动生电动势和感生电动势
- 格式:ppt
- 大小:3.34 MB
- 文档页数:33
§6-2 动生电动势和感生电动势动生电动势:回路或其一部分在磁场中的相对运动所产生的感应电动势。
感生电动势:仅由磁场的变化而产生的感应电动势。
一 动生电动势图6 - 5 动生电动势动生电动势的产生可以用洛伦兹力来解释。
长为l 的导体棒与导轨构成矩形回路abcd 平放在纸面内,均匀磁场B 垂直纸面向里。
当导体棒ab 以速度v 沿导轨向右滑动时,导体棒内自由电子也以速度v 随之一起向右运动。
每个自由电子受到的洛伦兹力为B v F ⨯-)(=e ,方向从b 指向a ,在其作用下自由电子向下运动。
如果导轨是导体,在回路中将形成沿着abcd 逆时针方向的电流。
如果导轨是绝缘体,则洛伦兹力将使自由电子在a 端累积,从而使a 端带负电,b 端带正电,在ab 棒上产生自上而下的静电场。
当作用在自由电子上的静电力与洛伦兹力大小相等时达到平衡,ab 间电压达到稳定值,b 端电势比a 端高。
这一段运动导体相当于一个电源,它的非静电力就是洛伦兹力。
电动势定义为单位正电荷从负极通过电源内部移到正极的过程中,非静电力K 所作的功,即B v F K ⨯=-=e.动生电动势为ε⎰⎰+-⋅⨯=⋅=l B v l K d )(d ba .(6.4)均匀磁场情况:若v ⊥ B , 则有ε = B l v ;若导体顺着磁场方向运动,v // B ,则有 v ⨯ B = 0,没有动生电动势产生。
因此,可以形象地说,只有当导线切割磁感应线而运动时,才产生动生电动势。
普遍情况:在任意的恒定磁场中,一个任意形状的导线线圈L (闭合的或不闭合的)在运动或发生形变时,各个线元d l 的速度v 的大小和方向都可能是不同的。
这时,在整个线圈L 中产生的动生电动势为ε l B v d )()(⋅⨯=⎰L .(6.5)图6 - 6 洛伦兹力不作功洛伦兹力对电荷不作功:洛伦兹力总是垂直于电荷的运动速度,即v ⊥F v ,因此洛伦兹力对电荷不作功。
动生电动势和感生电动势§6-2动生电动势和感生电动势动生电动势:回路或其一部分在磁场中的相对运动所产生的感应电动势。
感生电动势:仅由磁场的变化而产生的感应电动势。
一动生电动势图6-5动生电动势动生电动势的产生可以用洛伦兹力来解释。
长为l的导体棒与导轨构成矩形回路abcd平放在纸面内,均匀磁场b垂直纸面向里。
当导体棒ab以速度v沿导轨向右滑动时,导体棒内自由电子也以速度v随之一起向右运动。
每个自由电子受到的洛伦兹力为f=(。
e)v。
b,方向从b指向a,在其作用下自由电子向下运动。
如果导轨是导体,在回路中将形成沿着abcd逆时针方向的电流。
如果导轨是绝缘体,则洛伦兹力将使自由电子在a端累积,从而使a端带负电,b端带正电,在ab棒上产生自上而下的静电场。
当作用在自由电子上的静电力与洛伦兹力大小相等时达到平衡,ab间电压达到稳定值,b端电势比a端高。
这一段运动导体相当于一个电源,它的非静电力就是洛伦兹力。
电动势定义为单位正电荷从负极通过电源内部移到正极的过程中,非静电力k所作的功,即k。
f。
e。
v。
b.动生电动势为。
k。
dl。
a(v。
b)。
dl.b(6.4)均匀磁场情况。
若v。
b,则有。
=blv;若导体顺着磁场方向运动,v。
b,则有v。
b=0,没有动生电动势产生。
因此,可以形象地说,只有当导线切割磁感应线而运动时,才产生动生电动势。
普遍情况:在任意的恒定磁场中,一个任意形状的导线线圈l(闭合的或不闭合的)1在运动或发生形变时,各个线元dl的速度v的大小和方向都可能是不同的。
这时,在整个线圈l中产生的动生电动势为。
(v。
b)。
dl.(l)(6.5)图6-6洛伦兹力不作功洛伦兹力对电荷不作功。
洛伦兹力总是垂直于电荷的运动速度,即fv。
v,因此洛伦兹力对电荷不作功。
然而,当导体棒与导轨构成回路时会有感应电流出现,这时感应电动势却是要作功的。
感应电动势作功能量的来源。
在运动导体中的自由电子不但具有导体本身的运动速度v,而且还具有相对于导体的定向运动速度u,与此相应的洛伦兹力fu。
Science &Technology Vision 科技视界1动生电动势如图1,一根金属棒在匀强磁场中沿与棒和磁场垂直的方向以速度V0向右运动。
自由电荷(电子)随棒运动。
必然受到洛仑磁力作用,而发生运动。
电子沿棒运动的速度为U。
这样自由电子具有随金属棒运动的速度V0同时还有沿棒运动的速度U,故自由电子相对磁场的合速度为V0。
金属棒ab 两端因正负电荷分别积累,而形成电动势,Uab>0。
图1由左手定则可知,由于自由电子相对磁场以速度V 运动,一定会受到洛仑磁力F 洛。
当F 洛的分力F1与F 外平衡,F 洛的另一分力F2与电场力FE 平衡时,金属棒两端建立了稳定的动生电动势。
F 洛=eBV 其分力F1=eBVcosα=eBu,F2=eBVsinα=eBV0金属棒ab 两端电动势U=BLV0,自由电子受到的电场力FE=eE=eBLV0/L=eBV0FE 与F2等大反向。
F 外与F1等大反向(图2)。
图2F E 与F 外的合力F'=eB V 02+U 2√=eBVH 合和F 洛等大反向。
此时自由电子受到的三个力F 洛、F 外、F E 作用达到平衡。
金属棒匀速垂直切割磁感线运动建立了稳定的电动势。
E=BLV 0从能量转化的观点来看:外力克服洛仑磁力的分力F1做功,机械能转化的电能。
在此过程中洛仑磁力起到中转能量的作用。
使机械能和电能之间发生转化。
那么洛仑磁力是否做功呢:F 洛的分力F 1与V 0反向做负功W1,另一分力F2与电子沿棒移动方向U 一致做正功W2,则有:W1=-F 1V 0t=-eBIV 0t W2=F 2Ut=eBV 0Ut W=W1+W1=0其实洛仑磁力F H 合与电子合速度V 垂直,其做功为零是肯定的。
我们可以看到动生电动势有以下几个特点:a.在能量转化上是机械能转化为电能。
b.洛仑磁力参与其全过程并传递能量,实现两种形式的能量转化。
c.因为洛仑磁力与自由电荷合速度方向垂直,洛仑磁力不做功。