬的还原在酸性条件下反应较快,一般要求pH<4,通常控制pH2.5~3。
常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。
还原后Cr3+以Cr(OH)3沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。
(1)亚硫酸盐还原法目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应:4H2CrO4+6NaHSO3+3H2SO4==2Cr2(SO4)3+3Na2SO4+10H2O2H2CrO4+3Na2SO3+3H2SO4==Cr2(SO4)3+3Na2SO4+5H2O还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH)3沉淀。
采用亚硫酸盐还原法的工艺参数控制如下:①废水中六价铬浓度一般控制在100~1000mg/L;②废水pH为2.5~3③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1焦亚硫酸钠∶六价铬=3∶1亚硫酸钠∶六价铬=4∶1投料比不应过大,否则既浪费药剂,也可能生成[Cr2(OH)2SO3]2-而沉淀不下来;ORP= 250~300mv④还原反应时间约为30min;⑤氢氧化铬沉淀pH控制在7~8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。
实验室废液处理方法1.废液处理原则:对高浓度废酸、废碱液要经中和至中性时排放。
对于含少量被测物和其他试剂的高浓度有机溶剂应回收再用。
用于回收的高浓度废液应集中储存,以便回收;低浓度的经处理后排放,应根据废液性质确定储存容器和储存条件,不同废液一般不允许混合,避光、远离热源、以免发生不良化学反应.废液储存容器必须贴上标签、写明种类、储存时间等。
2。
处理方法:含汞、铬、铅、镉、砷、酚、氰的废液必须经过处理达标后才能排放,实验室处理方法如下:2.1含汞废弃物的处理若不小心将金属汞散落在实验室里(如打碎温度计)必须及时清除.如用滴管或用在硝酸汞的酸性溶液中浸过得薄铜片、铜丝收集与烧杯中用水覆盖。
散落在地面上的汞颗粒应撒上硫磺粉,生成毒性较小的硫化汞;或喷上用盐酸酸化过的高锰酸钾溶液(5:1000体积比),过1至2小时后清除;或喷上20%三氯化铁水溶液,干后再清除(但该方法不能用于金属表面,会产生腐蚀)。
对于含汞废液的处理,可先将废液调至PH8~10家入过量硫化钠,使其生成硫化汞沉淀,再加入硫酸亚铁作为共沉淀剂,生成硫化铁沉淀可将硫化汞微粒吸附沉淀,然后静止分离,清液可排放,残渣可用焙烧法回收汞或制成汞盐。
2。
2铅、镉用碱将废液PH调至8~10,生成Pb(OH)2和Cd(OH)2沉淀,再加入硫酸亚铁作为共沉淀剂,沉淀物可与其他无机物混合进行烧结处理,清液排放.2.3铬含铬废液中加入还原剂,如硫酸亚铁、亚硫酸钠、铁屑,在酸性条件下将六价铬还原成三价铬,然后加入碱,如氢氧化钠、氢氧化钙碳酸钠等,使三价格形成Cr (OH)3沉淀,清液可排放.沉淀干燥后可用焙烧法处理,使其与煤渣一起焙烧,处理后可填埋.2。
4砷加入氧化钙,使PH为8,生成砷酸钙和亚砷酸钙沉淀,在Fe3+存在时共沉淀。
或使溶液PH大于10,加入硫化钠,与砷反应生成难容、低毒的硫化砷沉淀。
产生含砷气体的试验在通风橱中进行。
2.5酚低浓度含酚废液可加入次氯酸钠或漂白粉,使酚氧化城市和二氧化碳。
含重金属酸性废水处理及回用工艺设计摘要:由于现阶段我国工业的高速成长,随之而言工业水污染问题越来越严重,在这之中重金属水污染格外严重,也是当前大多数冶金企业在成长进程中不可绕过的问题。
环境中重金属的污染不仅会给河道、湿地等水体自然环境造成不同程度的破坏,而且会给人们的健康造成一些致命的威胁,而且更加重要的是,给生产活动的废水回用造成了很大的影响,从一定意义上增加了工业生产和危废处理的经济负担。
所以本文针对含重金属酸性废水处理及回用工艺设计进行相应探讨,并对重金属废水处理形式的调研趋势进行了科学预测。
关键词:废水处理;回用工艺设计;措施引言:水是人们赖以生存的资源。
虽当前中国淡水资源总量较大,在世界上占比较大,但是我国人口总量大,导致饮用水的人均所有量较低,与此同时,我国有效的淡水存储量,随着现代化城市的构建,以及工业生产过程中废水的排放呈现下降趋势。
并且重金属废水(如含镉、铅、汞),正是这之中最为普遍的对环境造成影响的工业废水污染之一。
怎样实现重金属废水的高效处理、降低重金属离子对水体生态的危害,是国内科学工作者比较关注的研究课题。
本章中简要地介绍了含有重金属废水污染的来源,及其影响,同时总结了若干种常见的重金属污染的处理方法,并阐述了它们各自的物理化学特点,同时对若干种重金属废水处理的最新方法进行了详尽的总结[1]。
1重金属废水的来源重金属废水基本来自油漆厂和颜料厂所排水的生产废水、钢铁厂或者是有色金属的冶炼以及进行酸洗的废水、电镀部门开展电镀洗涤产生的废水、医学药品和农药进行加工产生的废水等等。
在工业废水中所蕴含的重金属离子的类型,以及含量和存在的形态会随着生产种类的差异而存在不同。
2重金属废水的危害2.1对人体的危害水资源是人们赖以生存的基础,在生活过程中会运用大量的水资源,假如纯净水资源受到重金属污染物的危害,将会对人们的生活以及身心健康造成较为严重的威胁。
重金属污染可能给人类健康造成间接危害与直接危害二类,这之中直接危害主要指人类在需要喝水的时用被土壤的重金属物质所污染,而如果自来水的重金属物质浓度超标,则将会导致人体内细胞死亡,而当人体中所蕴含的重金属浓度超过了规定范围时,则会对人身体内的神经系统产生危害[2]。
从废水中去除重金属的方法有很多,以下是其中一些常见的方法:
1. 化学沉淀法:这种方法是通过向废水中投加化学物质,使其与重金属离子发生化学反应,生成容易沉淀出来的化合物。
常用的化学物质有氢氧化物、硫化物、磷酸盐等。
例如,向废水中加入石灰石,可以去除废水中的铅和汞等重金属离子。
2. 吸附法:这种方法是利用吸附剂吸附废水中的重金属离子,从而达到去除的目的。
常用的吸附剂包括活性炭、硅藻土、矾土等。
这些物质具有较大的表面积和较强的吸附能力,可以有效地吸附废水中的重金属离子。
3. 电解法:这种方法是通过电解作用,使废水中的重金属离子发生电化学反应,生成金属或氢氧化物沉淀。
这种方法通常需要使用专门的电极和电解液,并且需要一定的电力支持。
4. 离子交换法:这种方法是通过离子交换树脂,将废水中的重金属离子转移到树脂上,从而达到去除的目的。
这种方法适用于处理含有多种重金属离子的废水,并且树脂可以反复使用。
5. 生物法:这种方法是利用微生物的吸附作用,将废水中的重金属离子去除。
常用的生物法包括活性污泥法、生物膜法、厌氧消化法等。
这些方法通常适用于处理含有较低浓度重金属离子的废水。
需要注意的是,不同的重金属离子在不同的水质条件下,适用的处理方法也会有所不同。
因此,在实际应用中,需要根据废水的具体情况,选择最适合的处理方法。
同时,在处理过程中,还需要注意环境保护和资源利用的问题,确保处理后的废水符合相关标准,并且不会对环境造成二次污染。
此外,还可以通过加强废水的回收和利用、改进生产工艺、使用无毒替代物质等方法,从源头上减少废水中重金属的排放量,从而降低对环境的压力。
探究有色金属矿山酸性废水处理路径摘要:从有色金属矿山开采方面来看,酸性废水在其中较为常见,有着成分复杂、外在影响性大、排放不集中,处理防控难度大等特点,导致环境质量受到很大消极影响。
所以,大部分国家都在探索更加适宜的处理技术措施,需要阐明有色金属矿山酸性废水的发源点、特点以及危害,之后再对基本的酸性废水处理技术方法作出深化探讨,希望能够有利于相关人员工作。
关键词:金属矿山;酸性废水;处理技术引言社会经济的发展对矿产资源方面提高了需求。
然而矿产资源开发过程往往都导致环境受到很大的消极影响,有色金属矿山酸性废水的酸碱度较低,而且也可以包含一些重金属。
如果不能进行科学处理,就可能使得环境污染现象加重。
因而,有色金属矿山酸性废水处理技术方法探讨,能够为环境保护方面起到非常有利的条件。
1酸性废水的概念有色金属矿山酸性废水的形成主要是由于金属硫化铁矿的氧化形成硫酸、硫酸铁,再进一步氧化矿石中的其他金属形成含有多种金属离子的酸性废水[1]。
酸性废水具有以下特点:一是采矿废水中的酸性水,其中含有诸多金属离子,在特定的情况下,水质会发生变化,由酸性变成碱性;二是水量大,水流时间比较长;三是废水处理较为艰难,由于废水排放不集中,水量波动频繁,四是有色金属矿山废水的性状、成本通常都要取决于外部因素。
比如环境温度和硫化矿氧化程度等。
酸性废水的外在消极影响性至今还没有得到民众的充分了解,有关机构在有色矿山废水处理方面也未能作出进一步考虑,而且矿山酸性废水中包含了多种不同的有害物质,有害物质处理相关工作往往都要投入大量财力,但如果不考虑进行科学处理,并且被排放于水域环境,就可能使得人体健康受到严重威胁。
2金属矿山酸性废水处理技术2.1 中和法相对来讲,中和法,在有色金属矿山酸性废水处理方面的适用性较强。
真正意义上的中和处理法主要就是遵循化学原理,使废水的酸碱度提升,所以也可能称为氢氧化沉淀法。
工作人员需要把化学中和剂投入于酸性废水中,此时在中和剂的影响性,废水中的重金属与氢氧根之间会出现化学反应现象,最终形成氢氧化沉淀物质,以此便可达到有效消除金属物质的目的。
重金属污水处理重金属污水是指含有高浓度重金属离子的废水,如铅、镉、汞等。
这些重金属对环境和人体健康都具有严重的危害。
因此,重金属污水处理是环境保护和健康保障的重要任务。
本文将从不同角度探讨重金属污水处理的方法和技术。
一、物理处理方法1.1 沉淀法:通过加入沉淀剂使重金属形成不溶性沉淀物,然后通过沉淀沉降的方式将其从水中分离出来。
1.2 膜分离技术:利用微孔膜、超滤膜等膜分离技术,将水中的重金属离子与水分离开来。
1.3 离子交换法:利用离子交换树脂吸附水中的重金属离子,然后再用盐溶液进行再生。
二、化学处理方法2.1 氧化还原法:通过加入氧化剂或还原剂,将重金属离子转化为不溶性的氧化物或硫化物,然后沉淀分离。
2.2 pH调节法:通过调节水体的pH值,使重金属离子形成不溶性的沉淀,然后通过过滤等方式分离。
2.3 螯合法:利用螯合剂与重金属离子形成稳定的络合物,然后通过沉淀或膜分离将其分离出来。
三、生物处理方法3.1 植物吸附法:利用植物根系吸附水中的重金属离子,达到净化水体的目的。
3.2 微生物还原法:利用微生物将重金属离子还原成不活性的形式,降低其毒性。
3.3 生物膜反应器:通过生物膜的附着和生长,利用微生物降解水中的重金属离子。
四、综合处理方法4.1 聚合物复合材料吸附法:利用聚合物复合材料吸附水中的重金属离子,然后再进行再生利用。
4.2 电化学方法:通过电解、电沉积等电化学方法将水中的重金属离子转化为固体沉淀。
4.3 磁性材料吸附法:利用磁性材料吸附水中的重金属离子,然后通过外加磁场将其分离出来。
五、未来发展趋势5.1 绿色环保技术:未来重金属污水处理将更加注重绿色环保技术的应用,减少对环境的影响。
5.2 循环利用:重金属污水处理后的废水将更多地被循环利用,实现资源的再生利用。
5.3 智能化技术:未来重金属污水处理将更多地采用智能化技术,提高处理效率和降低成本。
综上所述,重金属污水处理是一个复杂而重要的环保课题,需要多种方法和技术的综合应用。
含重金属废水处理技术介绍一、废水情况简介1.1 含重金属废水处理难点重金属种类多,一些重金属需要特殊的处理方法含重金属废水一般可生化性不高,污泥需要特别处理国内当前的一些处理方法(加碱沉淀法)运行成本高,企业负担重1.2含重金属废水处理方法含重金属离子废水的处理方法主要有:氧化还原法、离子交换法、电解法、反渗透法、气浮法、化学沉淀法等。
这些处理方法在净化效率及经济效益方面都存在一些问题,而吸附法的研发可以很好的解决效率和经济效益问题,值得重视。
二、我们的工艺2.1 工艺流程调节池微电解反应器混合沉淀综合池含重金属废水煤质改良活性炭吸附器污泥处理固化处理活性炭再生重金属回收重金属提取回收2.2工艺说明通过微电解反应器对水中Cr6+有很好的去除效果,在混合沉淀综合池投加石灰乳或氢氧化钠,进行沉淀,沉淀物送入干化机煤质改良活性炭是一种专门吸附悬浮态重金属物质的活性炭,保证出水达标,吸附饱和的煤质改良活性炭通过廉价的再生过程,可以重复使用沉淀物通过板框压滤机干化后,再经过集中的处理回收重金属。
处理后污泥达到《国家危险废物填埋污染控制标准》(GB18598-2001)中规定的危险废物进入填埋区的标准后,进行无害化填埋,或采用水泥作为固化基材进行稳定化吸附饱和的煤质改良活性炭的再生处理过程中通过浸出回收重金属、热解等过程将煤质改良活性炭再生,循环利用根据不同的水质可进行优化设计,在水中六价铬含量符合国家排放标准的情况下,工艺中可不需要微电解反应器2.3 煤质活性炭介绍煤质类吸附剂主要指泥炭、褐煤等,资源丰富的低品质煤质类矿物。
经过适当处理如炭化、活化等能改善煤质类吸附剂的吸附性能。
泥炭和褐煤是一种天然腐殖酸类物质,它们与活性炭等吸附剂相似,具有微孔结构和较大的比表面积,有优异的吸附性能。
专家研究表明,它们可用于金属离子的吸附。
褐煤和泥炭含有羟基、羧基等活性基团,其吸附性能与这些活性基团有关,金属离子在其表面既有物理吸附,又有化学吸附。
碳酸钡去除综合冶炼废水中Ca2+和SO42-何静旻;李绪忠【摘要】提高工业废水的回用率减少外排是循环经济促进法中工业节水的重要途径,也是解决我国水资源紧张的重要途径.有色金属冶炼厂每年会产生大量含有重金属的酸性废水,目前,在重金属废水处理中,最普遍采用的方法是石灰中和法,但工业实践工程中发现,石灰中和法处理后的出水中硫酸根和钙离子浓度偏高,不适合作为工业循环水系统的补充水.因此本试验针对石灰中和法处理后的出水采用较为经济的碳酸钡作为投加药剂,通过动态试验,研究不同投加剂量、温度、反应时间以及沉淀时间等因素对碳酸钡粉末去除水中硫酸根、钙离子的影响,并分析相应的反应机理,使得处理后的水中残余硫酸根和钙硬度分别稳定在250 mg/L和50 mg/L(以CaCO3计)以下,达到《城市污水再生利用工业用水水质》和《再生水水质标准》中敞开式循环冷却水系统补充水的要求.【期刊名称】《湖南有色金属》【年(卷),期】2017(033)002【总页数】5页(P56-60)【关键词】碳酸钡;硫酸根;钙离子;重金属酸性废水【作者】何静旻;李绪忠【作者单位】长沙有色冶金设计研究院有限公司,湖南长沙410011;长沙有色冶金设计研究院有限公司,湖南长沙410011【正文语种】中文【中图分类】X703.1有色金属冶炼厂酸性废水的主要来源由两部分组成:一部分是由于精矿主要为硫化矿,而硫化矿的冶炼过程中会产生大量的含尘SO2和SO3烟气,烟气通常制取副产品硫酸,在硫酸制备过程中会排放还有重金属离子的污酸;另一部分是电解车间电解槽及极板清洗时会排放高浓度重金属酸性污水[1,2]。
目前,处理有色金属冶炼厂酸性废水的方法大多采用石灰中和法[3]和石灰铁盐法[4],这些方法能使除汞之外的所有重金属离子共沉,处理后的出水能够达标外排,但是在作为冶炼厂的循环冷却水系统的补充水时结垢和腐蚀严重[5,6]。
在有色冶炼厂的生产新水中,据统计将近60%用作冷却循环水系统的补充水[7],若完全采用新水补充则不符合经济性原则和节约用水的理念。
金属矿山酸性废水形成机理及治理现状分析(1)简介:含硫金属矿山在开采过程中,由于空气、水、微生物的作用,生成酸性废水。
这些酸性废水不但ph低、酸度大,而且含有大量的有毒、有害重金属。
现在普遍采用的是石灰中和法治理,相比其它处理工艺——离子交换、吸附法、生物法、电化学处理技术,石灰中和法工艺简单、可靠、处理成本低,而且由于石灰中和法长时间的应用,其处理技术逐渐的成熟、完善。
本文对金属矿山酸性废水形成机理和治理技术进行了讨论、分析,对普遍采用的石灰中和法的各处理工艺进行了着重比较、分析。
要害字:矿山酸性废水形成机理石灰中和法处理技术analysis of cause of acid drainage and treatment in metal mines abstract:acid mine drainage is a natural consequence of mining activity where the excavation of mineral deposits, exposes sulphur containing compounds to oxygen and water. oxidation reactions take place (often biologically mediated) which affect the sulphur compounds that often accompany mineral seams. finally, acid mine drainage which metals within accompanying minerals are often incorporated into generates. the discharge of wastewater which comprises acidic, metal-containing mixture into the environment surrounding abandoned mines is likely to cause serious environmental pollution which may be lead to off-site effect. all over the world there has been a long-term programme involving governments, academic and industrial partners which have investigated a range of acid mine drainage treatments. there is still no real consensus on what is the ideal solution. the problem with treatment is that there is no recognized, environmentally and friendly way. the standard treatmenthas been to treat with lime. there are many technologies, such as ionexchange and other adsorption treatments、biology-based treatments、electrochemical treatment technologies, proposed for treatment of metal mine drainage, which are usually expensive and always more complex than liming. lime treatment is simple and robust, and the benefits and drawbacks of the treatment well known due to long usage. this paper will discuss the mechanism of acid drainage formation in metal mines and the methods with an emphasis on lime treatment which have so far been proposed for its treatmentkey words:amd;mechanism of formation;lime treatment;treatmenttechnologies金属矿山矿体酸性废水的产生主要是开采金属矿体矿石中含有硫化矿,硫化矿在自然界中分布广、数量多,它可以出现于几乎所有的地质矿体中,尤其是铜、铅、锌等金属矿床,这些硫化矿物在空气、水和微生物作用下,发生溶浸、氧化、水解等一系列物理化学反应,形成含大量重金属离子的黄棕色酸性废水,这些酸性水ph一般为2~4,成份复杂含有多种重金属, 每升水中离子含量从几十到几百毫克;同时废水产生量大,一些矿山天天酸水排放量为几千甚至几万m3,且水量、水质受开采情况,及不同季节雨水丰沛情况不同而变化波动较大,这些酸性重金属废水的存在对矿区四周生态环境构成了严重的破坏。
酸碱废水处理技术酸碱废水处理技术酸碱废水是水中酸碱浓度异常的一种水污染现象。
天然水的pH值通常为6.5-8.5,当pH值小于6.5或大于8.5时,表示水体受到酸类或碱类污染。
酸碱废水的来源很广,往往还含有悬浮物、金属盐类、有机物等杂质,·但在排至水体或进人其他处理设施前,均须对酸碱废液先进行必要的回收。
一、酸性废水处理酸性废水的处理可分为三类:酸性废水与碱性废水混合、投药中和及过滤中和。
(一)中和法就是使废水进行酸碱的中和反应,调节废水的酸碱度(pH值),使其呈中性或接近中性或适宜于下步处理的pH值范围。
1.均衡法以酸性废水和碱性废水混合中和为目的,即在均衡池中将没有悬浮杂质的酸性和碱性废水相混合。
由于工业废水的水量和水质一般是不均衡的,往往随生产的变化而变化。
为了进行水量的调节和水质的均和,减小高峰流量和高浓度废水的影响,需设置足够容积的均衡池(酸碱废水存储池)作为预处理的一种设施或中和设备。
酸碱废水存储池容积根据酸碱废水周期最大排放量考虑,内壁应有防腐、空气搅拌混合措施。
若废水中和后达不到规定的pH值时,还需稍加废酸或废碱进行适当的调节。
酸、碱废水中和计算方法如下(酸、碱废水中和后要求排水呈中性) 常用酸、碱物质的摩尔值换算见表6-2.碱性中和剂比耗量见表6-3.反应池容积按照在中和反应池内停留时间1~2h考虑。
(二)pH值直接控制法对于酸性废水,常用药剂法和过滤法进行中和。
1.投药中和法强酸性废水采用的药剂有石灰、废碱、石灰石和电石渣等,但最常用的是将石灰制成乳液湿投,石灰乳的投加浓度一般般为10%以Ca (OH) 2计〕,超过此浓度输送比较困难,容易沉淀。
石灰石粉碎成细粒后干投时,处理流程中包括废水调节池、石灰乳配制槽或石灰石粉碎机、投药装置、混合反应池、沉淀池以及污泥干化床等。
在混合反应池中,应进行必要的搅拌,防止石灰渣的沉淀。
同时,废水在其中的停留时间一般不大于5min。
沉淀池中的废水,可停留1~2h,产生的沉渣容积约为废水量的10%~15%,沉渣含水率为90%~95%,应在干化床上脱水干化。
精品整理
酸性含铁废水深度处理与回用技术
一、技术概述
硫酸法钛白粉厂酸性含铁废水深度处理与回用技术,由三个部分组成:钛白粉酸性含铁废水分步中和氧化除铁新方法,高钙钛白废水混凝共沉淀降钙新工艺和钛白粉酸性含铁废水除铁脱钙一体化新方法。
二、技术优势
1、分步中和氧化新方法处理钛白粉酸性含铁废水技术
2、复合絮凝剂与混凝共沉淀技术
3、中和除铁与碳酸钠和磷酸三钠脱钙一体化技术
三、适用范围
化工行业含铁含重金属废水处理
四、工艺流程
1、将酸性含铁废水与电石渣浆或石灰乳在中和池通过机械混合进行中和反应,控制pH 为9.0~12.0、反应时间为10~20分钟,使废水中的亚铁生成絮凝性氢氧化物具有良好的沉淀性。
2、中和后的含渣废水进入沉淀池,沉淀时间为20~40分钟。
3、沉淀池的上清废水进入废水氧化池,在废水氧化池的pH调节区用少量酸性含铁废水进行pH调节,pH调节值为6~9;然后进入曝气区氧化,曝气氧化处理时间为20~30分钟,使废水中的少量亚铁被氧化成高铁悬浮物。
4、将含少量高铁悬浮物的废水进入废水澄清池,澄清时间为30~60分钟,澄清后的清废水直接排放。
5、将在步骤二沉淀池和步骤四废水澄清池沉积的底泥,通过抽吸送至底泥氧化池进行曝气氧化处理,时间为40~80分钟;经过曝气氧化处理后送到压滤机过滤,滤水返回到废水氧化池与沉淀池来的上清废水一同处理,滤渣按传统方法处置。