2009年广州高三数学一模理科数学试题答案
- 格式:docx
- 大小:450.37 KB
- 文档页数:6
2009年广州市普通高中毕业班综合测试(二)数学(理科)2009.4本卷共4页,21小题,满分150分。
考试用时120分钟。
一、选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如果复数22(3)(56)m m m m i -+-+是纯虚数,则实数m 的值为( )A . 0B . 2C . 0或3D .2或32.已知函数{(4),0(4),0()x x x x x x f x +<-≥= 则函数()f x 的零点个数为( )A . 1B . 2C . 3D . 43.已知全集U R =,集合{}37A x x =≤<,{}27100B x x x =-+<, 则()R C A B =I ( )A .(,3)(5,)-∞+∞UB .(,3)[5,)-∞+∞UC .(,3][5,)-∞+∞UD .(,3](5,)-∞+∞U4.命题“2,210x R x x ∃∈-+<”的否定是( )A .2,210x R x x ∃∈-+≥B .2,210x R x x ∃∈-+>C .2,210x R x x ∀∈-+≥D .2,210x R x x ∀∈-+<5.已知点(1,0)A ,直线:24l y x =-,点R 是直线l 上的一点。
若RA AP =uu r uu u r,则点P 的轨迹方程为( )A . 2y x =-B .2y x =C .28y x =-D .24y x =+6.函数()cos f x x x =的导函数()f x '在区间[,]ππ-上的图像大致是( )ABC D .7.现有4种不同颜色要对如图1所示的四个部分进行着色, 要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )A .24种B .30种C .36种D .48种8.设直线l 与球O 有且只有一个公共点P ,从直线l 出发的两个半平面,αβ截球O 的两个截面圆的半径分别为1l αβ--的平面角为150o,则球O 的表面积为( )A .4πB .16πC .28πD .112π二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
广东省广州市番禺区2009年高考数学(理科)模拟试题(一)2009.3.4本试卷共4页,21小题,满分150分,考试时间120分钟.一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{1,2,3,4},{|22,}P Q x x x R ==-≤≤∈,则P Q 等于 ( ).A .{1,2}B .{3,4}C .{1}D .{-2,-1,0,1,2} 2.复数21ii-的虚部是( ). A .-1 B .1 C .i D .i -3.已知函数2log ,0,()2,0.x x x f x x >⎧=⎨≤⎩ 若1()2f a =,则a =( )A .1- BC .1-D .1或4.若22)4sin(2cos -=-παα,则ααcos sin +的值为( ). A.2- B.2 C .12-D . 125.一个几何体的三视图如右图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形, 那么该几何体的侧视图的面积为( ).A .12B .32C .23D .6 6.如图,在一个长为π,宽为2的矩形OABC 内,曲线sin (0)y x x π=≤≤与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( ).A .1πB .2πC.4π D. 3π7. 一正方形两顶点为双曲线C 的两焦点,若另两顶点在双曲线C 上,则双曲线C 的离心率为( ).A.B. C.D. 以上答案均有可能8. 已知点(,)P a b 与点(1,0)Q 在直线0132=+-y x 的两侧,则下列说法正确的是( ) ① 0132>+-ba② 0≠a 时,ab有最小值,无最大值 ③ ,M R M +∃∈>恒成立④ 当且0>a 1≠a ,时0>b , 则1-a b的取值范围为(-12,(,)33∞-+∞ A .①② B .②③ C .①④ D .③④二.填空题:本大题共7小题,考生做答6小题,每小题5分, 共30分.(一)必做题(9~12题)9..统计1000名学生的数学模块(一)水平测试成绩,得到 样本频率分布直方图如右图示,规定不低于60分为及格, 不低于80分为优秀,则及格人数是 ; 优秀率为 .10. 某区10000名学生参加市高中数学必修模块水平测试(满分为150分),其成绩X 服从正态分布2(95,)N σ,若成绩在70~95分的人数有3800人,则成绩在120~150分的人数为.11.如图,海平面上的甲船位于中心O 的南偏西30与O 相距15海里的C 处.现甲船以25海里/小时的速度沿直线CB 去营救位于中心O 正东方向25海里 的B 处的乙船,甲船需要 小时到达B 处.12.如右的程序框图可用来估计圆周率π的值.设(1,1)CONRND - 是产生随机数的函数,它能随机产生区间(1,1)-内的任何一个数, 如果输入1200,输出的结果为943,则运用此方法,计算π的近 似值为 (保留四位有效数字)(二)选做题:(13~15题,考生只能从中选做两题)13.在直角坐标系中圆C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),若以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的极坐标方程为______ __.频率A14.若不等式121x a x+>-+对于一切非零实数x 均成立,则实数a 的取值范围是_________________.15.如图,EB 、EC 是⊙O 的两条切线,B 、C 是切点, A 、D 是⊙O 上两点,如果∠E =460,∠DCF =320, 则∠A 的大小为 .三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数x x x f 2sin 21)12(cos )(2++=π. (1)求)(x f 的最小正周期;(2)已知A 是ABC ∆的内角,37()()325f A f A π+-=,求sin cos A A +的值. 17.(本小题满分12分)某射击测试规则为:每人最多有3次射击机会,射手不放过每次机会,击中目标即终止射击,第i 次击中目标得4i -(123)i =,,分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.(1)求该射手恰好射击两次的概率;(2)该射手的得分记为ξ,求随机变量ξ的分布列及数学期望.18. (本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA PD AD ==,若E 、F 分别为线段PC 、BD 的中点. (1) 求证:直线EF // 平面PAD ; (2) 求证:平面PDC ⊥平面PAD ; (3) 求二面角B PD C --的正切值.19.(本小题满分14分)某公司为了应对金融危机,决定适当进行裁员.已知这家公司现有职工200人,每人每年可创利润10万元.根据测算,在经营条件不变的前提下,若裁员人数不超过现有人数的20%,则每裁员1人,留岗员工每人每年就能多创利润0.1万元;若裁员人数超过现有人数的20%,则每裁员1人,留岗员工每人每年就能多创利润0.12万元.为保证公司的正常运转,留岗的员工数不得少于现有员工人数的70%.为保障被裁员工的生活,公司要付给被裁员工每人每年2万元的生活费.设公司裁员人数为x ,公司一年获得的纯收入为y 万元.(注:年纯收入=年利润—裁员员工的生活费)(1) 求出y 与x 的函数关系式;(2) 为了获得最大的经济效益,该公司应裁员多少人?20..(本小题满分14分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为552,它的一个顶点恰好是抛物线241x y =的焦点. (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若AF MA 1λ=,BF MB 2λ=,求21λλ+的值.21.(本小题满分14分)设数列{}n a 对一切正整数n 均有2121n n a a +=-,且0n a > ,如果1cos2a α=,(0,]8πα∈.(1)求2a ,3a 的值;(2)求数列{}n a ()n *∈N 的通项公式; (3)设数列{}n a 前n 项之积为n T ,试比较n T 与2π的大小,并证明你的结论.番禺区2009年高考数学(理科)模拟题(一)参考答案一、选择题 ABCD CABD二、填空题 9 . 800,20% (第一空2分,第二空3分), 10. 1200 11. 1.4 12.3.14313. 4sin ρθ= 14. (1,3) , 15. 99注:第14题用集合、不等式表示均可. 三、解答题 16. (1) x x x f 2sin 21)]62cos(1[21)(+++=π ……2分 ]2sin )6sin 2sin 6cos 2(cos 1[21x x x +-+=ππ )2sin 212cos 231(21x x ++=……4分 21)32sin(21++=πx ………5分 ∴22T ππ== ∴)(x f 的最小正周期为π ……6分 (2)由37()()325f A f A π+-=得111137sin(2)sin(2)sin 2123232225A A A ππ++-+=+= 则24sin 225A =, ……8分∴249(sin cos )1sin 225A A A +=+= ……9分由于0A π<<,则022A π<<,但24sin 2025A =>,则02A π<<,即A 为锐角, 从而sin cos 0A A +> ……11分因此 7sin cos 5A A +=. ……12分17.(1)设该射手第i 次击中目标的事件为(123)i A i =,,, 则()0.8()0.2i i P A P A ==,,…1分该射手恰好射击2次,则第1次没击中目标,第2次击中目标, 表示的事件为12A A , ……2分由于1A ,2A 相互独立,则 1212()()()0.20.80.16P A A P A P A ==⨯=. ……4分BA即该射手恰好射击两次的概率为0.16; ……5分 (2)ξ可能取的值为0,1,2,3. ……6分由于(0)P ξ==3121233()()()()(0.2)0.08P A A A P A P A P A === ……7分(1)P ξ==2121233()()()()(0.2)0.80.032P A A A P A P A P A ==⨯=; ……8分 (2)P ξ==1212()()()0.20.80.16P A A P A P A ==⨯=; ……9分1(3)()0.8P P A ξ=== ……10分则ξ的分布列为……11分故ξ的数学期望为00.00810.03220.1630.8 2.752E ξ=⨯+⨯+⨯+⨯=. ……12分18.(1)证明:连结AC ,在CPA ∆中EF //PA ……2分且PA ⊆平面PAD ,EF ⊄平面PAD ∴PAD EF 平面//………………………………………………………………………………………….4分 (2)证明:因为面PAD ⊥面ABCD 平面PAD面ABCD AD =CD AD ⊥所以,CD ⊥平面PAD CD PA ∴⊥………………………………………………………………………6分又2PA PD AD ==,所以PAD ∆是等腰直角三角形,且2π=∠APD即PA PD ⊥…………………………………………………………………………………………………………………….8分C DP D D =,且CD 、PD ⊆面ABCD ∴PA ⊥面PDC又PA ⊆面PAD 面PAD ⊥面PDC ……………………………………………………………..10分 (3)解:设PD 的中点为M ,连结EM ,MF ,则EM PD ⊥ 由(Ⅱ)知EF ⊥面PDC , EF PD ⊥ PD ⊥面EFM PDMF ⊥EMF ∠是二面角B PD C --的平面角……………………….12分Rt FEM ∆中,12EF PA == 1122EM CD a ==4tan 122EF EMF EM a ∠===故所求二面角的正切为2 ……14分另解:如图,取AD 的中点O , 连结OP ,OF . ∵PA PD =, ∴PO AD ⊥.∵侧面PAD ⊥底面ABCD ,PAD ABCD⋂=平面平面∴PO ABCD ∴⊥平面,而,O F 分别为,AD BD 的中点,∴//OF AB ,又ABCD 是正方形,故OF AD ⊥. ∵PA PD AD ==,∴PA PD ⊥,2a OP OA ==.以O 为原点,直线,,OA OF OP 为,,x y z 轴建立空间直线坐标系,则有(,0,0)2a A ,(0,,0)2a F ,(,0,0)2a D -,(0,0,)2a P ,(,,0)2a B a ,(,,0)2aC a -. ∵E 为PC 的中点, ∴(,,)424a a aE -.(1)易知平面PAD 的法向量为(0,,0)2a OF =而(,0,)44a aEF =-,且(0,,0)(,0,)0244a a aOF EF ⋅=⋅-=, ∴EF //平面PAD .(2)∵(,0,)22a a PA =-,(0,,0)CD a = ∴(,0,)(0,,0)022a aPA CD a ⋅=-⋅=,∴PA CD ⊥,从而PA CD ⊥,又PA PD ⊥,PDCD D =,∴PA PDC ⊥平面,而PA PAD ⊂平面, ∴平面PDC ⊥平面PAD(3)由(2)知平面PDC 的法向量为(,0,)22aa PA =-.设平面PBD 的法向量为(,,)n x y z =.∵(,0,),(,,0)22a aDP BD a a ==-,∴由0,0n DP n BD ⋅=⋅=可得002200aa x y z a x a y z ⎧⋅+⋅+⋅=⎪⎨⎪-⋅+⋅+⋅=⎩,令1x =,则1,1y z ==-, 故(1,1,1)n =-,∴cos ,2n PA n PA n PA⋅<>===即二面角B PD C --的余弦值为3二面角B PD C --的正切值为2. 本题还有其他解法,讲评时注意挖掘.19. 解:(1)当020020%x <≤⨯,(200)(100.1)2y x x x =-+-, 即20.182000y x x =-++, 3分 当20020%200(170%)x ⨯<≤⨯-时,2(200)(100.12)20.12122000y x x x x x =-+-=-++ 6分所以y 与x 的函数关系式为220.182000,040,N0.12122000,4060,N x x x x y x x x x ⎧-++<≤∈⎪=⎨-++<≤∈⎪⎩, 8分 (2)由220.1820000.1(40)2160y x x x =-++=--+,而040,N x x <≤∈,则40x =时,2160max y =; 10分 由220.121220000.12(50)2300y x x x =-++=--+而4060,N x x <≤∈,则50x =时,2300max y =; 12分 由于21602300<,则当50x =时,公司获利最大, 13分答:裁员50人时,公司获得最大的经济效益. 14分20..解:(1)设椭圆C 的方程为)0(12222>>=+b a by a x , ………1分抛物线方程化为y x 42=,其焦点为)1,0(,椭圆C 的一个顶点为)1,0(,即1=b , ………3分由55222=-==a b a a c e ,得52=a , ………5分 ∴椭圆C 的方程为1522=+y x . ……………6分 (2)由(1)得)0,2(F , …………………7分设),(11y x A ),(22y x B ,),0(0y M ,显然直线l 的斜率存在, 设直线l 的方程为)2(-=x k y , …………………8分代入1522=+y x ,并整理得 052020)51(2222=-+-+k x k x k , ………………9分 ∴2221222151520,5120k k x x k k x x +-=+=+. …………………10分又),(,),(022011y y x y y x -=-=,),2(,),2(2211y x BF y x AF --=--=, 由AF MA 1λ=,BF MB 2λ=,得),2(),(111011y x y y x --=-λ,),2(),(222022y x y y x --=-λ,∴2221112,2x x x x -=-=λλ, ……………………12分 ∴121212121212122()2102242()x x x x x x x x x x x x λλ+-+=+==----++. ………………14分21.(1)依题意:22cos221a α=-,则222cos 1a α=+=,222cos a α= 而(0,]8πα∈,又0n a >,所以2cos a α=, ………………1分同样可求得3cos 2a α=, ………………2分 (2)猜测2cos2n n a α-=,(n ∈N*) ………………4分①用数学归纳法证明:显然1n =时猜想正确, ………………5分 ②假设(n k k =∈N*)时猜想成立,即2cos2k k a α-=,则1n k =+时,∵2121k k a a +=-,∴212cos212k k a α+-=-,即22112cos22k k a α+-=,而0n a >故11(1)2coscos22k k k a αα+-+-==, ………………6分这就是说1n k =+猜想也成立,故对任意正整数n 都有2cos 2n n a α-=.…………7分(3)2n T π>………………9分证明: (0,]8πα∈,则321cos 2cos,cos cos,,cos cos04222n n ππαπαα-+≥≥⋅⋅⋅≥>, ………10分则n T 341cos cos cos cos 4222n ππππ+≥⋅⋅⋅∴23411112coscos cos cos sin 1222222sin 2sin 2sin 222n n n n n n n n n T ππππππππ++++⋅⋅⋅≥== ………11分设()sin g x x x =-,(0,)2x π∈,则()cos 10g x x '=-<,即()g x 为(0,)2π上的减函数,∴()(0)g x g <,故(0,)2x π∈时,sin x x <,………12分而1(0,)24n ππ+∈,∴110sin 22n n ππ++<<, ∴1102sin 222n nn n ππ++<<⨯ ………13分∴102sin 22nn ππ+<<,,则1122sin 2n n ππ+>,即2n T π>. ………14分。
2009年广州市普通高中毕业班综合测试(一)数 学(理 科) 2009.3一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数()x x f 2sin =的最小正周期为 A .πB.π2C. π3D. π42.已知z =i (1+i )(i 为虚数单位),则复数z 在复平面上所对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.某商场在国庆黄金周的促销活动中,对10月2号9时至14时 的销售额进行统计,其频率分布直方图如图1所示.已知9时 至10时的销售额为2.5万元,则11时至12时的销售额为 A . 6万元 B . 8万元C . 10万元D .12万元4.已知过()a A ,1-、()8,a B 两点的直线与直线012=+-y x 平行,则a 的值为A. 10-B. 17C. 5D. 25.阅读图2的程序框图(框图中的赋值符号“=”也可以写成“←”或“:=”),若输出的S 的值等于16,那么在程序框图中的判断框内应填写的条件是A .5>i ? B. 6>i ?C. 7>i ?D. 8>i ?6.已知p :关于x 的不等式022>-+a ax x 的解集是R ,q :01<<-a ,则p 是q 的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件7.在()nn nx a x a x a x a a x +⋅⋅⋅++++=-3322101中,若0252=+-n a a ,则自然数n 的值是A .7B .8C .9D .108.在区间[]1,0上任意取两个实数,则函数在区间[]1,1-上有且仅 一个零点的概率为 A .81 B .41C .43D .87二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~12题)9. 若()22log 2=+a ,则=a 3 . 10.若⎰ax 0d x =1, 则实数a 的值是 .11.一个几何体的三视图及其尺寸(单位:cm )如图3所示, 则该几何体的侧面积为 cm 2.12.已知数列{}n a 的前n 项和为n S ,对任意∈n N *都有3132-=n n a S , 且91<<k S (∈k N *),则1a 的值为 ,k 的值为 .(二)选做题(13~15题,考生只能从中选做两题) 13.(坐标系与参数方程选做题)在极坐标系中,直线24sin =⎪⎭⎫⎝⎛+πθρ被圆4=ρ截得的弦长为__ .14.(几何证明选讲选做题)已知PA 是圆O (O 为圆心)的切线,切点为A ,PO 交圆O 于C B , 两点,︒=∠=30,3PAB AC ,则线段PB 的长为 .15.(不等式选讲选做题)已知∈c b a ,,R ,且432,2222=++=++c b a c b a ,则实数a 的取值范围为_____________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知△ABC 的内角C B A ,,所对的边分别为,,,c b a 且53cos ,2==B a . (1)若4=b , 求A sin 的值;(2) 若△ABC 的面积,4=∆ABC S 求c b ,的值.b a ,()b ax x x f -+=321甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分. 若甲、乙两名同学射击的命中率分别为53和p , 且甲、乙两人各射击一次所得分数之和为2的概率为209.假设甲、乙两人射击互不影响. (1)求p 的值;(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望.18. (本小题满分14分)如图4, 在三棱锥ABC P -中,⊥PA 平面ABC ,AC AB ⊥,F E D ,,分别是棱PC PB PA ,,的中点,连接EF DF DE ,,.(1) 求证: 平面//DEF 平面ABC ;(2) 若2==BC PA , 当三棱锥ABC P -的体积最大时, 求二面角D EF A --的平面角的余弦值.图419.(本小题满分12分)某车间有50名工人,要完成150件产品的生产任务,每件产品由3个A 型零件和1个B 型零件配套组成.每个工人每小时能加工5个A 型零件或者3个B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一种型号的零件.设加工A 型零件的工人人数为x 名(∈x N *). (1)设完成A 型零件加工所需时间为()x f 小时,写出()x f 的解析式; (2)为了在最短时间内完成全部生产任务,x 应取何值?20.(本小题满分14分)已知动圆C 过点()0,2-A ,且与圆()642:22=+-y x M 相内切.(1)求动圆C 的圆心的轨迹方程;(2)设直线:l y kx m =+(其中,)k m Z ∈与(1)中所求轨迹交于不同两点B ,D ,与双曲线112422=-y x 交于不同两点,E F ,问是否存在直线l ,使得向量DF BE +=0,若存在,指出这样的直线有多少条?若不存在,请说明理由.已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且.(1) 求数列{}n a 和{}n b 的通项公式;(2) 设n S 是数列{}n a 的前n 项和, 问是否存在常数λ,使得0>-n n S b λ对任意∈n N *都成立,若存在,求出λ的取值范围; 若不存在, 请说明理由.2009年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,每小题5分,满分30分.其中13~15是选做题,考生只能选做两题. 第12题第一个空2分,第二个空3分.9.9 10.2 11.80 12.-1;4 13.34 14.1 15. ⎥⎦⎤⎢⎣⎡2,112三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力) 解: (1)∵053cos >=B , 且π<<B 0, ∴ 54cos 1sin 2=-=B B . 由正弦定理得B b A a sin sin =. ∴524542sin sin =⨯==b B a A . (2)∵,4sin 21==∆B ac S ABC ∴454221=⨯⨯⨯c . ∴ .由余弦定理得B ac c a b cos 2222-+=,∴175352252cos 22222=⨯⨯⨯-+=-+=B ac c a b . 17.(本小题满分14分)(本小题主要考查概率、随机变量的分布列及其数学期望等基础知识,考查运算求解能力)11=a 5=cFEDCBAP 解:(1)记“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B , 则()()52,53==A P A P ,()()p B P p B P -==1,. 依题意得()209531153=⎪⎭⎫ ⎝⎛-+-p p , 解得43=p . 故p 的值为43. (2)ξ的取值分别为,4,2,0.()()()()10141520=⨯=⋅===B P A P B A P P ξ, ()2092==ξP , ()()()()20943534=⨯=⋅===B P A P AB P P ξ, ξ∴的分布列为∴E .1027209420921010=⨯+⨯+⨯=ξ 18.(本小题满分14分)(本小题主要考查空间中线面的位置关系、空间的角、几何体体积等基础知识,考查空间想象能力、推理论证能力和运算求解能力) (1) 证明: ∵E D ,分别是棱PB PA ,的中点,∴DE 是△PAB 的中位线.∴AB DE //. ∵⊄DE 平面⊂AB ABC ,平面,ABC∴//DE 平面ABC . 同理可证 //DF 平面ABC .∵⊂=DE D DF DE , 平面DEF ,⊂DF 平面DEF ,∴平面DEF // 平面ABC .(2) 求三棱锥ABC P -的体积的最大值, 给出如下两种解法:解法1: 由已知⊥PA 平面ABC , AB AC ⊥,2==BC PA ∴4222==+BC AC AB .∴三棱锥ABC P -的体积为ABC S PA V ∆⨯⨯=31AC AB PA ⨯⨯⨯⨯=2131 AC AB ⨯⨯⨯=261 23122AC AB +⨯≤ 2312BC ⨯= 32=.GFED CBAP 当且仅当AC AB =时等号成立,V 取得最大值,其值为32, 此时AC AB =2=.解法2:设x AB =,在R t △ABC 中,2224x AB BC AC -=-=()20<<x .∴三棱锥ABC P -的体积为ABC S PA V ∆⨯⨯=31 AC AB PA ⨯⨯⨯⨯=2131 2431x x -=42431x x -= ()423122+--=x . ∵40,202<<<<x x , ∴ 当22=x ,即2=x 时,V 取得最大值,其值为32,此时2==AC AB .求二面角D EF A --的平面角的余弦值, 给出如下两种解法: 解法1:作EF DG ⊥,垂足为G , 连接AG . ∵ ⊥PA 平面ABC ,平面//ABC 平面DEF ,∴ ⊥PA 平面DEF . ∵ ⊂EF 平面DEF , ∴ ⊥PA EF . ∵ D PA DG = , ∴ ⊥EF 平面PAG .∵⊂AG 平面PAG ,∴⊥EF AG . ∴ AGD ∠是二面角D EF A --的平面角.在R t △EDF 中,121,2221=====BC EF AB DF DE , ∴21=DG . 在R t △ADG 中,2541122=+=+=DG AD AG ,552521cos ===∠AG DG AGD . ∴二面角D EF A --的平面角的余弦值为55. 解法2:分别以AP AC AB ,,所在直线为x 轴, y 轴, z 轴, 建立如图的空间直角坐标系xyz A -,则()()⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛1,22,0,1,0,22,1,0,0,0,0,0F E D A .∴⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=0,22,22,1,0,22. 设n ()z y x ,,=为平面AEF 的法向量,∴⎪⎩⎪⎨⎧=⋅=⋅.0,0n AE n 即⎪⎪⎩⎪⎪⎨⎧=+-=+.02222,022y x z x 令2=x , 则1,2-==z y .∴n ()1,2,2-=为平面AEF 的一个法向量. ∵平面DEF 的一个法向量为()100-=,,,∴()()()5511221222=⨯-++==n cos . ∴二面角D EF A --的平面角的余弦值为55. 19.(本小题满分12分)(本小题主要考查函数最值、不等式、导数及其应用等基础知识,考查分类与整合的数学思想方法,以及运算求解能力和应用意识)解:(1)生产150件产品,需加工A 型零件450个,则完成A 型零件加工所需时间()x f ∈==x xx (905450N *,且)491≤≤x . (2)生产150件产品,需加工B 型零件150个,则完成B 型零件加工所需时间()x g ()∈-=-=x xx (5050503150N *,且)491≤≤x .设完成全部生产任务所需时间为()x h 小时,则()x h 为()x f 与()x g 的较大者. 令()()x g x f ≥,即x x -≥505090,解得71321≤≤x . 所以,当321≤≤x 时,()()x g x f >;当4933≤≤x 时,()()x g x f <.故()()()⎪⎩⎪⎨⎧≤≤∈-≤≤∈=4933,,5050321,,90**x N x xx N x x x h .当321≤≤x 时,()0902'<-=xx h ,故()x h 在[]32,1上单调递减, 则()x h 在[]32,1上的最小值为()1645329032==h (小时); 当4933≤≤x 时,()()050502'>-=x x h ,故()x h 在[]49,33上单调递增,则()x h 在[]49,33上的最小值为()175033505033=-=h (小时);()()3233h h > ,∴()x h 在[]49,1上的最小值为()32h .32=∴x .答:为了在最短时间内完成生产任务,x 应取32.20.(本小题满分14分)(本小题主要考查圆、椭圆、直线等基础知识和数学探究,考查数形结合、分类与整合的数学思想方法,以及推理论证能力、运算求解能力和创新意识) 解:(1)圆()642:22=+-y x M , 圆心M 的坐标为()0,2,半径8=R .∵R AM <=4,∴点()0,2-A 在圆M 内. 设动圆C 的半径为r ,圆心为C ,依题意得CA r =,且r R CM -=, 即AM CA CM >=+8. ∴圆心C 的轨迹是中心在原点,以M A ,两点为焦点,长轴长为8的椭圆,设其方程为()012222>>=+b a by a x , 则2,4==c a .∴12222=-=c a b . ∴所求动圆C 的圆心的轨迹方程为1121622=+y x . (2)由⎪⎩⎪⎨⎧=++=.11216,22y x m kx y 消去y 化简整理得:()0484843222=-+++m kmx x k . 设11(,)B x y ,22(,)D x y ,则122834kmx x k+=-+. △1()()()04844348222>-+-=m k km . ①由⎪⎩⎪⎨⎧=-+=.1124,22y x m kx y 消去y 化简整理得:()01223222=----m kmx x k . 设()()4433,,,y x F y x E ,则24332kkmx x -=+,△2()()()012342222>+-+-=m k km . ②∵DF BE +=0,∴4231()()0x x x x -+-=,即1234x x x x +=+,∴2232438kkmk km -=+-. ∴02=km 或2231434k k -=+-.解得0k =或0m =.当0k =时,由①、②得 3232<<-m ,∵∈m Z ,∴m 的值为2,3-- 1-,0,13,2,;当0m =,由①、②得 33<<-k ,∵∈k Z ,∴1,0,1-=k .∴满足条件的直线共有9条. 21.(本小题满分14分)(本小题主要考查数列的通项公式、数列前n 项和、不等式等基础知识,考查化归与转化、分类与整合、特殊与一般的数学思想方法,以及推理论证能力、运算求解能力和抽象概括能力) 解: (1) ∵1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,∴⎩⎨⎧==+++.,211n n n n n n a a b a a 求数列{}n a 的通项公式, 给出如下四种解法:解法1: 由n n n a a 21=++,得⎪⎭⎫⎝⎛⨯--=⨯-++n n n n a a 23123111, 故数列⎭⎬⎫⎩⎨⎧⨯-n n a 231是首项为31321=-a ,公比为1-的等比数列.∴()1131231--⨯=⨯-n n n a , 即()[]nn n a 1231--=. 解法2: 由n n n a a 21=++,两边同除以()11+-n , 得()()()nnnn n a a 21111--=---++,令()nnn a c 1-=, 则()nn n c c 21--=-+.故()()()123121--++-+-+=n n n c c c c c c c c()()()()13222221-----------=n ()()[]()2121211----⋅---=-n()[]1231--=n ()2≥n .且1111-=-=a c 也适合上式, ∴()nna 1-()[]1231--=n , 即()[]n n n a 1231--=. 解法3: 由n n n a a 21=++,得1212+++=+n n n a a , 两式相减得n n n n n a a 22212=-=-++. 当n 为正奇数时,()()()235131--++-+-+=n n n a a a a a a a a25322221-+++++=n 41412121-⎪⎪⎭⎫ ⎝⎛-+=-n 312+=n ()3≥n . 且11=a 也适合上式. 当n 为正偶数时,()()()246242--++-+-+=n n n a a a a a a a a264222221-+++++=n 41414122-⎪⎪⎭⎫ ⎝⎛-+=-n312-=n ()4≥n . 且12112=-=a a 也适合上式. ∴ 当∈n N *时,n a ()[]nn 1231--=.解法4:由nn n a a 21=++,11=a ,得122-=a ()()()1231212122-=---+-=, ()()()123121211222332223+=----=+-=-=a a . 猜想n a ()[]nn 1231--=.下面用数学归纳法证明猜想正确. ① 当1=n 时,易知猜想成立;② 假设当k n =∈k (N *)时,猜想成立,即()[]kk k a 1231--=, 由k k k a a 21=++,得()[]()[]1111231123122+++--=---=-=k k k k k k k k a a ,故当1+=k n 时,猜想也成立. 由①、②得,对任意∈n N *,n a ()[]nn 1231--=.∴()[]()[]111121291+++--⨯--==n n n n n n n a a b ()[]1229112---=+nn . (2)n n a a a a S ++++= 321 ()()()()[]{}nn 111222231232-++-+--++++=()⎥⎦⎤⎢⎣⎡----=+21122311nn .要使0>-n n S b λ对任意∈n N *都成立,即()[]1229112---+n n ()02112231>⎥⎦⎤⎢⎣⎡-----+nn λ(*)对任意∈n N *都成立.① 当n 为正奇数时, 由(*)式得[]1229112-++n n ()01231>--+n λ, 即()()1212911+-+n n ()01231>--+n λ,∵0121>-+n , ∴()1231+<n λ对任意正奇数n 都成立.当且仅当1=n 时, ()1231+n有最小值1.∴1<λ.② 当n 为正偶数时, 由(*)式得[]1229112--+n n ()02231>--+n λ, 即()()1212911-++nn ()01232>--n λ, ∵012>-n,∴()12611+<+n λ对任意正偶数n 都成立.当且仅当2=n 时, ()12611++n 有最小值23.∴<λ23.综上所述, 存在常数λ,使得0>-n n S b λ对任意∈n N *都成立, λ的取值范围是()1,∞-.。
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B •=•球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u AB 中的元素共有()(A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ+=2+i,则复数z=() (A )-1+3i (B)1-3i (C)3+i (D)3-i (3) 不等式11X X +-<1的解集为( )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于()(A (B )2 (C (D(5) 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。
若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )(A )150种 (B )180种 (C )300种 (D)345种 (6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最小值为 ( )(A )2- (B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A )4 (B )4 (C )4 (D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为(A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为( )(A)1 (B)2 (C) -1 (D)-2(10)已知二面角l αβ--为60,动点P 、Q 分别在面α、β内,PQ 到α的距离为P 、Q 两点之间距离的最小值为( )(A) (B)2 (C) (11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数12.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF =( )23第II 卷二、填空题:13. ()10x y -的展开式中,73x y 的系数与37x y 的系数之和等于 。
2009年广州市普通高中毕业班综合测试(一)数 学(理 科) 2009.3本试卷共4页,21小题, 满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题卡。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=, 其中S 是锥体的底面积, h 是锥体的高.如果事件A 、B 互斥,那么()()()P A B P A P B +=+.如果事件A 、B 相互独立,那么()()()B P A P AB P ⋅=.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数()x x f 2sin =的最小正周期为A .πB.π2C. π3D. π42.已知z =i (1+i )(i 为虚数单位),则复数z 在复平面上所对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.某商场在国庆黄金周的促销活动中,对10月2号9时至14时 的销售额进行统计,其频率分布直方图如图1所示.已知9时 至10时的销售额为2.5万元,则11时至12时的销售额为 A . 6万元 B . 8万元C . 10万元D .12万元4.已知过()a A ,1-、()8,a B 两点的直线与直线012=+-y x 平行,则a 的值为A. 10-B. 17C. 5D. 25.阅读图2的程序框图(框图中的赋值符号“=”也可以写成“←”或“:=”),若输出的S 的值等于16,那么在程序框图中的判断框内应填写的条件是A .5>i ? B. 6>i ?C. 7>i ?D. 8>i ?6.已知p :关于x 的不等式022>-+a ax x 的解集是R ,q :01<<-a ,则p 是q 的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件7.在()n n nx a x a x a x a a x +⋅⋅⋅++++=-3322101中,若0252=+-n a a ,则自然数n 的值是A .7B .8C .9D .108.在区间[]1,0上任意取两个实数b a ,,则函数()b ax x x f -+=321在区间[]1,1-上有且仅一个零点的概率为 A .81 B .41 C .43 D .87二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~12题)9. 若()22log2=+a ,则=a3 .10.若⎰ax 0d x =1, 则实数a 的值是 .11.一个几何体的三视图及其尺寸(单位:cm )如图3所示, 则该几何体的侧面积为 cm 2.12.已知数列{}n a 的前n 项和为n S ,对任意∈n N *都有3132-=n n a S ,且91<<k S (∈k N *),则1a 的值为 ,k 的值为 .(二)选做题(13~15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)在极坐标系中,直线24sin =⎪⎭⎫ ⎝⎛+πθρ被圆4=ρ截得的弦长为__ .14.(几何证明选讲选做题)已知PA 是圆O (O 为圆心)的切线,切点为A ,PO 交圆O 于C B , 两点,︒=∠=30,3PAB AC ,则线段PB 的长为 .15.(不等式选讲选做题)已知∈c b a ,,R ,且432,2222=++=++c b a c b a ,则实数a 的取值范围为_____________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知△ABC 的内角C B A ,,所对的边分别为,,,c b a 且53cos ,2==B a .(1)若4=b , 求A sin 的值;(2) 若△ABC 的面积,4=∆ABC S 求c b ,的值.17.(本小题满分14分)甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分. 若甲、乙两名同学射击的命中率分别为53和p , 且甲、乙两人各射击一次所得分数之和为2的概率为209.假设甲、乙两人射击互不影响.(1)求p 的值;(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望.18. (本小题满分14分)如图4, 在三棱锥ABC P -中,⊥PA 平面ABC ,AC AB ⊥,F E D ,,分别是棱PC PB PA ,,的中点,连接EF DF DE ,,.(1) 求证: 平面//DEF 平面ABC ;(2) 若2==BC PA , 当三棱锥ABC P -的体积最大时, 求二面角D EF A --的平面角的余弦值.图419.(本小题满分12分)某车间有50名工人,要完成150件产品的生产任务,每件产品由3个A 型零件和1个B 型零件配套组成.每个工人每小时能加工5个A 型零件或者3个B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一种型号的零件.设加工A 型零件的工人人数为x 名(∈x N *).(1)设完成A 型零件加工所需时间为()x f 小时,写出()x f 的解析式; (2)为了在最短时间内完成全部生产任务,x 应取何值?20.(本小题满分14分)已知动圆C 过点()0,2-A ,且与圆()642:22=+-y x M 相内切.(1)求动圆C 的圆心的轨迹方程;(2)设直线:l y kx m =+(其中,)k m Z ∈与(1)中所求轨迹交于不同两点B ,D ,与双曲线112422=-yx交于不同两点,E F ,问是否存在直线l ,使得向量DF BE +=0,若存在,指出这样的直线有多少条?若不存在,请说明理由.21. (本小题满分14分)已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n nb x x ∈n (N )*的两根,且11=a .(1) 求数列{}n a 和{}n b 的通项公式;(2) 设n S 是数列{}n a 的前n 项和, 问是否存在常数λ,使得0>-n n S b λ对任意∈n N *都成立,若存在, 求出λ的取值范围; 若不存在, 请说明理由.。
广东省2009届高三数学一模试题分类汇编——立体几何一、选择题填空题 1、(2009广州一模).一个几何体的三视图及其尺寸(单位:cm)如图3所示,则该几何体的侧面积为_______cm 2.802(2009广东三校一模)如图,设平面ααβα⊥⊥=CD AB EF ,, ,垂足分别为D B ,,若增加一个条件,就能推出EF BD ⊥.现有①;β⊥AC ②AC 与βα,所成的角相等;③AC 与CD 在β内的射影在同一条直线上;④AC ∥EF .那么上述几个条件中能成为增加条件的个数是 1.A 个 2.B 个 3.C 个 4.D 个. C 3、(2009东莞一模)如右图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为 A . 12πB.2C. 4D.4πA4、(2009番禺一模)一个几何体的三视图如右图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为( ).A .12B .32 C .23D .6 C5、(2009汕头一模)在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;②若平面α∥平面β,则平面α内任意一条直线m ∥平面β;③若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,则直线n ⊥平面β; ④若平面α内的三点A, B, C 到平面β的距离相等,则α∥β.βαAEF B DC图3俯视图其中正确命题的个数为( )个。
A .0B .1C .2D .3 B 6、(2009湛江一模)用单位立方块搭一个几何体,使它的主视图和俯视图 如下图所示,则它的体积的最小值为 ,最大 值为 .10(2分),16(3分).二、解答题 1、(2009广州一模)如图4,在三棱锥P-ABC 中,PA ⊥平面ABC , AB ⊥AC ,D 、E 、F 分别是棱PA 、PB 、PC 的中点,连接DE ,DF ,EF. (1)求证: 平面DEF ∥平面ABC ;(2)若PA=BC=2,当三棱锥P-ABC 的体积的最大值时,求二面角A-EF-D 的平面角的余弦值..(本题主要考查空间中的线面的位置关系、空间的角、几何体体积等基础知识,考查空间想象能力、推理论证能力和运算求解能力)证明:∵D 、E 分别是棱PA 、PB 的中点,∴DE 是△PAB 的中位线,∴DE ∥AB ,∵DE ⊄平面PAB ,AB ⊂平面PAB ,∴DE ∥平面PAB , ……2分∵DE ∩DF=D ,DE ⊂平面DEF ,DF ⊂平面DEF ,∴平面DEF ∥平面ABC. ……4分(2)求三棱锥P-ABC 的体积的最大值,给出如下两种解法: 解法1:由已知PA ⊥平面ABC , AC ⊥AB ,PA=BC=2,∴AB 2 +AC 2 =BC 2=4,∴三棱锥P-ABC 的体积为ABC111V =PA S PA AB AC 332⨯⨯=⨯⨯⨯⨯ ……6分22211AB AC 1BC 22AB AC 632323+=⨯⨯⨯≤⨯=⨯=. 当且仅当AB=AC 时等号成立,V 取得最大值,其值为23,此时解法2:设AB=x ,在△ABC 中,AC (0<x<2), ∴三棱锥P-ABC 的体积为ABC111V =PA S PA AB AC 332⨯⨯=⨯⨯⨯⨯ 13= ……6分 ABCPDEF主视图==∵0<x<2,0<x2<4,∴当x2=2,即x时,V取得最大值,其值为23,此时……8分求二面角A-EF-D的平面角的余弦值..,给出如下两种解法:解法1:作DG⊥EF,垂足为G,连接AG,∵PA⊥平面ABC,平面ABC∥平面DEF,∴P A⊥平面DEF,∵EF⊂平面DEF,∴ P A⊥EF.∵DG∩PA=D,∴EF⊥平面PAG,AG⊂平面PAG,∴EF⊥AG,∴∠AGD是二面角A-EF-D的平面角. ……10分在Rt△EDF中,DE=DF=1AB=22,1EF BC=12=,∴1DG2=.在Rt△ADG中,AG=2==,∴1DGAGD=AG52∠==∴二面角A-EF-D……14分解法2:分别以AB、AC、AP所在直线为x轴,y轴,z轴,建立如图的空间直角坐标系A-xyz,则A(0,0,0),D(0,0,1),E(2,0,1),F(0,2,1). ∴22AE(01)EF(22==-,,,,设n(x y z)=,,为平面AEF的法向量,则n AE0n EF0⎧⋅=⎪⎨⋅=⎪⎩,A CPDEFG即x +z 00=⎨⎪=⎪⎩,令x,则y ,z=-1, ∴n (221)=-,为平面AEF 的一个法向量. ……11分 ∵平面DEF 的一个法向量为DA (001)=-,,,∴n DA cos n DA |n ||DA |(<>===,,,……13分 而n 与DA 所成角的大小等于二面角A-EF-D 的平面角的大小.∴二面角A-EF-D 的平面角的余弦值为5……14分 2、(2009广东三校一模)如图,在梯形ABCD 中,AB ∥CD ,a CB DC AD ===,60=∠ABC ,平面⊥ACFE 平面ABCD ,四边形ACFE 是矩形,a AE =,点M 在线段EF 上.(1)求证:⊥BC 平面ACFE ;(2)当EM 为何值时,AM ∥平面BDF ?证明你的结论; (3)求二面角D EF B --的平面角的余弦值. (Ⅰ)在梯形ABCD 中,CD AB // ,︒=∠===60,ABC a CB DC AD ∴四边形ABCD 是等腰梯形, 且︒︒=∠=∠=∠120,30DCB DAC DCA︒=∠-∠=∠∴90DCA DCB ACB BC AC ⊥∴ 2分又 平面⊥ACFE 平面ABCD ,交线为AC , ⊥∴BC 平面ACFE 4分 (Ⅱ)解法一、当a EM 33=时,//AM 平面BDF ,5分在梯形ABCD 中,设N BD AC =⋂,连接FN ,则2:1:=NA CN 6分a EM 33=,而a AC EF 3==2:1:=∴MF EM , 7分 AN MF //∴,∴四边形ANFM 是平行四边形,NF AM //∴ 8分又⊂NF 平面BDF ,⊄AM 平面BDF //AM ∴平面BDF 9分M FECDBB解法二:当a EM 33=时,//AM 平面BDF ,由(Ⅰ)知,以点C 为原点,CF CB CA ,,所在直线为坐标轴,建立空间直角坐标系, 5分则)0,0,0(C ,)0,,0(a B ,)0,0,3(a A ,21,23(a D -),0,0(a F ,),0,3(a a E ⊄AM 平面BDF ,∴//AM 平面BDF ⇔→AM 与→FB 、→FD 共面,也等价于存在实数m 、n ,使→→→+=FD n FB m AM ,设→→=EF t EM .)0,0,3(a EF -=→,)0,0,3(at EM -=→),0,3(a at EM AE AM -=+=∴→→→又),21,23(a a a FD --=→,),,0(a a FB -=→, 6分从而要使得:),21,23(),,0(),0,3(a a a n a a m a at --+-=-成立, 需⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-==-an am a an m a an at 210233,解得31=t 8分∴当a EM 33=时,//AM 平面BDF 9分 (Ⅲ)解法一、取EF 中点G ,EB 中点H ,连结DG ,GH ,DHEF DG DF DE ⊥∴=, ⊥BC 平面ACFE EF BC ⊥∴又FC EF ⊥ ,FB EF ⊥∴,又FB GH // ,GH EF ⊥∴222DB DE BE +=∴DGH ∠∴是二面角D EF B --的平面角. 6分在BDE ∆中,a AB AE BE a DB a DE 5,3,222=+===︒=∠∴90EDB ,a DH 25=∴. 7分 又a GH a DG 22,25==. 8分 ∴在DGH ∆中,由余弦定理得1010cos =∠DGH , 9分 即二面角D EF B --的平面角的余弦值为1010.解法二:由(Ⅰ)知,以点C 为原点,CF CB CA ,,建立空间直角坐标系,则)0,0,0(C ,)0,,0(a B ,)0,0,3(a A )0,21,23(a a D -,),0,0(a F ,),0,3(a a E 过D 作DG ⊥垂足为G . 令)0,0,3()0,0,3(a a FE FG λλλ===→→,),0,3(a a FG CF CG λ=+=→→→, ),21,233(a a a a CD CG DG -=-=→→→λ 由→→⊥EF DG 得,0=⋅→→EF DG ,21=∴λ),21,0(a a DG =∴→,即),21,0(a a GD --=→ 11分,//,EF AC AC BC ⊥ EF BC ⊥∴,EF BF ⊥∴∴二面角D EF B --的大小就是向量→GD 与向量→FB 所夹的角. 12分),,0(a a FB -=→13分→→→→→→⋅⋅>=<FBGD FB GD FB GD ,cos 1010=即二面角D EF B --的平面角的余弦值为1010. 14分 3、(2009东莞一模)如图,在长方体1,1,11111>==-AB AA AD D C B A ABCD 中,点E 在棱AB 上移动,小蚂蚁从点A 沿长方体的表面爬到点C 1,所爬的最短路程为22.(1)求证:D 1E ⊥A 1D ; (2)求AB 的长度;(3)在线段AB 上是否存在点E ,使得二面角BA41π的大小为D EC D --。
2009年广州市高三理科数学调研测试、一模、二模试题分类整理1.集合与常用逻辑用语GZ-T 6. 命题“,11a b a b >->-若则”的否命题...是 A .,11a b a b >-≤-若则 B .,11a b a b >-<-若则 C .,11a b a b ≤-≤-若则 D .,11a b a b <-<-若则GZ-1 6.已知p :关于x 的不等式022>-+a ax x 的解集是R ,q :01<<-a ,则p 是q 的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件GZ-2 3.已知全集U =R ,集合{3A x =≤}7x <,{}27100B x x x =-+<,则() A B R = ðA .()(),35,-∞+∞B .()[),35,-∞+∞C .(][),35,-∞+∞D .(](),35,-∞+∞GZ-2 4.命题“x ∃∈R ,2210x x -+<”的否定是 A .x ∃∈R ,221x x -+≥0 B .x ∃∈R ,2210x x -+> C .x ∀∈R ,221x x -+≥0 D .x ∀∈R ,2210x x -+<2.函数、导数与定积分GZ-T 9. 函数22()log (1)f x x =-的定义域为 .GZ-T 21. (本小题满分14分) 已知函数()a ax x x x f -+-=2331 (a ∈R). (1)当3-=a 时,求函数()x f 的极值;(2)若函数()x f 的图象与x 轴有且只有一个交点,求a 的取值范围.GZ-1 8.在区间[]1,0上任意取两个实数b a ,,则函数()b ax x x f -+=321在区间[]1,1-上有且仅一个零点的概率为 A .81 B .41C .43D .87GZ-1 9. 若()22log 2=+a ,则=a3 .GZ-1 10.若⎰ax 0d x =1, 则实数a 的值是 .GZ-1 19.(本小题满分12分)某车间有50名工人,要完成150件产品的生产任务, 每件产品由3个A 型零件和1个B 型零件配套组成. 每个工人每小时能加工5个A 型零件或者3个B 型零件, 现在把这些工人分成两组同时工作(分组后人数不再进行调整), 每组加工同一种型号的零件.设加工A 型零件的工人人数为x 名(∈x N *).(1)设完成A 型零件加工所需时间为()x f 小时,写出()x f 的解析式; (2)为了在最短时间内完成全部生产任务,x 应取何值?GZ-2 2.已知函数()()()4040.x x x f x x x x ⎧+<⎪=⎨-⎪⎩≥,,, 则函数()f x 的零点个数为A .1B .2C .3D .4GZ-2 6.函数()cos f x x x =的导函数()f x '在区间[],ππ-上的图像大致是A. B. C. D.GZ-2 20.(本小题满分14分)已知函数()2a f x x x=+,()ln g x x x =+,其中0a >.(1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围.GZ-T 2.在等比数列{a n }中,已知,11=a 84=a ,则=5aA .16B .16或-16C .32D .32或-32GZ-T 20.(本小题满分14分)把正整数按上小下大、左小右大的原则排成如图6所示的数表: 设ij a (i 、j ∈N*)是位于这个数表中从上往下数第i 行、 从左往右数第j 个数. 数表中第i 行共有12-i 个正整数.(1)若ij a =2010,求i 、j 的值;(2)记nn n a a a a A ++++= 332211∈n (N*), 试比较n A 与2n n +的大小, 并说明理由.GZ-1 12.已知数列{}n a 的前n 项和为n S ,对任意∈n N *都有3132-=n n a S , 且91<<k S (∈k N *),则1a 的值为 ,k 的值为 .GZ-1 21. (本小题满分14分)已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且11=a .(1) 求数列{}n a 和{}n b 的通项公式; (2) 设n S 是数列{}n a 的前n 项和,问是否存在常数λ,使得0>-n n S b λ对任意∈n N *都成立, 若存在, 求出λ的取值范围; 若不存在, 请说明理由.1 2 3 4 56 789 10 11 12 13 14 15…………………………图65.平面向量与三角GZ-T 3.已知向量a =(x ,1),b =(3,6),a ⊥b ,则实数x 的值为A .12 B .2- C .2 D .21-GZ-T 16. (本小题满分12分)已知()sin f x x x =∈x (R ).(1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值.GZ-1 1.函数()x x f 2sin =的最小正周期为 A .πB.π2C. π3D. π4GZ-1 16.(本小题满分12分)已知△ABC 的内角C B A ,,所对的边分别为,,,c b a 且53c o s ,2==B a . (1)若4=b , 求A sin 的值; (2) 若△ABC 的面积,4=∆ABC S 求c b ,的值.GZ-2 16.(本小题满分12分)已知向量2cos 12x ⎛⎫= ⎪⎝⎭,m ,sin 12x ⎛⎫= ⎪⎝⎭,n ()x ∈R ,设函数()1f x =- m n .(1)求函数()f x 的值域;(2) 已知锐角ABC ∆的三个内角分别为A ,B ,C ,若()513f A =,()35f B =, 求()f C 的值.图2俯视图侧视图正视图GZ-T 7.图2则该几何体的侧面积为A .6B .123C .24D .32GZ-T 18.(本小题满分14分)如图5,已知等腰直角三角形RBC ,其中∠RBC =90º,2==BC RB . 点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置, 使PA ⊥AB ,连结PB 、PC . (1)求证:BC ⊥PB ;(2)求二面角P CD A --GZ-1 11.则该几何体的侧面积为 cm 2.GZ-1 18. (本小题满分14分)如图4, 在三棱锥ABC P -中,⊥PA 平面ABC ,AC AB ⊥,F E D ,,分别是棱PC PB PA ,,的中点,连接EF DF DE ,,.(1)求证: 平面//DEF 平面ABC ;(2)若2==BC PA , 当三棱锥ABC P -的体积最大时, 求二面角D EF A --的平面角的余弦值.图4GZ-2 8.设直线l 与球O 有且只有一个公共点P ,从直线l 出发的两个半平面α、β截球O 的两个截面圆的半径分别为1 二面角l αβ--的平面角为150,则球O 的表面积为 A .4πB .16πC .28πD .112πGZ-T 9.在空间直角坐标系中,以点()4 1 9A ,,,()101 6B -,,,() 4 3C x ,,为顶点的ABC ∆是 以BC 为斜边的等腰直角三角形,则实数x 的值为 .GZ-2 17.(本小题满分12分) 在长方体1111ABCD A BC D -中,2AB BC ==,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如图4所示的几何体111ABCD ACD -,且这个几何体的体积为403. (1)求棱1A A 的长;(2)在线段1BC 上是否存在点P ,使直线1A P 与1C D 垂直,如果存在,求线段1A P 的长,如果不存在,请说明理由.7.平面解析几何GZ-T 4.经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为A .30x y -+=B .30x y --= C.10x y +-= D .30x y ++=GZ-T 8. 已知抛物线C 的方程为212x y =, 过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点, 则实数t 的取值范围是A. ()()+∞-∞-,11,B. ⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222, C. ()()+∞-∞-,,2222 D. ()()+∞-∞-,,22GZ-T 12. 已知变量x y ,满足约束条件2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,若目标函数ax y z -=仅在点()3,5处取得最小值, 则实数a 的取值范围为 .GZ-T 19. (本小题满分14分)设椭圆:C )0(12222>>=+b a by a x 的离心率为e =22,点A 是椭圆上的一点,且点A 到椭圆C 两焦点的距离之和为4. (1)求椭圆C 的方程;(2)椭圆C 上一动点P ()00,y x 关于直线x y 2=的对称点为()111,y x P ,求1143y x -的取值范围.GZ-1 4.已知过()a A ,1-、()8,a B 两点的直线与直线012=+-y x 平行,则a 的值为A. 10-B. 17C. 5D. 2GZ-1 20.(本小题满分14分)已知动圆C 过点()0,2-A ,且与圆()642:22=+-y x M 相内切.(1)求动圆C 的圆心的轨迹方程;(2)设直线:l y kx m =+(其中,)k m Z ∈与(1)中所求轨迹交于不同两点B ,D ,与双曲线112422=-y x 交于不同两点,E F ,问是否存在直线l ,使得向量DF BE +=0 , 若存在,指出这样的直线有多少条?若不存在,请说明理由.GZ-2 5.已知点()1,0A ,直线l :24y x =-,点R 是直线l 上的一点,若RA AP =,则点P 的轨迹方程为A .2y x =-B .2y x =C .28y x =-D .24y x =+GZ-2 21.(本小题满分14分)已知双曲线C :22221x y a b -=00(,)a b >>,左、右焦点分别为1F 、2F ,在双曲线C 上有一点M ,使12MF MF ⊥, 且12MF F ∆的面积为1.(1)求双曲线C 的方程;(2)过点()3,1P 的动直线l 与双曲线C 的左、右两支分别相交于两点A 、B ,在线段AB 上取异于A 、B 的点Q ,满足AP QB AQ PB = . 证明:点Q 总在某定直线上.8.算法、统计与概率GZ-T 5. 图1A .65 B .64 C .63 D .62GZ-T 11.在如图3所示的算法流程图中,输出SGZ-T 17.(本小题满分12分) 一厂家向用户提供的一箱产品共10件,其中有2用户先对产品进行抽检以决定是否接收.若前三次没有抽查到次品,则用户接收这箱产品;(1)求这箱产品被用户接收的概率;(2)记抽检的产品件数为ξ,求ξGZ-1 3.某商场在国庆黄金周的促销活动中,对10月2号9时至14时的销售额进行统计,其频率分布直 方图如图1所示.已知9时至10时的销售额为2.5万元, 则11时至12时的销售额为A . 6万元B . 8万元C . 10万元D .12万元GZ-1 5.阅读图2的程序框图(框图中的赋值符号“=”也可以 写成“←”或“:=”),若输出的S 的值等于16,那么在程序 框图中的判断框内应填写的条件是A .5>i ? B. 6>i ? C. 7>i ? D. 8>i ?图2GZ-1 17.(本小题满分14分) 甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分. 若甲、乙两名同学射击的命中率分别为53和p , 且甲、乙两人各射击一次所得分数之和为2的概率为209. 假设甲、乙两人射击互不影响. (1)求p 的值;(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望. GZ-210.在某项才艺竞赛中,有9位评委,主办单位规定计算参赛者比赛成绩的规则如下: 剔除评委中的一个最高分和一个最低分后,再计算其他7位评委的平均分作为此参赛者的比赛成绩.现有一位参赛者所获9位评委一个最高分为86分、一个最低分为45分, 若未剔除最高分与最低分时9位评委的平均分为76分, 则这位参赛者的比赛成绩为 分.GZ-2 11.阅读如图2所示的程序框图,若输出y 的值为0,则输入x 的值为 .9.复数GZ-T 1.已知i 为虚数单位,则(+1i )(-1 i )=A .0B .1C .2D .2iGZ-1 2.已知z =i (1+i )(i 为虚数单位),则复数z 在复平面上所对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限GZ-2 1.如果复数()()22356i m m m m -+-+是纯虚数,则实数m 的值为A .0B .2C .0或3D .2或310.计数原理GZ-T 10. 在52⎪⎭⎫ ⎝⎛-x x 的二项展开式中,x 3的系数是_______________.(用数字作答)GZ-1 7.在()n n nx a x a x a x a a x +⋅⋅⋅++++=-3322101中,若0252=+-n a a ,则自然数n 的值是A .7B .8C .9D .10GZ-2 7.现有4种不同颜色要对如图1所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有 A .24种B .30种C .36种D .48种图111.推理与证明 GZ-212.在平面内有n (*,n n N ∈≥)3条直线,其中任何两条不平行,任何三条不过同一点,若这n 条直线把平面分成()f n 个平面区域,则()5f 的值是 ,()f n 的表达式是 .GZ-2 18.(本小题满分14分)已知等比数列{}n a 的前n 项和为n S ,若m a ,2m a +,1m a +()*m ∈N 成等差数列,试判断m S ,2m S +,1m S +是否成等差数列,并证明你的结论.GZ-2 19.(本小题满分14分) 一个口袋中装有2个白球和n 个红球(n ≥2且*n ∈N ), 每次从袋中摸出两个球(每次摸球后把这两个球放回袋中), 若摸出的两个球颜色相同为中奖,否则为不中奖. (1)试用含n 的代数式表示一次摸球中奖的概率p ; (2)若3n =,求三次摸球恰有一次中奖的概率;(3)记三次摸球恰有一次中奖的概率为()f p ,当n 为何值时,()f p 最大?12.坐标系与参数方程GZ-T 14.(坐标系与参数方程选讲选做题) 在直角坐标系中圆C 的参数方程为⎩⎨⎧+==θθsin 22cos 2y x (θ为参数),以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的圆心极坐标为_________.GZ-1 13.(坐标系与参数方程选做题)在极坐标系中,直线24sin =⎪⎭⎫⎝⎛+πθρ被圆4=ρ截得的弦长为__ . 15.(坐标系与参数方程选做题) 直线()24,13x t t y t=-+⎧⎨=--⎩为参数被圆25cos ,15sin x y θθ=+⎧⎨=+⎩(θ为参数) 所截得的弦长为 .图4PGZ-T 15.(几何证明选讲选做题)如图4,P 是圆O 外一点,过P 引圆O 的两条割线PAB 、PCD , PA = AB =5,CD = 3,则PC =____________.GZ-1 14.(几何证明选讲选做题)已知PA 是圆O (O 为圆心)的切线,切点为A ,PO 交圆O 于C B ,两点,︒=∠=30,3PAB AC ,则线段PB 的长为 .GZ-2 13.(几何证明选讲选做题)如图3所示,在四边形ABCD 中,EF BC ,FG AD ,则EF FGBC AD+的值为 .图GZ-T 13.(不等式选讲选做题)不等式212<-+x x 的解集是______________.GZ-1 15.(不等式选讲选做题)已知∈c b a ,,R ,且432,2222=++=++c b a c b a , 则实数a 的取值范围为_____________.GZ-2 14.(不等式选讲选做题) 函数()f x =12x x -++的最小值为 .2009年广州市高三年级调研测试数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.(,1)(1,)-∞-+∞ 10.10- 11.52 12. ()∞+,1 13. ⎪⎭⎫ ⎝⎛-1,3114.⎪⎭⎫⎝⎛2,2π 15.2 说明:第14题答案可以有多种形式,如可答⎪⎭⎫ ⎝⎛25,2π或∈⎪⎭⎫⎝⎛+k k (22,2ππZ )等, 均给满分. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)解:(1)∵()x x x f cos 3sin +=⎪⎪⎭⎫⎝⎛+=x x cos 23sin 212 …… 2分⎪⎭⎫⎝⎛+=3sincos 3cossin 2ππx x …… 4分 ⎪⎭⎫⎝⎛+=3sin 2πx . …… 6分 ∴2T π=. …… 8分 (2) 当13sin =⎪⎭⎫⎝⎛+πx 时, )(x f 取得最大值, 其值为2 . ……10分 此时232x k πππ+=+,即26x k ππ=+∈k (Z ). ……12分17.(本小题满分12分)解:(1)设“这箱产品被用户接收”为事件A ,8767()109815P A ⨯⨯==⨯⨯. ……3分FR ADB CP即这箱产品被用户接收的概率为715. ……4分 (2)ξ的可能取值为1,2,3. ……5分()1=ξP =51102=, ()2=ξP =45892108=⨯, ()3=ξP =452897108=⨯, ……8分 ∴ξ的概率分布列为:∴ξE =4534524515=⨯+⨯+⨯. ……12分 18.(本小题满分14分)解:(1)∵点A 、D 分别是RB 、RC 的中点,∴BC AD BC AD 21,//=. …… 2分 ∴∠RBC RAD PAD ∠=∠==90º.∴AD PA ⊥.∴ BC PA ⊥,∵A AB PA AB BC =⊥ ,,∴BC ⊥平面PAB . …… 4分 ∵⊂PB 平面PAB ,∴PB BC ⊥. …… 6分(2)法1:取RD 的中点F ,连结AF 、PF .∵1==AD RA ,∴RC AF ⊥.∵AD AP AR AP ⊥⊥,,∴⊥AP 平面RBC .∵⊂RC 平面RBC ,∴AP RC ⊥. …… 8分 ∵,A AP AF =∴⊥RC 平面PAF .∵⊂PF 平面PAF ,∴PF RC ⊥.∴∠AFP 是二面角P CD A --的平面角. ……10分 在R t △RAD 中, 22212122=+==AD RA RD AF ,R 在R t △PAF 中, 2622=+=AF PA PF ,332622cos ===∠PF AF AFP . ……12分∴ 二面角P CD A --的平面角的余弦值是33. ……14分 法2:建立如图所示的空间直角坐标系xyz A -.则D (-1,0,0),C (-2,1,0),P (0,0,1). ∴=(-1,1,0),=(1,0,1), ……8分 设平面PCD 的法向量为n=(x ,y ,z ),则:⎪⎩⎪⎨⎧=+=⋅=+-=⋅0z x DP n y x n, ……10分 令1=x ,得1,1-==z y ,∴n=(1,1,-1).显然,是平面ACD 的一个法向量,=(,0,01-). ……12分∴cos<n ,33131=⨯=. ∴二面角P CD A --的平面角的余弦值是33. ……14分19. (本小题满分14分)解:(1)依题意知,24, 2.a a =∴= …… 2分 ∵22==a c e , ∴2,222=-==c a b c . …… 4分∴所求椭圆C 的方程为12422=+y x . …… 6分 (2)∵ 点P ()00,y x 关于直线x y 2=的对称点为()111,y x P ,∴ ⎪⎪⎩⎪⎪⎨⎧+⨯=+-=⨯--.222,1210101010x x y y x x y y ……8分解得:001435y x x -=,001345y x y +=. ……10分 ∴011543x y x -=-. ……12分∵ 点P ()00,y x 在椭圆C :12422=+y x 上, ∴220≤≤-x , 则105100≤-≤-x .∴1143y x -的取值范围为[]10,10-. ……14分 20.(本小题满分14分)解:(1)数表中前n 行共有12222112-=++++-n n 个数,即第i 行的第一个数是12-i , …… 2分∴ij a =121-+-j i .∵1110220102<<,ij a =2010,∴ i =11. …… 4分令20101210=-+j ,解得98712201010=+-=j . …… 6分(2)∵nn n a a a a A ++++= 332211()()[]1210222112-+++++++++=-n n()2112-+-=n n n . …… 7分∴()2232)(2112)(222++-=+--+-=+-n n n n n n n n A nnn . 当1=n 时, 22322++<n n n, 则n n A n +<2;当2=n 时, 22322++<n n n, 则n n A n +<2;当3=n 时, 22322++<n n n, 则n n A n +<2;当4≥n 时, 猜想: 22322++>n n n. …… 11分下面用数学归纳法证明猜想正确.① 当4=n 时,2243416224+⨯+>=, 即22322++>n n n成立;② 假设当()4≥=k k n 时, 猜想成立, 即22322++>k k k,则232232222221++=++⨯>⨯=+k k k k kk ,∵()()()()021226546222131232222>-+=---++=++++-++k k k k k k k k k k,∴()()22131221++++>+k k k . 即当1+=k n 时,猜想也正确.由①、②得当4≥n 时, 22322++>n n n成立.当4≥n 时,2n A n >n +. …… 13分 综上所述, 当3,2,1=n 时, n n A n +<2; 当4≥n 时,2n A n >n +. …… 14分另法( 证明当4≥n 时, 22322++>n n n可用下面的方法):当4≥n 时, ()>+=nn 112C 0n + C 1n + C 2n + C 3n()()()621211--+-++=n n n n n n()623211⨯⨯+-++≥n n n n 2232++=n n . 21. (本小题满分14分) 解:(1)当3-=a 时,()333123+--=x x x x f , ∴()x f '()()13322+-=--=x x x x .令()x f '=0, 得 121,3x x =-=. …… 2分当1-<x 时,()0'>x f , 则()x f 在()1,-∞-上单调递增; 当31<<-x 时,()0'<x f , 则()x f 在()3,1-上单调递减;当3>x 时,()0'>x f , ()x f 在()+∞,3上单调递增. …… 4分 ∴ 当1-=x 时, ()x f 取得极大值为()=-1f 31433131=++--; 当3=x 时, ()x f 取得极小值为()39927313+--⨯=f 6-=. …… 6分 (2) ∵ ()x f '= a x x +-22,∴△= a 44-= ()a -14 .① 若a ≥1,则△≤0, …… 7分∴()x f '≥0在R 上恒成立,∴ f (x )在R 上单调递增 . ∵f (0)0<-=a ,()023>=a f ,∴当a ≥1时,函数f (x )的图象与x 轴有且只有一个交点. …… 9分 ② 若a <1,则△>0,∴()x f '= 0有两个不相等的实数根,不妨设为x 1,x 2,(x 1<x 2). ∴x 1+x 2 = 2,x 1x 2 = a . 当x 变化时,()()x f ,x f '的取值情况如下表:…… 11分∵02121=+-a x x , ∴1212x x a +-=.∴()a ax x x x f -+-=12131131=12112131231x x ax x x -++-()131231x a x -+= ()[]2331211-+=a x x .同理()2x f ()[]2331222-+=a x x .∴()()()[]()[]23239122212121-+⋅-+=⋅a x a x x x x f x f()()()()()[]2222122121292391-++-+=a x x a x x x x ()()[](){}22122122922391-+-+-+=a x x x x a a a ()33942+-=a a a . 令f (x 1)·f (x 2)>0, 解得a >0. 而当10<<a 时,()()023,00>=<-=a f a f ,故当10<<a 时, 函数f (x )的图象与x 轴有且只有一个交点. …… 13分综上所述,a 的取值范围是()+∞,0. …… 14分2009年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,每小题5分,满分30分.其中13~15是选做题,考生只能选做两题. 第12题第一个空2分,第二个空3分.9.9 10.2 11.80 12.-1;4 13.34 14.1 15. ⎥⎦⎤⎢⎣⎡2,112三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力)解: (1)∵053cos >=B , 且π<<B 0, ∴ 54cos 1sin 2=-=B B .由正弦定理得BbA a sin sin =. ∴524542sin sin =⨯==b B a A . (2)∵,4sin 21==∆B ac S ABC∴454221=⨯⨯⨯c .∴ 5=c .由余弦定理得B ac c a b cos 2222-+=,FEDCBAP ∴175352252cos 22222=⨯⨯⨯-+=-+=B ac c a b . 17.(本小题满分14分)(本小题主要考查概率、随机变量的分布列及其数学期望等基础知识,考查运算求解能力) 解:(1)记“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B , 则()()52,53==A P A P ,()()p B P p B P -==1,. 依题意得()209531153=⎪⎭⎫ ⎝⎛-+-p p , 解得43=p . 故p 的值为43.(2)ξ的取值分别为,4,2,0.()()()()10141520=⨯=⋅===B P A P B A P P ξ, ()2092==ξP , ()()()()20943534=⨯=⋅===B P A P AB P P ξ, ξ∴的分布列为∴E .1027209420921010=⨯+⨯+⨯=ξ18.(本小题满分14分)(本小题主要考查空间中线面的位置关系、空间的角、几何体体积等基础知识,考查空间想象能力、推理论证能力和运算求解能力) (1) 证明: ∵E D ,分别是棱PB PA ,的中点,∴DE 是△PAB 的中位线.∴AB DE //. ∵⊄DE 平面⊂AB ABC ,平面,ABC∴//DE 平面ABC . 同理可证 //DF 平面ABC .∵⊂=DE D DF DE , 平面DEF ,⊂DF 平面DEF ,∴平面DEF // 平面ABC .(2) 求三棱锥ABC P -的体积的最大值, 给出如下两种解法: 解法1: 由已知⊥PA 平面ABC , AB AC ⊥,2==BC PA ∴4222==+BC AC AB .∴三棱锥ABC P -的体积为ABC S PA V ∆⨯⨯=31AC AB PA ⨯⨯⨯⨯=2131 AC AB ⨯⨯⨯=26123122AC AB +⨯≤2312BC ⨯=32=. 当且仅当AC AB =时等号成立,V 取得最大值,其值为32, 此时AC AB =2=.解法2:设x AB =,在R t △ABC 中,2224x AB BC AC -=-=()20<<x .∴三棱锥ABC P -的体积为ABC S PA V ∆⨯⨯=31AC AB PA ⨯⨯⨯⨯=2131 2431x x -= 42431x x -=()423122+--=x . ∵40,202<<<<x x ,GFEDCBAP∴ 当22=x ,即2=x 时,V 取得最大值,其值为32,此时2==AC AB .求二面角D EF A --的平面角的余弦值, 给出如下两种解法: 解法1:作EF DG ⊥,垂足为G , 连接AG .∵ ⊥PA 平面ABC ,平面//ABC 平面DEF , ∴ ⊥PA 平面DEF .∵ ⊂EF 平面DEF ,∴ ⊥PA EF .∵ D PA DG = ,∴ ⊥EF 平面PAG . ∵⊂AG 平面PAG , ∴⊥EF AG .∴ AGD ∠是二面角D EF A --的平面角. 在R t △EDF 中,121,2221=====BC EF AB DF DE , ∴21=DG . 在R t △ADG 中,2541122=+=+=DG AD AG , 552521cos ===∠AG DG AGD . ∴二面角D EF A --的平面角的余弦值为55. 解法2:分别以AP AC AB ,,所在直线为x 轴, y 轴, z 轴,建立如图的空间直角坐标系xyz A -,则()()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1,22,0,1,0,22,1,0,0,0,0,0F E D A . ∴⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛=0,22,22,1,0,22.设n ()z y x ,,=为平面AEF 的法向量,∴⎪⎩⎪⎨⎧=⋅=⋅.0,0EF n n即⎪⎪⎩⎪⎪⎨⎧=+-=+.02222,022y x z x令2=x , 则1,2-==z y .∴n ()1,2,2-=为平面AEF 的一个法向量.∵平面DEF 的一个法向量为()100-=,,DA ,∴()()()5511221222=⨯-++==n cos . ∴二面角D EF A --的平面角的余弦值为55. 19.(本小题满分12分)(本小题主要考查函数最值、不等式、导数及其应用等基础知识,考查分类与整合的数学思想方法,以及运算求解能力和应用意识)解:(1)生产150件产品,需加工A 型零件450个,则完成A 型零件加工所需时间()x f ∈==x xx (905450N *,且)491≤≤x . (2)生产150件产品,需加工B 型零件150个,则完成B 型零件加工所需时间()x g ()∈-=-=x xx (5050503150N *,且)491≤≤x .设完成全部生产任务所需时间为()x h 小时,则()x h 为()x f 与()x g 的较大者. 令()()x g x f ≥,即xx -≥505090, 解得71321≤≤x . 所以,当321≤≤x 时,()()x g x f >;当4933≤≤x 时,()()x g x f <.故()()()⎪⎩⎪⎨⎧≤≤∈-≤≤∈=4933,,5050321,,90**x N x xx N x x x h .当321≤≤x 时,()0902'<-=x x h ,故()x h 在[]32,1上单调递减, 则()x h 在[]32,1上的最小值为()1645329032==h (小时);当4933≤≤x 时,()()050502'>-=x x h ,故()x h 在[]49,33上单调递增,则()x h 在[]49,33上的最小值为()175033505033=-=h (小时);()()3233h h > ,∴()x h 在[]49,1上的最小值为()32h .32=∴x .答:为了在最短时间内完成生产任务,x 应取32.20.(本小题满分14分)(本小题主要考查圆、椭圆、直线等基础知识和数学探究,考查数形结合、分类与整合的数学思想方法,以及推理论证能力、运算求解能力和创新意识)解:(1)圆()642:22=+-y x M , 圆心M 的坐标为()0,2,半径8=R .∵R AM <=4,∴点()0,2-A 在圆M 内. 设动圆C 的半径为r ,圆心为C ,依题意得CA r =,且r R CM -=, 即AM CA CM >=+8. ∴圆心C 的轨迹是中心在原点,以M A ,两点为焦点,长轴长为8的椭圆,设其方程为()012222>>=+b a b y a x , 则2,4==c a . ∴12222=-=c a b .∴所求动圆C 的圆心的轨迹方程为1121622=+y x .(2)由⎪⎩⎪⎨⎧=++=.11216,22y x m kx y 消去y 化简整理得:()0484843222=-+++m kmx x k . 设11(,)B x y ,22(,)D x y ,则122834kmx x k+=-+.△1()()()04844348222>-+-=m k km . ①由⎪⎩⎪⎨⎧=-+=.1124,22y x m kx y 消去y 化简整理得:()01223222=----m kmx x k . 设()()4433,,,y x F y x E ,则24332kkmx x -=+,△2()()()012342222>+-+-=m k km . ②∵DF BE +=0,∴4231()()0x x x x -+-=,即1234x x x x +=+,∴2232438kkmk km -=+-. ∴02=km 或2231434kk -=+-. 解得0k =或0m =. 当0k =时,由①、②得 3232<<-m , ∵∈m Z ,∴m 的值为2,3-- 1-,0,13,2,;当0m =,由①、②得 33<<-k , ∵∈k Z ,∴1,0,1-=k .∴满足条件的直线共有9条. 21.(本小题满分14分)(本小题主要考查数列的通项公式、数列前n 项和、不等式等基础知识,考查化归与转化、分类与整合、特殊与一般的数学思想方法,以及推理论证能力、运算求解能力和抽象概括能力) 解: (1) ∵1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,∴⎩⎨⎧==+++.,211n n n n n n a a b a a求数列{}n a 的通项公式, 给出如下四种解法: 解法1: 由n n n a a 21=++,得⎪⎭⎫⎝⎛⨯--=⨯-++n n n n a a 23123111, 故数列⎭⎬⎫⎩⎨⎧⨯-n n a 231是首项为31321=-a ,公比为1-的等比数列.∴()1131231--⨯=⨯-n n n a , 即()[]nn n a 1231--=. 解法2: 由n n n a a 21=++,两边同除以()11+-n , 得()()()nnnn n a a 21111--=---++,令()nnn a c 1-=, 则()nn n c c 21--=-+.故()()()123121--++-+-+=n n n c c c c c c c c ()()()()13222221-----------=n()()[]()2121211----⋅---=-n()[]1231--=n ()2≥n . 且1111-=-=a c 也适合上式, ∴()nna 1-()[]1231--=n , 即()[]n n n a 1231--=. 解法3: 由n n n a a 21=++,得1212+++=+n n n a a , 两式相减得n n n n n a a 22212=-=-++.当n 为正奇数时,()()()235131--++-+-+=n n n a a a a a a a a 25322221-+++++=n41412121-⎪⎪⎭⎫ ⎝⎛-+=-n312+=n ()3≥n . 且11=a 也适合上式.当n 为正偶数时,()()()246242--++-+-+=n n n a a a a a a a a 264222221-+++++=n41414122-⎪⎪⎭⎫ ⎝⎛-+=-n312-=n ()4≥n . 且12112=-=a a 也适合上式.∴ 当∈n N *时,n a ()[]nn 1231--=. 解法4:由nn n a a 21=++,11=a ,得122-=a ()()()1231212122-=---+-=,()()()123121211222332223+=----=+-=-=a a .猜想n a ()[]nn 1231--=. 下面用数学归纳法证明猜想正确. ① 当1=n 时,易知猜想成立;② 假设当k n =∈k (N *)时,猜想成立,即()[]kk k a 1231--=, 由k k k a a 21=++,得()[]()[]1111231123122+++--=---=-=k k k k k k k k a a ,故当1+=k n 时,猜想也成立.由①、②得,对任意∈n N *,n a ()[]nn 1231--=.∴()[]()[]111121291+++--⨯--==n n n n n n n a a b ()[]1229112---=+nn . (2)n n a a a a S ++++= 321 ()()()()[]{}nn 111222231232-++-+--++++=()⎥⎦⎤⎢⎣⎡----=+21122311n n .要使0>-n n S b λ对任意∈n N *都成立,即()[]1229112---+n n ()02112231>⎥⎦⎤⎢⎣⎡-----+nn λ(*)对任意∈n N *都成立.① 当n 为正奇数时, 由(*)式得[]1229112-++n n ()01231>--+n λ, 即()()1212911+-+n n ()01231>--+n λ, ∵0121>-+n ,∴()1231+<nλ对任意正奇数n 都成立. 当且仅当1=n 时, ()1231+n有最小值1.∴1<λ.② 当n 为正偶数时, 由(*)式得[]1229112--+n n ()02231>--+n λ, 即()()1212911-++n n ()01232>--nλ, ∵012>-n,∴()12611+<+n λ对任意正偶数n 都成立. 当且仅当2=n 时, ()12611++n 有最小值23.∴<λ23.综上所述, 存在常数λ,使得0>-n n S b λ对任意∈n N *都成立, λ的取值范围是()1,∞-.2009年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前二题得分.第12题第1个空3分,第2个空2分.9.2 10.79 11.0 或 2 12.16,222n n ++13.1 14.3 15.6三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)()12cos 1sin 1122x x f x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,,m n 2cos sin 11sin 22x xx =+-=.∵x ∈R ,∴函数()f x 的值域为[]1 1-,.(2)∵()513f A =,()35f B =,∴5sin 13A =,3sin 5B =.∵,A B 都为锐角,∴12cos 13A ==,4cos 5B ==.∴()()()sin sin sin f C C A B A B π==-+=+⎡⎤⎣⎦sin cos cos sin A B A B =+541235613513565=⨯+⨯=.∴()f C 的值为5665.17.(本小题主要考查空间线面关系、几何体的表面积与体积等基本知识,考查数形结合的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) 解:(1)设1A A h =,∵几何体111ABCD AC D -的体积为403, ∴1111111111403ABCD A C D ABCD A B C D B A B C V V V ---=-=, 即11114033ABCD A B C S h S h ∆⨯-⨯⨯=, 即11402222323h h ⨯⨯-⨯⨯⨯⨯=,解得4h =. ∴1A A 的长为4. (2)在线段1BC 上存在点P ,使直线1A P 与1C D 垂直. 以下给出两种证明方法:方法1:过点1D 作1C D 的垂线交1C C 于点Q ,过点Q 作PQ BC 交1BC 于点P .∵11C D DQ ⊥,111C D A D ⊥,1111DQ A D D = , ∴1C D ⊥平面11A D Q .∵1AQ ⊂平面11A D Q ,∴11C D AQ ⊥. ∵1C D PQ ⊥,∴1C D ⊥平面1A PQ . ∵1A P ⊂平面1A PQ ,∴11C D A P ⊥. 在矩形11CDD C 中,∵11Rt D C Q ∆∽1Rt C CD ∆,∴1111C Q D CCD C C=,即1224C Q =,∴11C Q =.∵1C PQ∆∽1C BC ∆,∴1111C P C Q C B C C=14=,∴1C P =. 在11A PC ∆中,∵11AC =1111112cos 10A C A C P CB ∠==. 由余弦定理,得1A P===. ∴在线段1BC 上存在点P ,使直线1A P 与1C D 垂直,且线段1A P 的长为2. 方法2:以点D 为坐标原点,分别以DA ,DC ,1DD 所在的直线为x 轴,y 轴,z 轴建立如图的空间直角坐标系,由已知条件与(1)可知,()10,2,4C ,()12,0,4A ,()0,0,0D , 假设在线段1BC 上存在点()P x y z ,,(0≤x ≤2,2y =,0≤z ≤)4使直线1A P 与1C D 垂直,过点P 作PQ BC ⊥交BC 于点Q .由BPQ ∆∽1BC C ∆,得1PQ BQC C BC=, ∴124422BQ xPQ C C x BC -=⨯=⨯=-. ∴42z x =-. ∴()12 2 2A P x x =-- ,,,()10 2 4C D =-- ,,.∵11A P C D⊥,∴110A P C D =, 即()()2 2 20 2 40x x ----= ,,,,,∴12x =. 此时点P 的坐标为1 2 32⎛⎫⎪⎝⎭,,,在线段1BC 上.∵13 2 12A P ⎛⎫=-- ⎪⎝⎭,,,∴12A P ==. ∴在线段1BC 上存在点P ,使直线1A P 与1C D 垂直,且线段1AP . 18.(本小题主要考查等差数列、等比数列的通项公式与前n 项和公式等基础知识,考查化归与转化、分类与整合的数学思想方法,以及推理论证能力和运算求解能力)解:设等比数列{}n a 的首项为1a ,公比为q ()10,0a q ≠≠, 若m a ,2m a +,1m a +成等差数列, 则22m a +=m a +1m a +. ∴111112m m m a q a q a q +-=+.∵10a ≠,0q ≠,∴2210q q --=. 解得1q =或12q =-. 当1q =时,∵1m S ma =,()111m S m a +=+,()212m S m a +=+,∴212m m m S S S ++≠+.∴当1q =时,m S ,2m S +,1m S +不成等差数列.当12q =-时,m S ,2m S +,1m S +成等差数列.下面给出两种证明方法. 证法1:∵()()()1211222m m m m m m m m m S S S S S a S a a ++++++-=++-++122m m a a ++=-- 112m m a a q ++=-- 11122m m a a ++⎛⎫=--- ⎪⎝⎭0=, ∴212m m m S S S++=+.∴当12q =-时,m S ,2m S +,1m S +成等差数列. 证法2:∵212211212412113212m m m a S a +++⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+,又1111111111222112113221122m m m m m m a a S S a +++⎡⎤⎡⎤⎛⎫⎛⎫----⎢⎥⎢⎥ ⎪ ⎪⎡⎤⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫⎣⎦⎣⎦+=+=----⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦++ 221211242322m m a ++⎡⎤⎛⎫⎛⎫=-⨯-+⨯-⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦2141132m a +⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, ∴212m m m S S S ++=+.∴当12q =-时,m S ,2m S +,1m S +成等差数列.19.(本小题主要考查等可能事件、互斥事件和独立重复试验等基础知识,考查化归与转化的数学思想方法,以及推理论证能力和运算求解能力)解:(1)∵一次摸球从2n +个球中任选两个,有22C n +种选法,任何一个球被选出都是等可能的,其中两球颜色相同有222C C n +种选法, ∴一次摸球中奖的概率2222222C C 2C 32n n n n p n n ++-+==++. (2)若3n =,则一次摸球中奖的概率25p =, 三次摸球是独立重复试验,三次摸球恰有一次中奖的概率是123354(1)C (1)125P p p =⋅⋅-=. (3)设一次摸球中奖的概率为p ,则三次摸球恰有一次中奖的概率为()()213233(1)C 1363f p P p p p p p ==⋅⋅-=-+,01p <<,∵()()()291233131f p p p p p '=-+=--,∴()f p 在10 3⎛⎫ ⎪⎝⎭,上为增函数,在1 13⎛⎫ ⎪⎝⎭,上为减函数.∴当13p =时,()f p 取得最大值. ∵2221323n n p n n -+==++(n ≥)*2,n ∈N 且, 解得2n =.故当2n =时,三次摸球恰有一次中奖的概率最大.20.(本小题主要考查函数的性质、函数与导数等知识,考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)(1)解法1:∵()22ln a h x x x x=++,其定义域为()0 +∞,, ∴()2212a h x x x'=-+.∵1x =是函数()h x 的极值点,∴()10h '=,即230a -=.∵0a >,∴a =经检验当a =1x =是函数()h x 的极值点,∴a =解法2:∵()22ln a h x x x x=++,其定义域为()0+∞,, ∴()2212a h x x x'=-+.令()0h x '=,即22120a x x-+=,整理,得2220x x a +-=.∵2180a ∆=+>,∴()0h x '=的两个实根114x -=(舍去),214x -+=,当x 变化时,()h x ,()h x '的变化情况如下表:1=,即23a =,∵0a >,∴a = (2)解:对任意的[]12,1x x e ∈,都有()1f x ≥()2g x 成立等价于对任意的[]12,1x x e ∈,都有()min f x ⎡⎤⎣⎦≥()max g x ⎡⎤⎣⎦.当x ∈[1,e ]时,()110g x x'=+>.∴函数()ln g x x x =+在[]1e ,上是增函数.∴()()max 1g x g e e ==+⎡⎤⎣⎦.∵()()()2221x a x a a f x x x+-'=-=,且[]1,x e ∈,0a >. ①当01a <<且x ∈[1,e ]时,()()()20x a x a f x x +-'=>,∴函数()2a f x x x=+在[1,e ]上是增函数,∴()()2min 11f x f a ==+⎡⎤⎣⎦.由21a +≥1e +,得a又01a <<,∴a 不合题意.②当1≤a ≤e 时, 若1≤x <a ,则()()()20x a x a f x x +-'=<,若a <x ≤e ,则()()()20x a x a f x x +-'=>.∴函数()2a f x x x=+在[)1,a 上是减函数,在(]a e ,上是增函数.∴()()min 2f x f a a ==⎡⎤⎣⎦.由2a ≥1e +,得a ≥12e +, 又1≤a ≤e ,∴12e +≤a ≤e . ③当a e >且x ∈[1,e ]时,()()()20x a x a f x x +-'=<,∴函数()2a f x x x=+在[]1e ,上是减函数.∴()()2min a f x f e e e ==+⎡⎤⎣⎦.由2a e e+≥1e +,得a又a e >,∴a e >.综上所述,a 的取值范围为1,2e +⎡⎫+∞⎪⎢⎣⎭.21.(本小题主要考查双曲线、解方程和直线与圆锥曲线的位置关系等知识,考查化归与转化、数形结合的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)(1)解:∵双曲线22221x y a b -=()0,0a b >>=.即223a b =. ① ∵12MF MF ⊥,且12MFF ∆的面积为1. ∴1212112MF F S MF MF ∆==,即122MF MF =.∵122MF MF a -=,∴222112224MF MF MF MF a -+=.∴221244F F a -=.∴()222444a b a +-=,∴21b =. ②将②代入①,得23a =.∴双曲线C 的方程为2213x y -=. (2)解法1:设点Q A B ,,的坐标分别为(x y ,),(11x y ,),(22x y ,),且1x <2x <3,又设直线l 的倾斜角为θ2πθ⎛⎫≠⎪⎝⎭,分别过点P Q AB ,,,作x 轴的垂线,垂足分别为1111P Q A B ,,,, 则 1113cos cos A P x AP θθ-==,112cos cos PB x PB θθ-3== , 112cos cos Q B x x QB θθ-==,111-cos cos AQ x x AQ θθ==, ∵AP QB AQ PB =,∴(3-1x )(2x x -)=123x x x --()(), 即[]1212126()3()2x x x x x x x -+=+-. ③ 设直线l 的方程为1(3)y k x -=-, ④将④代入223x y -=1中整理,得 (1-3222)6133(13)10k x k k x k ⎡⎤----+=⎣⎦().依题意1x ,2x 是上述方程的两个根,且2130k -≠,∴()()1222122613133131.13k k x x k k x x k -⎧+=⎪-⎪⎨⎡⎤-+⎪⎣⎦=-⎪-⎩, ⑤将⑤代入③整理,得2(3)x k x -=-. ⑥ 由④、⑥消去k 得21x y -=-,这就是点Q 所在的直线方程.∴点Q (x y ,)总在定直线 10x y --=上.解法2:设点Q ,A B ,的坐标分别为,(x )y ,11,()x y ,22(,)x y ,且1x <2x <3, ∵AP QB AQ PB =, ∴AP AQPB QB =-,即112233x x x x x x--=---, 即[]1212126()3()2x x x x x x x -+=+-.以下同解法1.解法3:设点Q A B ,,的坐标分别为1122() () ()x y x y x y ,,,,,, 由题设知 AP PB AQ QB ,,,均不为零,记。
2009年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U R =,集合{}212M x x =--和{}21,1,2N x x k k ==-=的关系的韦恩(V enn )图如图所示,则阴影部分所示的集合的元素共有 ( )第1题图A. 3个B. 2个C. 1个D. 无穷多个 【测量目标】集合的表示方法(描述法),集合的并集.【考查方式】给出2个集合,通过并集运算求出集合的元素共有几个. 【难易程度】容易 【参考答案】B【试题解析】由{}212M x x =--得{|13}M x x =-,{1,3,5,}N =则{1,3}M N =,有2个,选B.2.设z 是复数,()a z 表示满足1nz =的最小正整数n ,则对虚数单位i ,()i a = ( ) A. 8 B. 6 C. 4 D. 2 【测量目标】复数的基本概念.【考查方式】给出相关信息,求解出满足i 1n=最小正整数n 【难易程度】容易 【参考答案】C【试题解析】()i i 1na ==,则最小正整数n 为4,选C.3.若函数()y f x =是函数(0,xy aa =>且)1a ≠的反函数,其图象经过点),,a a 则()f x = ( )A.2log xB. 12log x C.12x D. 2x 【测量目标】反函数.【考查方式】给出反函数的原函数的方程和其图象经过点(),a a ,求解出反函数的方程.【难易程度】容易 【参考答案】B【试题解析】()log ,a f x x =代入(),,a a 解得1,2a =所以()12log ,f x x =选B.4.已知等比数列{}n a 满足0,1,2,n a n >=且()252523,n n a a n -=则当1n 时,2123221log log log n a a a -+++= ( )A.()21n n -B. ()21n + C. 2n D.()21n - 【测量目标】已知递推关系求通项.【考查方式】给出相关信息,先求出通项n a ,再利用对数函数化简,求解. 【难易程度】中等 【参考答案】C【试题解析】由()252523nn a a n -=得222,0,n nn a a =>(步骤1) 则2,nn a = ()22123221log log log 1321,n a a a n n -+++=+++-=选C.(步骤2)5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A. ①和②B. ②和③C. ③和④D. ②和④ 【测量目标】平行与垂直关系的综合问题.【考查方式】给出4个命题,通过直线与直线、面,面与面之间的位置关系判断其真假. 【难易程度】容易【参考答案】D【试题解析】显然 ①和③是假命题,故否定A,B,C,选D.6.一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知12,F F 成60角,且12,F F 的大小分别为2和4,则3F 的大小为 ( )A. 6B. 2C. 25D. 27【测量目标】余弦定理.【考查方式】给出物理学相关信息,通过余弦定理求解. 【难易程度】容易 【参考答案】D【试题解析】()222312122cos 1806028,F F F F F =+--=所以327F =,选D.7.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( )A. 36种B. 12种C. 18种D. 48种 【测量目标】排列组合及其应用..【考查方式】给出相关信息,考查了排列组合的公式. 【难易程度】中等 【参考答案】A【试题解析】分两类:若小张或小赵入选,则有选法113223C C A 24,=若小张、小赵都入选,则有选法2223A A 12,=共有选法36种,选A.8.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的0t 和1t ,下列判断中一定正确的是 ( )第8题图A.在1t 时刻,甲车在乙车前面B.1t 时刻后,甲车在乙车后面C.在0t 时刻,两车的位置相同D.0t 时刻后,乙车在甲车前面 【测量目标】函数图象的应用. 【考查方式】给出相关图象,再求解. 【难易程度】中等 【参考答案】A【试题解析】由图象可知,曲线v 甲比v 乙在0100t t ~、~与x 轴所围成图形面积大,则在01t t 、时刻,甲车均在乙车前面,选A.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 12题)9.随机抽取某产品n 件,测得其长度分别为12,,,,n a a a 则如图所示的程序框图输出的s = ,s 表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”)第9题图【测量目标】循环结构的程序框图.【考查方式】给出算法流程图,阅读框图,运行程序,得出结果. 【难易程度】容易 【参考答案】12na a a n+++ 平均数【试题解析】第一次当i =1时,1;s a =第二次当i =2时,12;2a a s +=最后输出12+;na a a s n++=s =平均数.10.若平面向量,a b 满足1,+=+a b a b 平行于x 轴,()2,1,=-b 则=a .【测量目标】向量的坐标运算.【考查方式】考查向量的基本概念及向量的坐标运算. 【难易程度】中等【参考答案】()1,1-或()3,1-【试题解析】设(,)x y =a ,则(2,1)x y +=+-a b ,依题意,得⎪⎩⎪⎨⎧=-=-++011)1()2(22y y x ,(步骤1)解得⎩⎨⎧=-=11y x 或⎩⎨⎧=-=13y x ,所以(1,1)=-a 或(3,1)=-a .(步骤2) 11.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 . 【测量目标】椭圆的标准方程.【考查方式】给出相关信息,通过离心率公式,长短轴间的关系,求解出标准方程. 【难易程度】中等【参考答案】221369x y += 【试题解析】3,212,6,3,2e a a b ====则所求椭圆方程为22 1.369x y += 12.已知离散型随机变量X 的分布列如右表.若0,1,EX DX ==则a = ,b = .第12题图【测量目标】离散型随机变量的分布列.【考查方式】给出离散型随机变量的分布列,通过公式求解. 【难易程度】中等 【参考答案】51,124【试题解析】由题知2221111,0,1121,12612a b c a c a c ++=-++=⨯+⨯+⨯= 解得51,124a b ==. (二)选做题(13 ~ 15题,考生只能从中选做两题) 13.(坐标系与参数方程选做题)若直线112,:2,x t l y kt =-⎧⎨=+⎩(t 为参数)与直线2,:12,x s l y s =⎧⎨=-⎩(s 为参数)垂直,则k = . 【测量目标】坐标系与参数方程.【考查方式】给出两条直线的参数方程,且两条直线垂直,求解. 【难易程度】较难 【参考答案】1-【试题解析】直线112,:2,x t l y kt =-⎧⎨=+⎩(t 为参数)化为普通方程是)1(22--=-x ky ,该直线的斜率为2k-,(步骤1)直线2,:12,x s l y s =⎧⎨=-⎩(s 为参数)化为普通方程是12+-=x y ,该直线的斜率为2-,(步骤2)则由两直线垂直的充要条件,得()212k ⎛⎫--=- ⎪⎝⎭, 1.k =-(步骤3) 14.(不等式选讲选做题)不等式112x x ++的实数解为 .【测量目标】解一元二次不等式【考查方式】给出不等式方程,先求定义域,再把它换成整数不等式求解. 【难易程度】中等 【参考答案】{x |32x-且2-≠x }【试题解析】112xx++1220x xx⎧++⎪⇔⎨+≠⎪⎩22(1)(2)2x xx⎧++⇔⎨≠-⎩2302xx+⎧⇔⎨≠-⎩解得32x-且2-≠x.所以原不等式的解集为{x|32x-且2-≠x}. 15.(几何证明选讲选做题)如图,点,,A B C是圆O上的点,且4,45AB ACB=∠=,则圆O的面积等于.第15题图【测量目标】几何证明选讲.【考查方式】给出圆上线段长,角度大小,求解圆的面积.【难易程度】容易【参考答案】8π【试题解析】解法一:连结,,OA OB则902,AOB ACB∠==∠(步骤1)所以AOB△为等腰直角三角形,又4AB=,(步骤2)所以,圆O的半径22R=O的面积等于22ππ(22)8πR=⨯=(步骤3)解法二:设圆O的半径为R,在ABC△中,由正弦定理,得42sin45R=,解得22R=(步骤1)所以,圆O的面积等于22ππ(22)8πR=⨯=.(步骤2)三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知向量(sin,2)θ=-a与(1,cos)θ=b互相垂直,其中π(0,)2θ∈.(1)求sinθ和cosθ的值;(2)若10πsin()102θϕϕ-=<<,求cosϕ的值.【测量目标】余弦定理.【考查方式】利用两向量垂直公式、诱导公式、余弦定理求解.【难易程度】中等【试题解析】(1)∵向量()sin,2θ=-a与()1cosθ,b=互相垂直,∴ sin 2cos 0θθ=-=a b ,即θθcos 2sin =①,(步骤1)又 1cos sin 22=+θθ ② ① 代入②,整理,得51cos 2=θ,(步骤2) 由π0,2θ⎛⎫∈ ⎪⎝⎭,可知0cos >θ, ∴55cos =θ,(步骤3)代入①得552sin =θ. 故55cos =θ, 552sin =θ.(步骤4)(2)ππππ0,0,,2222ϕθθϕ<<<<∴-<-<(步骤5)则()()2310cos 1sin ,10θϕθϕ-=--=(步骤6)()()()2cos cos cos cos sin sin .2ϕθθϕθθϕθθϕ∴=--=-+-=⎡⎤⎣⎦(步骤7) 17.(本小题满分12分)根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:API0~50 51~100 101~150 151~200 201~250 251~300 >300 级别 I II 1III2III1IV2IVV状况 优 良轻微污染 轻度污染 中度污染 中度重污染 重度污染xy67 xy68xy69xy70xy71对某城市一年(365天)的空气质量进行监测,获得的API 数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图所示. (1)求直方图中x 的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率. (结果用分数表示.已知77578125,2128,==32738123,18253651825182591259125++++=365735=⨯)第17题图 【测量目标】频率分布直方图.【考查方式】给出直方图,阅读,从图中找到相关信息,利用公式定理求解. 【难易程度】中等【试题解析】(1)因为,在频率分布直方图中,各个小矩形的面积之和等于1,依题意,得327385011825365182518259125x ⎛⎫+++++=⎪⎝⎭(步骤1)又 9125123912581825318257365218253=++++ 所以 182501199125123501=-=x .(步骤2) (2)一年中空气质量为良的天数为 1195018250119365=⨯⨯(天);(步骤3) 一年中空气质量为轻微污染的天数为 100503652365=⨯⨯(天);(步骤4) (3)由(2)可知,在一年之中空气质量为良或轻微污染的天数共有119+100=219(天) 所以,在一年之中的任何一天空气质量为良或轻微污染的概率是21933655P ==,(步骤5) 设一周中的空气质量为良或轻微污染的天数为ξ,则ξ~B (7,53) 7733()C 155kkk P k ξ-⎛⎫⎛⎫==- ⎪⎪⎝⎭⎝⎭,(k =0,1,2,…,7)(步骤6)设“该城市某一周至少有2天的空气质量为良或轻微污染”为事件A ,则)1()0(1)(=-=-=ξξP P A P =-1070733C 155⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭161733C 155⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=6752537521⎪⎭⎫ ⎝⎛⨯⨯-⎪⎭⎫⎝⎛-=78125766537812513441281522121767=+-=⨯+-.(步骤7) 18.(本小题满分14分)如图,已知正方体1111ABCD A B C D -的棱长为2,点E 是正方形11BCC B 的中心,点F G 、分别是棱111,C D AA 的中点.设点1,1E G 分别是点,E G 在平面11DCC D 内的正投影.(1)求以E 为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积;(2)证明:直线1FG ⊥平面1FEE ; (3)求异面直线11E G EA 与所成角的正弦值.第18题图【测量目标】锥的体积、空间直角坐标系.【考查方式】考查了锥的体积、线面垂直的判定、异面直线所成的角,建立空间直角坐标系求解【难易程度】较难【试题解析】(1)依题得所求为四棱锥11FG DE E -的体积,其底面11FG DE 面积为111111Rt Rt E FG DG E DE FG S S S =+△△四边形221212221=⨯⨯+⨯⨯=,(步骤1) 又⊥1EE 面11FG DE ,11=EE ,∴111111233E DE FG DE FG V S EE -==四边形.(步骤2)(2)以D 为坐标原点,DA 、DC 、1DD 所在直线分别作x 轴,y 轴,z 轴,得)1,2,0(1E ,)1,0,0(1G ,又因为)1,0,2(G ,)2,1,0(F ,)1,2,1(E ,则)1,1,0(1--=FG ,)1,1,1(-=FE ,)1,1,0(1-=FE ,(步骤3) ∴10(1)10FG FE =+-+=,110(1)10FG FE =+-+=, 即FE FG ⊥1,11FE FG ⊥,(步骤4) 又1FE FE F =,∴⊥1FG 平面1FEE .(步骤5)第18(2)题图(3))0,2,0(11-=G E ,)1,2,1(--=EA , 则111111cos ,6E G EA E G EA E G EA<>==(步骤6) 设异面直线11E G EA 与所成角为θ,则33321sin =-=θ.(步骤7)19.(本小题满分14分)已知曲线2:C y x =与直线:20l x y -+=交于两点(,)A A A x y 和(,)B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合.(1)若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;(2)若曲线22251:24025G x ax y y a -+-++=与D 有公共点,试求a 的最小值. 【测量目标】直线与抛物线的位置关系,圆锥曲线中的探索性问题. 【考查方式】给出了抛物线方程与直线方程,利用公式、定理求解. 【难易程度】较难【试题解析】曲线C 与直线l 的联立方程组⎩⎨⎧=+-=022y x x y ,得⎩⎨⎧=-=1111y x ,⎩⎨⎧==4222y x ,(步骤1)又A B x x <,所以点,A B 的坐标分别为)4,2(),1,1(B A -(步骤2) ∵点Q 是线段AB 的中点∴点Q 的坐标为⎪⎭⎫⎝⎛25,21Q (步骤3)∵点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合.∴2s t = ,即),(2s s P ,且21<<-s (步骤4) 设线段PQ 的中点为(),M x y ,则点M 的轨迹的参数方程为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=2252212s y s x (s 为参数,且21<<-s );消去s 整理,得454122+⎪⎭⎫ ⎝⎛-=x y ,且⎪⎭⎫ ⎝⎛<<-4541x所以,线段PQ 的中点M 的轨迹方程是454122+⎪⎭⎫ ⎝⎛-=x y ,⎪⎭⎫ ⎝⎛<<-4541x ;(步骤5)(2)曲线22251:24025G x ax y y a -+-++=可化为()()222572⎪⎭⎫ ⎝⎛=-+-y a x , 它是以(),2G a 为圆心,以57为半径的圆,(步骤6)设直线:20l x y -+=与y 轴相交于点E ,则E 点的坐标为()0,2E ; 自点A 做直线:20l x y -+=的垂线,交直线2y =于点F ,在Rt △EAF 中,45,AEF ∠=2=AE ,所以2=AF ,∵257<, ∴当0<a 且圆G 与直线l 相切时,圆心G 必定在线段FE 上,且切点必定在线段AE 上,(步骤7) 于是,此时的a 的值就是所求的最小值. 当圆G 与直线:20l x y -+=相切时 571122=++-a , 解得527-=a ,或者527=a (舍去) 所以,使曲线G 与平面区域D 有公共点的a 的最小值是527-.(步骤8)第19(2)题图20.(本小题满分14分)已知二次函数()y g x =的导函数的图象与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x=. (1)若曲线()y f x =上的点P 到点()0,2Q 2,求m 的值; (2)()k k ∈R 如何取值时,函数()y f x kx =-存在零点,并求出零点.【测量目标】函数零点的应用.【考查方式】利用导数求函数的极值、两点间距离公式、函数零点的判断等求解. 【难易程度】较难【试题解析】设二次函数()y g x =的解析式为)0()(2≠++=a c bx ax x g则它的导函数为)0(2)(≠+='a b ax x g ,(步骤1)∵函数)0(2)(≠+='a b ax x g 的图象与直线x y 2=平行, ∴22a = ,解得1a =,所以c bx x x g ++=2)(,b x x g +='2)((步骤2)∵()y g x =在1x =-处取得极小值1(0)m m -≠∴⎩⎨⎧-=-=-'1)1(0)1(m g g ,即⎩⎨⎧-=+-=+-1102m c b b ,解得⎩⎨⎧==mc b 2.所以m x x x g ++=2)(2,()()g x f x x ==2++xm x (0≠x )(步骤3)(1)设点P ⎪⎭⎫⎝⎛++2,x m x x (0≠x ,0≠m )为曲线()y f x =上的任意一点则点P 到点(0,2)Q 的距离为m x m x x m x x PQ 2222222++=⎪⎭⎫ ⎝⎛++=(步骤4)22m当且仅当222m x =时,等号成立,此时min PQ =m m 222+(步骤5)又已知点P 到点(0,2)Q 2222=+m m两边平方整理, 得12=+m m当0>m 时,12=+m m ,解得12-=m当0<m 时,12=+-m m ,解得12--=m 所以m 的值为12-或者12--;(步骤6)(2)函数令kx x f x h -=)()(=2)1(2++-=-++xmx k kx x m x (0≠x )令0)(=x h ,即02)1(=++-xmx k (0≠x ),整理,得02)1(2=++-m x x k (0≠x ),①(步骤7)函数kx x f x h -=)()(存在零点,等价于方程①有非零实数根,由0≠m 可知,方程①不可能有零根,当1k =时,方程①变为02=+m x ,解得02≠=mx ,方程①有唯一实数根, 此时, 函数kx x f x h -=)()(存在唯一的零点2mx =;(步骤8)当1k ≠时,方程①根的判别式为)1(44k m --=∆,0≠m令)1(44k m --=∆=0,解得mk 11-=,方程①有两个相等的实数根m x x -==21,(步骤9)此时,函数kx x f x h -=)()(存在唯一的零点m x -=; 令44(1)0m k ∆=-->,得()11m k -<,当0m >时,解得mk 11->,当0m <时,解得mk 11-<, 以上两种情况下,方程①都有两个不相等的实数根kk m x ---+-=1)1(111,k k m x -----=1)1(112此时, 函数kx x f x h -=)()(存在两个零点k k m x ---+-=1)1(111,kk m x -----=1)1(112(步骤10)综上所述,函数()y f x kx =-存在零点的情况可概括为当1k =时,函数kx x f x h -=)()(存在唯一的零点2mx =;当mk 11-=时,函数kx x f x h -=)()(存在唯一的零点m x -=; 当0m >且m k 11->,或者0m <且mk 11-<时,函数kx x f x h -=)()(存在两个零点 k k m x ---+-=1)1(111,kk m x -----=1)1(112.(步骤11)21.(本小题满分14分)已知曲线22:20(1,2,)n C x nx y n -+==,从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:13521n n nxx x x x y -<< 【测量目标】数列的实际应用,间接证明.【考查方式】利用圆锥曲线性质求通项公式,放缩法等求解. 【难易程度】较难【试题解析】曲线22:20(1,2,)n C x nx y n -+==可化为222)(n y n x =+-,所以,它表示以)0,(n C n 为圆心,以n 为半径的圆, 切线n l 的方程为)1(+=x k y n ,联立⎩⎨⎧=+-+=02)1(22y nx x x k y n ,消去y 整理,得 0)22()1(2222=+-++n n n k x n k x k ,①(步骤1)222222)12(44)1(4)22(n n n n k n n k k n k +-=+--=∆,0>n k 令0=∆,解得1222+=n n k n, 12+=n n k n (步骤2)此时,方程①化为012)2122()121(2222=++-++++n n x n n n x n n整理,得[]0)1(2=-+n x n ,解得1+=n n x x ,(步骤3) 所以121)11(12++=+++=n n n n n n ny n∴数列}{n x 的通项公式为1+=n nx x数列}{n y 的通项公式为121++=n n ny n .(步骤4)(2)证明:∵121111111+=+++-=+-n n n n n x x n n ,212n n -=<=135211352113521246235721n n n x x x x n n ---∴=⨯⨯⨯⨯<⨯⨯⨯⨯+ =121+n =nn x x +-11(步骤5)∵121+=n y x nn=n n x x +-11,又因为π043<< 令x y x n n =,则π04x <<, 要证明n n n n y x y x sin 2<,只需证明当π04x <<时,x x sin 2<恒成立即可. (步骤6)设函数x x x f sin 2)(-=,π04x <<则x x f cos 21)(-=',π04x <<(步骤7)∵在区间π0,4⎛⎫⎪⎝⎭上x x f cos 21)(-='为增函数,∴当π04x <<时,π()1104f x x '=<=,(步骤8)∴x x x f sin 2)(-=在区间π0,4⎛⎫⎪⎝⎭上为单调递减函数,∴ x x x f sin 2)(-=0)0(=<f 对于一切π04x <<恒成立,(步骤9)∴x x sin 2<,即n n x x +-11=n n nny x y x sin 2< 综上,得13521n n nxx x x x y -<<(步骤10)。
绝密★启用前 试卷类型:B2009年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签宇笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式13V sh =,其中S 是锥体的底面积,h 是锥体的高 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.巳知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-= 的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有A .3个 B.2个 C.1个 D.无穷个1.解:}31|{≤≤-=x x M ,},5,3,1{ =N ,所以 }3,1{=N M 故,选B2.设z 是复数,()a z 表示满足1nz =的最小正整数n ,则对虚数单位i ,()a i =A.8 B.6 C.4 D.22. 解:因为12-=i ,i i -=3, 14=i ,所以满足1=ni 的最小正整数n 的值是4。
故,选C3.若函数()y f x =是函数(0,1)xy a a a =>≠且的反函数,其图像经过点)a ,则()f x =A.2log x B.12log x C.12x D.2x 3.解:由函数()y f x =是函数(0,1)xy a a a =>≠且的反函数,可知x x f a log )(=,又其图像经过点)a ,即a a a=log ,所以a=21, x x f 21log )(=。
2009年广州市普通高中毕业班综合测试(二)数 学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.如果复数()()22356i m m m m -+-+是纯虚数,则实数m 的值为 A .0 B .2 C .0或3 D .2或32.已知函数()()()4040.x x x f x x x x ⎧+<⎪=⎨-⎪⎩≥,,, 则函数()f x 的零点个数为A .1B .2C .3D .43.已知全集U =R ,集合{3A x =≤}7x <,{}27100B x x x =-+<,则() AB R =ðA .()(),35,-∞+∞B .()[),35,-∞+∞C .(][),35,-∞+∞D .(](),35,-∞+∞4.命题“x ∃∈R ,2210x x -+<”的否定是 A .x ∃∈R ,221x x -+≥0 B .x ∃∈R ,2210x x -+> C .x ∀∈R ,221x x -+≥0D .x ∀∈R ,2210x x -+<5.已知点()1,0A ,直线l :24y x =-,点R 是直线l 上的一点,若RA AP =,则点P 的轨迹方程为 A .2y x =- B .2y x = C .28y x =- D .24y x =+6.函数()cos f x x x =的导函数()f x '在区间[],ππ-上的图像大致是A. B. C. D.7.现有4种不同颜色要对如图1所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有 A .24种 B .30种C .36种D .48种8.设直线l 与球O 有且只有一个公共点P ,从直线l 出发的两个半平面α、β截球O 的两个截面圆的半径分别为1,二面角l αβ--的平面角为150,则球O 的表面积为 A .4πB .16πC .28πD .112π图12图2 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~12题)9.在空间直角坐标系中,以点()4 1 9A ,,,()101 6B -,,,() 4 3C x ,,为顶点的ABC ∆是以BC 为斜边的等腰直角三角形,则实数x 的值为 .10.在某项才艺竞赛中,有9位评委,主办单位规定计算参赛者比赛成绩的规则如下:剔除评委中的一个最高分和一个最低分后,再计算其他7位评委的平均分作为此参赛者的比赛成绩.现有一位参赛者所获9位评委一个最高分为86分、一个最低分为45分,若未剔除最高分与最低分时9位评委的平均分为76分,则这位参赛者的比赛成绩为 分.11.阅读如图2所示的程序框图,若输出y 的值为0, 则输入x 的值为 .12.在平面内有n (*,n n N ∈≥)3条直线,其中任何两条不平行,任何三条不过同一点,若这n 条直线把平面分成()f n 个平面区域,则()5f 的值是 ,()f n 的表达式是 .(二)选做题(13~15题,考生只能从中选做两题) 13.(几何证明选讲选做题)如图3所示,在四边形ABCD 中,EF BC ,FGAD ,则EF FGBC AD+的值为 .14.(不等式选讲选做题) 函数()f x =12x x -++的最小值为 .15.(坐标系与参数方程选做题)直线()24,13x t t y t=-+⎧⎨=--⎩为参数被圆25c o s ,15s i n x y θθ=+⎧⎨=+⎩(θ为参数)所截得的弦长为 .图3数学(理科)试题参考答案及评分标准 第 3 页 共 12 页三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知向量2cos 12x ⎛⎫= ⎪⎝⎭,m ,sin 12x ⎛⎫= ⎪⎝⎭,n ()x ∈R ,设函数()1f x =-m n . (1)求函数()f x 的值域;(2) 已知锐角ABC ∆的三个内角分别为A ,B ,C ,若()513f A =,()35f B =,求()f C 的值.17.(本小题满分12分)在长方体1111ABCD A B C D -中,2AB BC ==,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如图4所示的几何体111ABCD AC D -(1)求棱1A A 的长;(2)在线段1BC 上是否存在点P ,使直线1A P 与1C D 垂直,如果存在,求线段1A P 的长,如果不存在,请说明理由.18.(本小题满分14分)已知等比数列{}n a 的前n 项和为n S ,若m a ,2m a +,1m a +()*m ∈N 成等差数列,试判断m S ,2m S +,1m S +是否成等差数列,并证明你的结论.19.(本小题满分14分)一个口袋中装有2个白球和n 个红球(n ≥2且*n ∈N ),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖. (1)试用含n 的代数式表示一次摸球中奖的概率p ; (2)若3n =,求三次摸球恰有一次中奖的概率;(3)记三次摸球恰有一次中奖的概率为()f p ,当n 为何值时,()f p 最大?420.(本小题满分14分)已知函数()2a f x x x=+,()ln g x x x =+,其中0a >.(1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围.21.(本小题满分14分)已知双曲线C :22221x y a b-=00(,)a b >>,左、右焦点分别为1F 、2F ,在双曲线C 上有一点M ,使12MF MF ⊥,且12MF F ∆的面积为1. (1)求双曲线C 的方程;(2)过点()3,1P 的动直线l 与双曲线C 的左、右两支分别相交于两点A 、B ,在线段AB 上取异于A 、B 的点Q ,满足AP QB AQ PB =.证明:点Q 总在某定直线上.数学(理科)试题参考答案及评分标准 第 5 页 共 12 页2009年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前二题得分.第12题第1个空3分,第2个空2分.9.2 10.79 11.0 或 2 12.16,222n n ++13.1 14.3 15.6三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)()12cos 1sin 1122x x f x ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,,m n2cos sin 11sin 22x xx =+-=.∵x ∈R ,∴函数()f x 的值域为[]1 1-,.(2)∵()513f A =,()35f B =,∴5sin 13A =,3sin 5B =. ∵,A B 都为锐角,∴12cos 13A ==,4cos 5B ==.∴()()()sin sin sin f C C A B A B π==-+=+⎡⎤⎣⎦sin cos cos sin A B A B =+541235613513565=⨯+⨯=. ∴()f C 的值为5665.17.(本小题主要考查空间线面关系、几何体的表面积与体积等基本知识,考查数形结合的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) 解:(1)设1A A h =,∵几何体111ABCD AC D -的体积为403, ∴1111111111403ABCD A C D ABCD A B C D B A B C V V V ---=-=, 即11114033ABCD A B C S h S h ∆⨯-⨯⨯=,6A即11402222323h h ⨯⨯-⨯⨯⨯⨯=,解得4h =. ∴1A A 的长为4. (2)在线段1BC 上存在点P ,使直线1A P 与1C D 垂直. 以下给出两种证明方法:方法1:过点1D 作1C D 的垂线交1C C 于点Q ,过点Q 作PQ BC交1BC 于点P .∵11C D D Q ⊥,111C D A D ⊥,1111D Q A D D =,∴1C D ⊥平面11A D Q .∵1AQ ⊂平面11A D Q ,∴11C D AQ ⊥. ∵1C D PQ ⊥,∴1C D ⊥平面1A PQ . ∵1A P ⊂平面1A PQ ,∴11C D A P ⊥. 在矩形11CDD C 中,∵11Rt D C Q∆∽1Rt C CD ∆,∴1111C QD C CD C C =,即1224C Q =,∴11C Q =. ∵1C PQ ∆∽1C BC ∆,∴1111C P C Q C B C C =14=,∴1C P =.在11APC ∆中,∵11AC =1111112cos A C A C P C B ∠==由余弦定理,得1A P =2==. ∴在线段1BC 上存在点P ,使直线1A P 与1C D 垂直,且线段1A P 的长为2. 方法2:以点D 为坐标原点,分别以DA ,DC ,1DD 所在的直线为x 轴,y 轴,z 轴建立如图的空间直角坐标系,由已知条件与(1)可知,()10,2,4C ,()12,0,4A ,()0,0,0D , 假设在线段1BC 上存在点()P x y z ,,(0≤x ≤2,2y =,0≤z ≤)4 使直线1A P 与1C D 垂直,过点P 作PQ BC ⊥交BC 于点Q .由BPQ ∆∽1BC C ∆,得1PQ BQC C BC=, ∴124422BQ xPQ C C x BC-=⨯=⨯=-. ∴42z x =-. ∴()12 2 2A P x x =--,,,()10 2 4C D =--,,. ∵11A P C D ⊥,∴110A P C D =,即()()2 2 20 2 40x x ----=,,,,,∴12x =.数学(理科)试题参考答案及评分标准 第 7 页 共 12 页此时点P 的坐标为1 2 32⎛⎫ ⎪⎝⎭,,,在线段1BC 上. ∵13 2 12A P ⎛⎫=-- ⎪⎝⎭,,,∴12A P ⎛=-= . ∴在线段1BC 上存在点P ,使直线1A P与1C D 垂直,且线段1A P 的长为2. 18.(本小题主要考查等差数列、等比数列的通项公式与前n 项和公式等基础知识,考查化归与转化、分类与整合的数学思想方法,以及推理论证能力和运算求解能力)解:设等比数列{}n a 的首项为1a ,公比为q ()10,0a q ≠≠, 若m a ,2m a +,1m a +成等差数列, 则22m a +=m a +1m a +. ∴111112m m m a qa q a q +-=+.∵10a ≠,0q ≠,∴2210q q --=. 解得1q =或12q =-. 当1q =时,∵1m S ma =,()111m S m a +=+,()212m S m a +=+,∴212m m m S S S ++≠+.∴当1q =时,m S ,2m S +,1m S +不成等差数列.当12q =-时,m S ,2m S +,1m S +成等差数列.下面给出两种证明方法. 证法1:∵()()()1211222m m m m m m m m m S S S S S a S a a ++++++-=++-++122m m a a ++=-- 112m m a a q ++=-- 11122m m a a ++⎛⎫=--- ⎪⎝⎭0=, ∴212m m m S S S ++=+.∴当12q =-时,m S ,2m S +,1m S +成等差数列. 证法2:∵212211212412113212m m m a S a +++⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+,又1111111111222112113221122m m m m m m a a S S a +++⎡⎤⎡⎤⎛⎫⎛⎫----⎢⎥⎢⎥ ⎪ ⎪⎡⎤⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫⎣⎦⎣⎦+=+=----⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦++ 221211242322m m a ++⎡⎤⎛⎫⎛⎫=-⨯-+⨯-⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦2141132m a +⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, ∴212m m m S S S ++=+.∴当12q =-时,m S ,2m S +,1m S +成等差数列.19.(本小题主要考查等可能事件、互斥事件和独立重复试验等基础知识,考查化归与转化的数学思想方8法,以及推理论证能力和运算求解能力)解:(1)∵一次摸球从2n +个球中任选两个,有22C n +种选法,任何一个球被选出都是等可能的,其中两球颜色相同有222C C n +种选法,∴一次摸球中奖的概率2222222C C 2C 32n n n n p n n ++-+==++. (2)若3n =,则一次摸球中奖的概率25p =, 三次摸球是独立重复试验,三次摸球恰有一次中奖的概率是123354(1)C (1)125P p p =⋅⋅-=. (3)设一次摸球中奖的概率为p ,则三次摸球恰有一次中奖的概率为()()213233(1)C 1363f p P p p p p p ==⋅⋅-=-+,01p <<,∵()()()291233131f p p p p p '=-+=--,∴()f p 在10 3⎛⎫ ⎪⎝⎭,上为增函数,在1 13⎛⎫ ⎪⎝⎭,上为减函数.∴当13p =时,()f p 取得最大值. ∵2221323n n p n n -+==++(n ≥)*2,n ∈N 且, 解得2n =.故当2n =时,三次摸球恰有一次中奖的概率最大.20.(本小题主要考查函数的性质、函数与导数等知识,考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)(1)解法1:∵()22ln a h x x x x=++,其定义域为()0 +∞,, ∴()2212a h x x x'=-+.∵1x =是函数()h x 的极值点,∴()10h '=,即230a -=.∵0a >,∴a =经检验当a =1x =是函数()h x 的极值点,∴a =解法2:∵()22ln a h x x x x =++,其定义域为()0+∞,, ∴()2212a h x x x'=-+.令()0h x '=,即22120a x x-+=,整理,得2220x x a +-=.∵2180a ∆=+>,∴()0h x '=的两个实根1x =(舍去),2x =当x 变化时,()h x ,()h x '的变化情况如下表:1=,即23a=,∵0a>,∴a=(2)解:对任意的[]12,1x x e∈,都有()1f x≥()2g x成立等价于对任意的[]12,1x x e∈,都有()mi nf x⎡⎤⎣⎦≥()maxg x⎡⎤⎣⎦.当x∈[1,e]时,()110g xx'=+>.∴函数()lng x x x=+在[]1e,上是增函数.∴()()max1g x g e e==+⎡⎤⎣⎦.∵()()()2221x a x aaf xx x+-'=-=,且[]1,x e∈,0a>.①当01a<<且x∈[1,e]时,()()()2x a x af xx+-'=>,∴函数()2af x xx=+在[1,e]上是增函数,∴()()2min11f x f a==+⎡⎤⎣⎦.由21a+≥1e+,得a又01a<<,∴a不合题意.②当1≤a≤e时,若1≤x<a,则()()()2x a x af xx+-'=<,若a<x≤e,则()()()2x a x af xx+-'=>.∴函数()2af x xx=+在[)1,a上是减函数,在(]a e,上是增函数.∴()()min2f x f a a==⎡⎤⎣⎦.由2a≥1e+,得a≥12e+,又1≤a≤e,∴12e+≤a≤e.③当a e>且x∈[1,e]时,()()()2x a x af xx+-'=<,∴函数()2af x xx=+在[]1e,上是减函数.∴()()2minaf x f e ee==+⎡⎤⎣⎦.数学(理科)试题参考答案及评分标准第9 页共12 页10由2a e e+≥1e +,得a,又a e >,∴a e >.综上所述,a 的取值范围为1,2e +⎡⎫+∞⎪⎢⎣⎭.21.(本小题主要考查双曲线、解方程和直线与圆锥曲线的位置关系等知识,考查化归与转化、数形结合的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)(1)解:∵双曲线22221x y a b -=()0,0a b >>,∴3a =.即223a b =. ① ∵12MF MF ⊥,且12MF F ∆的面积为1.∴1212112MF F S MF MF ∆==,即122MF MF =.∵122MF MF a -=,∴222112224MF MF MF MF a -+=.∴221244F F a -=.∴()222444a b a +-=,∴21b =. ② 将②代入①,得23a =.∴双曲线C 的方程为2213x y -=. (2)解法1:设点Q A B ,,的坐标分别为(x y ,),(11x y ,),(22x y ,),且1x <2x <3,又设直线l 的倾斜角为θ2πθ⎛⎫≠ ⎪⎝⎭,分别过点P Q A B ,,,作x 轴的垂线,垂足分别为1111P Q A B ,,,, 则 1113cos cos A P x AP θθ-==,112cos cos PB x PB θθ-3== ,112cos cos Q B x x QB θθ-==,111-cos cos AQ x x AQ θθ==, ∵AP QB AQ PB =,∴(3-1x )(2x x -)=123x x x --()(),即[]1212126()3()2x x x x x x x -+=+-. ③ 设直线l 的方程为1(3)y k x -=-, ④将④代入223x y -=1中整理,得 (1-3222)6133(13)10k x k k x k ⎡⎤----+=⎣⎦().依题意1x ,2x 是上述方程的两个根,且2130k -≠,数学(理科)试题参考答案及评分标准 第 11 页 共 12 页∴()()1222122613133131.13k k x x k k x x k -⎧+=⎪-⎪⎨⎡⎤-+⎪⎣⎦=-⎪-⎩, ⑤将⑤代入③整理,得2(3)x k x -=-. ⑥ 由④、⑥消去k 得21x y -=-,这就是点Q 所在的直线方程. ∴点Q (x y ,)总在定直线 10x y --=上.解法2:设点Q ,A B ,的坐标分别为,(x )y ,11,()x y ,22(,)x y ,且1x <2x <3, ∵AP QB AQ PB =,∴AP AQ PB QB=-,即112233x x x x x x --=---, 即[]1212126()3()2x x x x x x x -+=+-.以下同解法1.解法3:设点Q A B ,,的坐标分别为1122() () ()x y x y x y ,,,,,, 由题设知 AP PB AQ QB ,,,均不为零,记AP AQ PB QBλ==. ∵过点P 的直线l 与双曲线C 的左、右两支相交于两点A ,B ,∴0λ>且1λ≠.∵A P B Q ,,,四点共线, ∴ AP PB AQ QB λλ=-=,. 即()()()()112211223,13,1,,,.x y x y x x y y x x y y λλ--=---⎧⎪⎨--=--⎪⎩∴1212311x x x x x λλλλ-⎧=⎪⎪-⎨+⎪=⎪+⎩③ 由③消去λ,得[]1212126()3()2x x x x x x x -+=+-. 以下同解法1.解法4:设点Q A B ,,的坐标分别为1122() () ()x y x y x y ,,,,,, 由题设知 AP PB AQ QB ,,,均不为零,记AP PB AQ QBλ==. ∵过点P 的直线l 与双曲线C 的左、右两支分别相交于两点A B 、, ∴0λ>且1λ≠. ∵A P B Q ,,,四点共线, 设12 PA AQ PB BQ λλ==,,则120λλ+=.12 即()()()()11111222223,1,,3,1,.x y x x y y x y x x y y λλ--=--⎧⎪⎨--=--⎪⎩ ∴111111311.1x x y y λλλλ+⎧=⎪+⎪⎨+⎪=⎪+⎩, 2222223,11.1x x y y λλλλ+⎧=⎪+⎪⎨+⎪=⎪+⎩∵点11()A x y ,,22()B x y ,在双曲线C 上, ∴22313311i i i i x y λλλλ⎛⎫⎛⎫++-= ⎪ ⎪++⎝⎭⎝⎭,其中1 2i =,. ∴12λλ,是方程22313311x y λλλλ++⎛⎫⎛⎫-= ⎪ ⎪++⎝⎭⎝⎭的两个根. 即12 λλ,是方程()()222336130x y x y λλ--+--+=的两个根. ∵120λλ+=,且22330x y --≠, ∴()122261033x y x y λλ--+=-=--,即10x y --=. ∴点()Q x y ,总在定直线10x y --=上.。
2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合?U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种6.(5分)设、、是单位向量,且,则?的最小值为()A.﹣2B.﹣2C.﹣1D.1﹣7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1B.2C.﹣1D.﹣210.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.411.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8= .15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于.16.(5分)若,则函数y=tan2xtan3x的最大值为.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.22.(12分)设函数f(x)=x3+3bx2+3cx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【考点】A1:虚数单位i、复数.【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴z=1﹣3i故选:B.【点评】求复数,需要对复数化简,本题也可以用待定系数方法求解.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合?U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴?U(A∩B)={3,5,8}故选A.也可用摩根律:?U(A∩B)=(?U A)∪(?U B)故选:A.【点评】本题考查集合的基本运算,较简单.3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选:C.【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】5O:排列组合.【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51?C31?C62=225种选法;(2)乙组中选出一名女生有C52?C61?C21=120种选法.故共有345种选法.故选:D.【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!6.(5分)设、、是单位向量,且,则?的最小值为()A.﹣2B.﹣2C.﹣1D.1﹣【考点】9O:平面向量数量积的性质及其运算.【专题】16:压轴题.【分析】由题意可得=,故要求的式子即﹣()?+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值.【解答】解:∵、、是单位向量,,∴,=.∴?=﹣()?+=0﹣()?+1=1﹣cos=1﹣cos≥.故选:D.【点评】考查向量的运算法则;交换律、分配律但注意不满足结合律.7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1B.2C.﹣1D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选:B.【点评】本题考查导数的几何意义,常利用它求曲线的切线10.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A与点P重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.11.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数【考点】3I:奇函数、偶函数.【专题】16:压轴题.【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选:D.【点评】本题主要考查奇函数性质的灵活运用,并考查函数周期的求法.12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2C.D.3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选:A.【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240 .【考点】DA:二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++Cn n a0b n,各项的通项公式为:Tr+1=C nr a n﹣r b r.然后根据题目已知求解即可.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,属于重点考点,同学们需要理解记忆.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8= 27 .【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由s9解得a5即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是27【点评】本题考查前n项和公式和等差数列的性质.15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.【考点】LR:球内接多面体.【专题】11:计算题;16:压轴题.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π【点评】本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.16.(5分)若,则函数y=tan2xtan3x的最大值为﹣8 .【考点】3H:函数的最值及其几何意义;GS:二倍角的三角函数.【专题】11:计算题;16:压轴题.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.【点评】本题主要考查二倍角的正切,二次函数的方法求最大值等,最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面.以最值为载体,可以考查中学数学的所有知识点.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【考点】HR:余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B i表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,∵前2局中,甲、乙各胜1局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.【点评】认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题.另外,还要注意表述,这也是考生较薄弱的环节.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;15:综合题.【分析】(1)由已知得=+,即b n+1=b n+,由此能够推导出所求的通项公式.(2)由题设知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n+1=b n+,从而b2=b1+,b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n=+++…++,②①﹣②得,T n=1++++…+﹣=﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.【点评】本题考查数列的通项公式和前n项和的求法,解题时要注意错位相减法的合理运用.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=?(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.22.(12分)设函数f(x)=x3+3bx2+3cx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【考点】6D:利用导数研究函数的极值;7B:二元一次不等式(组)与平面区域;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c 的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c满足的约束条件为(4分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10分)所以.【点评】本题主要考查了利用导数研究函数的极值,以及二元一次不等式(组)与平面区域和不等式的证明,属于基础题.。
数学(理科)试题参考答案及评分标准 第 1 页 共 105 页试卷类型:A2009年广州市普通高中毕业班综合测试(二)数 学(理科)2009.4 本试卷共4页,21小题, 满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题(或题组号)对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=, 其中S 是锥体的底面积, h 是锥体的高. 球的表面积公式24S R π=,其中R 为球的半径.如果事件A 、B 互斥,那么()()()P A B P A P B +=+. 如果事件A 在一次试验中发生的概率是p ,那么在n 次独立重复试验中恰好发生k 次的概率()()C 1n kk k n n P k p p -=-.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.如果复数()()22356i m m m m -+-+是纯虚数,则实数m 的值为 A .0B .2C .0或3D .2或32.已知函数()()()4040.x x x f x x x x ⎧+<⎪=⎨-⎪⎩≥,,, 则函数()f x 的零点个数为A .1B .2C .3D .43.已知全集U =R ,集合{3A x =≤}7x <,{}27100B x x x =-+<,则() A B R =I ðA .()(),35,-∞+∞UB .()[),35,-∞+∞UC .(][),35,-∞+∞UD .(](),35,-∞+∞U数学(理科)试题参考答案及评分标准 第 2 页 共 105 页1?x <开始 输入x 1?x >y =x否是否是 图2结束 输出y y =1 y =x 2-4x +44.命题“x ∃∈R ,2210x x -+<”的否定是 A .x ∃∈R ,221x x -+≥0 B .x ∃∈R ,2210x x -+> C .x ∀∈R ,221x x -+≥0D .x ∀∈R ,2210x x -+<5.已知点()1,0A ,直线l :24y x =-,点R 是直线l 上的一点,若RA AP =u u u r u u u r,则点P 的轨迹方程为A .2y x =-B .2y x =C .28y x =-D .24y x =+ 6.函数()cos f x x x =的导函数()f x '在区间[],ππ-上的图像大致是A. B. C. D. 7.现有4种不同颜色要对如图1所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有 A .24种B .30种C .36种D .48种8.设直线l 与球O 有且只有一个公共点P ,从直线l 出发的两个半平面α、β截球O 的两个截面圆的半径分别为13,二面角l αβ--的平面角为150o,则球O 的表面积为A .4πB .16πC .28πD .112π 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~12题)9.在空间直角坐标系中,以点()4 1 9A ,,,()101 6B -,,,() 4 3C x ,,为顶点的ABC ∆是以BC 为斜边的等腰直角三角形,则实数x 的值为 .10.在某项才艺竞赛中,有9位评委,主办单位规定计算参赛者比赛成绩的规则如下:剔除评委中的一个最高分和一个最低分后,再计算其他7位评委的平均分作为此参赛者的比赛成绩.现有一位参赛者所获9位评委一个最高分为86分、一个最低分为45分,若未剔除最高分与最低分时9位评委的平均分为76分,则这位参赛者的比赛成绩为 分. 11.阅读如图2所示的程序框图,若输出y 的值为0, 则输入x 的值为 .图1数学(理科)试题参考答案及评分标准 第 3 页 共 105 页ABCD1A1C1D图412.在平面内有n (*,n n N ∈≥)3条直线,其中任何两条不平行,任何三条不过同一点,若这n 条直线把平面分成()f n 个平面区域,则()5f 的值是 ,()f n 的表达式是 .(二)选做题(13~15题,考生只能从中选做两题) 13.(几何证明选讲选做题)如图3所示,在四边形ABCD 中,EF BC P ,FG AD P ,则EF FGBC AD+的值为 . 14.(不等式选讲选做题) 函数()f x =12x x -++的最小值为 .(坐标系与参数方程选做题)直线()24,13x t t y t=-+⎧⎨=--⎩为参数被圆25cos ,15sin x y θθ=+⎧⎨=+⎩(θ为参数)所截得的弦长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知向量2cos 12x ⎛⎫= ⎪⎝⎭,m ,sin 12x ⎛⎫= ⎪⎝⎭,n ()x ∈R ,设函数()1f x =-g m n .(1)求函数()f x 的值域;(2) 已知锐角ABC ∆的三个内角分别为A ,B ,C ,若()513f A =,()35f B =,求()f C 的值.17.(本小题满分12分)在长方体1111ABCD A B C D -中,2AB BC ==,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如图4所示的几何体111ABCD AC D -,且这个几何体的体积为3. (1)求棱1A A 的长;(2)在线段1BC 上是否存在点P ,使直线1A P 与1C D 垂直,如果存在,求线段1A P 的长,如果不存在,请说明理由.图3数学(理科)试题参考答案及评分标准 第 4 页 共 105 页18.(本小题满分14分)已知等比数列{}n a 的前n 项和为n S ,若m a ,2m a +,1m a +()*m ∈N 成等差数列,试判断m S ,2m S +,1m S +是否成等差数列,并证明你的结论. 19.(本小题满分14分)一个口袋中装有2个白球和n 个红球(n ≥2且*n ∈N ),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖. (1)试用含n 的代数式表示一次摸球中奖的概率p ; (2)若3n =,求三次摸球恰有一次中奖的概率;(3)记三次摸球恰有一次中奖的概率为()f p ,当n 为何值时,()f p 最大? 20.(本小题满分14分)已知函数()2a f x x x=+,()ln g x x x =+,其中0a >.(1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围.21.(本小题满分14分)已知双曲线C :22221x y a b-=00(,)a b >>,左、右焦点分别为1F 、2F ,在双曲线C 上有一点M ,使12MF MF ⊥,且12MF F ∆的面积为1. (1)求双曲线C 的方程; (2)过点()3,1P 的动直线l 与双曲线C 的左、右两支分别相交于两点A 、B ,在线段AB 上取异于A 、B 的点Q ,满足AP QB AQ PB =g g .证明:点Q 总在某定直线上.数学(理科)试题参考答案及评分标准 第 5 页 共 105 页2009年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前二题得分.第12题第1个空3分,第2个空2分.9.2 10.79 11.0 或 2 12.16,222n n ++13.1 14.3 15.6三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)()12cos 1sin 1122x x f x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭g g ,,m n 2cos sin 11sin 22x xx =+-=.∵x ∈R ,数学(理科)试题参考答案及评分标准 第 6 页 共 105 页∴函数()f x 的值域为[]1 1-,.(2)∵()513f A =,()35f B=,∴5sin 13A =,3sin 5B =. ∵,A B 都为锐角,∴12cos 13A ==,4cos 5B ==.∴()()()sin sin sin f C C A B A B π==-+=+⎡⎤⎣⎦sin cos cos sin A B A B =+541235613513565=⨯+⨯=. ∴()f C 的值为5665.17.(本小题主要考查空间线面关系、几何体的表面积与体积等基本知识,考查数形结合的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) 解:(1)设1A A h =,∵几何体111ABCD AC D -的体积为403, ∴1111111111403ABCD A C D ABCD A B C D B A B C V V V ---=-=, 即11114033ABCD A B C S h S h ∆⨯-⨯⨯=, 即11402222323h h ⨯⨯-⨯⨯⨯⨯=,解得4h =. ∴1A A 的长为4. (2)在线段1BC 上存在点P ,使直线1A P 与1C D 垂直. 以下给出两种证明方法:方法1:过点1D 作1C D 的垂线交1C C 于点Q ,过点Q 作PQ BC P 交1BC 于点P .∵11C D D Q ⊥,111C D A D ⊥,1111D Q A D D =I , ∴1C D ⊥平面11A D Q .∵1AQ ⊂平面11A D Q ,∴11C D AQ ⊥. ∵1C D PQ ⊥,∴1C D ⊥平面1A PQ . ∵1A P ⊂平面1A PQ ,∴11C D A P ⊥. 在矩形11CDD C 中,∵11Rt D C Q ∆∽1Rt C CD ∆,数学(理科)试题参考答案及评分标准 第 7 页 共 105 页∴1111C Q D C CD C C =,即1224C Q =,∴11C Q =. ∵1C PQ ∆∽1C BC ∆,∴1111C P C Q C B C C =,即11425=,∴15C P =.在11A PC ∆中,∵1122AC =,∴111111102cos 10A C A C P CB ∠==. 由余弦定理,得221111111112cos A P AC C P AC C P AC P =+-⨯⨯⨯∠551029822242102=+-⨯⨯⨯=. ∴在线段1BC 上存在点P ,使直线1A P 与1C D 垂直,且线段1A P 的长为29. 方法2:以点D 为坐标原点,分别以DA ,DC ,1DD 所在的直线为x 轴,y 轴,z 轴建立如图的空间直角坐标系,由已知条件与(1)可知,()10,2,4C ,()12,0,4A ,()0,0,0D ,假设在线段1BC 上存在点()P x y z ,,(0≤x ≤2,2y =,0≤z ≤)4 使直线1A P 与1C D 垂直,过点P 作PQ BC ⊥交BC 于点Q .由BPQ ∆∽1BC C ∆,得1PQ BQC C BC=, ∴124422BQ xPQ C C x BC -=⨯=⨯=-. ∴42z x =-. ∴()12 2 2A P x x =--u u u r ,,,()10 2 4C D =--u u u u r ,,. ∵11A P C D ⊥,∴110A P C D =u u u r u u u u rg, 即()()2 2 20 2 40x x ----=g ,,,,,∴12x =. 此时点P 的坐标为1 2 32⎛⎫⎪⎝⎭,,,在线段1BC 上. ∵13 2 12A P ⎛⎫=-- ⎪⎝⎭u u u r ,,,∴()2221329212A P ⎛⎫=-++-= ⎪⎝⎭u u u r .数学(理科)试题参考答案及评分标准 第 8 页 共 105 页∴在线段1BC 上存在点P ,使直线1A P 与1C D 垂直,且线段1A P. 18.(本小题主要考查等差数列、等比数列的通项公式与前n 项和公式等基础知识,考查化归与转化、分类与整合的数学思想方法,以及推理论证能力和运算求解能力)解:设等比数列{}n a 的首项为1a ,公比为q ()10,0a q ≠≠, 若m a ,2m a +,1m a +成等差数列, 则22m a +=m a +1m a +. ∴111112m m m a qa q a q +-=+.∵10a ≠,0q ≠,∴2210q q --=. 解得1q =或12q =-. 当1q =时,∵1m S ma =,()111m S m a +=+,()212m S m a +=+,∴212m m m S S S ++≠+.∴当1q =时,m S ,2m S +,1m S +不成等差数列.当12q =-时,m S ,2m S +,1m S +成等差数列.下面给出两种证明方法. 证法1:∵()()()1211222m m m m m m m m m S S S S S a S a a ++++++-=++-++122m m a a ++=-- 112m m a a q ++=-- 11122m m a a ++⎛⎫=--- ⎪⎝⎭0=, ∴212m m m S S S ++=+.∴当12q =-时,m S ,2m S +,1m S +成等差数列. 证法2:∵212211212412113212m m m a S a +++⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+, 又1111111111222112113221122m m m m m m a a S S a +++⎡⎤⎡⎤⎛⎫⎛⎫----⎢⎥⎢⎥ ⎪ ⎪⎡⎤⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫⎣⎦⎣⎦+=+=----⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦++ 221211242322m m a ++⎡⎤⎛⎫⎛⎫=-⨯-+⨯-⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦2141132m a +⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,数学(理科)试题参考答案及评分标准 第 9 页 共 105 页∴212m m m S S S ++=+. ∴当12q =-时,m S ,2m S +,1m S +成等差数列. 19.(本小题主要考查等可能事件、互斥事件和独立重复试验等基础知识,考查化归与转化的数学思想方法,以及推理论证能力和运算求解能力)解:(1)∵一次摸球从2n +个球中任选两个,有22C n +种选法,任何一个球被选出都是等可能的,其中两球颜色相同有222C C n +种选法,∴一次摸球中奖的概率2222222C C 2C 32n n n n p n n ++-+==++. (2)若3n =,则一次摸球中奖的概率25p =, 三次摸球是独立重复试验,三次摸球恰有一次中奖的概率是123354(1)C (1)125P p p =⋅⋅-=. (3)设一次摸球中奖的概率为p ,则三次摸球恰有一次中奖的概率为()()213233(1)C 1363f p P p p p p p ==⋅⋅-=-+,01p <<, ∵()()()291233131f p p p p p '=-+=--,∴()f p 在10 3⎛⎫ ⎪⎝⎭,上为增函数,在1 13⎛⎫ ⎪⎝⎭,上为减函数.∴当13p =时,()f p 取得最大值. ∵2221323n n p n n -+==++(n ≥)*2,n ∈N 且, 解得2n =.故当2n =时,三次摸球恰有一次中奖的概率最大.20.(本小题主要考查函数的性质、函数与导数等知识,考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)(1)解法1:∵()22ln a h x x x x=++,其定义域为()0 +∞,, ∴()2212a h x x x'=-+.∵1x =是函数()h x 的极值点,∴()10h '=,即230a -=.∵0a >,∴a =经检验当a =1x =是函数()h x 的极值点,数学(理科)试题参考答案及评分标准 第 10 页 共 105 页∴a =解法2:∵()22ln a h x x x x =++,其定义域为()0+∞,, ∴()2212a h x x x'=-+.令()0h x '=,即22120a x x-+=,整理,得2220x x a +-=.∵2180a ∆=+>,∴()0h x '=的两个实根1x =,2x =,当x 变化时,()h x ,()h x '的变化情况如下表:依题意,114-+=,即23a =, ∵0a >,∴a = (2)解:对任意的[]12,1x x e ∈,都有()1f x ≥()2g x 成立等价于对任意的[]12,1x x e ∈,都有()min f x ⎡⎤⎣⎦≥()max g x ⎡⎤⎣⎦.当x ∈[1,e ]时,()110g x x'=+>.∴函数()ln g x x x =+在[]1e ,上是增函数.∴()()max1g x g e e ==+⎡⎤⎣⎦.∵()()()2221x a x a a f x x x+-'=-=,且[]1,x e ∈,0a >. ①当01a <<且x ∈[1,e ]时,()()()2x a x a f x x+-'=>, ∴函数()2a f x x x=+在[1,e ]上是增函数,∴()()2min 11f x f a ==+⎡⎤⎣⎦.由21a +≥1e +,得a数学(理科)试题参考答案及评分标准 第 11 页 共 105 页又01a <<,∴a 不合题意.②当1≤a ≤e 时, 若1≤x <a ,则()()()20x a x a f x x +-'=<,若a <x ≤e ,则()()()20x a x a f x x +-'=>.∴函数()2a f x x x=+在[)1,a 上是减函数,在(]a e ,上是增函数.∴()()min 2f x f a a ==⎡⎤⎣⎦.由2a ≥1e +,得a ≥12e +, 又1≤a ≤e ,∴12e +≤a ≤e . ③当a e >且x ∈[1,e ]时,()()()20x a x a f x x +-'=<,∴函数()2a f x x x=+在[]1e ,上是减函数.∴()()2min a f x f e e e ==+⎡⎤⎣⎦.由2a e e+≥1e +,得a又a e >,∴a e >.综上所述,a 的取值范围为1,2e +⎡⎫+∞⎪⎢⎣⎭.21.(本小题主要考查双曲线、解方程和直线与圆锥曲线的位置关系等知识,考查化归与转化、数形结合的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)(1)解:∵双曲线22221x y a b-=()0,0a b >>∴3a =223a b =. ① ∵12MF MF ⊥,且12MF F ∆的面积为1.∴1212112MF F S MF MF ∆==,即122MF MF =.数学(理科)试题参考答案及评分标准 第 12 页 共 105 页∵122MF MF a -=, ∴222112224MF MF MF MF a -+=.∴221244F F a -=.∴()222444a b a +-=,∴21b =. ② 将②代入①,得23a =.∴双曲线C 的方程为2213x y -=. (2)解法1:设点Q A B ,,的坐标分别为(x y ,),(11x y ,),(22x y ,),且1x <2x <3,又设直线l 的倾斜角为θ2πθ⎛⎫≠⎪⎝⎭,分别过点P Q AB ,,,作x 轴的垂线,垂足分别为1111P Q A B ,,,, 则 1113cos cos A P x AP θθ-==,112cos cos PB x PB θθ-3== ,112cos cos Q B x x QB θθ-==,111-cos cos AQ x x AQ θθ==, ∵AP QB AQ PB g g =,∴(3-1x )(2x x -)=123x x x --()(),即[]1212126()3()2x x x x x x x -+=+-. ③ 设直线l 的方程为1(3)y k x -=-, ④将④代入223x y -=1中整理,得 (1-3222)6133(13)10k x k k x k ⎡⎤----+=⎣⎦().依题意1x ,2x 是上述方程的两个根,且2130k -≠,∴()()1222122613133131.13k k x x k k x x k -⎧+=⎪-⎪⎨⎡⎤-+⎪⎣⎦=-⎪-⎩, ⑤将⑤代入③整理,得2(3)x k x -=-. ⑥数学(理科)试题参考答案及评分标准 第 13 页 共 105 页由④、⑥消去k 得21x y -=-,这就是点Q 所在的直线方程.∴点Q (x y ,)总在定直线 10x y --=上.解法2:设点Q ,A B ,的坐标分别为,(x )y ,11,()x y ,22(,)x y ,且1x <2x <3, ∵AP QB AQ PB g g =, ∴AP AQPB QB=-,即112233x x x x x x --=---, 即[]1212126()3()2x x x x x x x -+=+-.以下同解法1.解法3:设点Q A B ,,的坐标分别为1122() () ()x y x y x y ,,,,,, 由题设知 AP PB AQ QB ,,,均不为零,记AP AQPB QBλ==. ∵过点P 的直线l 与双曲线C 的左、右两支 相交于两点A ,B ,∴0λ>且1λ≠. ∵A P B Q ,,,四点共线,∴ AP PB AQ QB λλ=-=u u u r u u u r u u u r u u u r,. 即()()()()112211223,13,1,,,.x y x y x x y y x x y y λλ--=---⎧⎪⎨--=--⎪⎩∴1212311x x x x x λλλλ-⎧=⎪⎪-⎨+⎪=⎪+⎩③由③消去λ,得[]1212126()3()2x x x x x x x -+=+-.以下同解法1.解法4:设点Q A B ,,的坐标分别为1122() () ()x y x y x y ,,,,,, 由题设知 AP PB AQ QB ,,,均不为零,记AP PBAQ QBλ==. ∵过点P 的直线l 与双曲线C 的左、右两支分别相交于两点A B 、, ∴0λ>且1λ≠. ∵A P B Q ,,,四点共线,数学(理科)试题参考答案及评分标准 第 14 页 共 105 页设12 PA AQ PB BQ λλ==u u u r u u u r u u u r u u u r ,,则120λλ+=.即()()()()11111222223,1,,3,1,.x y x x y y x y x x y y λλ--=--⎧⎪⎨--=--⎪⎩ ∴111111311.1x x y y λλλλ+⎧=⎪+⎪⎨+⎪=⎪+⎩, 2222223,11.1x x y y λλλλ+⎧=⎪+⎪⎨+⎪=⎪+⎩∵点11()A x y ,,22()B x y ,在双曲线C 上,∴22313311i i i i x y λλλλ⎛⎫⎛⎫++-= ⎪ ⎪++⎝⎭⎝⎭,其中1 2i =,. ∴12λλ,是方程22313311x y λλλλ++⎛⎫⎛⎫-= ⎪ ⎪++⎝⎭⎝⎭的两个根.即12 λλ,是方程()()222336130x y x y λλ--+--+=的两个根. ∵120λλ+=,且22330x y --≠,∴()122261033x y x y λλ--+=-=--,即10x y --=. ∴点()Q x y ,总在定直线10x y --=上.2008年广州市普通高中毕业班综合测试(一)数 学(文科) 2008.3本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再将答案填写在对应题号的横线上。
2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个2.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0} 4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2 C.D.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种6.(5分)设、、是单位向量,且,则•的最小值为()A.﹣2 B.﹣2 C.﹣1 D.1﹣7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣210.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C.D.411.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2) D.f(x+3)是奇函数12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2 C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=.15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于.16.(5分)若,则函数y=tan2xtan3x的最大值为.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.22.(12分)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选A2.(5分)(2009•全国卷Ⅰ)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴故选B3.(5分)(2009•全国卷Ⅰ)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选D4.(5分)(2009•全国卷Ⅰ)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2 C.D.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选择C.5.(5分)(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法.故选D6.(5分)(2009•全国卷Ⅰ)设、、是单位向量,且,则•的最小值为()A.﹣2 B.﹣2 C.﹣1 D.1﹣【分析】由题意可得=,故要求的式子即﹣()•+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值.【解答】解:∵、、是单位向量,,∴,=.∴•=﹣()•+=0﹣()•+1=1﹣cos=1﹣cos≥.故选项为D7.(5分)(2009•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选D.8.(5分)(2009•全国卷Ⅰ)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选A9.(5分)(2009•全国卷Ⅰ)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣2【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选项为B10.(5分)(2009•全国卷Ⅰ)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C.D.4【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,∴AC=PD=2又∵当且仅当AP=0,即点A与点P重合时取最小值.故答案选C.11.(5分)(2009•全国卷Ⅰ)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2) D.f(x+3)是奇函数【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选D12.(5分)(2009•全国卷Ⅰ)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A.B.2 C.D.3【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•全国卷Ⅰ)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,各项的通项公式为:T r=C n r a n﹣r b r.然后根据题目已知求解即可.+1【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)(2009•全国卷Ⅰ)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=27.【分析】由s9解得a5即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是2715.(5分)(2009•全国卷Ⅰ)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π16.(5分)(2009•全国卷Ⅰ)若,则函数y=tan2xtan3x的最大值为﹣8.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.三、解答题(共6小题,满分70分)17.(10分)(2009•全国卷Ⅰ)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.18.(12分)(2009•全国卷Ⅰ)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.19.(12分)(2009•全国卷Ⅰ)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B i表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,∵前2局中,甲、乙各胜1局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.20.(12分)(2009•全国卷Ⅰ)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.【分析】(1)由已知得=+,即b n=b n+,由此能够推导出所求的通+1项公式.(2)由题设知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n=b n+,从而b2=b1+,+1b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n=+++…++,②①﹣②得,T n=1++++…+﹣=﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.21.(12分)(2009•全国卷Ⅰ)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=•(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.22.(12分)(2009•全国卷Ⅰ)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c 的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c满足的约束条件为(4分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10分)所以.。
2009年广州市普通高中毕业班综合测试(一)数 学(理 科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数()x x f 2sin =的最小正周期为A .π B.π2C. π3D.π42.已知z =i (1+i )(i 为虚数单位),则复数z 在复平面上所对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限3.某商场在国庆黄金周的促销活动中,对10月2号9时至14时 的销售额进行统计,其频率分布直方图如图1所示.已知9时 至10时的销售额为2.5万元,则11时至12时的销售额为 A . 6万元 B . 8万元C . 10万元D .12万元4.已知过()a A ,1-、()8,a B 两点的直线与直线012=+-y x 平行,则a 的值为A. 10-B. 17C. 5D. 25.阅读图2的程序框图(框图中的赋值符号“=”也可以写成“←”或“:=”),若输出的S 的值等于16,那么在程序框图中的判断框内应填写的条件是A .5>i ? B. 6>i ?C. 7>i ?D. 8>i ? 6.已知p :关于x 的不等式022>-+a ax x 的解集是R ,q :01<<-a ,则p 是q 的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件7.在()n n n x a x a x a x a a x +⋅⋅⋅++++=-3322101中,若0252=+-n a a ,则自然数n 的值是A .7B .8C .9D .10 8.在区间[]1,0上任意取两个实数b a ,,则函数()b ax x x f -+=321在区间[]1,1-上有且仅一个零点的概率为 A .81 B .41C .43D .87二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~12题)9. 若()22log 2=+a ,则=a 3 .10.若⎰ax 0d x =1, 则实数a 的值是 .11.一个几何体的三视图及其尺寸(单位:cm )如图3所示, 则该几何体的侧面积为 cm 2. 12.已知数列{}n a 的前n 项和为n S ,对任意∈n N *都有3132-=n n a S ,且91<<kS (∈k N *),则1a 的值为 ,k 的值为 .(二)选做题(13~15题,考生只能从中选做两题) 13.(坐标系与参数方程选做题)在极坐标系中,直线24sin =⎪⎭⎫⎝⎛+πθρ被圆4=ρ截得的弦长为__ .14.(几何证明选讲选做题)已知PA 是圆O (O 为圆心)的切线,切点为A ,PO 交圆O 于C B , 两点,︒=∠=30,3PAB AC ,则线段PB 的长为 .15.(不等式选讲选做题)已知∈c b a ,,R ,且432,2222=++=++c b ac b a ,则实数a 的取值范围为_____________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知△ABC 的内角C B A ,,所对的边分别为,,,c b a 且53cos ,2==B a . (1)若4=b , 求A sin 的值; (2) 若△ABC 的面积,4=∆ABC S 求c b ,的值.17.(本小题满分14分)甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分. 若甲、乙两名同学射击的命中率分别为53和p , 且甲、乙两人各射击一次所得分数之和为2的概率为209.假设甲、乙两人射击互不影响. (1)求p 的值;(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望.18. (本小题满分14分)如图4, 在三棱锥ABC P -中,⊥PA 平面ABC ,AC AB ⊥,F E D ,,分别是棱PC PB PA ,,的中点,连接EF DF DE ,,.(1) 求证: 平面//DEF 平面ABC ;(2) 若2==BC PA , 当三棱锥ABC P -的体积最大时, 求二面角D EF A --的平面角的余弦值.图419.(本小题满分12分)某车间有50名工人,要完成150件产品的生产任务,每件产品由3个A 型零件和1个B 型零件配套组成.每个工人每小时能加工5个A 型零件或者3个B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一种型号的零件.设加工A 型零件的工人人数为x 名(∈x N *). (1)设完成A 型零件加工所需时间为()x f 小时,写出()x f 的解析式;(2)为了在最短时间内完成全部生产任务,x 应取何值?20.(本小题满分14分) 已知动圆C 过点()0,2-A ,且与圆()642:22=+-y x M 相内切.(1)求动圆C 的圆心的轨迹方程;(2)设直线:l y kx m =+(其中,)k m Z ∈与(1)中所求轨迹交于不同两点B ,D ,与双曲线112422=-y x 交于不同两点,E F ,问是否存在直线l ,使得向量DF BE +=0,若存在,指出这样的直线有多少条?若不存在,请说明理由.21. (本小题满分14分) 已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且 11=a .(1) 求数列{}n a 和{}n b 的通项公式;(2) 设n S 是数列{}n a 的前n 项和, 问是否存在常数λ,使得0>-n n S b λ对任意∈n N *都成立,若存在,求出λ的取值范围; 若不存在, 请说明理由.2009年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.题号 1 2 3 4 5 6 7 8 答案 A B C D A C B D二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,每小题5分,满分30分.其中13~15是选做题,考生只能选做两题. 第12题第一个空2分,第二个空3分.9.9 10.2 11.80 12.-1;4 13.3414.1 15.⎥⎦⎤⎢⎣⎡2,112三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力)解: (1)∵053cos >=B , 且π<<B 0, ∴ 54cos 1sin 2=-=B B .由正弦定理得Bb A a sin sin =. ∴524542sin sin =⨯==b B a A . (2)∵,4sin 21==∆B ac S ABC∴454221=⨯⨯⨯c .∴ 5=c .由余弦定理得B ac c a bcos 2222-+=,∴175352252cos 22222=⨯⨯⨯-+=-+=B ac c a b .17.(本小题满分14分)(本小题主要考查概率、随机变量的分布列及其数学期望等基础知识,考查运算求解能力) 解:(1)记“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B , 则()()52,53==A P A P,()()p B P p B P -==1,.依题意得()209531153=⎪⎭⎫ ⎝⎛-+-p p ,FEDCBAP 解得43=p .故p 的值为43.(2)ξ的取值分别为,4,2,0.()()()()10141520=⨯=⋅===B P A P B A P P ξ,()2092==ξP ,()()()()20943534=⨯=⋅===B P A P AB P P ξ,ξ∴的分布列为ξ0 2 4p101 209 209∴E .1027209420921010=⨯+⨯+⨯=ξ18.(本小题满分14分)(本小题主要考查空间中线面的位置关系、空间的角、几何体体积等基础知识,考查空间想象能力、推理论证能力和运算求解能力) (1) 证明: ∵E D ,分别是棱PB PA ,的中点,∴DE 是△PAB 的中位线.∴AB DE //. ∵⊄DE 平面⊂AB ABC ,平面,ABC∴//DE 平面ABC . 同理可证 //DF 平面ABC .∵⊂=DE D DF DE , 平面DEF ,⊂DF 平面DEF ,∴平面DEF // 平面ABC .(2) 求三棱锥ABC P -的体积的最大值, 给出如下两种解法: 解法1: 由已知⊥PA 平面ABC , AB AC ⊥,2==BC PA ∴4222==+BC AC AB.∴三棱锥ABC P -的体积为ABC S PA V∆⨯⨯=31AC AB PA ⨯⨯⨯⨯=2131 AC AB ⨯⨯⨯=261G FEDCBA P 23122AC AB +⨯≤2312BC ⨯=32=. 当且仅当AC AB =时等号成立,V 取得最大值,其值为32, 此时AC AB =2=.解法2:设x AB =,在R t △ABC 中,2224x AB BC AC -=-=()20<<x .∴三棱锥ABC P -的体积为ABC S PA V ∆⨯⨯=31AC AB PA ⨯⨯⨯⨯=2131 2431x x -= 42431x x -= ()423122+--=x . ∵40,202<<<<x x ,∴ 当22=x,即2=x 时,V 取得最大值,其值为32,此时2==AC AB .求二面角D EF A --的平面角的余弦值, 给出如下两种解法: 解法1:作EF DG ⊥,垂足为G , 连接AG . ∵ ⊥PA 平面ABC ,平面//ABC 平面DEF , ∴ ⊥PA 平面DEF .∵ ⊂EF 平面DEF ,∴ ⊥PA EF .∵ D PA DG = , ∴ ⊥EF 平面PAG . ∵⊂AG 平面PAG , ∴⊥EF AG .∴ AGD ∠是二面角D EF A --的平面角.在R t △EDF 中,121,2221=====BC EF AB DF DE , ∴21=DG .在R t △ADG 中,2541122=+=+=DG AD AG , 552521cos ===∠AG DG AGD .∴二面角D EF A --的平面角的余弦值为55. 解法2:分别以AP AC AB ,,所在直线为x 轴, y 轴, z 轴,建立如图的空间直角坐标系xyz A -,则()()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1,22,0,1,0,22,1,0,0,0,0,0F E D A . ∴⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=0,22,22,1,0,22EF AE . 设n ()z y x ,,=为平面AEF 的法向量,∴⎪⎩⎪⎨⎧=⋅=⋅.0,0EF n n 即⎪⎪⎩⎪⎪⎨⎧=+-=+.02222,022y x z x令2=x , 则1,2-==z y .∴n ()1,2,2-=为平面AEF 的一个法向量.∵平面DEF 的一个法向量为()100-=,,DA ,∴()()()5511221222=⨯-++==DA n cos. ∴二面角D EF A --的平面角的余弦值为55. 19.(本小题满分12分)(本小题主要考查函数最值、不等式、导数及其应用等基础知识,考查分类与整合的数学思想方法,以及运算求解能力和应用意识)解:(1)生产150件产品,需加工A 型零件450个,则完成A 型零件加工所需时间()x f ∈==x xx (905450N *,且)491≤≤x . (2)生产150件产品,需加工B 型零件150个,则完成B 型零件加工所需时间()x g()∈-=-=x xx (5050503150N *,且)491≤≤x .设完成全部生产任务所需时间为()x h 小时,则()x h 为()x f 与()x g 的较大者.令()()x g x f ≥,即xx -≥505090, 解得71321≤≤x .所以,当321≤≤x 时,()()x g x f >;当4933≤≤x 时,()()x g x f <.故()()()⎪⎩⎪⎨⎧≤≤∈-≤≤∈=4933,,5050321,,90**x N x xx N x x x h .当321≤≤x 时,()0902'<-=xx h ,故()x h 在[]32,1上单调递减,则()x h在[]32,1上的最小值为()1645329032==h (小时);当4933≤≤x 时,()()050502'>-=x x h ,故()x h 在[]49,33上单调递增, 则()x h在[]49,33上的最小值为()175033505033=-=h (小时);()()3233h h > ,∴()x h 在[]49,1上的最小值为()32h .32=∴x .答:为了在最短时间内完成生产任务,x 应取32.20.(本小题满分14分)(本小题主要考查圆、椭圆、直线等基础知识和数学探究,考查数形结合、分类与整合的数学思想方法,以及推理论证能力、运算求解能力和创新意识) 解:(1)圆()642:22=+-y x M, 圆心M 的坐标为()0,2,半径8=R .∵R AM <=4,∴点()0,2-A 在圆M 内. 设动圆C 的半径为r ,圆心为C ,依题意得CA r =,且r R CM -=,即AM CA CM>=+8.∴圆心C 的轨迹是中心在原点,以M A ,两点为焦点,长轴长为8的椭圆,设其方程为()012222>>=+b a b y a x , 则2,4==c a . ∴12222=-=c a b .∴所求动圆C 的圆心的轨迹方程为1121622=+y x .(2)由⎪⎩⎪⎨⎧=++=.11216,22y x m kx y 消去y 化简整理得:()0484843222=-+++m kmx x k . 设11(,)B x y ,22(,)D x y ,则122834kmx x k+=-+.△1()()()04844348222>-+-=m k km . ① 由⎪⎩⎪⎨⎧=-+=.1124,22y x m kx y 消去y 化简整理得:()01223222=----m kmx x k .设()()4433,,,y x F y x E ,则24332kkmx x -=+,△2()()()012342222>+-+-=m k km . ② ∵DF BE +=0,∴4231()()0x x x x -+-=,即1234x x x x +=+,∴2232438kkmk km -=+-. ∴02=km 或2231434k k -=+-.解得0k =或0m =. 当0k =时,由①、②得 3232<<-m , ∵∈m Z ,∴m 的值为2,3-- 1-,0,13,2,;当0m =,由①、②得 33<<-k , ∵∈k Z ,∴1,0,1-=k .∴满足条件的直线共有9条. 21.(本小题满分14分)(本小题主要考查数列的通项公式、数列前n 项和、不等式等基础知识,考查化归与转化、分类与整合、特殊与一般的数学思想方法,以及推理论证能力、运算求解能力和抽象概括能力) 解: (1) ∵1,+n n a a 是关于x 的方程022=+-n n b x x∈n (N )*的两根,∴⎩⎨⎧==+++.,211n n n n n n a a b a a求数列{}n a 的通项公式, 给出如下四种解法:解法1: 由n n n a a 21=++,得⎪⎭⎫ ⎝⎛⨯--=⨯-++n n n n a a 23123111, 故数列⎭⎬⎫⎩⎨⎧⨯-n na 231是首项为31321=-a ,公比为1-的等比数列. ∴()1131231--⨯=⨯-n n n a , 即()[]n n n a 1231--=. 解法2: 由n n n a a 21=++,两边同除以()11+-n , 得()()()n n n n n a a 21111--=---++, 令()n n na c 1-=, 则()n n n c c 21--=-+. 故()()()123121--++-+-+=n n n c c c c c c c c()()()()13222221-----------=n()()[]()2121211----⋅---=-n ()[]1231--=n ()2≥n . 且1111-=-=a c 也适合上式, ∴()n n a 1-()[]1231--=n , 即()[]n n n a 1231--=. 解法3: 由n n n a a 21=++,得1212+++=+n n n a a ,两式相减得n n n n n a a 22212=-=-++. 当n 为正奇数时,()()()235131--++-+-+=n n n a a a a a a a a25322221-+++++=n 41412121-⎪⎪⎭⎫ ⎝⎛-+=-n 312+=n ()3≥n . 且11=a 也适合上式.当n 为正偶数时,()()()246242--++-+-+=n n n a a a a a a a a264222221-+++++=n 41414122-⎪⎪⎭⎫ ⎝⎛-+=-n 312-=n ()4≥n . 且12112=-=a a 也适合上式.∴ 当∈n N *时,n a ()[]n n 1231--=. 解法4:由n n n a a 21=++,11=a ,得122-=a ()()()1231212122-=---+-=, ()()()123121211222332223+=----=+-=-=a a . 猜想n a ()[]n n 1231--=. 下面用数学归纳法证明猜想正确.① 当1=n 时,易知猜想成立;② 假设当kn =∈k (N *)时,猜想成立,即()[]k k k a 1231--=, 由k k k a a 21=++,得()[]()[]1111231123122+++--=---=-=k k k k k k k k a a , 故当1+=k n 时,猜想也成立.由①、②得,对任意∈n N *,n a ()[]n n 1231--=. ∴()[]()[]111121291+++--⨯--==n n n n n n n a a b ()[]1229112---=+n n . (2)n n a a a a S ++++= 321 ()()()()[]{}n n 111222231232-++-+--++++= ()⎥⎦⎤⎢⎣⎡----=+21122311n n . 要使0>-n nS b λ对任意∈n N *都成立,即()[]1229112---+n n ()02112231>⎥⎦⎤⎢⎣⎡-----+n n λ(*)对任意∈n N *都成立. ① 当n 为正奇数时, 由(*)式得[]1229112-++n n ()01231>--+n λ, 即()()1212911+-+n n ()01231>--+n λ, ∵0121>-+n , ∴()1231+<n λ对任意正奇数n 都成立. 当且仅当1=n 时, ()1231+n 有最小值1. ∴1<λ.② 当n 为正偶数时, 由(*)式得[]1229112--+n n ()02231>--+n λ, 即()()1212911-++n n ()01232>--n λ, ∵012>-n , ∴()12611+<+n λ对任意正偶数n 都成立. 当且仅当2=n 时, ()12611++n 有最小值23. ∴<λ23. 综上所述, 存在常数λ,使得0>-n nS b λ对任意∈n N *都成立, λ的取值范围是()1,∞-.。
广东省广州市天河区2009届普通高中毕业班综合测试(一)理科数学本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自已的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.2. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.3. 作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.4. 考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共8小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i1等于A .-1B .1C .-iD .i2.直线y x b =+平分圆228280x y x y +-++=的周长,则b =A .3B .5C .-3D .-53.已知函数()sin y x =ω+ϕ0,02π⎛⎫ω><ϕ≤ ⎪⎝⎭,且此函数的图象如图所示,则点(),ωϕ的坐标是A .2,4π⎛⎫ ⎪⎝⎭B .2,2π⎛⎫⎪⎝⎭C .4,4π⎛⎫ ⎪⎝⎭D .4,2π⎛⎫ ⎪⎝⎭4. 1023)212(x x -的展开式中常数项是 A .210 B .1052 C .14D .-1055.设q p ,是简单命题,则“q p ∧为真”是“q p ∨为真”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.如图,一个水平放置的图形的斜二测直观图是一个底角为045、腰和上底均为1的等腰梯形,那么原平面图形的面积为A . 21+B .221+ C .222+D .22+7.设函数)()(R x x f ∈为奇函数,21)1(=f ,)2()()2(f x f x f +=+,则)5(f 等于 A .5B .25C .1D .08.对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数,例如[2]=2;[1.2]=2;[2.2-]=3-, 这个函数[x ]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用。
2009年广东省高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知全集U=R,集合M={x|﹣2≤x﹣1≤2}和N={x|x=2k﹣1,k=1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()A.3个 B.2个 C.1个 D.无穷多个2.(5分)设z是复数,a(z)表示z n=1的最小正整数n,则对虚数单位i,a(i)=()A.8 B.6 C.4 D.23.(5分)若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,其图象经过点(,a),则f(x)=()A.log2x B.C.D.x24.(5分)已知等比数列{a n}满足a n>0,n=1,2,…,且a5•a2n﹣5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n﹣1=()A.(n﹣1)2B.n2C.(n+1)2D.n2﹣15.(5分)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④6.(5分)一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态.已知F1,F2成60°角,且F1,F2的大小分别为2和4,则F3的大小为()A.6 B.2 C.2 D.27.(5分)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A.36种B.12种C.18种D.48种8.(5分)已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为V甲和V乙(如图所示).那么对于图中给定的t0和t1,下列判断中一定正确的是()A.在t1时刻,甲车在乙车前面 B.t1时刻后,甲车在乙车后面C.在t0时刻,两车的位置相同D.t0时刻后,乙车在甲车前面二、填空题(共7小题,每小题5分,满分30分)9.(5分)随机抽取某产品m件,测得其长度分别为k(k∈R),则如图所示的程序框图输出的S=,s表示的样本的数字特征是.(注:框图中的赋值符号“=”也可以写成“←”“:=”)10.(5分)若平面向量,满足,平行于x轴,,则=.11.(5分)已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G 上一点到G的两个焦点的距离之和为12,则椭圆G的方程为.12.(5分)已知离散型随机变量X的分布列如表.若EX=0,DX=1,则a=,b=.X﹣1012P a b c13.(5分)若直线(t为参数)与直线(s为参数)垂直,则k=.14.不等式的实数解为.15.(5分)如图,点A,B,C是圆O上的点,且AB=4,∠ACB=45°,则圆O的面积等于.三、解答题(共6小题,满分80分)16.(12分)已知向量=(sinθ,﹣2)与=(1,cosθ)互相垂直,其中θ∈(0,).(Ⅰ)求sinθ和cosθ的值;(Ⅱ)若sin(θ﹣φ)=,0<φ<,求cosφ的值.17.(12分)根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:API0~5051~100101~150151~200201~2050251~300>300级别ⅠⅡⅢⅢⅣⅣⅤ状况优良轻微污染轻度污染中度污染中度重污染重度污染对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图.(1)求直方图中x的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.(结果用分数表示.已知57=78125,27=128,,365=73×5)18.(14分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为2,点E是正方形BCC1B1的中心,点F,G分别是棱C1D1,AA1的中点.设点E1,G1分别是点E,G在平面DCC1D1内的正投影.(1)求以E为顶点,以四边形FGAE在平面DCC1D1内的正投影为底面边界的棱锥的体积;(2)证明:直线FG1⊥平面FEE1;(3)求异面直线E1G1与EA所成角的正弦值.19.(14分)已知曲线C:y=x2与直线l:x﹣y+2=0交于两点A(x A,y A)和B(x B,y B),且x A<x B.记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合.(1)若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程;(2)若曲线G:x2﹣2ax+y2﹣4y+a2+=0与D有公共点,试求a的最小值.20.(14分)已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g (x)在x=﹣1处取得极小值m﹣1(m≠0).设.(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为,求m的值;(2)k(k∈R)如何取值时,函数y=f(x)﹣kx存在零点,并求出零点.21.(14分)已知曲线C n:x2﹣2nx+y2=0(n=1,2,…).从点P(﹣1,0)向曲线C n引斜率为k n(k n>0)的切线l n,切点为P n(x n,y n).(1)求数列{x n}与{y n}的通项公式;(2)证明:.2009年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2009•广东)已知全集U=R,集合M={x|﹣2≤x﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()A.3个 B.2个 C.1个 D.无穷多个【分析】根据题意,分析可得阴影部分所示的集合为M∩N,进而可得M与N 的元素特征,分析可得答案.【解答】解:根据题意,分析可得阴影部分所示的集合为M∩N,又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,即M={x|﹣1≤x≤3},在此范围内的奇数有1和3.所以集合M∩N={1,3}共有2个元素,故选B.2.(5分)(2009•广东)设z是复数,a(z)表示z n=1的最小正整数n,则对虚数单位i,a(i)=()A.8 B.6 C.4 D.2【分析】复数z n=1,要使i n=1,显然n是4的倍数,则a(i)=4.【解答】解:a(i)=i n=1,则最小正整数n为4.故选C.3.(5分)(2009•广东)若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,其图象经过点(,a),则f(x)=()A.log2x B.C.D.x2【分析】欲求原函数y=a x的反函数,即从原函数式中反解出x,后再进行x,y 互换,即得反函数的解析式.【解答】解:∵y=a x⇒x=log a y,∴f(x)=log a x,∴a==⇒f(x)=log x.故选B.4.(5分)(2009•广东)已知等比数列{a n}满足a n>0,n=1,2,…,且a5•a2n﹣5=22n (n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n﹣1=()A.(n﹣1)2B.n2C.(n+1)2D.n2﹣1【分析】先根据a5•a2n﹣5=22n,求得数列{a n}的通项公式,再利用对数的性质求得答案.【解答】解:∵a5•a2n﹣5=22n=a n2,a n>0,∴a n=2n(n≥3),∴log2a1+log2a3+…+log2a2n﹣1=log2(a1a3…a2n﹣1)=log221+3+…+(2n﹣1)=log2=n2.故选:B.5.(5分)(2009•广东)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④【分析】从直线与平面平行与垂直,平面与平面平行与垂直的判定与性质,考虑选项中的情况,找出其它可能情形加以判断,推出正确结果.【解答】解:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;如果这两条直线平行,可能得到两个平面相交,所以不正确.②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;这是判定定理,正确.③垂直于同一直线的两条直线相互平行;可能是异面直线.不正确.④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.正确.故选:D.6.(5分)(2009•广东)一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态.已知F1,F2成60°角,且F1,F2的大小分别为2和4,则F3的大小为()A.6 B.2 C.2 D.2【分析】三个力处于平衡状态,则两力的合力与第三个力大小相等,方向相反,把三个力化到同一个三角形中,又知角的值,在任意三角形中用余弦定理求得结果,最后不要忽略开方运算.【解答】解:∵F32=F12+F22﹣2F1F2cos(180°﹣60°)=28,∴,故选D7.(5分)(2009•广东)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A.36种B.12种C.18种D.48种【分析】根据题意,小张和小赵只能从事前两项工作,由此分2种情况讨论,①若小张或小赵入选,②若小张、小赵都入选,分别计算其情况数目,由加法原理,计算可得答案.【解答】解:根据题意分2种情况讨论,①若小张或小赵入选,则有选法C21C21A33=24;②若小张、小赵都入选,则有选法A22A32=12,共有选法12+24=36种,故选A.8.(5分)(2009•广东)已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为V甲和V乙(如图所示).那么对于图中给定的t0和t1,下列判断中一定正确的是()A.在t1时刻,甲车在乙车前面 B.t1时刻后,甲车在乙车后面C.在t0时刻,两车的位置相同D.t0时刻后,乙车在甲车前面【分析】利用定积分求面积的方法可知t0时刻前甲走的路程大于乙走的路程,则在t0时刻甲在乙的前面;又因为在t1时刻前利用定积分求面积的方法得到甲走的路程大于乙走的路程,甲在乙的前面;同时在t0时刻甲乙两车的速度一样,但是路程不一样.最后得到A正确,B、C、D错误.【解答】解:当时间为t0时,利用定积分得到甲走过的路程=v甲dt=a+c,乙走过的路程=v乙dt=c;当时间为t1时,利用定积分得到甲走过的路程=v甲dt=a+c+d,而乙走过的路dt=c+d+b;程=v乙从图象上可知a>b,所以在t1时刻,a+c+d>c+d+b即甲的路程大于乙的路程,A 正确;t1时刻后,甲车走过的路程逐渐小于乙走过的路程,甲车不一定在乙车后面,所以B错;在t0时刻,甲乙走过的路程不一样,两车的位置不相同,C错;t0时刻后,t1时刻时,甲走过的路程大于乙走过的路程,所以D错.故答案为A二、填空题(共7小题,每小题5分,满分30分)9.(5分)(2009•广东)随机抽取某产品m件,测得其长度分别为k(k∈R),则如图所示的程序框图输出的S=,s表示的样本的数字特征是平均数.(注:框图中的赋值符号“=”也可以写成“←”“:=”)【分析】由程序框图中的运算过程可以看出,当i=1时,s=a1,i=2时,s=,i=3时,…,s的值代表的是前i个数的平均值,故可得s的表达式.【解答】解:依据流程线的方向进行运算知当i=1时,s=a1,i=2时,s=,i=3时,…,归纳知,此程序框图中的算法是求解n 个数的平均值,故程序结束时,s=;其数字特征是平均数故两个空就依次填;平均数.10.(5分)(2009•广东)若平面向量,满足,平行于x轴,,则=(﹣1,1)或(﹣3,1).【分析】与x平行的单位向量有(1,0)和(﹣1,0),根据向量加法的坐标运算公式,构造方程组,解方程组即可求解.【解答】解:∵,平行于x轴,∴或(﹣1,0),则,或故答案为:(﹣1,1)或(﹣3,1)11.(5分)(2009•广东)已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为.【分析】由题设条件知,2a=12,a=6,b=3,由此可知所求椭圆方程为.【解答】解:由题设知,2a=12,∴a=6,b=3,∴所求椭圆方程为.答案:.12.(5分)(2009•广东)已知离散型随机变量X的分布列如表.若EX=0,DX=1,则a=,b=.X﹣1012P a b c【分析】根据题目条件中给出的分布列,可以知道a、b、c和之间的关系,根据期望为0和方差是1,又可以得到两组关系,这样得到方程组,解方程组得到要求的值.【解答】解:由题知,﹣a+c+=0,,∴,故答案为:;.13.(5分)(2009•广东)若直线(t为参数)与直线(s为参数)垂直,则k=﹣1.【分析】将直线(t为参数)与直线化为一般直线方程,然后再根据垂直关系求解.【解答】解:∵直线(t为参数)∴y=2+×k=﹣x+2+,直线(s为参数)∴2x+y=1,∵两直线垂直,∴,得k=﹣1.故答案为﹣1.14.(2009•广东)不等式的实数解为x且x≠﹣2.【分析】可直接转化为,两边平方去绝对值解决,注意|x+2|≠0【解答】解:且x≠﹣2故答案为:15.(5分)(2009•广东)如图,点A,B,C是圆O上的点,且AB=4,∠ACB=45°,则圆O的面积等于8π.【分析】要求圆O的面积,关键是求圆的半径R,求半径有如下方法:构造含半径R的三角形,解三角形求出半径R值;或是根据正弦定理,===2R,求出圆的半径后,代入圆的面积公式即可求解.【解答】解:法一:连接OA、OB,则∠AOB=90°,∵AB=4,OA=OB,∴R=,=;则S圆法二:,则S=圆三、解答题(共6小题,满分80分)16.(12分)(2009•广东)已知向量=(sinθ,﹣2)与=(1,cosθ)互相垂直,其中θ∈(0,).(Ⅰ)求sinθ和cosθ的值;(Ⅱ)若sin(θ﹣φ)=,0<φ<,求cosφ的值.【分析】(1)根据两向量垂直,求得sinθ和cosθ的关系代入sin2θ+cos2θ=1中求得sinθ和cosθ的值.(2)先利用φ和θ的范围确定θ﹣φ的范围,进而利用同角三角函数基本关系求得cos(θ﹣φ)的值,进而利用cosφ=cos[θ﹣(θ﹣ϕ)]根据两角和公式求得答案.【解答】解:(1)∵与互相垂直,则,即sinθ=2cosθ,代入sin2θ+cos2θ=1得,又,∴(2)∵0<φ<,,∴﹣<θ﹣φ<,则cos(θ﹣φ)==,∴cosφ=cos[θ﹣(θ﹣φ)]=cosθcos(θ﹣φ)+sinθsin(θ﹣φ)=.17.(12分)(2009•广东)根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:API0~5051~100101~150151~200201~2050251~300>300级别ⅠⅡⅢⅢⅣⅣⅤ状况优良轻微污染轻度污染中度污染中度重污染重度污染对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图.(1)求直方图中x的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.(结果用分数表示.已知57=78125,27=128,,365=73×5)【分析】(1)根据所有矩形的面积和为1,建立等量关系,解之即可;(2)空气质量分别为良和轻微污染,在频率直方图中在第二组和第三组,求出这两组的频率分别再乘以365即可求出所求;(3)先求出该城市一年中每天空气质量为良或轻微污染的概率,然后根据对立事件的概率和为1求出气质量不为良且不为轻微污染的概率,根据概率公式即可求出一周至少有两天空气质量为良或轻微污染的概率.【解答】解:(1)由图可知x=1﹣×50,解得;(2)一年中空气质量分别为良和轻微污染的天数为:,;(3)该城市一年中每天空气质量为良或轻微污染的概率为,则空气质量不为良且不为轻微污染的概率为,一周至少有两天空气质量为良或轻微污染的概率为.18.(14分)(2009•广东)如图,已知正方体ABCD﹣A1B1C1D1的棱长为2,点E 是正方形BCC1B1的中心,点F,G分别是棱C1D1,AA1的中点.设点E1,G1分别是点E,G在平面DCC1D1内的正投影.(1)求以E为顶点,以四边形FGAE在平面DCC1D1内的正投影为底面边界的棱锥的体积;(2)证明:直线FG1⊥平面FEE1;(3)求异面直线E1G1与EA所成角的正弦值.【分析】(1)依题作点E、G在平面DCC1D1内的正投影E1、G1,则E1、G1分别为CC1、DD1的中点,四边形FGAE在平面DCC1D1内的正投影为底面边界即为四边形DE 1FG1,面积为,由题意可证EE1为该棱锥的高,代入体积公式可求;(2)以D为坐标原点,DA、DC、DD1所在直线分别作x轴,y轴,z轴;要证直线FG1⊥平面FEE1⇔FG1⊥FE,FG1⊥FE1⇔,利用空间向量的数量积可证;(3)异面直线E1G1与EA所成角⇔所成的角,利用公式可求;【解答】解:(1)依题作点E、G在平面DCC1D1内的正投影E1、G1,则E1、G1分别为CC1、DD1的中点,连接EE1、EG1、ED、DE1,则所求为四棱锥E﹣DE1FG1的体积,其底面DE1FG1面积为=,(3分)又EE1⊥面DE1FG1,EE1=1,∴.(6分)(2)以D为坐标原点,DA、DC、DD1所在直线分别作x轴,y轴,z轴,得E1(0,2,1)、G1(0,0,1),又G(2,0,1),F(0,1,2),E(1,2,1),则,,,∴,,即FG1⊥FE,FG1⊥FE1,又FE1∩FE=F,∴FG1⊥平面FEE1.(10分)(3),,则,设异面直线E1G1与EA所成角为θ,则.(14分)19.(14分)(2009•广东)已知曲线C:y=x2与直线l:x﹣y+2=0交于两点A(x A,y A)和B(x B,y B),且x A<x B.记曲线C在点A和点B之间那一段L与线段AB 所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合.(1)若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程;(2)若曲线G:x2﹣2ax+y2﹣4y+a2+=0与D有公共点,试求a的最小值.【分析】(1)欲求线段PQ的中点M的轨迹方程,设线段PQ的中点M坐标为(x,y),即要求x,y间的关系式,先利用x,y列出点P(s,t)的坐标结合点P在曲线C上即得;(2)处理圆与D有无公共点的问题,须分两种情形讨论:当时和当a <0时.对于后一种情形,只须只需考虑圆心E到直线l:x﹣y+2=0的距离即可,从而求得求a的最小值.【解答】解:(1)联立y=x2与y=x+2得x A=﹣1,x B=2,则AB中点,设线段PQ的中点M坐标为(x,y),则,即,又点P在曲线C上,∴化简可得,又点P是L上的任一点,且不与点A和点B重合,则,即,∴中点M的轨迹方程为().(2)曲线G:x2﹣2ax+y2﹣4y+a2+=0,即圆E:,其圆心坐标为E(a,2),半径由图可知,当时,曲线G:x2﹣2ax+y2﹣4y+a2+=0与点D有公共点;当a<0时,要使曲线G:x2﹣2ax+y2﹣4y+a2+=0与点D有公共点,只需圆心E到直线l:x﹣y+2=0的距离,得,则a的最小值为.20.(14分)(2009•广东)已知二次函数y=g(x)的导函数的图象与直线y=2x 平行,且y=g(x)在x=﹣1处取得极小值m﹣1(m≠0).设.(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为,求m的值;(2)k(k∈R)如何取值时,函数y=f(x)﹣kx存在零点,并求出零点.【分析】(1)先根据二次函数的顶点式设出函数g(x)的解析式,然后对其进行求导,根据g(x)的导函数的图象与直线y=2x平行求出a的值,进而可确定函数g(x)、f(x)的解析式,然后设出点P的坐标,根据两点间的距离公式表示出|PQ|,再由基本不等式表示其最小值即可.(2)先根据(1)的内容得到函数y=f(x)﹣kx的解析式,即(1﹣k)x2+2x+m=0,然后先对二次项的系数等于0进行讨论,再当二次项的系数不等于0时,即为二次方程时根据方程的判别式进行讨论即可得到答案.【解答】解:(1)依题可设g(x)=a(x+1)2+m﹣1(a≠0),则g'(x)=2a(x+1)=2ax+2a;又g'(x)的图象与直线y=2x平行∴2a=2∴a=1∴g(x)=(x+1)2+m﹣1=x2+2x+m,,设P(x o,y o),则=当且仅当时,|PQ|2取得最小值,即|PQ|取得最小值当m>0时,解得当m<0时,解得(2)由(x≠0),得(1﹣k)x2+2x+m=0(*)当k=1时,方程(*)有一解,函数y=f(x)﹣kx有一零点;当k≠1时,方程(*)有二解⇔△=4﹣4m(1﹣k)>0,若m>0,,函数y=f(x)﹣kx有两个零点,即;若m<0,,函数y=f(x)﹣kx有两个零点,即;当k≠1时,方程(*)有一解⇔△=4﹣4m(1﹣k)=0,,函数y=f(x)﹣kx有一零点综上,当k=1时,函数y=f(x)﹣kx有一零点;当(m>0),或(m<0)时,函数y=f(x)﹣kx有两个零点;当时,函数y=f(x)﹣kx有一零点.21.(14分)(2009•广东)已知曲线C n:x2﹣2nx+y2=0(n=1,2,…).从点P(﹣1,0)向曲线C n引斜率为k n(k n>0)的切线l n,切点为P n(x n,y n).(1)求数列{x n}与{y n}的通项公式;(2)证明:.【分析】(1)设直线l n:y=k n(x+1),联立x2﹣2nx+y2=0得(1+k n2)x2+(2k n2﹣2n)x+k n2=0,则△=(2k n2﹣2n)2﹣4(1+k n2)k n2=0,由此可知,(2)由题设条件知,令函数,则=0,得,再由函数f(x)在上单调递减可知.【解答】解:(1)设直线l n:y=k n(x+1),联立x2﹣2nx+y2=0得(1+k n2)x2+(2k n2﹣2n)x+k n2=0,则△=(2k n2﹣2n)2﹣4(1+k n2)k n2=0,∴(舍去),即,∴(2)证明:∵∴由于,可令函数,则,令f′(x)=0,得,给定区间,则有f′(x)<0,则函数f(x)在上单调递减,∴f(x)<f(0)=0,即在恒成立,又,则有,即.。
数学(理科)试题参考答案及评分标准 第 1 页 共 14 页试卷类型:A2009年广州市普通高中毕业班综合测试(二)数 学(理科)2009.4 本试卷共4页,21小题, 满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题(或题组号)对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=, 其中S 是锥体的底面积, h 是锥体的高. 球的表面积公式24S R π=,其中R 为球的半径.如果事件A 、B 互斥,那么()()()P A B P A P B +=+.如果事件A 在一次试验中发生的概率是p ,那么在n 次独立重复试验中恰好发生k 次的概率()()C 1n kk kn nP k p p -=-.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果复数()()22356i m m m m -+-+是纯虚数,则实数m 的值为A.0B.2C.0或3D.2或32.已知函数()()()4040.x x x f x x x x ⎧+<⎪=⎨-⎪⎩≥,,, 则函数()f x 的零点个数为A.1B.2C.3D.43.已知全集U =R ,集合{3A x =≤}7x <,{}27100B x x x =-+<,则() AB R =ðA.()(),35,-∞+∞B.()[),35,-∞+∞C.(][),35,-∞+∞D.(](),35,-∞+∞数学(理科)试题参考答案及评分标准 第 2 页 共 14 页图24.命题“x ∃∈R ,2210x x -+<”的否定是 A.x ∃∈R ,221x x -+≥0 B.x ∃∈R ,2210x x -+> C.x ∀∈R ,221x x -+≥0D.x ∀∈R ,2210x x -+<5.已知点()1,0A ,直线l :24y x =-,点R 是直线l 上的一点,若RA AP =,则点P 的轨迹方程为A.2y x =-B.2y x =C.28y x =-D.24y x =+ 6.函数()cos f x x x =的导函数()f x '在区间[],ππ-上的图像大致是A. B. C. D. 7.现有4种不同颜色要对如图1所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有 A.24种B.30种C.36种D.48种8.设直线l 与球O 有且只有一个公共点P ,从直线l 出发的两个半平面α、β截球O 的两个截面圆的半径分别为1二面角l αβ--的平面角为150,则球O 的表面积为A.4πB.16πC.28πD.112π二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~12题)9.在空间直角坐标系中,以点()4 1 9A ,,,()101 6B -,,,() 4 3C x ,,为顶点的ABC ∆是以BC 为斜边的等腰直角三角形,则实数x 的值为 .10.在某项才艺竞赛中,有9位评委,主办单位规定计算参赛者比赛成绩的规则如下:剔除评委中的一个最高分和一个最低分后,再计算其他7位评委的平均分作为此参赛者的比赛成绩.现有一位参赛者所获9位评委一个最高分为86分、一个最低分为45分,若未剔除最高分与最低分时9位评委的平均分为76分,则这位参赛者的比赛成绩为 分.11.阅读如图2所示的程序框图,若输出y 的值为0, 则输入x 的值为 .图1数学(理科)试题参考答案及评分标准 第 3 页 共 1412.在平面内有n (*,n n N ∈≥)3条直线,其中任何两条不平行,任何三条不过同一点,若这n条直线把平面分成()f n 个平面区域,则()5f 的值是 ,()f n 的表达式是 .(二)选做题(13~15题,考生只能从中选做两题) 13.(几何证明选讲选做题)如图3所示,在四边形ABCD 中,EF BC ,FG AD ,则EF FGBC AD+的值为 . 14.(不等式选讲选做题) 函数()f x =12x x -++的最小值为 .15.(坐标系与参数方程选做题)直线()24,13x t t y t=-+⎧⎨=--⎩为参数被圆25c os ,15s i n x y θθ=+⎧⎨=+⎩(θ为参数)所截得的弦长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知向量2cos 12x ⎛⎫= ⎪⎝⎭,m ,sin 12x ⎛⎫= ⎪⎝⎭,n ()x ∈R ,设函数()1f x =-m n .(1)求函数()f x 的值域;(2) 已知锐角ABC ∆的三个内角分别为A ,B ,C ,若()513f A =,()35f B =,求()f C 的值.17.(本小题满分12分)在长方体1111ABCD A BC D -中,2AB BC ==,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如图4所示的几何体111ABCD ACD -,(1)求棱1A A 的长;(2)在线段1BC 上是否存在点P ,使直线1A P 与1C D 垂直,如果存在,求线段1A P 的长,如果不存在,请说明理由.图3数学(理科)试题参考答案及评分标准 第 4 页 共 14 页18.(本小题满分14分)已知等比数列{}n a 的前n 项和为n S ,若m a ,2m a +,1m a +()*m ∈N 成等差数列,试判断m S ,2m S +,1m S +是否成等差数列,并证明你的结论.19.(本小题满分14分)一个口袋中装有2个白球和n 个红球(n ≥2且*n ∈N ),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖. (1)试用含n 的代数式表示一次摸球中奖的概率p ; (2)若3n =,求三次摸球恰有一次中奖的概率;(3)记三次摸球恰有一次中奖的概率为()f p ,当n 为何值时,()f p 最大?20.(本小题满分14分)已知函数()2a f x x x=+,()ln g x x x =+,其中0a >.(1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围.21.(本小题满分14分)已知双曲线C :22221x y a b -=00(,)a b >>左、右焦点分别为1F 、2F ,在双曲线C 上有一点M ,使12MF MF ⊥,且12MFF ∆的面积为1. (1)求双曲线C 的方程;(2)过点()3,1P 的动直线l 与双曲线C 的左、右两支分别相交于两点A 、B ,在线段AB上取异于A 、B 的点Q ,满足AP QB AQ PB =.证明:点Q 总在某定直线上.2009年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准 第 5 页 共 14 页数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前二题得分.第12题第1个空3分,第2个空2分.9.2 10.79 11.0 或 2 12.16,222n n ++13.1 14.3 15.6三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)()12cos 1sin 1122x x f x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,,m n 2cossin 11sin 22x xx =+-=. ∵x ∈R ,∴函数()f x 的值域为[]1 1-,.(2)∵()513f A =,()35f B =,∴5sin 13A =,3sin 5B =.数学(理科)试题参考答案及评分标准 第 6 页 共 14 页A ∵,AB 都为锐角,∴12cos 13A ==,4cos 5B ==. ∴()()()sin sin sin fC C A B A B π==-+=+⎡⎤⎣⎦sin cos cos sin A B A B =+541235613513565=⨯+⨯=. ∴()f C 的值为5665.17.(本小题主要考查空间线面关系、几何体的表面积与体积等基本知识,考查数形结合的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) 解:(1)设1A A h =,∵几何体111ABCD AC D -的体积为403, ∴1111111111403ABCD A C D ABCD A B C D B A B C V V V ---=-=, 即11114033ABCD A B C S h S h ∆⨯-⨯⨯=, 即11402222323h h ⨯⨯-⨯⨯⨯⨯=,解得4h =. ∴1A A 的长为4. (2)在线段1BC 上存在点P ,使直线1A P 与1C D 垂直. 以下给出两种证明方法:方法1:过点1D 作1C D 的垂线交1C C 于点Q ,过点Q 作PQ BC交1BC 于点P .∵11C D DQ ⊥,111C D A D ⊥,1111DQ A D D =,∴1C D ⊥平面11A D Q .∵1AQ ⊂平面11A D Q ,∴11C D AQ ⊥. ∵1C D PQ ⊥,∴1C D ⊥平面1A PQ . ∵1A P ⊂平面1A PQ ,∴11C D A P ⊥. 在矩形11CDD C 中,∵11Rt D C Q ∆∽1Rt C CD ∆,∴1111C Q D CCD C C=,即1224C Q =,∴11C Q =.数学(理科)试题参考答案及评分标准 第 7 页 共 14 页∵1C PQ ∆∽1C BC ∆,∴1111C P C Q C B C C =,14=,∴12C P =. 在11A PC ∆中,∵11AC =∴1111112cos A C A C P C B ∠==由余弦定理,得1A P ==. ∴在线段1BC 上存在点P ,使直线1A P 与1C D 垂直,且线段1A P. 方法2:以点D 为坐标原点,分别以DA ,DC ,1DD 所在的直线为x 轴,y 轴,z 轴建立如图的空间直角坐标系,由已知条件与(1)可知,()10,2,4C ,()12,0,4A ,()0,0,0D , 假设在线段1BC 上存在点()P x y z ,,(0≤x ≤2,2y =,0≤z ≤)4使直线1A P 与1C D 垂直,过点P 作PQ BC ⊥交BC 于点Q .由BPQ ∆∽1BC C ∆,得1PQ BQC C BC=, ∴124422BQ xPQ C C x BC -=⨯=⨯=-. ∴42z x =-.∴()12 2 2A P x x =--,,,()10 2 4C D =--,,. ∵11A P C D ⊥,∴110A P C D =,即()()2 2 20 2 40x x ----=,,,,,∴12x =. 此时点P 的坐标为12 32⎛⎫ ⎪⎝⎭,,,在线段1BC 上.∵13 2 12A P ⎛⎫=-- ⎪⎝⎭,,,∴1A P ⎛=- ∴在线段1BC 上存在点P ,使直线1A P 与1CD 垂直,且线段1A P . 18.(本小题主要考查等差数列、等比数列的通项公式与前n 项和公式等基础知识,考查化归与转化、分类与整合的数学思想方法,以及推理论证能力和运算求解能力)解:设等比数列{}n a 的首项为1a ,公比为q ()10,0a q ≠≠,数学(理科)试题参考答案及评分标准 第 8 页 共 14 页若m a ,2m a +,1m a +成等差数列, 则22m a +=m a +1m a +. ∴111112m m m a q a q a q +-=+. ∵10a ≠,0q ≠,∴2210q q --=. 解得1q =或12q =-. 当1q =时,∵1m S ma =,()111m S m a +=+,()212m S m a +=+,∴212m m m S S S ++≠+.∴当1q =时,m S ,2m S +,1m S +不成等差数列.当12q =-时,m S ,2m S +,1m S +成等差数列.下面给出两种证明方法. 证法1:∵()()()1211222m m m m m m m m m S S S S S a S a a ++++++-=++-++122m m a a ++=-- 112m m a a q ++=-- 11122m m a a ++⎛⎫=--- ⎪⎝⎭0=, ∴212m m m S S S ++=+.∴当12q =-时,m S ,2m S +,1m S +成等差数列. 证法2:∵212211212412113212m m m a S a +++⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+, 又1111111111222112113221122m m m m m m a a S S a +++⎡⎤⎡⎤⎛⎫⎛⎫----⎢⎥⎢⎥ ⎪ ⎪⎡⎤⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫⎣⎦⎣⎦+=+=----⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦++221211242322m m a ++⎡⎤⎛⎫⎛⎫=-⨯-+⨯-⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦2141132m a +⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, ∴212m m m S S S ++=+. ∴当12q =-时,m S ,2m S +,1m S +成等差数列. 19.(本小题主要考查等可能事件、互斥事件和独立重复试验等基础知识,考查化归与转化的数学思想方法,以及推理论证能力和运算求解能力)数学(理科)试题参考答案及评分标准 第 9 页 共 14 页解:(1)∵一次摸球从2n +个球中任选两个,有22C n +种选法,任何一个球被选出都是等可能的,其中两球颜色相同有222C C n +种选法, ∴一次摸球中奖的概率2222222C C 2C 32n n n n p n n ++-+==++. (2)若3n =,则一次摸球中奖的概率25p =, 三次摸球是独立重复试验,三次摸球恰有一次中奖的概率是123354(1)C (1)125P p p =⋅⋅-=. (3)设一次摸球中奖的概率为p ,则三次摸球恰有一次中奖的概率为()()213233(1)C 1363f p P p p p p p ==⋅⋅-=-+,01p <<,∵()()()291233131f p p p p p '=-+=--, ∴()f p 在10 3⎛⎫ ⎪⎝⎭,上为增函数,在1 13⎛⎫ ⎪⎝⎭,上为减函数.∴当13p =时,()f p 取得最大值. ∵2221323n n p n n -+==++(n ≥)*2,n ∈N 且, 解得2n =.故当2n =时,三次摸球恰有一次中奖的概率最大.20.(本小题主要考查函数的性质、函数与导数等知识,考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)(1)解法1:∵()22ln a h x x x x=++,其定义域为()0 +∞,, ∴()2212a h x x x'=-+.∵1x =是函数()h x 的极值点,∴()10h '=,即230a -=.∵0a >,∴a =经检验当a =,1x =是函数()h x 的极值点,∴a =解法2:∵()22ln a h x x x x =++,其定义域为()0+∞,, ∴()2212a h x x x'=-+.数学(理科)试题参考答案及评分标准 第 10 页 共 14 页令()0h x '=,即22120a x x -+=,整理,得2220x x a +-=.∵2180a ∆=+>,∴()0h x '=的两个实根1x =(舍去),2x =,当x 变化时,()h x ,()h x '的变化情况如下表:依题意1=,即23a =,∵0a >,∴a =(2)解:对任意的[]12,1x x e ∈,都有()1f x ≥()2g x 成立等价于对任意的[]12,1x x e ∈,都有()min f x ⎡⎤⎣⎦≥()max g x ⎡⎤⎣⎦. 当x ∈[1,e ]时,()110g x x'=+>. ∴函数()ln g x x x =+在[]1e ,上是增函数.∴()()max 1g x g e e ==+⎡⎤⎣⎦.∵()()()2221x a x a a f x x x +-'=-=,且[]1,x e ∈,0a >.①当01a <<且x ∈[1,e ]时,()()()20x a x a f x x +-'=>,∴函数()2a f x x x=+在[1,e ]上是增函数,∴()()2min11f x f a ==+⎡⎤⎣⎦. 由21a +≥1e +,得a 又01a <<,∴a 不合题意.②当1≤a ≤e 时, 若1≤x <a ,则()()()2x a x a f x x +-'=<,数学(理科)试题参考答案及评分标准 第 11 页 共 14 页若a <x ≤e ,则()()()20x a x a f x x +-'=>. ∴函数()2a f x x x=+在[)1,a 上是减函数,在(]a e ,上是增函数. ∴()()min 2f x f a a ==⎡⎤⎣⎦.由2a ≥1e +,得a ≥12e +, 又1≤a ≤e ,∴12e +≤a ≤e . ③当a e >且x ∈[1,e ]时,()()()20x a x a f x x +-'=<, ∴函数()2a f x x x=+在[]1e ,上是减函数. ∴()()2min a f x f e e e ==+⎡⎤⎣⎦. 由2a e e+≥1e +,得a≥又a e >,∴a e >.综上所述,a 的取值范围为1,2e +⎡⎫+∞⎪⎢⎣⎭.21.(本小题主要考查双曲线、解方程和直线与圆锥曲线的位置关系等知识,考查化归与转化、数形结合的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)(1)解:∵双曲线22221x y a b -=()0,0a b >>,∴3a =.即223ab =. ① ∵12MF MF ⊥,且12MFF ∆的面积为1. ∴1212112MF F S MF MF ∆==,即122MF MF =. ∵122MF MF a -=, ∴222112224MF MF MF MF a -+=. ∴221244F F a -=.∴()222444a b a +-=,∴21b =. ②数学(理科)试题参考答案及评分标准 第 12 页 共 14 页将②代入①,得23a =. ∴双曲线C 的方程为2213x y -=. (2)解法1:设点Q A B ,,的坐标分别为(x y ,),(11x y ,),(22x y ,),且1x <2x <3,又设直线l 的倾斜角为θ2πθ⎛⎫≠ ⎪⎝⎭,分别过点P Q A B ,,,作x 轴的垂线,垂足分别为1111P Q A B ,,,, 则 1113cos cos A P x AP θθ-==,112cos cos PB x PB θθ-3== , 112cos cos Q B x x QB θθ-==,111-cos cos AQ x x AQ θθ==, ∵AP QB AQ PB =,∴(3-1x )(2x x -)=123x x x --()(), 即[]1212126()3()2x x x x x x x -+=+-. ③ 设直线l 的方程为1(3)y k x -=-, ④将④代入223x y -=1中整理,得 (1-3222)6133(13)10k x k k x k ⎡⎤----+=⎣⎦().依题意1x ,2x 是上述方程的两个根,且2130k -≠, ∴()()1222122613133131.13k k x x k k x x k -⎧+=⎪-⎪⎨⎡⎤-+⎪⎣⎦=-⎪-⎩, ⑤将⑤代入③整理,得2(3)x k x -=-. ⑥ 由④、⑥消去k 得21x y -=-,这就是点Q 所在的直线方程. ∴点Q (x y ,)总在定直线 10x y --=上.解法2:设点Q ,A B ,的坐标分别为,(x )y ,11,()x y ,22(,)x y ,且1x <2x <3, ∵AP QB AQ PB =,数学(理科)试题参考答案及评分标准 第 13 页 共 14 页 ∴AP AQ PB QB =-,即112233x x x x x x--=---, 即[]1212126()3()2x x x x x x x -+=+-.以下同解法1.解法3:设点Q A B ,,的坐标分别为1122() () ()x y x y x y ,,,,,, 由题设知 AP PB AQ QB ,,,均不为零,记APAQPB QB λ==. ∵过点P 的直线l 与双曲线C 的左、右两支相交于两点A ,B ,∴0λ>且1λ≠.∵A P B Q ,,,四点共线,∴ AP PB AQ QB λλ=-=,. 即()()()()112211223,13,1,,,.x y x y x x y y x x y y λλ--=---⎧⎪⎨--=--⎪⎩ ∴1212311x x x x x λλλλ-⎧=⎪⎪-⎨+⎪=⎪+⎩③ 由③消去λ,得[]1212126()3()2x x x x x x x -+=+-. 以下同解法1.解法4:设点Q A B ,,的坐标分别为1122() () ()x y x y x y ,,,,,, 由题设知 AP PB AQ QB ,,,均不为零,记APPB AQ QBλ==. ∵过点P 的直线l 与双曲线C 的左、右两支分别相交于两点A B 、, ∴0λ>且1λ≠. ∵A P B Q ,,,四点共线,设12 PA AQ PB BQ λλ==,,则120λλ+=. 即()()()()11111222223,1,,3,1,.x y x x y y x y x x y y λλ--=--⎧⎪⎨--=--⎪⎩数学(理科)试题参考答案及评分标准 第 14 页 共 14 页 ∴111111311.1x x y y λλλλ+⎧=⎪+⎪⎨+⎪=⎪+⎩, 2222223,11.1x x y y λλλλ+⎧=⎪+⎪⎨+⎪=⎪+⎩∵点11()A x y ,,22()B x y ,在双曲线C 上, ∴22313311i i i i x y λλλλ⎛⎫⎛⎫++-= ⎪ ⎪++⎝⎭⎝⎭,其中1 2i =,. ∴12λλ,是方程22313311x y λλλλ++⎛⎫⎛⎫-= ⎪ ⎪++⎝⎭⎝⎭的两个根. 即12 λλ,是方程()()222336130x y x y λλ--+--+=的两个根. ∵120λλ+=,且22330x y --≠, ∴()122261033x y x y λλ--+=-=--,即10x y --=. ∴点()Q x y ,总在定直线10x y --=上.。
(理科)试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.题号 1 2 3 4 5 6 7 8 答案 A B C D A C B D二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,每小题5分,满分30分.其中13~15是选做题,考生只能选做两题. 第12题第一个空2分,第二个空3分.9.9 10.2 11.80 12.-1;4 13.3414.1 15. ⎥⎦⎤⎢⎣⎡2,112 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分) (本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力) 解: (1)∵053cos >=B , 且π<<B 0,∴ 54cos 1sin 2=-=B B .由正弦定理得Bb Aa sin sin =. ∴524542sin sin =⨯==b Ba A . (2)∵,4sin 21==∆B ac S ABC ∴454221=⨯⨯⨯c .∴ .由余弦定理得B ac c a b cos 2222-+=,∴175352252cos 22222=⨯⨯⨯-+=-+=B ac c a b .17.(本小题满分14分) (本小题主要考查概率、随机变量的分布列及其数学期望等基础知识,考查运算求解能力)解:(1)记“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B ,则()()52,53==A P A P ,()()p B P p B P -==1,.依题意得()209531153=⎪⎭⎫ ⎝⎛-+-p p , 解得43=p .故p 的值为43.(2)ξ的取值分别为,4,2,0.()()()()10141520=⨯=⋅===B P A P B A P P ξ,()2092==ξP ,()()()()20943534=⨯=⋅===B P A P AB P P ξ,ξ∴的分布列为ξ24p 101 209 209∴E .1027209420921010=⨯+⨯+⨯=ξ 18.(本小题满分14分) (本小题主要考查空间中线面的位置关系、空间的角、几何体体积等基础知识,考查空间想象能力、推理论证能力和运算求解能力)(1) 证明: ∵E D ,分别是棱PB PA ,的中点,∴DE 是△PAB 的中位线.∴AB DE //. ∵⊄DE 平面⊂AB ABC ,平面,ABC∴//DE 平面ABC . 同理可证 //DF 平面ABC .5=c∵⊂=DE D DF DE , 平面DEF ,⊂DF 平面DEF , ∴平面DEF // 平面ABC . (2) 求三棱锥ABC P -的体积的最大值, 给出如下两种解法: 解法1: 由已知⊥PA 平面ABC , AB AC ⊥,2==BC PA ∴4222==+BCACAB .∴三棱锥ABC P -的体积为ABCS PA V ∆⨯⨯=31AC AB PA ⨯⨯⨯⨯=2131AC AB ⨯⨯⨯=26123122AC AB+⨯≤2312BC ⨯=32=.当且仅当AC AB =时等号成立,V 取得最大值,其值为解法2:设x AB =,在R t △ABC 中,2224xABBCAC -=-=()20<<x .∴三棱锥ABC P -的体积为ABC S PA V ∆⨯⨯=31AC AB PA ⨯⨯⨯⨯=21312431x x -=42431x x -=()423122+--=x .∵40,202<<<<x x , ∴ 当22=x ,即2=x 时,V 取得最大值,其值为32,此时2==AC AB .求二面角D EF A --的平面角的余弦值, 给出如下两种解法: 解法1:作EF DG ⊥,垂足为G , 连接AG .∵ ⊥PA 平面ABC ,平面//ABC 平面DEF , ∴ ⊥PA 平面DEF .∵ ⊂EF 平面DEF ,∴ ⊥PA EF .∵ D PA DG = ,∴ ⊥EF 平面PAG .∵⊂AG 平面PAG ,∴⊥EF AG .∴ AGD ∠是二面角D EF A --的平面角. 在R t △EDF 中,121,2221=====BC EF AB DF DE ,∴21=DG .在R t △ADG 中,2541122=+=+=DGADAG ,552521cos ===∠AG DG AGD .∴二面角D EF A --的平面角的余弦值为55.解法2:分别以AP AC AB ,,所在直线为x 轴, y 轴, z轴,建立如图的空间直角坐标系xyz A -,则()()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1,22,0,1,0,22,1,0,0,0,0,0F E D A . ∴⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=0,22,22,1,0,22EF AE .设n ()z y x ,,=为平面AEF 的法向量,∴⎪⎩⎪⎨⎧=⋅=⋅.0,0EF n AE n 即⎪⎪⎩⎪⎪⎨⎧=+-=+.02222,022y x z x令2=x , 则1,2-==z y .∴n ()1,2,2-=为平面AEF 的一个法向量.∵平面DEF 的一个法向量为()100-=,,DA ,∴()()()5511221222=⨯-++==n cos .∴二面角D EF A --的平面角的余弦值为55. 19.(本小题满分12分)(本小题主要考查函数最值、不等式、导数及其应用等基础知识,考查分类与整合的数学思想方法,以及运算求解能力和应用意识)解:(1)生产150件产品,需加工A 型零件450个,则完成A 型零件加工所需时间()x f ∈==x xx(905450N *,且)491≤≤x .(2)生产150件产品,需加工B 型零件150个,则完成B 型零件加工所需时间()x g ()∈-=-=x xx (5050503150N *,且)491≤≤x .设完成全部生产任务所需时间为()x h 小时,则()x h 为()x f 与()x g 的较大者.令()()x g x f ≥,即xx -≥505090,解得71321≤≤x .所以,当321≤≤x 时,()()x g x f >;当4933≤≤x 时,()()x g x f <.故()()()⎪⎩⎪⎨⎧≤≤∈-≤≤∈=4933,,5050321,,90**x Nx xx N x x x h .当321≤≤x 时,()0902'<-=xx h ,故()x h 在[]32,1上单调递减,则()x h 在[]32,1上的最小值为()1645329032==h (小时);当4933≤≤x 时,()()050502'>-=x x h ,故()x h 在[]49,33上单调递增,则()x h 在[]49,33上的最小值为()175033505033=-=h (小时);()()3233h h > ,∴()x h 在[]49,1上的最小值为()32h . 32=∴x .答:为了在最短时间内完成生产任务,x 应取32.20.(本小题满分14分) (本小题主要考查圆、椭圆、直线等基础知识和数学探究,考查数形结合、分类与整合的数学思想方法,以及推理论证能力、运算求解能力和创新意识)解:(1)圆()642:22=+-y x M , 圆心M 的坐标为()0,2,半径8=R .∵R AM <=4,∴点()0,2-A 在圆M 内.设动圆C 的半径为r ,圆心为C ,依题意得CA r =,且r R CM -=,即AM CA CM >=+8.∴圆心C 的轨迹是中心在原点,以M A ,两点为焦点,长轴长为8的椭圆,设其方程为()012222>>=+b a by ax , 则2,4==c a .∴12222=-=c a b .∴所求动圆C 的圆心的轨迹方程为1121622=+yx.(2)由⎪⎩⎪⎨⎧=++=.11216,22yx m kx y 消去y 化简整理得:()0484843222=-+++m kmx xk .设11(,)B x y ,22(,)D x y ,则122834km x x k+=-+.△1()()()04844348222>-+-=mkkm . ① 由⎪⎩⎪⎨⎧=-+=.1124,22y x m kx y 消去y 化简整理得:()01223222=----m kmx xk .设()()4433,,,y x F y x E ,则24332kkm x x -=+,△2()()()012342222>+-+-=m k km . ② ∵DF BE +=0, ∴4231()()0x x x x -+-=,即1234x x x x +=+,∴2232438kkm kkm -=+-.∴02=km 或2231434kk -=+-.解得0k =或0m =.当0k =时,由①、②得 3232<<-m ,∵∈m Z ,∴m 的值为2,3-- 1-,0,13,2,; 当0m =,由①、②得 33<<-k ,∵∈k Z ,∴1,0,1-=k .∴满足条件的直线共有9条.21.(本小题满分14分)(本小题主要考查数列的通项公式、数列前n 项和、不等式等基础知识,考查化归与转化、分类与整合、特殊与一般的数学思想方法,以及推理论证能力、运算求解能力和抽象概括能力)解: (1) ∵1,+n n a a 是关于x 的方程022=+-n nb x x ∈n (N )*的两根, ∴⎩⎨⎧==+++.,211n n n n n n a a b a a求数列{}n a 的通项公式, 给出如下四种解法:解法1: 由nn n a a 21=++,得⎪⎭⎫⎝⎛⨯--=⨯-++n n n n a a 23123111,故数列⎭⎬⎫⎩⎨⎧⨯-n n a 231是首项为31321=-a ,公比为1-的等比数列.∴()1131231--⨯=⨯-n n n a ,即()[]n n n a 1231--=. 解法2: 由nn n a a 21=++,两边同除以()11+-n , 得()()()nnnn n a a 21111--=---++,令()nn n a c 1-=, 则()nn n c c 21--=-+. 故()()()123121--++-+-+=n n n c c c c c c c c ()()()()13222221-----------=n()()[]()2121211----⋅---=-n()[]1231--=n()2≥n .且1111-=-=ac 也适合上式,∴()nn a 1-()[]1231--=n , 即()[]n n n a 1231--=.解法3: 由n n n a a 21=++,得1212+++=+n n n a a , 两式相减得nnn n n a a 22212=-=-++.当n为正奇数时,()()()235131--++-+-+=n n n a a a a a a a a25322221-+++++=n41412121-⎪⎪⎭⎫ ⎝⎛-+=-n312+=n()3≥n .且11=a 也适合上式. 当n 为正偶数时,()()()246242--++-+-+=n n n a a a a a a a a264222221-+++++=n 41414122-⎪⎪⎭⎫ ⎝⎛-+=-n312-=n()4≥n .且12112=-=a a 也适合上式. ∴ 当∈n N *时,n a ()[]nn1231--=. 解法4:由nn n a a 21=++,11=a ,得122-=a ()()()1231212122-=---+-=,()()()123121211222332223+=----=+-=-=a a .猜想n a ()[]nn1231--=.下面用数学归纳法证明猜想正确. ① 当1=n 时,易知猜想成立;② 假设当k n =∈k (N*)时,猜想成立,即()[]kkk a 1231--=,由kk k a a 21=++,得()[]()[]1111231123122+++--=---=-=k k kkkk kk a a ,故当1+=k n 时,猜想也成立.由①、②得,对任意∈n N *,n a ()[]nn1231--=.∴()[]()[]111121291+++--⨯--==n n nnn n n a a b()[]1229112---=+nn .(2)n n a a a a S ++++= 321()()()()[]{}nn111222231232-++-+--++++=()⎥⎦⎤⎢⎣⎡----=+21122311n n .要使0>-n n S b λ对任意∈n N *都成立, 即()[]1229112---+nn ()02112231>⎥⎦⎤⎢⎣⎡-----+nn λ(*)对任意∈n N *都成立. ① 当n 为正奇数时, 由(*)式得[]1229112-++nn ()01231>--+n λ, 即()()1212911+-+nn ()01231>--+n λ,∵0121>-+n ,∴()1231+<nλ对任意正奇数n 都成立.当且仅当1=n 时,()1231+n有最小值1.∴1<λ.FEDCBAPG FEDCBAP② 当n 为正偶数时, 由(*)式得[]1229112--+nn ()02231>--+n λ,即()()1212911-++nn ()01232>--nλ,∵012>-n, ∴()12611+<+n λ对任意正偶数n 都成立.当且仅当2=n 时, ()12611++n 有最小值23.∴<λ23.综上所述, 存在常数λ,使得0>-n n S b λ对任意∈n N *都成立, λ的取值范围是()1,∞-.。