高等数学第3章课后习题答案(科学出版社)
- 格式:doc
- 大小:3.22 MB
- 文档页数:33
第三章 微分中值定理及导数的应用一、选择题1. 若30sin(6)()lim 0x x xf x x →+= ,则206()lim x f x x→+为( ) A. 0 B. 6 C. 36 D. ∞2. 设在][1,0上,0)(>''x f ,则下列不等式成立的是( )A . )0()0()1()1(f f f f '>->' B. )0()1()0()1(f f f f ->'>'C . )0()1()0()1(f f f f '>'>- D. )0()1()0()1(f f f f '>->'3. 设2()()lim 1()x a f x f a x a →-=--,则在x a =处( ) A. ()f x 的导数存在 B. ()f x 取得极大值C . ()f x 取得极小值 D. ()f x 的导数不存在4. 设k 为任意实数,则方程33x x k -+在[1,1]-上( )A. 一定没有实根B. 最多只有一个实根C. 最多有两个互异实根D. 最多有三个互异实根5. 设(),()f x g x 在0x 的某个去心邻域内可导,()0g x '≠,且适合0lim ()0x x f x →=,0lim ()0x x g x →=,则0()lim ()x x f x g x λ→=是0'()lim '()x x f x g x λ→=的: A. 充分非必要条件 B. 必要非充分条件C. 充分必要条件D. 既非充分又非必要条件。
6. 设()f x 在区间(a,b)内二阶可导,0(,)x a b ∈,且00()0,()=0f x f x '''≠,则()f x ( )A. 在0x x =处不取极值, 但00(,())x f x 是其图形的拐点B. 在0x x =处不取极值,但00(,())x f x 可能是其图形的拐点C. 在0x x =处可能取极值, 00(,())x f x 也可能是其图形的拐点D. 在0x x =处不取极值00(,())x f x 也不是其图形的拐点。
高等数学3教材答案解析本文将对高等数学3教材中的题目进行答案解析和详细讲解,以帮助读者更好地理解和掌握相关知识。
1. 极限和连续在高等数学3教材中,极限和连续是一项重要的内容。
在解答相关题目时,我们需要掌握极限的定义和性质,以及连续函数和间断点的判定方法。
通过具体的例题演练,可以更好地理解这些概念,并掌握运用的技巧。
2. 一元函数的微分学微分学是高等数学中的一个重要分支,它研究了函数的变化率和极值问题。
在解答微分学相关题目时,我们需要运用导数的定义和性质,掌握求导法则和常用函数的导数公式。
通过例题的分析和解答,可以帮助读者更好地理解微分学的概念和方法。
3. 一元函数的积分学积分学是微分学的逆运算,它研究了曲线下面积和函数的原函数问题。
在解答积分学相关题目时,我们需要了解不定积分和定积分的定义和性质,掌握常用函数的积分公式和积分换元法。
通过具体的例题演练和积分公式的推导,可以帮助读者深入理解积分学的原理和应用。
4. 二元函数的微分学与积分学在高等数学3教材中,还介绍了二元函数的微分学和积分学。
这部分内容需要读者了解偏导数和全微分的定义和计算方法,熟悉二元函数的求极值和最值问题。
同时,还需要了解二重积分的概念和计算方法,以及在几何和物理问题中的应用。
通过相关例题的分析和解答,可以帮助读者更好地理解二元函数的微分学与积分学。
5. 无穷级数无穷级数也是高等数学中的一项重要内容,在教材中也有相关的题目。
解答这类题目时,我们需要了解正项级数和一般级数的性质,掌握收敛级数和发散级数的判定方法。
同时,还需要了解级数的运算法则和收敛级数的性质。
通过具体的例题分析和求解,可以帮助读者更好地理解无穷级数的概念和应用。
以上是对高等数学3教材中的题目进行答案解析和详细讲解的内容。
通过对这些题目的学习和掌握,读者可以更好地理解高等数学的概念和方法,提高解题能力,为日后的学习和应用奠定坚实的基础。
同时,希望读者在学习过程中能够注重基础知识的理解和扎实的练习,培养逻辑思维和问题解决能力,提升数学素养。
3.4 隐函数及由参数方程所确定的函数的导数 相关变化率习题3.41. 求由下列方程所确定的隐函数的导数:dy dx(1)2290y xy -+=解: ()()22900,2220,.d y xy d ydy xdy ydx dy y dx y x-+==--==-(2)3330x y axy +-=解: ()()332222300,33330,.d x y axy d x dx y dy axdy aydx dy ay x dx y ax+-==+--=-=-(3)x y xy e +=解:()()(),,.x y x y x y x y d xy d e ydx xdy e dx dy dy e y dx x e++++=+=+-=-(4)1yy xe =-解: ()1,,.1y y y yydy d xe dy e dx xe dy dy e dx xe =-=---=+(5解:0,0,d ddydx==+==(6)()cosy x y=+解:()()()()()cos,sin,sin.1sindy d x ydy x y dx dyx ydydx x y=+=-++-+=++(7)()sin cos0y x x y--=解:()()()()()()()sin cos00,sin cos sin0,cos sin.sin sind y x x y dxdy y xdx x y dx dyy x x ydydx x y x--==++--=+-=--(8)0x y=解:()()00,0,d x y ddx dydydx+==++==2.求下列隐函数在指定点的导数:dydx(1)1cos sin,2y x y=+点,02π⎛⎫⎪⎝⎭解:,0211cos sin sin cos ,22sin ,11cos 21 2.112dy d x y xdx ydy dy x dx y dy dx π⎛⎫ ⎪⎝⎭⎛⎫=+=-+ ⎪⎝⎭-=--==-- (2)ln 1,x ye y +=点()0,1()()()0,1ln 10,10,,111.112x x x xx d ye y d e dy ye dx dy y dy ye dx e ydy dx +==++==-+=-=-+3. 求下列方程确定的隐函数的微分:dy (1)2222 1.x y a b+= 解:()2222222210,220,.x y d d ab xdx ydy a bb x dy dx a y⎛⎫+== ⎪⎝⎭+==- (2).y xx y =解: ()()22ln ln ln ln ,ln ln ,ln .ln y x x yd y x d x y y x xdy dx ydx dy x yxy y y dy dx xy x x==+=+-=-4。
习题3-11.验证下列函数在指定区间上是否满足拉格朗日中值定理: (1)25)(23-+-=x x x x f ,]1,0[∈x ; (2)x x f ln )(=,],1[e x ∈; (3)32)(x x f =,]2,1[-∈x ; (4)22)(xxx f -=,]1,1[-∈x . 答案:(1)25)(23-+-=x x x x f ,]1,0[∈x解 函数25)(23-+-=x x x x f 在闭区间]1,0[上连续,在开区间()10,内可导,并且312501)0()1(-=---=--)()(f f .由于1103)(2+-='x x x f ,所以令311032-=+-x x ,解此方程得3135±=x ,这说明在)1,0(内有3135-=ξ,使得3)(-='ξf .(2)x x f ln )(=,],1[e x ∈解函数x x f ln )(=在闭区间]1[e ,上连续,在开区间()e ,1内可导,并且111011)1()(-=--=--e e e f e f .由于x x f 1)(=',所以令111-=e x ,解此方程得1-=e x ,这说明在),1(e 内有1-=e ξ,使得11)(-='e f ξ.(3)32)(x x f =,]2,1[-∈x解 函数32)(x x f =在闭区间]2,1[-上连续,在开区间()21,-内可导,并且314)1(2)1()2(3-=----f f .由于332)(x x f =',所以令3143233-=x ,解此方程得33)142(-=x ,这说明在)2,1(-内有33)142(-=x ,使得314)(3-='ξf .(4)22)(x xx f -=,]1,1[-∈x 解 函数22)(x x x f -=在闭区间]1,1[-上不连续,所以22)(x xx f -=在]1,1[-不满足拉格朗日中值定理.2.用洛必达法则求下列极限:(1)bx axx sin tan lim 0→; (2)x e e x x x sin lim 0-→;(3)ax ax a x --→sin sin lim ; (4)23)3ln(lim 222+--→x x x x ;(5)x x x ln 1lim1-→; (6)x x x 3cos sin 21lim 6-→π;(7)xx x 1sin arctan 2lim -∞→π; (8)xx x 1arctan 2lim 0-+→π;(9)x x x ln lim+∞→; (10)xxx cot ln lim 0→;(11)xx x sin ln ln lim 0+→; (12)ax b x e x ∞→lim (a ,0>b ).答案:(1)bx axx sin tan lim0→解 这是0型未定式,所以应用洛必达法则得ba bxb ax a bx ax x x ==→→cos sec lim sin tan lim 200. (2)xe e x x x sin lim 0-→解 这是型未定式,所以应用洛必达法则得 2111cos lim sin lim 00=+=+=--→-→x e e x e e x x x x x x . (3)a x ax a x --→sin sin lim解 这是0型未定式,所以应用洛必达法则得a x x a x a x a x a x a x cos cos lim 010cos lim sin sin lim ==--=--→→→. (4)23)3ln(lim 222+--→x x x x解 这是型未定式,所以应用洛必达法则得 41122)32)(3(2lim 23)3ln(lim 22222=⨯⨯=--=+--→→x x x x x x x x . (5)x x x ln 1lim 1-→解 这是00型未定式,所以应用洛必达法则得1lim 11lim ln 1lim 111===-→→→x xx x x x x . (6)x xx 3cos sin 21lim6-→π解 这是型未定式,所以应用洛必达法则得 33132323sin 3cos 2lim 3cos sin 21lim 66=⨯-⨯-=--=-→→xx x x x x ππ. (7)xx x 1sin arctan 2lim -∞→π解 这是型未定式,所以应用洛必达法则得 limx→∞π2−arctan x sin1x=limx→∞−11+x 2−1x 2cos1x=lim x→∞x 21+x 2∙lim x→∞1cos 1x=1×1=1 (8)xx x 1arctan 2lim 0-+→π解 这是型未定式,所以应用洛必达法则得 111lim 1)1()1(11lim 1arctan 2lim 202200=+=-⋅+-=-+++→→→x x x x x x x x π (9)x xx ln lim +∞→解 这是∞∞型未定式,所以应用洛必达法则得01lim 11lim ln lim ===+∞→+∞→+∞→xx x x x x x . (10)x xx cot ln lim 0→解 这是∞∞型未定式,所以应用洛必达法则得01cos sin 2lim sin lim csc 1lim cot ln lim 020200=-=-=-=→→→→x x x x x x x x x x x x . (11)x xx sin ln ln lim 0+→解 这是∞∞型未定式,所以应用洛必达法则得1sec lim tan lim sin cos 1lim sin ln ln lim 20000====++++→→→→x xx xx x x x x x x x . (12)ax bx ex ∞→lim (a ,0>b )解 这是∞∞型未定式,所以应用洛必达法则得 0!lim )1(lim lim lim 221===-==∞→-∞→-∞→∞→ax b x axb x ax b x ax b x e a b e a x b b ae bx e x . 3.用洛必达法则求下列极限:(1))11ln 1(lim 1--→x x x ; (2))1(cot lim 0xx x -→;(3))111(lim 0--→x x e x ; (4)x x x 2cot lim 0→;(5)2120lim x x e x →; (6)xx x sin 0lim →;(7)xx x-→111lim ; (8)xx x 2tan 4)(tan lim π→;(9)xx x ln 10)(cot lim +→.答案: (1))11ln 1(lim 1--→x x x解 这是∞-∞型未定式,先变形化为型的未定式,再应用洛必达法则得 xxx x x x x x x x x x x ln 111lim )1(ln ln 1lim )11ln 1(lim 111+--=---=--→→→ =limx→1x−1x−1+x ln x=limx→111+1+ln x=12.(2))1(cot lim 0xx x -→解 这是∞-∞型未定式,先变形化为型的未定式,再应用洛必达法则得 2000sin cos limsin sin cos lim )1(cot lim x xx x x x x x x x x x x x -=-=-→→→ 02sin lim 2cos sin cos lim 00=-=--=→→x x x x x x x x . (3))111(lim 0--→x x e x解 这是∞-∞型未定式,先变形化为0型的未定式,再应用洛必达法则得xx x x x x x x x xe e e e x x e e x +--=---=--→→→11lim )1(1lim )111(lim 000 21021lim 0=+=++=→x x x x x xe e e e . (4)x x x 2cot lim 0→解 这是0⋅∞型未定式,先变形化为0型的未定式,再应用洛必达法则得212cos 21lim 2sec 21lim 2tan lim2cot lim 202000====→→→→x x x x x x x x x x .(5)212lim x x e x →解 这是0⋅∞型未定式,先变形化为∞∞型的未定式,再应用洛必达法则得 ∞==--==→→→→222210313021012lim 1212lim 1lim lim x x xx x x x x e x e x x e ex .(6)xx xsin 0lim →解 这是00型未定式,利用对数恒等式有x x x e e xln sin ln sinx sin x ==,而0)(lim 11lim 1ln lim ln lim ln sin lim 020000=-=-===→→→→→x xx x xx x x x x x x x x , 所以1lim 0sin 0==→e xxx .(7)xx x-→111lim解 这是∞1型未定式,利用对数恒等式有x xx ee xln 11ln x-1111x-==-,而11lim 11lim 1ln lim 111-=-=-=-→→→xx x x x x x 所以ee xxx 1lim 1111==--→.(8)xx x 2tan 4)(tan lim π→解 这是∞1型未定式,有)ln(tan 2tan )ln(tan tan2x2tan tanx)x x x e e x==(,而x xx x x x x x x x 2csc 2sec tan 1lim 2cot )ln(tan lim )ln(tan 2tan lim 22444-==→→→πππ 1)2sin (lim 4-=-=→x x π所以ee x xx 1)(tan lim 12tan 4==-→π.(9)xx x ln 10)(cot lim +→解 这是0∞型未定式,有xxx xee co xln cot ln )ln(cot ln 1ln 1tx )==(,而x x x x x xx x xx x x x x 2sin 2lim sin cos lim 1)csc (cot 1lim ln cot ln lim 00200-=-=-=++++→→→→12cos 1lim 0-=-=+→x x所以e e x xx 1)(cot lim 1ln 10==-→+.4.求下列函数的极限: (1)x x xx x cos sin 2lim-+∞→; (2)xx x x sin 1sinlim20→;(3)xx xx x ln ln lim 2++∞→; (4)x x x x x e e e e --+∞→-+lim .答案: (1)xx xx x cos sin 2lim-+∞→解 20102cos 1sin 2lim cos sin 2lim =-+=-+=-+∞→∞→xx x xx x x x x x . (2)xx x x sin 1sinlim20→ 解 x xx x x x x x x x x x x x x sin lim 1sinlim sin 1sin lim sin 1sin lim00020→→→→== 0101sin 1lim ===∞→xxx .(3)xx xx x ln ln lim 2++∞→解 xx x x x x x x x x x x x x 1lim ln lim )1ln (lim ln ln lim2+∞→+∞→+∞→+∞→+=+=+ +∞==+=+∞→+∞→x xx x lim 011lim.(4)xx xx x e e e e --+∞→-+lim解101011111limlim 22=-+=-+=-++∞→--+∞→x x x xxxx x ee e e e e . 习题3-21.判定下列函数在指定区间内的单调性: (1)x x x f -=arctan )(,),(+∞-∞∈x ; (2)x x x f cos )(+=,]2,0[π∈x ; (3)x x f tan )(=,)2,2(ππ-∈x . 答案:(1)x x x f -=arctan )(,),(+∞-∞∈x解 因为2221111)(x x x x f +-=-+='在指定区间),(+∞-∞内恒为负值, 所以x x x f -=arctan )(在),(+∞-∞内是单调减少的. (2)x x x f cos )(+=,]2,0[π∈x解 因为x x f sin 1)(-='在指定区间]2,0[π内恒为正值, 所以x x x f cos )(+=在]2,0[π内是单调增加的. (3)x x f tan )(=,)2,2(ππ-∈x解 因为x x f 2sec )(='在指定区间)2,2(ππ-内恒为正值, 所以x x f tan )(=在)2,2(ππ-内是单调增加的. 2.求下列函数的单调区间:(1)x x f ln )(=; (2)24)(+-=x x f ;(3)71862)(23---=x x x x f ; (4)x x x f ln 2)(2-=;(5)xe x xf -=)(; (6)22)(x x x f -=.答案:(1)x x f ln )(=解 函数)(x f 的定义域为),0(+∞,xx f 1)(=',在定义区间内0)(>'x f , 所以函数)(x f 的单调增加区间是),0(+∞. (2)24)(+-=x x f解 函数)(x f 的定义域为),(+∞-∞,4)(-='x f ,在定义区间内0)(<'x f , 所以函数)(x f 的单调减少区间是),(+∞-∞.(3)71862)(23---=x x x x f解 函数)(x f 的定义域为),(+∞-∞,18126)(2--='x x x f ,令0)(='x f ,得11-=x ,32=x .列表讨论如下:所以函数)(x f 的单调增加区间是)1,(--∞和),3(+∞,单调减少区间是]3,1[-. (4)x x x f ln 2)(2-=解 函数)(x f 的定义域为),0(+∞,x x x x x f 1414)(2-=-=',令0)(='x f ,得21=x .所以函数)(x f 的单调增加区间是),21[+∞,单调减少区间是]21,0(. (5)xe x xf -=)(解 函数)(x f 的定义域为),(+∞-∞,xe xf -='1)(,令0)(='x f ,得0=x .列表讨论如下:所以函数)(x f 的单调增加区间是]0,(-∞,单调减少区间是),0[+∞. (6)22)(x x x f -=解 函数)(x f 的定义域为]2,0[,22212222)(xx x xx x x f --=--=',令0)(='x f ,得所以函数)(x f 的单调增加区间是]1,0[,单调减少区间是]2,1[. 3.求下列函数的极值点和极值:(1)263423+--=x x x y ; (2)1)1(22--=x y ; (3))1ln(x x y +-=; (4)213xxy +=; (5)xxe e y --=2; (6)x x y tan +=.答案:(1)263423+--=x x x y 解 函数)(x f 的定义域为),(+∞-∞;)1)(12(66612)(2-+=--='x x x x x f ,令0)(='x f ,解得驻点211-=x 、12=x ,另)(x f '不存在的点没有;因此,函数)(x f 的极大值点为2-=x ,极大值为4)1(=-f ;极小值点为1=x ,极小值为3)3(-=f .(2)1)1(22--=x y解 函数)(x f 的定义域为),(+∞-∞;)1(444)(23-=-='x x x x x f ,令0)(='x f ,解得驻点11-=x 、02=x 、13=x ,另)(x f '不存在的点没有;列表讨论如下:因此,函数)(x f 的极小值点为1-=x 、1=x ,极小值为1)1(-=-f 、1)1(-=f ;极大值点为0=x ,极大值为0)0(=f .(3))1ln(x x y +-=解 函数)(x f 的定义域为),1(+∞-; xxx x f +=+-='1111)(,令0)(='x f ,解得驻点01=x ,另)(x f '不存在的点没有;列表讨论如下:因此,函数)(x f 的极小值点为0=x ,极小值为0)0(=f . (4)213xxy +=解 函数)(x f 的定义域为),(+∞-∞;2222222)1()1(3)1(6)1(3)(x x x x x x f +-=+-+=',令0)(='x f ,解得驻点11-=x 、12=x ,另)(x f '不存在的点没有;列表讨论如下:因此,函数)(x f 的极小值点为1-=x ,极小值为2)1(-=-f ;极大值点为1=x ,极大值为23)1(=f . (5)xxee y --=2解 函数)(x f 的定义域为),(+∞-∞;xx xx ee ee xf 122)(2+=+='-,在定义区间内0)(>'x f ,)(x f 单调增加; 因此,函数)(x f 无极值点. (6)x x y tan +=解 函数)(x f 的定义域为)(2Z k k x ∈+≠ππ;x x f 2sec 1)(+=',在定义区间内0)(>'x f ,)(x f 单调增加;因此,函数)(x f 无极值点.习题3-31.求下列函数在给定区间上的最值: (1))2(422-=x x y ,]2,2[-∈x ; (2)7186223---=x x x y ,]4,1[∈x ; (3)x x y +=,]4,0[∈x ;(4)12+=x xy ,],0[+∞∈x ;(5)322)2(x x y -=,]3,0[∈x ; (6)xxy +-=11arctan ,]1,0[∈x . 答案:(1))2(422-=x x y ,]2,2[-∈x 解 )1(161616)(23-=-='x x x x x f ,令0)(='x f ,在]2,2[-上得驻点11-=x 、02=x 、13=x ; 驻点处的函数值为4)1(-=-f 、0)0(=f 、4)1(-=f , 端点处的函数值为32)2(=-f 、32)2(=f ;所以,函数在]2,2[-上的最大值为32)2()2(==-f f ,最小值为4)1()1(-==-f f . (2)7186223---=x x x y ,]4,1[∈x 解 )3)(1(618126)(2-+=--='x x x x x f ,令0)(='x f ,在]4,1[上得驻点3=x ; 驻点处的函数值为61)3(-=f ,端点处的函数值为29)1(-=f 、47)4(-=f ;所以,函数在]2,2[-上的最大值为29)1(-=f ,最小值为61)3(-=f . (3)x x y +=,]4,0[∈x 解 0211)(>+='xx f ,因此函数)(x f 在区间]4,0[上单调增加; 所以,函数在]4,0[上的最大值为6)4(=f ,最小值为0)0(=f . (4)12+=x xy ,],0[+∞∈x 解 2222222)1(1)1(21)(+-=+-+='x x x x x x f , 令0)(='x f ,在),0[+∞上得驻点1=x ;驻点处的函数值为21)1(=f ,端点处的函数值为0)0(=f ;所以,函数在),0[+∞上的最大值为21)1(=f ,最小值为0)0(=f . (5)322)2(x x y -=,]3,0[∈x 解 323223)1(4)22(232)(xx x x xx x f --=-⨯-=',令0)(='x f ,在]3,0[上得驻点1=x ;驻点处的函数值为1)1(=f ,端点处的函数值为0)0(=f 、39)3(=f ; 所以,函数在]3,0[上的最大值为39)3(=f ,最小值为0)0(=f .(6)x xy +-=11arctan,]1,0[∈x 解 0)1()1(2)1(2)11(11)(2222<-++-=+-⨯+-+='x x x xx x f ,因此函数)(x f 在区间]1,0[上单调减少;所以,函数在]4,0[上的最大值为4)0(π=f ,最小值为0)1(=f .2.证明:(1)面积一定的矩形中,正方形周长最短;(2)周长一定的矩形中,正方形面积最大. (1)证明:设面积为S 的矩形长为x ,则其宽为x S ,矩形周长)(2xS x A +=; 因22222)(2224xS x x S x x A -=--=',令0='A ,得S x =; 所以长S x =的矩形周长A 最小,即:面积一定的矩形中,正方形周长最短.(2)证明:设周长为A 的矩形长为x ,则其宽为22x A -,矩形面积2)2(x A x S -=; 因24x A S -=',令0='S ,得4Ax =; 所以长4Ax =的矩形面积S 最大,即:周长一定的矩形中,正方形面积最大.3.设22221)()()(n a x a x a x S -++-+-= ,问x 取多大时,S 最小? 解 由22221)()()(n a x a x a x S -++-+-= 知)(22)22()22()22(121n n a a nx a x a x a x S ++-=-++-+-=' ,令0='S ,得na a a x n+++=21;所以当na a a x n+++= 21时,S 最小.4.某企业生产每批产品x 单位的总成本x x C +=3)((万元),得到的总收入26)(x x x R -=(万元),为了提高经济效益,每批生产产品多少单位,才能使总利润最大?解 总利润35)3()6()()()(22-+-=+--=-=x x x x x x C x R x F ,52)(+-='x x F ,令0)(='x F ,得25=x ; 所以每批生产产品25单位,才能使总利润最大.5.某厂生产一种自行车,每月固定成本3万元.而每生产1千辆,要增加成本5万元,大批量生产时,可节约部分开支,当每月生产x 千辆时,可以节约成本326001407x x -万元.问x 为多大时,其成本最低?(6030<<x )解 总成本32600140753)(x x x x F +-+=, 52072001)(2+-='x x x F ; 令0)(='x F ,得函数0)(=x F 在)60,30(内唯一驻点50=x ;所以50=x 千辆时,其成本最低.6.甲船以6千米/小时的速度向东航行,乙船在甲船北16千米处,以8千米/小时的速度向南航行,问何时两船距离最近?解 设x 小时后,两船距离y 千米256256100)816()6(222=-=-+=x x x x y ,256200-='x y ,令0='y ,得28.1=x ;所以1.28小时后两船距离最近.习题3-41.求下列曲线的凹凸性和拐点:(1)24x x y -=; (2)1323+-=x x y ;(3)5224-+=x x y ; (4)xx y 12+=; (5)32x x y =; (6))1ln(2x y +=; (7)xey arctan =; (8))7ln 12(4-=x x y .答案:(1)24x x y -=解 函数的定义域为),(+∞-∞,42+-='x y ,02<-=''y ;因此,函数在区间),(+∞-∞内是凸的,无拐点. (2)1323+-=x x y解 函数的定义域为),(+∞-∞,x x y 632-=',66-=''x y ; 令0=''y ,解得定义区间内的实根1=x ;所以列表讨论如下:因此,函数在区间)1,(-∞内是凸的、在区间),1(+∞内是凹的,拐点为)1,1(-. (3)5224-+=x x y解 函数的定义域为),(+∞-∞,x x y 443+=',04122>+=''x y ;因此,函数在区间),(+∞-∞内是凹的,无拐点. (4)xx y 12+= 解 函数的定义域为),0()0,(+∞-∞ ,212xx y -=',3322x x y +='';令0=''y ,解得定义区间内的实根1-=x ;所以列表讨论如下:因此函数在区间)1,(--∞和),0(+∞内是凹的、在区间)0,1(-内是凸的,拐点为)0,1(-. (5)32x x y =解 函数的定义域为),(+∞-∞,3235x y =',331910910xx y ==''-; 0=''y 无解,y ''不存在的点0=x ;所以列表讨论如下:因此,函数在区间)0,(-∞内是凸的、在区间),0(+∞内是凹的,拐点为)0,0(.(6))1ln(2x y +=解 函数的定义域为),(+∞-∞,212xx y +=',222)1()1(2x x y +-=''. 令0=''y ,解得定义区间内的实根1±=x ;所以列表讨论如下:因此,函数在区间)1,(--∞和),1(+∞内是凸的、在区间)1,1(-内是凹的,拐点为)2ln ,1(-和)2ln ,1(.(7)xey arctan =解 函数的定义域为),(+∞-∞,2arctan 1xe y x +=',22arctan )1)21(x x e y x +-=''(; 令0=''y ,解得定义区间内的实根1=x ;所以列表讨论如下:因此,函数在区间),21(+∞内是凸的、在区间)21,(-∞内是凹的,拐点为),21(21arctan e .(8))7ln 12(4-=x x y解 函数的定义域为),0(+∞,3316ln 48x x x y -=',x x y ln 1442=''; 令0=''y ,解得定义区间内的实根1=x ;所以列表讨论如下:因此,函数在区间)1,0(内是凸的、在区间),1(+∞内是凹的,拐点为)7,1(-. 2.已知曲线4923+-+=x ax x y 在1=x 处有拐点,试确定系数a ,并求出曲线的凹凸区间和拐点.解 由4923+-+=x ax x y 知9232-+='ax x y ,a x y 26+=''; 因为曲线在1=x 处有拐点,所以0216=+⨯a ,得3-=a ;可知曲线方程为49323+--=x x x y ,9632--='x x y ,66-=''x y ;因此,函数在区间)1,(-∞内是凸的、在区间),1(+∞内是凹的,拐点为点)7,1(-. 3.a 、b 为何值时,点)3,1(为曲线23bx ax y +=的拐点? 解 由曲线方程23bx ax y +=知bx ax y 232+=',b ax y 26+=''; 令0=''y ,解得ab x 3-=; 又因为点)3,1(为曲线23bx ax y +=的拐点,所以3=+b a 、13=-ab; 联立方程组,求解得:23-=a ,29=b 4.试证明曲线112+-=x x y 有位于同一直线上的三个拐点(提示:证明任意两个拐点的连线斜率相等).证明 因为曲线方程为112+-=x x y ,定义域为),(+∞-∞;222)1(12+++-='x x x y ,322)1()14)(12++-+=''x x x x y (; 令0=''y ,解得11-=x 、322-=x 、323+=x ;所以曲线拐点为)1,1(--A 、)34831,32(---B 、)34831,32(+++C ; 因为9624132134831=+-+--=--=A B A B ABx x y y k 、9624=--=A C A C AC x x y y k ; AC AB k k =,所以曲线三个拐点位于同一直线上.习题3-51.求下列曲线的渐近线: (1)211x y -=; (2)2)3(361++=x y ;(3)11-=xe y ; (4)xx y 12+=. 答案: (1)211xy -=解 由于函数211x y -=的定义域为),1()1,1()1,(+∞---∞ , 且011lim 2=-∞→x x ,∞=--→2111lim x x 、∞=-→2111lim x x ; 因此直线0=y 为曲线的水平渐近线,直线1-=x 、1=x 为曲线的垂直渐近线. (2)2)3(361++=x y 解 由于函数2)3(361++=x y 的定义域为),3()3,(+∞---∞ , 且lim x→∞[1+36(x+3)2]=1,lim x→−3[1+36(x+3)2]=∞; 因此直线y =1为曲线的水平渐近线,直线3-=x 为曲线的垂直渐近线. (3)11-=xe y解 由于函数11-=xe y 的定义域为),0()0,(+∞-∞ , 且0)1(lim 1=-∞→xx e ,lim x→0+(e 1x −1)=+∞; 因此直线0=y 为曲线的水平渐近线,直线0=x 为曲线的垂直渐近线. (4)xx y 12+= 解 由于函数xx y 12+=的定义域为),0()0,(+∞-∞ , 且)1(lim 2x x x +∞→不存在,∞=+→)1lim 20xx x (; 因此直线0=x 为曲线的垂直渐近线,曲线无水平渐近线.2.作出下列函数的图像:(1)3210710x x x y -++=; (2)2)2)(1(-+=x x y ; (3))1ln(+-=x x y ; (4)x x y 2cos 21+=,)20(π≤≤x ; (5)xxe y -=; (6)x x y arctan +=答案:(1)3210710x x x y -++= 解 函数的定义域为),(+∞-∞,)7)(13(+-+='x x y ,令0='y 得311-=x 、72=x ;206+-=''x y ,令0=''y 得3103=x ;取辅助点)12,1(-,)10,0(,)26,1(,)134,4(,)194,8(;根据以上讨论,做出函数3210710x x x y -++=的图像如图所示图3-1(2)2)2)(1(-+=x x y 解 函数的定义域为),(+∞-∞,)2(3-='x x y ,令0='y 得01=x 、22=x ; 66-=''x y ,令0=''y 得13=x ;x)0,(-∞)1,0(1)2,1(2),2(+∞y '+ 0 - - - 0 + y ''- - - 0 + + + y╭极大值4 ╮拐点)2,1( ╰极小值╯取辅助点)0,1(-,)827,21(,)85,23(,)4,3(; 根据以上讨论,做出函数2)2)(1(-+=x x y 的图像如图所示图3-2(3))1ln(+-=x x y 解 函数的定义域为),1(+∞-,1+='x xy ,令0='y 得01=x ; 2)11+=''x y (,令0=''y ,无解; 列表讨论如下:x)0,1(-),0(+∞y '- 0 + y ''+ + + y╰极小值0╯取辅助点)2ln 21,21(+--,)2ln 1,1(-; 根据以上讨论,做出函数)1ln(+-=x x y 的图像如图所示图3-3(4)x x y 2cos 21+=,)20(π≤≤x 解 函数的定义域为]2,0[π, x y 2sin 211-=',令0='y ,无解;x y 2cos -='',令0=''y 得41π=x 、432π=x 、453π=x 、474π=x ; 列表讨论如下:x )4,0(π4π)43,4(ππ 43π )45,43(ππ 45π)47,45(ππ47π )2,47(ππ y '+ + + + + + + + + y ''- 0 + 0 - 0 + 0 - y╭拐点╯拐点╭拐点╯拐点╭拐点)41,4(+ππ、拐点)413,43(+ππ、拐点)415,45(+ππ、拐点)417,47(+ππ 取辅助点)21,0(,)2,2(ππ,)21,(+ππ,)23,23(ππ,)212,2(+ππ; 根据以上讨论,做出函数x x y 2cos 21+=的图像如图所示图3-4(5)xxey -=解 函数的定义域为),(+∞-∞,)1(x e y x -='-,令0='y 得11=x ; )2(x e y x +-=''-,令0=''y 得22=x ;x)1,(-∞1)2,1(2),2(+∞y '+ 0 - - - y ''---0 +y╭ 极大值e1╮拐点)2,2(2e╰0=y 为水平渐近线;取辅助点)0,0(,)3,3(3e;根据以上讨论,做出函数xxey -=的图像如图所示图3-5(6)x x y arctan +=解 函数的定义域为),(+∞-∞,奇函数, 2212x x y ++=',令0='y ,无解;22)12+-=''x x y (,令0=''y 得01=x ; x)0,(-∞),0(+∞y '+ + + y ''+ 0- y╯拐点)0,0( ╭取辅助点)41,1(π---,)41,1(π+;根据以上讨论,做出函数x x y arctan +=的图像如图所示图3-6习题3-61.求下列曲线在指定点处的曲率:(1)24x x y -=在其顶点处; (2)x x y cos =在原点处; (3)32x y =在点)8,4(处; (4)x y sin =在点)1,2(π处.答案:(1)24x x y -=在其顶点处解 由24x x y -=得42+-='x y ,2-=''y ; 代入计算公式得:曲线曲率为232)17164(2+-=x x K ;曲线顶点为2=x ,所以顶点处曲率为22==x K .(2)x x y cos =在原点处解 由x x y cos =得x x x y sin cos -=',x x x y cos sin 2--='', 代入计算公式得:曲线曲率为23222)1sin 2sin (cos cos sin 2++---=x x x x x xx x K ;所以原点处曲率为00==x K.(3)32x y =在点)8,4(处解 由32x y =得23x y =,知2123x y =',2143-=''x y ;代入计算公式得:曲线曲率为2321)491(43x x K +=-;所以点)8,4(处曲率为8001034==x K . (4)x y sin =在点)1,2(π处解 由x y sin =得x y cos =',x y sin -=''; 代入计算公式得:曲线曲率为232)cos 1(sin x x K +-=;所以点)1,2(π处曲率为14==x K.2.求下列曲线在指定点处的曲率半径:(1)4=xy 在点)2,2(处; (2))0(42>=p px y 在点)2,(p p 处; (3)x y ln =在点21=x 处; (4)x y cos =在点0=x 处;(5)x y tan =在点)1,4(π处; (6)x x y 44cos sin -=在点)1,0(-处.答案:(1)4=xy 在点)2,2(处解 由4=xy 得14-=x y ,知24--='x y ,38-=''x y ;代入计算公式得:曲线曲率为2343)161(8--+=x x K ;所以点)2,2(处曲率半径为22122====x X K R .(2))0(42>=p px y 在点)2,(p p 处解 由)0(42>=p px y 得212x p y =(所讨论的点为)2,(p p ), 知21-='x p y ,2321--=''xp y ;代入计算公式得:曲线曲率为23123)1(21--+=px xp K ;所以点)2,(p p 处曲率半径为R |X=p =1K |x=p=252p =4√2p .(3)x y ln =在点21=x 处解 由x y ln =得xy 1=',21x y -='';代入计算公式得:曲线曲率为2322)11(1xx K +=; 所以点21=x 处曲率半径为23312121====x x KR . (4)x y cos =在点0=x 处解 由x y cos =得x y sin -=',x y cos -=''; 代入计算公式得:曲线曲率为232)sin 1(cos x x K +=;所以点0=x 处曲率半径为1111====x x K R . (5)x y tan =在点)1,4(π处解 由x y tan =得x y 2sec =',x x y tan sec 22='';代入计算公式得:曲线曲率为2342)sec 1(tan sec 2x x x K +=;所以点)1,4(π处曲率半径为545144====ππx x KR . (6)x x y 44cos sin -=在点)1,0(-处解 由x x y 44cos sin -=得x x x y 2sin 2cos sin 4==',x x x y 2cos 4sin 4cos 422=-='';代入计算公式得:曲线曲率为232)2sin 41(2cos 4x x K +=;所以点)1,0(-处曲率半径为41100====x x K R .复习题三1.填空题:(1)如果函数)(x f 在],[b a 上连续,在),(b a 内可导,则在),(b a 内至少尊在一点ξ,使得=')(ξf ____________________.(2)设函数)(x f 在),(b a 内可导,如果0)(>'x f ,则函数)(x f 在),(b a 内_______________;如果0)(<'x f ,则函数)(x f 在),(b a 内_______________;如果0)(≡'x f ,则函数)(x f 在),(b a 内____________________.(3)函数x x x f -=sin )(在定义域内单调_______________.(4)曲线xxe y =在区间______________内是凹的,在区间_______________内是凸的. (5)函数xxy ln =在区间_______________内单调递增,在区间_______________内单调递减,在区间_______________内是凹的,在区间_______________内是凸的.(6)函数xxy ln =的极值点是_______________,拐点是_______________,渐近线为____________________.(7)函数)1ln(2x y +=在区间]2,1[-上的最大值为_______________,最小值为_______________.答案:(1)如果函数)(x f 在],[b a 上连续,在),(b a 内可导,则在),(b a 内至少存在一点ξ,使得=')(ξf ____________________.解ab a f b f --)()(;(2)设函数)(x f 在),(b a 内可导,如果0)(>'x f ,则函数)(x f 在),(b a 内_______________;如果0)(<'x f ,则函数)(x f 在),(b a 内_______________;如果0)(≡'x f ,则函数)(x f 在),(b a 内____________________.解 单调增加,单调减少,是常数;(3)函数x x x f -=sin )(在定义域内单调_______________. 解 减少;(提示:01cos )(<-='x x f )(4)曲线xxe y =在区间____________内是凹的,在区间___________内是凸的.解 ),2(+∞-,)2,(--∞;(提示:)2x e y x+=''(,拐点为2-=x )(5)函数xxy ln =在区间_______________内单调递增,在区间_______________内单调递减,在区间_______________内是凹的,在区间_______________内是凸的.解 ),0(e ,),(+∞e ,),(23+∞e ,),0(23e ;(提示:2ln 1x x y -=',驻点为e x =;3ln 23xxy +-='',拐点为23e x =) (6)函数xxy ln =的极值点是________,拐点是_________,渐近线为__________. 解 e x =,)23,(2323-e e ,直线0=x ,直线0=y ;(提示:∞==→→x x x x x 1lim ln lim00,01lim ln lim ==∞→∞→xx x x x )(7)函数)1ln(2x y +=在区间]2,1[-上的最大值为________,最小值为_________. 解 5ln )2(=f ,0)0(=f . (提示:212x xy +=',驻点为0=x ;0)0(=f ,2ln )1(=-f ,5ln )2(=f ) 2.选择题:(1)设函数22)4(-=x y ,则在区间)0,2(-和),2(+∞内此函数分别为( ) A .单调递增,单调递增; B .单调递增,单调递减;C .单调递减,单调递增;D .单调递减,单调递减. (2)函数)1ln(x x y +-=的单调递减区间是( ) A .),1(+∞-; B .)0,1(-; C .),0(+∞; D .)1,(--∞.(3)设函数232+-=x x y ,则( )A .y 有极小值41,但无极大值; B .y 有极小值0,但无极大值; C .y 有极小值0,极大值41; D .y 有极大值41,但无极小值.(4)设函数4322x x x y +-=,则在区间)2,1(和)4,2(内,曲线分别为( ) A .凸的,凸的; B .凸的,凹的;C .凹的,凸的;D .凹的,凹的. (5)函数xex y -=2在区间)2,1(内是( )A .单调递增且是凸的;B .单调递增且是凹的;C .单调递减且是凸的;D .单调递减且是凹的. 答案:(1)设函数22)4(-=x y ,则在区间)0,2(-和),2(+∞内此函数分别为() A .单调递增,单调递增; B .单调递增,单调递减; C .单调递减,单调递增; D .单调递减,单调递减. 解A ;(提示:)4(42-='x x y )(2)函数)1ln(x x y +-=的单调递减区间是() A .),1(+∞-; B .)0,1(-; C .),0(+∞; D .)1,(--∞.解B ;(提示:定义域为),1(+∞-,xxy +='1) (3)设函数232+-=x x y ,则()A .y 有极小值41,但无极大值; B .y 有极小值0,但无极大值; C .y 有极小值0,极大值41; D .y 有极大值41,但无极小值.解C ;(提示:由图像分析可知)(4)设函数4322x x x y +-=,则在区间)2,1(和)4,2(内,曲线分别为() A .凸的,凸的; B .凸的,凹的;C .凹的,凸的;D .凹的,凹的. 解D ;(提示:)112-=''x x y () (5)函数xex y -=2在区间)2,1(内是()A .单调递增且是凸的;B .单调递增且是凹的;C .单调递减且是凸的;D .单调递减且是凹的. 解A (提示:)2(x xe y x-='-,)42(2x x e y x+-=''-) 3.求下列极限:(1)2233lim a x a x a x --→; (2)30arctan lim xxx x -→; (3)x x x 4sin 1tan lim 4-→π; (4)x x e x 3lim +∞→;(5)xx xx x ln ln lim 2++∞→; (5))1(lim 1-+∞→x x e x .答案:(1)2233lim a x a x a x --→解 这是型未定式,所以应用洛必达法则得 a x x x a x a x a x a x a x 2323lim 23lim lim 22233===--→→→. (2)3arctan lim xxx x -→ 解 这是型未定式,所以应用洛必达法则得 31)1(31lim 3111lim arctan lim202203=+=+-=-→→→x x x x xx x x x .(3)xx x 4sin 1tan lim4-→π解 这是型未定式,所以应用洛必达法则得 21424cos 4sec lim 4sin 1tan lim 244-=-==-→→xx x x x x ππ. (4)x x ex 3lim +∞→解 这是∞∞型未定式,所以应用洛必达法则得06lim 6lim 3lim lim 23====+∞→+∞→+∞→+∞→x x x x x x x x ee x e x e x . (5)xx x x x ln ln lim 2++∞→解 这是∞∞型未定式,所以应用洛必达法则得 xx x x x xx x x x x x 112lim ln 112lim ln ln lim 22-=++=++∞→+∞→+∞→ ∞==-=+∞→+∞→x xx x x 4lim 12lim 2. (6))1(lim 1-+∞→xx e x解 这是0⋅∞型未定式,先变形化为00型的未定式,再应用洛必达法则得11lim 1lim )1(lim 001==-=-→→+∞→xx x x xx e xe e x . 4.求下列函数的单调区间: (1)149323+--=x x x y ; (2)x ex y -=2;(3)x x y sin 2-=,]2,0[π∈x . 答案:(1)149323+--=x x x y解 函数y 的定义域为),(+∞-∞,9632--='x x y , 令0='y ,得11-=x ,32=x ;列表讨论如下:所以函数y 的单调增加区间是)1,(--∞和),3(+∞,单调减少区间是)3,1(-. (2)xex y -=2解 函数y 的定义域为),(+∞-∞,)2(x xe y x-='-, 令0='y ,得01=x ,22=x ;列表讨论如下:所以函数y 的单调减少区间是)0,(-∞和),2(+∞,单调增加区间是)2,0(. (3)x x y sin 2-=,]2,0[π∈x 解x y cos 21-=',]2,0[π∈x , 令0='y ,得1π=x ,52π=x ;列表讨论如下:所以函数y 的单调减少区间是)3,0(π和)2,35(ππ,单调增加区间是)35,3(ππ. 5.求下列函数的极值:(1)43+=x xy ; (2)x x y 2ln =;(3)221xx y +=; (4)x x y 33cos sin +=; (5)32)1(23+-=x y ; (6))1ln(21arctan 2x x y +-=.答案: (1)43+=x xy 解 函数y 的定义域为),(+∞-∞,233)4()2(2+--='x x y ;令0='y ,解得驻点32=x ,另y '不存在的点没有;列表讨论如下:因此,函数43+=x x y 的极大值为62323==x y .(2)xxy ln =解 函数y 的定义域为),0(+∞,2ln 1x xy -='; 令0='y ,解得驻点e x =,另y '不存在的点没有;列表讨论如下:因此,函数x y =的极大值为e y e x ==. (3)221xx y +=解 函数y 的定义域为),0()0,+∞∞- (,34)12x x y -='(; 令0='y ,解得驻点1±=x ,另y '不存在的点没有;列表讨论如下:因此,函数22x x y +=的极小值为21=±=x y . (4)x x y 33cos sin +=解 )cos (sin cos sin 3x x x x y -=',]2,0[π∈x , 令0='y ,得01=x 、42π=x 、23π=x 、234π=x 、455π=x ;列表讨论如下:因此,函数x x y 33cos sin +=的极小值为224==πx y 和123-====ππx x y y , 极大值为120====πx x y y 和2245-==πx y . (5)32)1(23+-=x y解 函数y 的定义域为),(+∞-∞,3134+-='x y ;令0='y ,无解,另y '不存在的点为1-=x ;列表讨论如下:因此,函数32)1(23+-=x y 的极大值为31=-=x y . (6))1ln(21arctan 2x x y +-= 解 函数y 的定义域为),(+∞-∞,211xxy +-='; 令0='y ,解得驻点1=x ,另y '不存在的点没有;列表讨论如下:因此,函数y 的极大值为2ln 241-==x y .6.求下列函数在指定区间上的最值:(1)2211x x x x y -++-=,]1,0[∈x ; (2)x x y 2tan tan 2-=,]3,0[π∈x . 答案:(1)2211xx x x y -++-=,]1,0[∈x 解 221)122)((x x x y -+-=',令0='y ,在]1,0[上得驻点21=x ; 驻点处的函数值为5321==x y ,端点处的函数值为110====x x y y ; 所以,函数在]1,0[上的最大值为110====x x y y ,最小值为5321==x y . (2)x x y 2tan tan 2-=,]3,0[π∈x解 )tan 1(sec 22x x y -=',令0='y ,在]3,0[π上得驻点4π=x ;驻点处的函数值为14==πx y ,端点处的函数值为00==x y ,3323-==πx y ;所以,函数在]3,0[π上的最大值为14==πx y ,最小值为00==x y .7.求下列函数的凹凸区间和拐点:(1)1323+-=x x y ; (2))7ln 12(4-=x x y .答案:(1)1323+-=x x y解 函数的定义域为),(+∞-∞,x x y 632-=',66-=''x y ; 令0=''y ,解得定义区间内的实根1=x ;所以列表讨论如下:因此,函数在区间)1,(-∞内是凸的、在区间),1(+∞内是凹的,拐点为点)1,1(-. (2))7ln 12(4-=x x y解 函数的定义域为),0(+∞,)1ln 3(163-='x x y ,x x y ln 1442=''; 令0=''y ,解得定义区间内的实根1=x ;所以列表讨论如下:因此,函数在区间)1,0(内是凸的、在区间),1(+∞内是凹的,拐点为点)7,1(-. 8.作出下列函数的图像: (1)23x x y -=; (2)115-+=x y ; (3)2xx e e y -+=; (4)32)1(x x y -=.答案: (1)23x xy -=解 函数的定义域为),3()3,3()3,(∞+---∞ ,222)3(3x x y -+=',令0='y ,无解;322)3)92x x x y -+=''((,令0=''y 得0=x ;0=y 为水平渐近线,3±=x 为垂直渐近线;取辅助点)21,3(-,)2,2(-,)21,1(--,)21,1(,)4,2(-,)21,3(-;。
《高等工程数学》――科学出版社版习题答案(第三章)(此习题答案仅供学员作业时参考。
因时间匆忙,有错之处敬请指正,谢谢!) (联系地址:yangwq@ )P501. 自己验证范数的三个条件2. 自己验证范数的三个条件3. (1)122222212111121()||||(||)||||||||||||||||(||1),||||||(11)||n n n n nk k i j k k k i j k n k k T nx x x x C x x x x x x x Cauchy Schwartz x x x I I x x I R x ==≠===∈==+∙≥=-=∙=<>≤∙==∈∑∑∑∑∑设,,...,,则有--(*)另由不等式,有--(**)其中,,...,1所以由(*)和(**)式有:212||||||||x x ≤≤((2)121111211111()||||max ||||||||()||max ||||||||max ||||||||||||||||n n nk k k n k n i k k nn i k k n i x x x x C x x x x x x x x x x x x n x n x x x n x ∞≤≤=≤≤∞≤≤=∞∞=∈==≤=≤=≤=≤≤∑∑ 设,,...,,则有--(*)另外对,,...,的任一分量有所以有:--(**)所以由(*)和(**)式有:(3)12211212()||||max ||||||()||max ||||||||||||n n k k n n i k k nx x x x C x x x x x x x x x x x x ∞≤≤≤≤∞=∈==≤==≤=≤=设,,...,,则有--(*)因对,,...,的任一分量有 所以有:--(**)所以由(*)和(**)式有:2||||||||x x ∞∞≤≤4. 已知1321i A i -⎡⎤=⎢⎥+⎣⎦试求第12|||| ||||||||A A A A ρ∞,,,()解:12222||||max{2||||max{3121365531215511655||176650(16)(1)5511||||413||(1)162421(H H A A i i i A A i i i i I A A i A iI A i λλλλλλλλλλλλλρ∞====+-+⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-+-⎣⎦⎣⎦⎣⎦----==-+-=---+-=-+--==-+-=-----因所以)1A ==+5. 证明:(1)211H U U U II U =因是酉矩阵,所以=而单位矩阵的特征值为,所以(2) 222222)))))H H H H H H H H H H H H H H H H H H H H H H H H H U U U IUA UA A U UA A AUA A AU AU U A AU U A A UA A AU AU AU A U AU U AU U A UU AU U A A UA A U AU U AU U AUA =========因是酉矩阵,所以=()(所以()(()即矩阵与()(相似,所以有相同的特征值即()(()即矩阵与()(相似,所以有相同的特征值即6. ||||=1||||=1111-1||||=max||||=max||||=11||||=||||||||||||||||||||e e I Ie e I A A A A A A ---=≤∴≥7. (1)证明:假设I -A 不可逆,则|I-A|=0,即1是A 的特征值,所以 ()1()()1A A A A A A ρρρ≥≤<又因为对的任一范数,都有所以由题设知矛盾,所以I -A 可逆(2) 由||||||||||||||||1||||||||||||||||||||11||||1||||1||||I A I A I I A I A A II A I I A AI A I I A A I I A A I A A I A I A A A I A A --⇒--⇒-+-∴-=+-≤+-≤+-∴---≤<-≤- -1-1-1-1-1-1-1-1-1-1-1-1()()=()-()=()=()()()()()()()由得() 得证明:1||||0.9 ()<1lim k k A A A O ρ→∞=∴∴=(2)2||(2)() ()=2||1|lim 2k k c c I B cc c c B c c c c B O λλλλλρλ→∞---=--=-+∴--∴<= 当|时,9.(1) 解: 21334(4)(1)22()41A A λλλλλλρ--=--=-+--∴=>故发散(2) 因为收敛半径为:R=5,所以收敛10.解: 1210.10.80.60.30.90.534140.90771300.511773490111425371773311311702835377k k A A A A λλ∞=⎡⎤=⎢⎥⎣⎦==-⎡⎤⎢⎥-⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎣⎦⎢⎥⎣⎦∑设的特征值为,,所以(1) 222sin 2cos(2)sin 2sin()sin cos()sin cos 2sin(2)cos 2cos()cos sin()cos t tt At t t t e te e e e te e t t t t At t t t t t t t t At t t t t ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦-⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦(2) 222sin 2cos(2)sin 2sin()sin cos()sin cos 2sin(2)cos 2cos()cos sin()cos tt t At t t t e te e e e te e t t t t At t t t t t t t t At t t t t ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦12. 解: A 的特征值为:-1,1,22221166110221102211sin 2(2sin 2sin )(sin 22sin )33sin()00sin 0sin 021cos 2(cos 2cos )(co 33cos()t t t t t t t At t t t t t t t t ee e e e e e e e e e e e e e e tt t t t At t t t t t At ------⎡⎤⎢⎥⎢⎥⎢⎥=+-⎢⎥⎢⎥⎢⎥-+⎢⎥⎣⎦⎡⎤--⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦-=(4-3-)(2-3+)()()()()s 2cos )0cos 000cos t t t t ⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦13.解: A 的特征值为:1,1,42ln 1110240.5 1.50.50.50.5 2.5A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦-⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦-ln4-2ln4+6ln4-1-ln4+33。
习题三1(1)解:所给函数在定义域(,)−∞+∞内连续、可导,且2612186(1)(3)y x x x x ′=−−=+−可得函数的两个驻点:121,3x x =−=,在(,1),(1,3),(3,)−∞−−+∞内,y ′分别取+,–,+号,故知函数在(,1],[3,)−∞−+∞内单调增加,在[1,3]−内单调减少.(2)解:函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x ′=−,则函数有驻点2x =,在部分区间(0,2]内,0y ′<;在[2,)+∞内y ′>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3)解:函数定义域为(,)−∞+∞,0y ′=>,故函数在(,)−∞+∞上单调增加.(4)解:函数定义域为(,)−∞+∞,22(1)(21)y x x ′=+−,则函数有驻点:11,2x x =−=,在1(,]2−∞内,0y ′<,函数单调减少;在1[,)2+∞内,0y ′>,函数单调增加.(5)解:函数定义域为[0,)+∞,11e e e ()n x n x x n y nx x x n x −−−−−′=−=−函数的驻点为0,x x n ==,在[0,]n 上0y ′>,函数单调增加;在[,]n +∞上0y ′<,函数单调减少.(6)解:函数定义域为(,)−∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪−∈−∈⎪⎩Z Z 1)当π[π,π]2x n n ∈+时,12cos 2y x ′=+,则1π0cos 2[π,π23y x x n n ′≥⇔≥−⇔∈+;πππ0cos 2[π,π]232y x x n n ′≤⇔≤−⇔∈++.2)当π[π,π]2x n n ∈−时,12cos 2y x ′=−,则1ππ0cos 2[π,π]226y x x n n ′≥⇔≤⇔∈−−1π0cos 2[π,π]26y x x n n ′≤⇔≥⇔∈−.综上所述,函数单调增加区间为πππ[,)223k k k z +∈,函数单调减少区间为ππππ[,)2322k k k z ++∈.(7)解:函数定义域为(,)−∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x ′=−++−+⋅=+−−函数驻点为123111,,2218x x x =−==,在1(,]2+∞−内,0y ′>,函数单调增加,在111[,]218−上,0y ′<,函数单调减少,在11[,2]18上,0y ′>,函数单调增加,在[2,)+∞内,0y ′>,函数单调增加.故函数的单调区间为:1(,]2−∞−,111[,218−,11[,)18+∞.2.(1)证明:令()sin tan 2,f x x x x =−−则22(1cos )(cos cos 1)()cos x x x f x x −++′=,当π02x <<时,()0,()f x f x ′>为严格单调增加的函数,故()(0)0f x f >=,即sin 2tan 2.x x x −>(2)证明:令2()=e sin 12xx f x x −+−−,则()=e cos xf x x x −′−+−,()=e sin 1e (sin 1)0x x f x x x −−′′−−=−+<,则()f x ′为严格单调减少的函数,故()(0)0f x f ′′<=,即()f x 为严格单调减少的函数,从而()(0)0f x f <=,即2e sin 1.2xx x −+<+3.证明:设()sin f x x x =−,则()cos 10,f x x =−≤()f x 为严格单调减少的函数,因此()f x 至多只有一个实根.而(0)0f =,即0x =为()f x 的一个实根,故()f x 只有一个实根0x =,也就是sin x x =只有一个实根.4.(1)解:22y x ′=−,令0y ′=,得驻点1x =.又因20y ′′=>,故1x =为极小值点,且极小值为(1)2y =.(2)解:266y x x ′=−,令0y ′=,得驻点120,1x x ==,126y x ′′=−,010,0x x y y ==′′′′<>,故极大值为(0)0y =,极小值为(1)1y =−.(3)解:2612186(3)(1)y x x x x ′=−−=−+,令0y ′=,得驻点121,3x x =−=.1212y x ′′=−,130,0x x y y =−=′′′′<>,故极大值为(1)17y −=,极小值为(3)47y =−.(4)解:1101y x ′=−=+,令0y ′=,得驻点0x =.201,0(1)x y y x =′′′′=>+,故(0)0y =为极大值.(5)解:32444(1)y x x x x ′=−+=−,令0y ′=,得驻点1231,0,1x x x =−==.210124, 0,0,x x y x y y =±=′′′′′′=−+<>故(1)1y ±=为极大值,(0)0y =为极小值.(6)解:1y ′=,令0y ′=,得驻点13,4x =且在定义域(,1]−∞内有一不可导点21x =,当34x >时,0y ′<;当34x <时,0y ′>,故134x =为极大值点,且极大值为35()44y =.因为函数定义域为1x ≤,故1x =不是极值点.(7)解:y ′=,令0y ′=,得驻点125x =.当125x >时,0y ′<;当125x <,0y ′>,故极大值为12()5y =.(8)解:2131x y x x +=+++,22(2)(1)x x y x x −+′=++,令0y ′=,得驻点122,0x x =−=.2223(22)(1)2(21)(2)(1)x x x x x x y x x −−+++++′′=++200,0x x y y =−=′′′′><,故极大值为(0)4y =,极小值为8(2)3y −=.(9)解:e (cos sin )x y x x ′=−,令0y ′=,得驻点ππ (0,1,2,)4k x k k =+=±±⋯.2e sin x y x ′′=−,ππ2π(21)π440,0x k x k y y =+=++′′′′<>,故2π2π 4k x k =+为极大值点,其对应的极大值为π2π42()k k y x +=;21π(21)π 4k x k +=++为极小值点,对应的极小值为π(21)π421()k k y x +++=.(10)解:11211ln (ln )xxxy x x x x x −′′==,令0y ′=,得驻点e x =.当e x >时,0y ′<,当e x <时,0y ′>,故极大值为1e(e)e y =.(11)解:2e e x xy −′=−,令0y ′=,得驻点ln 22x =−.ln 222e e ,0x x x y y −=−′′′′=+>,故极小值为ln 2()2y −=.(12)解:y ′=,无驻点.y 的定义域为(,)−∞+∞,且y 在x =1处不可导,当x >1时0y ′<,当x <1时,0y ′>,故有极大值为(1)2y =.(13)解:y ′=无驻点.y 在1x =−处不可导,但y ′恒小于0,故y 无极值.(14)解:21sec 0y x ′=+>,y 为严格单调增加函数,无极值点.5.证明:232y ax bx c ′=++,令0y ′=,得方程2320ax bx c ++=,由于22(2)4(3)4(3)0b a c b ac ∆=−=−<,那么0y ′=无实数根,不满足必要条件,从而y 无极值.6.解:f (x )为可导函数,故在π3x =处取得极值,必有π3π0()(cos cos3)3x f a x x =′==+,得a =2.又π3π0((2sin 3sin 3)3x f x x =′′=<=−−,所以π3x =是极大值点,极大值为π()3f =7.(1)解:y 的定义域为(,0)−∞,322(27)0x y x +′==,得唯一驻点x =-3且当(,3]x ∈−∞−时,0y ′<,y 单调递减;当[3,0)x ∈−时,0y ′>,y 单调递增,因此x =-3为y 的最小值点,最小值为f (-3)=27.又lim ()x f x →−∞=+∞,故f (x )无最大值.(2)解:10y ′==,在(5,1)−上得唯一驻点34x =,又53,(1)1,(5)544y y y ⎛⎞==−=−⎜⎟⎝⎠ ,故函数()f x 在[-5,1]上的最大值为545−.(3).解:函数在(-1,3)中仅有两个驻点x =0及x =2,而y (-1)=-5,y (0)=2,y (2)=-14,y (3)=11,故在[-1,3]上,函数的最大值是11,最小值为-14.8.解:20y ax b ′=+=得2b x a =−不可能属于以0和ba 为端点的闭区间上,而22(0)0,b b y y a a ⎛⎞==⎜⎟⎝⎠,故当a >0时,函数的最大值为22b b y a a ⎛⎞=⎜⎟⎝⎠,最小值为(0)0y =;当a <0时,函数的最大值为(0)0y =,最小值为22b b y a a ⎛⎞=⎜⎟⎝⎠.9.解:令y =,y ′===令0y ′=得x =1000.因为在(0,1000)上0y ′>,在(1000,)+∞上0y ′<,所以x =1000为函数y的极大值点,也是最大值点,max (1000)y y ==.故数列的最大项为1000a =.10.证明:11,01111(),01111,11x x x a f x x ax x a x a x x a ⎧+<⎪−−+⎪⎪=+≤≤⎨+−+⎪⎪+>⎪++−⎩当x <0时,()()2211()011f x x x a ′=+>−−+;当0<x <a 时,()()2211()11f x x x a ′=−++−+;此时令()0f x ′=,得驻点2a x =,且422a f a ⎛⎞=⎜⎟+⎝⎠,当x >a 时,()()2211()011f x x x a ′=−−<++−,又lim ()0x f x →∞=,且2(0)()1a f f a a +==+.而()f x 的最大值只可能在驻点,分界点,及无穷远点处取得故{}max 242(),,0121a af x a a a++==+++.11.解:设圆柱体的高为h ,,223πππ4V h r h h =⋅=−令0V ′=,得.h =即圆柱体的高为3r 时,其体积为最大.12.解:由题设知21π22x xy a⎛⎞+⋅=⎜⎟⎝⎠得21π18π8a x a y x x x −==−截面的周长212112π()2πππ,2424π2()1,4a a l x x y x x x x x x x x al x x=++⋅=+−+=++′=+−令()0l x ′=得唯一驻点x =,即为最小值点.即当x =.13.解:所需电线为()(03)()L x x L x =<<′=在0<x <3得唯一驻点x =1.2(km),即变压器设在输电干线离A 处1.2km 时,所需电线最短.14.解:设小正方形边长为x 时方盒的容积最大.232222(2)44128V a x x x ax a xV x ax a =−⋅=−+′=−+令0V ′=得驻点2a x =(不合题意,舍去),6a x =.即小正方形边长为6a时方盒容积最大.15.(1)解:42,20y x y ′′′=−=−<,故知曲线在(,)−∞+∞内的图形是凸的.(2)解:cosh ,sinh .y x y x ′′′==由sinh x 的图形知,当(0,)x ∈+∞时,0y ′′>,当(,0)x ∈−∞时,0y ′′<,故y =sinh x 的曲线图形在(,0]−∞内是凸的,在[0,)+∞内是凹的.(3)解:23121,0y y x x ′′′=−=>,故曲线图形在(0,)+∞是凹的.(4)解:2arctan 1x y x x ′=++,2220(1)y x ′′=>+故曲线图形在(,)−∞+∞内是凹的.16.(1);解:23103y x x ′=−+610y x ′′=−,令0y ′′=可得53x =.当53x <时,0y ′′<,故曲线在5(,)3−∞内是凸弧;当53x >时,0y ′′>,故曲线在5[,)3+∞内是凹弧.因此520,327⎛⎞⎜⎟⎝⎠是曲线的唯一拐点.(2)解:(1)e , e (2)x xy x y x −−′′′=−=−令0y ′′=,得x =2当x >2时,0y ′′>,即曲线在[2,)+∞内是凹的;当x <2时,0y ′′<,即曲线在(,2]−∞内是凸的.因此(2,2e -2)为唯一的拐点.(3);解:324(1)e , e 12(1)0x x y x y x ′′′=++=++>故函数的图形在(,)−∞+∞内是凹的,没有拐点.(4)解:222222(1), 1(1)x x y y x x −′′′==++令0y ′′=得x =-1或x =1.当-1<x <1时,0y ′′>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ′′<,即在(,1],[1,)−∞−+∞内曲线是凸的.因此拐点为(-1,ln2),(1,ln2).(5);解:arctan arctan 222112e ,e1(1)x xx y y x x −′′′==++ 令0y ′′=得12x =.当12x >时,0y ′′<,即曲线在1[,)2+∞内是凸的;当12x <时,0y ′′>,即曲线在1(,]2−∞内是凹的,故有唯一拐点1arctan 21(,e )2.(6)解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x ′′′=−= 令0y ′′=,在(0,+∞),得x =1.当x >1时,0y ′′>,即曲线在[1,)+∞内是凹的;当0<x <1时,0y ′′<,即曲线在(0,1]内是凸的,故有唯一拐点(1,-7).17.(1);证明:令()nf x x =12(),()(1)0n n f x nx f x n n x −−′′′==−> ,则曲线y =f (x )是凹的,因此,x y R +∀∈,()()22f x f y x y f ++⎛⎞<⎜⎟⎝⎠,即1()22nn n x y x y +⎛⎞<+⎜⎟⎝⎠.(2);证明:令f (x )=e x()e ,()e 0x x f x f x ′′′==> .则曲线y =f (x )是凹的,,,x y R x y∀∈≠ 则()()22f x f y x y f ++⎛⎞<⎜⎟⎝⎠即2e e e2x yx y ++<.(3)证明:令f (x )=x ln x (x >0)1()ln 1,()0(0)f x x f x x x′′′=+=>> 则曲线()y f x =是凹的,,x y R +∀∈,x ≠y ,有()()22f x f y x y f ++⎛⎞<⎜⎟⎝⎠即1ln (ln ln )222x y x y x x y y ++<+,即ln ln ()ln2x y x x y y x y ++>+.18.(1)解:22223d 33d 3(1),d 2d 4y t y t xt x t +−==令22d 0d yx =,得t =1或t =-1则x =1,y =4或x =1,y =-4当t >1或t <-1时,22d 0d yx >,曲线是凹的,当0<t <1或-1<t <0时,22d 0d yx <,曲线是凸的,故曲线有两个拐点(1,4),(1,-4).(2)解:32d 22sin cos 2sin cos d 2(csc )y a xa θθθθθ⋅⋅==−⋅−222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a a θθθθθθ=−+⋅=⋅−−令22d 0d y x =,得π3θ=或π3θ=−,不妨设a >0tan θ>>时,即ππ33θ−<<时,22d 0d y x >,当tan θ>或tan θ<π3θ<−或π3θ>时,22d 0d y x <,故当参数π3θ=或π3θ=−时,都是y的拐点,且拐点为3,2a ⎞⎟⎠及3,2a ⎛⎞⎜⎟⎝⎠.19.证明:22221(1)x x y x −++′=+,y ′′=令0y ′′=,得1,22x x x =−=+=−当(,1)x ∈−∞−时,0y ′′<;当(1,2x ∈−时0y ′′>;当(22x ∈−+时0y ′′<;当(2)x ∈++∞时0y ′′>,因此,曲线有三个拐点(-1,-1),(2−+.因为111212−−+因此三个拐点在一条直线上.20.解:y′=3ax 2+2bx ,y″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩解得39,22a b =−=.21.解:令f (x )=ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0可解得a =1,b =-3,c =-24,d =16.22.解:224(3),12(1)y kx x y k x ′′′=−=− 令0y ′′=,解得x =±1,代入原曲线方程得y =4k ,只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点.18x k y =±′=±,那么拐点处的法线斜率等于18k ∓,法线方程为18y x k =∓.由于(1,4k ),(-1,4k )在此法线上,因此148k k =±,得22321, 321k k ==−(舍去)故8k ==±.23.答:因00()()0f x f x ′′′==,且0()0f x ′′′≠,则x =x 0不是极值点.又在0(,)U x δ�中,000()()()()()()f x f x x x f x x f ηη′′′′′′′′′′=+−=−,故()f x ′′在0x 左侧与0()f x ′′′异号,在0x 右侧与0()f x ′′′同号,故()f x 在x =x 0左、右两侧凹凸性不同,即00(,())x f x 是拐点.24.(1);解:函数的定义域为(-∞,+∞),且为奇函数,2222222223121(1)(1)2(3)(1)x x x y x x x x y x +−−′==++−′′=+令0y ′=,可得1x =±,令0y ′′=,得x =0,,当x→∞时,y→0,故y=0是一条水平渐近线.函数有极大值1(1)2f=,极小值1(1)2f−=−,有3个拐点,分别为,⎛⎜⎝(0,0),,作图如上所示.(2)解:函数定义域为(-∞,+∞),且为奇函数,2222114(1)yxxyx′=−+′′=+令y′=0,可得x=±1,令y″=0,可得x=0.列表讨论如下:x0(0,1)1(1,∞)y′-0+y″0++y0极小又()2lim lim(1arctan)1x xf xxx x→∞→∞=−=且lim[()]lim(2arctan)πx xf x x x→+∞→+∞−=−=−故πy x=−是斜渐近线,由对称性知πy x=+亦是渐近线.函数有极小值π(1)12y=−,极大值π(1)12y−=−.(0,0)为拐点.作图如上所示.(3);解:函数的定义域为,1x R x∈≠−.22232(1)(2)(1)(1)(1)2(1)x x x x xy xx xyx+−+′==≠−++′′=+令y′=得x=0,x=-2当(,2]x∈−∞−时,0,()y f x′>单调增加;当[2,1)x∈−−时,0,()y f x′<单调减少;当(1,0]x∈−时,0,()y f x′<单调减少;当[0,)x∈+∞时,0,()y f x′>单调增加,故函数有极大值f(-2)=-4,有极小值f(0)=0又211lim()lim1x xxf xx→−→−==∞+,故x=-1为无穷型间断点且为铅直渐近线.又因()lim1xf xx→∞=,且2lim(())lim11x xxf x x xx→∞→∞⎡⎤−==−−⎢⎥+⎣⎦,故曲线另有一斜渐近线y=x-1.综上所述,曲线图形为:(4)解:函数定义域为(-∞,+∞).22(1)(1)22(1)e e 2(241)x x y x y x x −−−−′=−−′′=⋅−+令0y ′=,得x =1.令0y ′′=,得1x =±.当(,1]x ∈−∞时,0,y ′>函数单调增加;当[1,)x ∈+∞时,0,y ′<函数单调减少;当(,1[1)x ∈−∞−++∞∪时,0y ′′>,曲线是凹的;当[1,122x ∈−+时,0y ′′<,曲线是凸的,故函数有极大值f (1)=1,两个拐点:1122(1,e ),(1,e )22A B −−−+,又lim ()0x f x →∞=,故曲线有水平渐近线y =0.图形如下:25.(1)解:2e ()0(1e )cxcx Ac g x −−′=>+,g (x )在(-∞,+∞)内单调增加,222244e e 2(1e )e e (1e )()(1e )(1e )cx cx cx cx cx cx cx cx Ac Ac Ac g x −−−−−−−−−+⋅+⋅−−′′==++当x >0时,()0,()g x g x ′′<在(0,+∞)内是凸的.当x <0时,()0,()g x g x ′′>在(-∞,0)内是凹的.当x =0时,()2A g x =.且lim ()0,lim ()x x g x g x A→−∞→+∞==.故曲线有两条渐近线y =0,y =A .且A 为该种动物数量(在特定环境中)最大值,即承载容量.如图:(2)解:()()1e 1e cx cxA Ag x g x A −−+=+=++.(3)证明:∵()1e 1e e c x T cx cT A Ay B B −+−−==++取e1cTB −=,得ln B T c =即曲线1e cx A y B −=+是对g (x )的图像沿水平方向作了ln B T c =个单位的平移.26.解:324d π,π,.3d r V r A r v t === 2d d d 4πd d d d d d 8πd d d V V rr v t r t A A r r v t r t=⋅=⋅=⋅=⋅27.解:d d de e .d d d a a r r a a t t ϕϕϕωωϕ=⋅=⋅⋅=28.解:22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t t y y a a t t ϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅−⋅=−=⋅=⋅=29.解:方程22169400x y +=两边同时对t 求导,得d d 32180d d x yx y t t⋅+⋅=由d d d d x y tt −=.得161832,9y x y x == 代入椭圆方程得:29x =,163,.3x y =±=±即所求点为1616,3,3,33⎛⎞⎛⎞−−⎜⎟⎜⎟⎝⎠⎝⎠.30.解:当水深为h时,横截面为212s h ==体积为22212V sh h ′====d d 2d d V hh t t=⋅当h =0.5m 时,31d 3m min d Vt −=⋅.故有d 320.5d ht =⋅,得d d h t =(m 3·min -1).31.解:设t 小时后,人与船相距s公里,则d d s s t ===且120d 8.16d t st ==≈(km ·h-1)32.解:d d d 236.d d d y y xx x t x t=⋅=⋅=当x =2时,d 6212d yt =×=(cm ·s -1).33.证明:如图,设在t 时刻,人影的长度为y m.则53456y y t=+化简得d 7280,40,40d yy t y t t ===(m ·min -1).即人影的长度的增长率为常值.34.解:y =-(x -2)2+4,故抛物线顶点为(2,4)当x =2时,0,2y y ′′′==− ,故23/22.(1)y k y ′′==′+35.解:sinh ,cosh .y x y x ′′′== 当x =0时,0,1y y ′′′== ,故23/21.(1)y k y ′′==′+36.解:cos ,sin y x y x ′′′==−.当π2x =时,0,1y y ′′′==− ,故23/21.(1)y k y ′′==′+37.解:2tan ,sec y x y x ′′′== 故223/223/2sec cos (1)(1tan )y x k x y x ′′===′++1sec R x k ==.38.解:22d d 3sin cos d tan d d 3cos sin d y y a t t t t x x a t tt ===−−,22224d d d(tan )1sec 1(tan )d d d d 3cos sin 3sin cos d y t t t x x x ta t t a t t t −−=−=⋅==−,故423/2123sin cos [1(tan )]3sin 2a t t k t a t==+−且当t =t 0时,23sin 2k a t =.39.解:cos ,sin y x y x ′′′==− .23/223/2(1cos )1sin ,sin (1cos )x x R k x R x +===+ 显然R 最小就是k 最大,225/22cos (1sin )(1cos )x x k x +′=+令0k ′=,得π2x =为唯一驻点.在π0,2⎛⎞⎜⎟⎝⎠内,0k ′>,在π,π2⎛⎞⎜⎟⎝⎠内,0k ′<.所以π2x =为k 的极大值点,从而也是最大值点,此时最小曲率半径为23/2π2(1cos )1sin x x R x=+==.40.解:由ln 0y x y =⎧⎨=⎩解得交点为(1,0).1112111,11.x x x x y x y x ====′==′′=−=−故曲率中心212(1,0)(1)312x y y x y y y y αβ=⎧′′⎡⎤+==−⎪⎢′′⎣⎦⎪⎨′⎡⎤+⎪==−+⎢⎥⎪′′⎣⎦⎩曲率半径为R =.故曲率圆方程为:22(3)(2)8x y −++=.41.解:0010,5000x x y y ==′′′==,23/2(1)5000y R y ′+==′′飞行员在飞机俯冲时受到的向心力22702005605000mv F R ⋅===(牛顿)故座椅对飞行员的反力560709.81246F =+×=(牛顿).42.解:(1)边际成本为:()(300 1.1) 1.1.C q q ′′=+=(2)利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=−=−−′=−令()0L q ′=,得650q =即为获得最大利润时的产量.(3)盈亏平衡时:R (q )=C (q )即 3.9q -0.003q 2-300=0q 2-1300q +100000=0解得q =1218(舍去),q =82.43.解:(1)利润函数为32322()70.010.6130.010.66()0.03 1.26L q q q q q q q qL q q q =−+−=−+−′=−+−令()0L q ′=,得231206000q q −+=即2402000q q −+=得20q =−(舍去)2034.q =+≈此时,32(34)0.01340.63463496.56L =−×+×−×=(元)(2)设价格提高x 元,此时利润函数为2()(7)(342)(34)220379.44L x x x C x x =+−−=−++令()0L x′=,得5x=(5)121.5696.56L=>故应该提高价格,且应提高5元.44.(1)解:y′=a即为边际函数.弹性为:1Ey axa xEx ax b ax b =⋅⋅=++,增长率为:yaax b γ=+.(2)解:边际函数为:y′=ab e bx弹性为:1eebxbxEyab x bx Ex a=⋅⋅=,增长率为:eebxy bxabbaγ==.(3)解:边际函数为:y′=ax a-1.弹性为:11aaEyax x a Ex x−=⋅⋅=,增长率为:1.ay aax ax x γ−==45.解:因弹性的经济意义为:当自变量x变动1%,则其函数值将变动% EyEx⎛⎞⎜⎟⎝⎠.故当价格分别提高10%,20%时,需求量将分别提高0.8×10%=8%,0.8×20%=16%.46.解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.。
第三章习题3-11. 设s =12gt 2,求2d d t s t=.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==-- 21lim (2)22t g t g →=+= 2. 设f (x )=1x,求f '(x 0) (x 0≠0). 解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠ 3.试求过点(3,8)且与曲线2y x =相切的直线方程。
解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x xx -=-。
由已知直线过点(3,8),得 00082(3)y x x -=- (1)又点00(,)x y 在曲线2y x =上,故200y x = (2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。
也即440x y --=或8160x y --=。
4. 下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1) 0limx ∆→00()()f x x f x x-∆-∆=A ;(2) f (x 0)=0, 0limx x →0()f x x x-=A ; (3) 0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x x x→-→--+--'=-=--0()A f x '∴=- (2)00000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=---0()A f x '∴=-(3)000()()limh f x h f x h h→+--00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h→-→+-+--=+-000()()2()f x f x f x '''=+= 02()A f x '∴=5. 求下列函数的导数: (1) y (2) y ;(3) y 322x .解:(1)12y x x ==11221()2y x x -''∴=== (2)23y x -=225133322()33y x x x ----''∴==-=-=(3)2152362y xx xx -==15661()6y x x-''∴===6. 讨论函数y x =0点处的连续性和可导性. 解:30lim 0(0)x x f →==000()(0)0lim lim 0x x x f x f x x →→→-===∞-∴函数y =0x =点处连续但不可导。
习题3-1 1.验证罗尔定理对函数y =ln sin x 在区间]65,6[p p 上的正确性.解因为y =ln ln sin sin x 在区间]65,6[p p 上连续, 在)65,6(p p 内可导, 且)65()6(pp y y =, 所以由罗尔定理知, 至少存在一点)65,6(pp x Î, 使得y ¢(x )=cot x =0.由y ¢(x )=cot x =0得)65,6(2pp p Î.因此确有)65,6(2pp p x Î=, 使y ¢(x )=cot x =0.2.验证拉格朗日中值定理对函数y =4x 3-5x 2+x -2在区间[0, 1]上的正确性.解因为y =4x 3-5x 2+x -2在区间[0, 1]上连续, 在(0, 1)内可导, 由拉格朗日中值定理知, 至少存在一点x Î(0, 1), 使001)0()1()(=--=¢yy y x .由y ¢(x )=12x2-10x +1=0得)1,0(12135α=x .因此确有)1,0(12135α=x , 使01)0()1()(--=¢y y y x .3.对函数f (x )=sin x 及F (x )=x +cos x 在区间]2,0[p 上验证柯西中值定理的正确性.解因为f (x )=sin x 及F (x )=x +cos x 在区间]2,0[p 上连续, 在)2,0(p 可导, 且F ¢(x )=1-sin x 在)2,0(p 内不为0, 所以由柯西中值定理知至少存在一点)2,0(px Î, 使得)()()0()2()0()2(x x p p F f F F f f ¢¢=--.令)0()2()0()2()()(F F f f x F x f --=¢¢p p , 即22sin 1cos -=-p x x .化简得14)2(8sin 2-+-=p x . 易证114)2(802<-+-<p , 所以14)2(8sin 2-+-=p x 在)2,0(p 内有解, 即确实存在)2,0(px Î, 使得)()()0()2()0()2(x x p p F f F F f f ¢¢=--.4. 试证明对函数y =px 2+qx +r 应用拉格朗日中值定理时所求得的点x 总是位于区间的正中间.证明证明证明 因为函数y =px 2+qx +r 在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 由拉格朗日中值定理, 至少存在一点x Î(a , b ), 使得y (b )-y (a )=y ¢(x )(b -a ), 即 (pb 2+qb +r )-(pa 2+qa +r )=(2p x +q )(b -a ). 化间上式得化间上式得p (b -a )(b +a )=2p x (b -a ),故2b a +=x .5. 不用求出函数f (x )=(x -1)(x -2)(x -3)(x -4)的导数,说明方程f ¢(x )=0有几个实根, 并指出它们所在的区间.解 由于f (x )在[1, 2]上连续, 在(1, 2)内可导, 且f (1)=f (2)=0, 所以由罗尔定理可知, 存在x 1Î(1, 2), 使f ¢(x 1)=0. 同理存在x 2Î(2, 3), 使f ¢(x 2)=0; 存在x 3Î(3, 4), 使f ¢(x 3)=0. 显然x 1、x 2、x 3都是方程f ¢(x )=0的根. 注意到方程f ¢(x )=0是三次方程, 它至多能有三个实根, 现已发现它的三个实根, 故它们也就是方程f ¢(x )=0的全部根. 6. 证明恒等式: 2arccos arcsi n p=+x x (-1£x £1).证明证明 设f (x )= arcsin x +arccos x . 因为因为 01111)(22º---=¢xxx f ,所以f (x )ºC , 其中C 是一常数. 因此2arccos arcsin )0()(p=+==x x f x f , 即2arccos arcsin p=+x x .7. 若方程a 0x n+a 1x n -1+ × × × + a n -1x =0有一个正根x 0, 证明方程证明方程 a 0nx n -1+a 1(n -1)x n -2 + × × × +a n -1 =0 必有一个小于x 0的正根.证明证明 设F (x )=a 0x n +a 1x n -1+ × × × + a n -1x , 由于F (x )在[0, x 0]上连续, 在(0, x 0)内可导, 且F (0)=F (x 0)=0, 根据罗尔定理, 至少存在一点x Î(0, x 0), 使F ¢(x )=0, 即方程即方程 a 0nx n -1+a 1(n -1)xn -2 + × × × +a n -1 =0 必有一个小于x 0的正根.8. 若函数f (x )在(a , b )内具有二阶导数, 且f (x 1)=f (x 2)=f (x 3), 其中a <x 1<x 2<x 3<b , 证明: 在(x 1, x 3)内至少有一点x , 使得f ¢¢(x )=0. 证明证明 由于f (x )在[x 1, x 2]上连续, 在(x 1, x 2)内可导, 且f (x 1)=f (x 2), 根据罗尔定理, 至少存在一点x 1Î(x 1, x 2), 使f ¢(x 1)=0. 同理存在一点x 2Î(x 2, x 3), 使f ¢(x 2)=0. 又由于f ¢(x )在[x 1, x 2]上连续, 在(x 1, x 2)内可导, 且f ¢(x 1)=f ¢(x 2)=0, 根据罗尔定理, 至少存在一点x Î(x 1, x 2)Ì(x 1, x 3), 使f ¢¢(x )=0. 9. 设a >b >0, n >1, 证明:nb n -1(a -b )<a n-b n<na n -1(a -b ) .证明证明 设f (x )=x n, 则f (x )在[b , a ]上连续, 在(b , a )内可导, 由拉格朗日中值定理, 存在x Î(b , a ), , 使 f (a )-f (b )=f ¢(x )(a -b ), 即a n -b n =n x n -1(a -b ).因为因为 nb n -1(a -b )<n x n -1(a -b )< na n -1(a -b ),所以所以 nb n -1(a -b )<a n -b n < na n -1(a -b ) . 10. 设a >b >0, 证明:bb a b a a b a -<<-ln . 证明证明 设f (x )=ln x , 则f (x )在区间[b , a ]上连续, 在区间(b , a )内可导, 由拉格朗日中值定理, 存在x Î(b , a ), , 使f (a )-f (b )=f ¢(x )(a -b ), 即)(1ln ln b a b a -=-x.因为b <x <a , 所以所以)(1ln ln )(1b a b b a b a a -<-<-, 即bb a b a a b a -<<-ln . 11. 证明下列不等式:(1)|arctan a -arctan b |£|a -b |; (2)当x >1时, e x>e ×x . 证明证明 (1)设f (x )=arctan x , 则f (x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在x Î(a , b ), 使f (b )-f (a )=f ¢(x )(b -a ), 即)(11arctan arctan 2ab a b -+=-x,所以||||11|arctan arctan |2a b a b a b -£-+=-x, 即|arctan a -arctan b |£|a -b |. (2)设f (x )=e x, 则f (x )在区间[1, x ]上连续, 在区间(1, x )内可导, 由拉格朗日中值定理, 存在x Î(1, x ), 使 f (x )-f (1)=f ¢(x )(x -1), 即 e x -e =e x(x -1). 因为x >1, 所以所以e x -e =e x (x -1)>e (x -1), 即e x >e ×x .12. 证明方程x 5+x -1=0只有一个正根.证明证明 设f (x )=x 5+x -1, 则f (x )是[0, +¥)内的连续函数.因为f (0)=-1, f (1)=1, f (0)f (1)<0, 所以函数在(0, 1)内至少有一个零点, 即x 5+x -1=0至少有一个正根.假如方程至少有两个正根, 则由罗尔定理, f ¢(x )存在零点, 但f ¢(x )=5x 4+1¹0, 矛盾. 这说明方程只能有一个正根.13. 设f (x )、g (x )在[a ,b ]上连续, 在(a , b )内可导, 证明在(a , b )内有一点x , 使 )()()()()()()()()(xx g a g f a f a b b g a g b f a f ¢¢-=.解 设)()()()()(x g a g x f a f x =j , 则j (x )在[a ,b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在x Î(a ,b ), 使 j (b )-j (a )=j ¢(x )(b -a ),即 úûùêë颢+¢¢-=-)()()()()(])([)(])([)()()()()()()()()(x x x x g a g f a f g a g f a f a b a g a g a f a f b g a g b f a f . 因此因此 )()()()()()()()()(xx g a g f a f a b b g a g b f a f ¢¢-=.14. 证明: 若函数.f (x )在(-¥, +¥)内满足关系式f ¢(x )=f (x ), 且f (0)=1则f (x )=e x. 证明证明 令x ex f x )()(=j , 则在(-¥, +¥)内有内有0)()()()()(2222º-=-¢=¢xxx x eex f e x f ee xf e x f x j , 所以在(-¥, +¥)内j (x )为常数.因此j (x )=j (0)=1, 从而f (x )=e x. 15. 设函数y =f (x )在x =0的某邻域内具有n 阶导数, 且f (0)=f ¢(0)= × × × =f (n -1)(0)=0, 试用柯西中值定理证明: !)()()(n x fx x f n n q =(0<q <1).证明证明 根据柯西中值定理 111)(0)0()()(-¢=--=n nn f x f x f xx f x x (x 1介于0与x 之间),2221111111)1()(0)0()()(-----¢¢=×-¢-¢=¢n n n n n n f n n f f n f x x x x x x (x 2介于0与x 1之间),3332222222)2)(1()(0)1()1()0()()1()(------¢¢¢=×---¢¢-¢¢=-¢¢n n n n n n n f n n n n f f n n f x x x x x x (x 3介于0与x 2之间), 依次下去可得依次下去可得 !)(02)1(2 )1()0()(2)1()()(1)1(1)1(11)1(n fn n n n ffn n fn n n n n n n n n x x xx x=××××--××××--=××××--------(x n 介于0与x n -1之间), 所以!)()()(n fxx f n n n x =由于x n 可以表示为x n =qx (0<q <1), 所以!)()()(n x fx x f n n q = (0<q <1).习题3-2 1. 用洛必达法则求下列极限:解 (1)111lim 111lim )1ln(lim 0=+=+=+®®®xxxx x x x . (2)2cos limsin lim=+=--®-®xeex ee xxx xxx .(3)a x a x a x ax a x cos 1cos lim sin sin lim ==--®®.(4)535sec 53cos 3lim 5tan 3sin lim2-==®®xx x xx x pp . (5)812csclim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-×-=-®®®xx x x x x x x pppp p .(6)nm n m n m ax nnm m ax anm namx nxmx axa x -----®®===--1111lim lim .(7)177sec22sec lim 277tan 2tan lim 2722sec2tan 177sec 7tan 1lim 2tan ln 7tan ln lim220220=××==××××=++®®++®®+®+®x x xx x xx x xxx x x x .(8))sin (cos 23)3sin (3cos 2lim 31cos 3cos lim 3133sec sec lim 3tan tan lim 22222222x x x x x x x x x x x x x x -×-==×=®®®®pp p p3sin 3sin 3limcos 3cos lim22=---=-=®®xx xx x x pp.(9)122lim212lim1lim11)1(111limcot arc )11ln(lim 2222==+=++=+-×+=++¥®+¥®+¥®+¥®+¥®x x x x x xx xx x x xxxx.(10)xxxx x xx x x x x 220222cos 1lim cos1)1ln(cos lim cos sec )1ln(lim -=-+=-+®®®®(注: cos x ×ln(1+x 2)~x 2) 1sin lim )sin (cos 22lim 0==--=®®xx x x xx x .(11)2122sec1lim2tan lim 2cot lim2=×==®®®®x xx x x x xx .(12)+¥====+¥®+¥®®®1lim lim 1limlim 2101222ttttxx xx ete xee x (注: 当x ®0时, +¥®=21xt).(13)2121lim 11lim 1112lim 12121-=-=--=÷øöçèæ---®®®x x x x x x x x .(14)因为)1ln(lim )1(lim x a x x x x e xa +¥®¥®=+,而aa ax ax xxa xa xxa xa x x x x x x ==+=--×+=+=+¥®¥®¥®¥®¥®1limlim1)(11lim1)1ln(lim)1(ln(lim 22,所以所以ax a x x xx ee xa==++¥®¥®)1l n (lim )1(lim ..(15)因为xx x xxe xln sin 0sin 0lim lim +®+®=, ,而0cos sinlim cot csc 1lim csc ln lim ln sin lim 2=-=×-==+®+®+®+®xx xxx x x xx x x x x x ,所以所以1lim lim 0ln sin 0sin 0===+®+®ee x xx x xx .(16)因为xx xx exln tan tan 0)1(lim -+®=, ,而sinlim csc1lim cot ln lim ln tan lim 22000=-=-==+®+®+®+®xxxx x x x x x x x x ,所以所以1lim )1(lim 0ln tan 0tan 0===-+®+®e exx x x xx .2. 验证极限xxx x sin lim +¥®存在, 但不能用洛必达法则得出.解1)s i n 1(lim sin lim =+=+¥®¥®xx xxx xx , 极限xxx x si n lim +¥®是存在的.但)cos 1(lim 1cos 1lim )()sin (lim x xx x x xxx +=+=¢¢+¥®¥®¥®不存在, 不能用洛必达法则. 3. 验证极限xx x x sin 1sin lim2®存在, 但不能用洛必达法则得出. 解011sinsin limsin 1sinlim2=×=×=®®xx xx x x x x x , 极限xxx x sin 1sinlim2®是存在的.但xxxx x xx x x cos 1cos1sin2lim )(sin )1sin(lim 02-=¢¢®®®不存在, 不能用洛必达法则.4. 讨论函数ïïîïïíì£>+=-0 0 ])1([)(2111x e x ex x f x x在点x =0处的连续性. 解21)0(-=ef , )0(lim )(lim 212100f e ex f x x ===---®-®, ,因为因为]1)1ln(1[101100lim ])1([lim )(lim -+-®-®+®=+=x xx x xxx x e ex x f , ,而21)1(21lim 2111lim )1ln(lim ]1)1ln(1[1lim 00200-=+-=-+=-+=-++®+®+®+®x x x xx x x x x x x x x ,所以所以)0(lim ])1([lim )(lim 21]1)1ln(1[101100f e e ex x f x xx x xxx x ===+=--+-®-®+®.因此f (x )在点x =0处连续.习题3-3 1. 按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解 因为f (4)=-56, f ¢(4)=(4x 3-15x 2+2x -3)|x =4=21,f ¢¢(4)=(12x 2-30x +2)|x =4=74, f ¢¢¢(4)=(24x -30)|x =4=66,f (4)(4)=24,所以按(x -4)的幂展开的多项式为的幂展开的多项式为435234+-+-x x x x 4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4(-+-¢¢¢+-¢¢+-¢+=x fx f x f x f f=-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4. 2. 应用麦克劳林公式, 按x 幂展开函数f (x )=(x 2-3x +1)3. 解 因为因为 f ¢(x )=3(x 2-3x +1)2(2x -3),f ¢¢(x )=6(x 2-3x +1)(2x -3)2+6(x 2-3x +1)2=30(x 2-3x +1)(x 2-3x +2),f ¢¢¢(x )=30(2x -3)(x 2-3x +2)+30(x 2-3x +1)(2x -3)=30(2x -3)(2x 2-6x +3), f (4)(x )=60(2x 2-6x +3)+30(2x -3)(4x -6)=360(x 2-3x +2),f (5)(x )=360(2x -3), f (6)(x )=720;f (0)=1, f ¢(0)=-9, f ¢¢(0)=60, f ¢¢¢(0)=-270, f (4)(0)=720, f (5)(0)=-1080, f (6)(0)=720, 所以所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(xfx fx fx f x f x f f x f +++¢¢¢+¢¢+¢+==1-9x +30x 3-45x 3+30x 4-9x 5+x 6.3. 求函数x x f =)(按(x -4)的幂展开的带有拉格朗日型余项的3阶泰勒公式. 解 因为24)4(==f 4121)4(421==¢=-x xf , 32141)4(423-=-=¢¢=-x xf ,328383)4(425×==¢¢¢=-x xf , 27)4(1615)(--=xx f,所以所以 4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(-+-¢¢¢+-¢¢+-¢+=x fx f x f x f f x x4732)4()]4(4[1615!41)4(5121)4(641)4(412--+×--+---+=x x x x x q(0<q <1).4. 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为因为f ¢(x )=x -1, f ¢¢(x )=(-1)x -2, f ¢¢¢(x )=(-1)(-2)x -3, × × × , nn nnxn x n x f )!1()1()1( )2)(1()(1)(--=+-×××--=--;kk kk f 2)!1()1()2(1)(--=-(k =1, 2, × × ×, n +1) 所以所以])2[()2(!)2( )2(!3)2()2(!2)2()2)(2()2(ln )(32nn n x o x n fx f x f x f f x -+-+×××+-¢¢¢+-¢¢+-¢+=])2[()2(2)1( )2(231)2(221)2(212ln 13322nnnn x o x n x x x -+-×-+×××--×+-×--+=-.5. 求函数xxf 1)(=按(x +1)的幂展开的带有拉格朗日型余项的n 阶泰勒公式.解 因为因为f (x )=x -1, f ¢(x )=(-1)x -2, f ¢¢(x )=(-1)(-2)x -3, × × × ,1)1()(!)1()()2)(1()(++--=-×××--=n nn n xn x n x f;!)1(!)1()1(1)(k k fk kk -=--=-+(k =1, 2, × × ×, n ),所以所以 )1(!3)1()1(!2)1()1)(1()1(132×××++-¢¢¢++-¢¢++-¢+-=x f x f x f f x1)1()()1()!1()()1(!)1(++++++-+n n nn x n fx n fx12132)1()]1(1[)1(])1()1()1()1(1[++++++--+++×××+++++++-=n n n n x x x x x x q (0<q <1). 6. 求函数f (x )=tan x 的带有拉格朗日型余项的3阶麦克劳林公式. 解 因为因为f ¢(x )=sec 2x , f ¢¢(x )=2sec x ×sec x ×tan x =2sec 2x ×tan x , f ¢¢¢(x )=4sec x ×sec x ×tan 2x +2sec 4x =4sec 2x ×tan 2x +2sec 4x , f (4)(x )=8sec 2x ×tan 3x +8sec 4x ×tan x +8sec 4x ×tan x xx x 52cos)2(sinsin 8+=;f (0)=0, f ¢(0)=1, f ¢¢(0)=0, f ¢¢¢(0)=2, 所以所以 4523)(c o s 3]2)()[s i n s i n (31t a n x x x x x x x q q q +++=(0<q <1).7. 求函数f (x )=xe x的带有佩亚诺型余项的n 阶麦克劳林公式. 解 因为因为 f ¢(x )=e x +x e x , f ¢¢(x )=e x +e x +x e x =2e x +x e x, f ¢¢¢(x )=2e x +e x +x e x =3e x +x e x , × × ×,f (n )(x )=ne x +xe x ; f (k )(0)=k (k =1, 2, × × ×, n ),所以所以 )(!)0( !3)0(!2)0()0()0()(32nn n xx o x n fx f x f x f f xe ++××××+¢¢¢+¢¢+¢+=)()!1(1!2132n n x o x n x x x +-×××+++=.8. 验证当210££x 时, 按公式62132xx x e x +++»计算e x的近似值时, 所产生的误差小于0.01, 并求e 的近似值, 使误差小于0.01.解 因为公式62132xxx e x+++»右端为e x的三阶麦克劳林公式, 其余项为其余项为43!4)(xex R x=,所以当210££x 时,按公式62132xxx e x+++»计算e x的误差01.00045.0)21(!43|!4||)(|42143<»£=x ex R x.645.1)21(61)21(212113221»×+×++»=e e . 9. 应用三阶泰勒公式求下列各数的近似值, 并估计误差: (1)330;(2)sin 18°. 解 (1)设3)(x x f =, 则f (x )在x 0=27点展开成三阶泰勒公式为点展开成三阶泰勒公式为2353233)27)(2792(!21)27(273127)(-×-×+-×+==--x x x x f4311338)27)(8180(!41)27)(272710(!31--×+-××+--x x x(x 介于27与x 之间).于是于是 33823532333)272710(!313)2792(!21327312730×××+××-×+××+»---10724.3)3531311(31063»+-+»,其误差为其误差为5114311431131088.13!4803278180!41|3)8180(!41||)30(|---´=×=×××<×-×=x R .(2) 已知已知 43!4s i n!31s i n x x x x x +-=(x 介于0与x 之间),所以所以 sin 18°3090.0)10(!311010sin 3»-»=p p p ,其误差为44431003.2)10(!46sin|)10(!4sin ||)10(|-´=<=p pp x pR .10. 利用泰勒公式求下列极限: (1))23(lim 434323x x xx x --++¥®;(2))]1ln([cos lim 222x x x ex xx -+--®;(3)222sin )(cos 1211lim 2xe x xx xx -+-+®.解 (1)ttt xx xx x x x t x x 43434343232131lim 12131lim )23(lim --+=--+=--++®+¥®+¥®.因为)(1313to t t ++=+,)(211214t o t t +-=-, 所以所以23])(23[lim )](211[)](1[lim )23(lim 00434323=+=+--++=--++®+®+¥®t t o tt o t t o t x x x x t t x .(2)])1ln(1[)](41!21211[)](!41!211[lim )]1ln([cos lim 13442442222x x xx x x x o x x x o x x x x x ex -++×+--++-=-+-®-®010)1l n (1)(121lim 1134=+=-++-=-®ex xx o x xx .(3)244244244222220))](!211())(!41!211[()](!43!211[211lim sin )(cos 1211lim 2xx o x x x o x x x o x x x xe x xx x xx +++-++-+-+-+=-+-+®®12123!43)(241123)(!43lim )(241123)(!43lim 2424404264440-=-=+--+=×+--+=®®xx o x x x o x o x x x x o x x x .习题3-4 1. 判定函数f (x )=arctan x -x 单调性. 解 因为011111)(22£+-=-+=¢xxx f , 且仅当x =0时等号成立, 所以f (x )在(-¥, +¥)内单调减少.2. 判定函数f (x )=x +cos x (0£x £2p )的单调性. 解 因为f ¢(x )=1-sin x ³0, 所以f (x )=x +cos x 在[0, 2p ]上单调增加.3. 确定下列函数的单调区间: (1) y =2x 3-6x 2-18x -7; (2)x x y 82+=(x >0); (3)xx x y 6941023+-=;(4))1ln(2x x y ++=; (5) y =(x -1)(x +1)3; (6))0.())(2(32>--=a x a a x y ; (7) y =x n e -x(n >0, x ³0);(8)y =x +|sin 2x |. 解 (1) y ¢=6x 2-12x -18=6(x -3)(x +1)=0, 令y ¢=0得驻点x 1=-1, x 2=3. 列表得列表得可见函数在(-¥, -1]和[3, +¥)内单调增加, 在[-1, 3]内单调减少. (2) 0)2)(2(28222=+-=-=¢xx x xy ,令y ¢=0得驻点x 1=2, x 2=-2(舍去).因为当x >2时, y >0; 当0<x <2时, y ¢<0, 所以函数在(0, 2]内单调减少, 在[2, +¥)内单调x (-¥, -1) -1 (-1, 3) 3 (3, +¥) y ¢ + 0 - 0 +y ↗ ↘ ↗增加. (3)223)694()1)(12(60x x x x x y +----=¢, 令y ¢=0得驻点211=x ,x 2=1, 不可导点为x =0. 列表得列表得x (-¥, 0) 0 (0, 21) 21 (21, 1) 1 (1, +¥) y ¢- 不存在不存在-0 + 0 - y↘↘0↗↘可见函数在(-¥, 0), ]21,0(, [1, +¥)内单调减少, 在]1,21[上单调增加. (4)因为011)1221(11222>+=++++=¢xxx xx y , 所以函数在(-¥, +¥)内单调增加.(5) y ¢=(x +1)3+3(x -1)(x +1)22)1)(21(4+-=x x . 因为当21<x 时, y ¢<0; 当21>x 时, y ¢>0, 所以函数在]21 ,(-¥内单调减少, 在) ,21[¥+内单调增加. (6)32)()2(3)32(x a a x a x y ----=¢, 驻点为321a x =, 不可导点为22a x =, x 3=a .列表得列表得x )2,(a -¥2a)32 ,2(a a32a ),32(a aa (a , +¥) y ¢ + 不存在不存在 + 0 - 不存在不存在 +y↗↗↘↗可见函数在)2 ,(a -¥, ]32 ,2(aa , (a , +¥)内单调增加, 在) ,32[a a 内单调减少.(7)y ¢=e -x x n -1(n -x ), 驻点为x =n . 因为当0<x <n 时,y ¢>0; 当x >n 时, y ¢<0, 所以函数在[0, n ]上单调增加, 在[n , +¥)内单调减少.(8)ïïîïïíì+<<+-+££+=p p p p p p p k x k x x k x k x x y 2 2sin 2 2sin (k =0, ±1, ±2, × × ×),ïïîïïíì+<<+-+££+=¢pp p p p p p k x k x k x k x y 2 2cos 212 2cos 21(k =0, ±1, ±2, × × ×).y ¢是以p 为周期的函数, 在[0, p ]内令y ¢=0, 得驻点21p =x , 652p =x , 不可导点为23p =x .列表得列表得x )3,0(p3p)2,3(p p2p)65 ,2(p p65p ) ,65(p py ¢ + 0 - 不存在不存在 + 0 - y↗↘ ↗↘根据函数在[0, p ]上的单调性及y ¢在(-¥, +¥)的周期性可知函数在]32,2[ppp+k k 上单调增加,在]22 ,32[pp p p++k k 上单调减少(k =0, ±1, ±2, × × ×). 4. 证明下列不等式: (1)当x >0时, xx +>+1211;(2)当x >0时, 221)1ln(1x x x x +>+++; (3)当20p<<x 时, sin x +tan x >2x ; (4)当20p<<x 时, 331tan x x x +>;(5)当x >4时, 2x>x 2; 证明证明 (1)设xx x f +-+=1211)(, 则f (x )在[0, +¥)内是连续的. 因为因为x x f +-=¢12121)(01211>+-+=x x ,所以f (x )在(0, +¥)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01211>+-+x x ,也就是也就是 x x +>+1211.(2)设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +¥)内是连续的. 因为因为0)1l n (1)11(11)1l n ()(22222>++=+-++×++×+++=¢x x xx xx xx x x x x f , 所以f (x )在(0, +¥)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即01)1l n (122>+-+++x x xx , 也就是也就是 221)1l n (1x x xx +>+++. (3)设f (x )=sin x +tan x -2x , 则f (x )在)2 ,0[p内连续,f ¢(x )=cos x +sec 2x -2xx x x 22cos ]cos )1)[(cos 1(cos ---=.因为在)2,0(p 内cos x -1<0, cos 2x -1<0,-cos x <0, 所以f ¢(x )>0, 从而f (x )在)2,0(p 内单调增加, 因此当20p<<x 时,f (x )>f (0)=0, 即 sin x +tan x -2x >0, 也就是也就是 sin x +tan x >2x . (4)设331tan )(x x x x f --=, 则f (x )在)2 ,0[p内连续,))(t a n (t a nt a n 1s e c )(2222x x x x x x x x x f +-=-=--=¢. 因为当20p<<x 时, tan x >x , tan x +x >0, 所以f ¢(x )在)2,0(p 内单调增加, 因此当20p<<x 时,f (x )>f (0)=0, 即 031t a n 3>--x x x ,也就是也就是 231tan x x x +>.(5)设f (x )=x ln2-2ln x , 则f (x )在[4, +¥)内连续, 因为因为 0422ln 224ln 22ln )(=->-=-=¢e x x x f ,所以当x >4时, f ¢(x )>0, 即f (x )内单调增加.因此当x >4时, f (x )>f (4)=0, 即x ln2-2ln x >0, 也就是也就是2x>x 2. 5. 讨论方程ln x =ax (其中a >0)有几个实根?有几个实根?解 设f (x )=ln x -ax . 则f (x )在(0, +¥)内连续, xax a xx f -=-=¢11)(, 驻点为ax 1=.因为当a x 10<<时, f ¢(x )>0, 所以f (x )在)1,0(a内单调增加; 当ax 1>时, f ¢(x )<0, 所以f (x )在) ,1(¥+a内单调减少. 又因为当x ®0及x ®+¥时, f (x )®-¥, 所以如果011ln )1(>-=aa f ,即ea 1<, 则方程有且仅有两个实根; 如果011ln )1(<-=aa f , 即ea 1>, 则方程没有实根. 如果11ln )1(=-=aa f , 即ea1=, 则方程仅有一个实根.6. 单调函数的导函数是否必为单调函数?研究下面这个例子: f (x )=x +sin x .解 单调函数的导函数不一定为单调函数.例如f (x )=x +sin x 在(-¥,+¥)内是单调增加的, 但其导数不是单调函数. 事实上, f ¢(x )=1+cos x ³0, 这就明f (x )在(-¥, +¥)内是单调增加的. f ¢¢(x )=-sin x 在(-¥, +¥)内不保持确定的符号, 故f ¢(x )在(-¥, +¥)内不是单调的.7. 判定下列曲线的凹凸性: (1) y =4x -x 2; (2) y =sh x ;(3)xy 11+= (x >0);(4) y =x arctan x x ; 解 (1)y ¢=4-2x ,y ¢¢=-2, 因为y ¢¢<0, 所以曲线在(-¥, +¥)内是凸的.(2)y ¢=ch x , y ¢¢=sh x . 令y ¢¢=0, 得x =0. 因为当x <0时, y ¢¢=sh x <0; 当x >0时, y ¢¢=sh x >0, 所以曲线在(-¥, 0]内是凸的, 在[0, +¥)内是凹的. (3)21xy -=¢, 32xy =¢¢.因为当x >0时, y ¢¢>0, 所以曲线在(0, +¥)内是凹的. (4)21arctan xx x y ++=¢,22)1(2x y +=¢¢.因为在(-¥, +¥)内, y ¢¢>0, 所以曲线y =x arctg x 在(-¥, +¥)内是凹的.8. 求下列函数图形的拐点及凹或凸的区间: (1).y =x 3-5x 2+3x +5 ;(2) y =xe -x ; (3) y =(x +1)4+e x ;(4) y =ln(x 2+1); (5) y =e arctan x ;(6) y =x 4(12ln x -7), 解 (1)y ¢=3x 2-10x +3,y ¢¢=6x -10. 令y ¢¢=0, 得35=x .因为当35<x 时, y ¢¢<0; 当35>x 时, y ¢¢>0, 所以曲线在]35 ,(-¥内是是凸的, 在),35[¥+内是凹的, 拐点为)2720,35(.(2)y ¢=e -x-xe -x, y ¢¢=-e -x-e -x+x e -x=e -x(x -2). 令y ¢¢=0, 得x =2. 因为当x <2时, y ¢¢<0; 当x >2时, y ¢¢>0, 所以曲线在(-¥, 2]内是凸的, 在[2, +¥)内是凹的,拐点为(2, 2e -2). (3)y ¢=4(x +1)3+e x , y ¢¢=12(x +1)2+e x . 因为在(-¥, +¥)内, y ¢¢>0, 所以曲线y =(x +1)4+e x的在(-¥, +¥)内是凹的, 无拐点. (4)122+=¢x xy , 22222)1()1)(1(2)1(22)1(2++--=+×-+=¢¢x x x x xx x y . 令y ¢¢=0, 得x 1=-1,x 2=1. 列表得列表得可见曲线在(-¥, -1]和[1, +¥)内是凸的, 在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1, ln2). (5)2arctan 11xe y x+×=¢,)21(12arctan x xey x-+=¢¢. 令y ¢¢=0得, 21=x .因为当21<x 时, y ¢¢>0; 当21>x 时, y ¢¢<0, 所以曲线y =earctg x在]21,(-¥内是凹的, 在) ,21[¥+内是凸的, 拐点是),21(21arctan e .(6) y ¢=4x 3(12ln x -7)+12x 3, y ¢¢=144x 2×ln x . 令y ¢¢=0, 得x =1. 因为当0<x <1时, y ¢¢<0; 当x >1时, y ¢¢>0, 所以曲线在(0, 1]内是凸的, 在[1, +¥)内是凹的, 拐点为(1, -7).9. 利用函数图形的凹凸性, 证明下列不等式:(1) nnny x y x )2()(21+>+ (x >0,y >0, x ¹y , n >1); x (-¥, -1) -1 (-1, 1) 1 (1, +¥) y ¢¢-0 +0 -y Ç ln2 拐点拐点È ln2 拐点拐点Ç(2))(22y x ee e y x yx ¹>++;(3)2ln)(ln ln y x y x y y x x ++>+ (x >0,y >0, x ¹y ). 证明证明 (1)设f (t )=t n, 则f ¢(t )=nt n -1, f ¢¢(t )=n (n -1)t n -2. 因为当t >0时, f ¢¢(t )>0, 所以曲线f (t )=tn 在区间(0, +¥)内是凹的. 由定义, 对任意的x >0, y >0, x ¹y 有 )2()]()([21y x f y f x f +>+,即 nnn y x y x )2()(21+>+.(2)设f (t )=e t, 则f ¢(t )=e t, f ¢¢(t )=e t. 因为f ¢¢(t )>0, 所以曲线f (t )=e t在(-¥, +¥)内是凹的.由定义, 对任意的x , y Î(-¥, +¥),x ¹y 有 )2()]()([21yx f y f x f +>+, 即)(22y x ee e y x yx¹>++.(3)设f (t )=t ln t , 则 f ¢(t )=ln t +1, t t f 1)(=¢¢. 因为当t >0时, f ¢¢(t )>0, 所以函数f (t )=t ln t 的图形在(0, +¥)内是凹的. 由定义, 对任意的x >0,y >0, x ¹y 有 )2()]()([21y x f y f x f +>+, 即 2ln )(ln ln y x y x y y x x ++>+.10. 试证明曲线112+-=x x y 有三个拐点位于同一直线上.证明证明 222)1(12+++-=¢x x x y , 323223)1()]32()][32()[1(2)1(2662++---+=++--=¢¢x x x x x x x x y .令y ¢¢=0, 得x 1=-1, 322-=x , 323+=x . 例表得例表得x (-¥. -1) -1 )32 ,1(-- 32-)32 ,32(+- 32+),32(¥++y ¢-0 +0 - 0 +。
习题3-11. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =,所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cot ξ=0.由y '(x )=cot x =0得)65 ,6(2πππ∈.因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0.2. 验证拉格朗日中值定理对函数y =4x 3-5x 2+x -2在区间[0, 1]上的正确性. 解 因为y =4x 3-5x 2+x -2在区间[0, 1]上连续, 在(0, 1)内可导, 由拉格朗日中值定理知, 至少存在一点ξ∈(0, 1), 使001)0()1()(=--='y y y ξ. 由y '(x )=12x 2-10x +1=0得)1 ,0(12135∈±=x .因此确有)1 ,0(12135∈±=ξ, 使01)0()1()(--='y y y ξ.3. 对函数f (x )=sin x 及F (x )=x +cos x 在区间]2 ,0[π上验证柯西中值定理的正确性.解 因为f (x )=sin x 及F (x )=x +cos x 在区间]2 ,0[π上连续, 在)2 ,0(π可导, 且F '(x )=1-sin x 在)2 ,0(π内不为0, 所以由柯西中值定理知至少存在一点)2 ,0(πξ∈, 使得)()()0()2()0()2(ξξππF f F F f f ''=--. 令)0()2()0()2()()(F F f f x F x f --=''ππ, 即22sin 1cos -=-πx x . 化简得14)2(8si n 2-+-=πx . 易证114)2(802<-+-<π, 所以14)2(8si n 2-+-=πx 在)2 ,0(π内有解, 即确实存在)2 ,0(πξ∈, 使得 )()()0()2()0()2(ξξππF f F F f f ''=--. 4. 试证明对函数y =px 2+qx +r 应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明 因为函数y =px 2+qx +r 在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 由拉格朗日中值定理, 至少存在一点ξ∈(a , b ), 使得y (b )-y (a )=y '(ξ)(b -a ), 即 (pb 2+qb +r )-(pa 2+qa +r )=(2p ξ+q )(b -a ). 化间上式得p (b -a )(b +a )=2p ξ (b -a ), 故2b a +=ξ.5. 不用求出函数f (x )=(x -1)(x -2)(x -3)(x -4)的导数,说明方程f '(x )=0有几个实根, 并指出它们所在的区间.解 由于f (x )在[1, 2]上连续, 在(1, 2)内可导, 且f (1)=f (2)=0, 所以由罗尔定理可知, 存在ξ1∈(1, 2), 使f '(ξ1)=0. 同理存在ξ2∈(2, 3), 使f '(ξ2)=0; 存在ξ3∈(3, 4), 使f '(ξ3)=0. 显然ξ1、ξ2、ξ 3都是方程f '(x )=0的根. 注意到方程f '(x )=0是三次方程, 它至多能有三个实根, 现已发现它的三个实根, 故它们也就是方程f '(x )=0的全部根.6. 证明恒等式: 2arccos arcsin π=+x x (-1≤x ≤1).证明 设f (x )= arcsin x +arccos x . 因为 01111)(22≡---='x x x f , 所以f (x )≡C , 其中C 是一常数.因此2arccos arcsin )0()(π=+==x x f x f , 即2arccos arcsin π=+x x .7. 若方程a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x =0有一个正根x 0, 证明方程 a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0必有一个小于x 0的正根.证明 设F (x )=a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x , 由于F (x )在[0, x 0]上连续, 在(0, x 0)内可导, 且F (0)=F (x 0)=0, 根据罗尔定理, 至少存在一点ξ∈(0, x 0), 使F '(ξ)=0, 即方程 a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0 必有一个小于x 0的正根.8. 若函数f (x )在(a , b )内具有二阶导数, 且f (x 1)=f (x 2)=f (x 3), 其中a <x 1<x 2<x 3<b , 证明:在(x 1, x 3)内至少有一点ξ, 使得f ''(ξ)=0.证明 由于f (x )在[x 1, x 2]上连续, 在(x 1, x 2)内可导, 且f (x 1)=f (x 2), 根据罗尔定理, 至少存在一点ξ1∈(x 1, x 2), 使f '(ξ1)=0. 同理存在一点ξ2∈(x 2, x 3), 使f '(ξ2)=0. 又由于f '(x )在[ξ1, ξ2]上连续, 在(ξ1, ξ2)内可导, 且f '(ξ1)=f '(ξ2)=0, 根据罗尔定理, 至少存在一点ξ ∈(ξ1, ξ2)⊂(x 1, x 3), 使f ''(ξ )=0. 9. 设a >b >0, n >1, 证明: nb n -1(a -b )<a n -b n <na n -1(a -b ) .证明 设f (x )=x n , 则f (x )在[b , a ]上连续, 在(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即a n -b n =n ξ n -1(a -b ). 因为 nb n -1(a -b )<n ξ n -1(a -b )< na n -1(a -b ), 所以 nb n -1(a -b )<a n -b n < na n -1(a -b ) . 10. 设a >b >0, 证明: bb a b a a b a -<<-ln .证明 设f (x )=ln x , 则f (x )在区间[b , a ]上连续, 在区间(b , a )内可导, 由拉格朗日中值定理, 存在ξ∈(b , a ), 使f (a )-f (b )=f '(ξ)(a -b ), 即)(1ln ln b a b a -=-ξ.因为b <ξ<a , 所以)(1ln ln )(1b a b b a b a a -<-<-, 即b b a b a a b a -<<-ln .11. 证明下列不等式: (1)|arctan a -arctan b |≤|a -b |; (2)当x >1时, e x >e ⋅x .证明 (1)设f (x )=arctan x , 则f (x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使f (b )-f (a )=f '(ξ)(b -a ), 即)(11arctan arctan 2a b a b -+=-ξ,所以||||11|arctan arctan |2a b a b a b -≤-+=-ξ, 即|arctan a -arctan b |≤|a -b |.(2)设f (x )=e x , 则f (x )在区间[1, x ]上连续, 在区间(1, x )内可导, 由拉格朗日中值定理, 存在ξ∈(1, x ), 使f (x )-f (1)=f '(ξ)(x -1), 即 e x -e =e ξ (x -1). 因为ξ >1, 所以e x -e =e ξ (x -1)>e (x -1), 即e x >e ⋅x . 12. 证明方程x 5+x -1=0只有一个正根.证明 设f (x )=x 5+x -1, 则f (x )是[0, +∞)内的连续函数.因为f (0)=-1, f (1)=1, f (0)f (1)<0, 所以函数在(0, 1)内至少有一个零点, 即x 5+x -1=0至少有一个正根.假如方程至少有两个正根, 则由罗尔定理, f '(x )存在零点, 但f '(x )=5x 4+1≠0, 矛盾. 这说明方程只能有一个正根.13. 设f (x )、g (x )在[a , b ]上连续, 在(a , b )内可导, 证明在(a , b )内有一点ξ, 使)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.解 设)()()()()(x g a g x f a f x =ϕ, 则ϕ(x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使 ϕ(b )-ϕ(a )=ϕ'(ξ)(b -a ), 即⎥⎦⎤⎢⎣⎡''+''-=-)()()()()(])([)(])([)()()()()()()()()(ξξξξg a g f a f g a g f a f a b a g a g a f a f b g a g b f a f . 因此)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-=.14. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x .证明 令x ex f x )()(=ϕ, 则在(-∞, +∞)内有 0)()()()()(2222≡-=-'='xx x x ee xf e x f e e x f e x f x ϕ, 所以在(-∞, +∞)内ϕ(x )为常数.因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x .15. 设函数y =f (x )在x =0的某邻域内具有n 阶导数, 且f (0)=f '(0)= ⋅ ⋅ ⋅ =f(n -1)(0)=0, 试用柯西中值定理证明:!)()()(n x f xx f n n θ= (0<θ<1).证明 根据柯西中值定理111)(0)0()()(-'=--=n n n f x f x f x x f ξξ(ξ1介于0与x 之间),2221111111)1()(0)0()()(-----''=⋅-'-'='n n n n n n f n n f f n f ξξξξξξ(ξ2介于0与ξ1之间), 3332222222)2)(1()(0)1()1()0()()1()(------'''=⋅---''-''=-''n n n n n n n f n n n n f f n n f ξξξξξξ(ξ3介于0与ξ2之间),依次下去可得!)(02 )1(2 )1()0()(2 )1()()(1)1(1)1(11)1(n f n n n n f f n n f n n n n n n n n n ξξξξξ=⋅⋅⋅⋅--⋅⋅⋅⋅--=⋅⋅⋅⋅--------(ξn 介于0与ξn -1之间),所以!)()()(n f xx f n n n ξ=.由于ξn 可以表示为ξn =θ x (0<θ<1), 所以!)()()(n x f xx f n n θ= (0<θ<1).习题3-21. 用洛必达法则求下列极限:(1)xx x )1ln(lim 0+→;(2)xe e xx x sin lim 0-→-;(3)ax a x a x --→sin sin lim ;(4)xx x 5tan 3sin lim π→;(5)22)2(sin ln lim x x x -→ππ;(6)n n m m a x ax ax --→lim ;(7)xx x 2tan ln 7tan ln lim 0+→;(8)xx x 3tan tan lim 2π→;(9)x arc x x cot )11ln(lim++∞→; (10)xx x x cos sec )1ln(lim 20-+→;(11)x x x 2cot lim 0→;(12)2120lim x x ex →;(13))1112(lim 21---→x x x ;(14)x x x a )1(lim +∞→;(15)x x x sin 0lim +→;(16)x x xtan 0)1(lim +→. 解 (1)111lim 111lim )1ln(lim000=+=+=+→→→x x xx x x x . (2)2cos lim sin lim00=+=--→-→xe e x e e x x x x x x .(3)a x ax a x a x a x cos 1cos lim sin sin lim ==--→→.(4)535sec 53cos3lim 5tan 3sin lim 2-==→→x x x x x x ππ. (5)812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x x x x x πππππ. (6)n m n m n m a x n n m m a x a n m namx nx mx a x a x -----→→===--1111lim lim .(7)22sec 2tan 177sec 7tan 1lim 2tan ln 7tan ln lim 2200⋅⋅⋅⋅=+→+→x xx x x x x x177s e c 22s e c l i m 277t a n 2t a n l i m 272200=⋅⋅==+→+→x x x x x x . (8)x x x x x x x x x 2222222cos 3cos lim 3133sec sec lim 3tan tan lim πππ→→→=⋅= )s i n (c o s 23)3s i n (3c o s 2lim 312x x x x x -⋅-=→πxx x c o s 3c o s l i m2π→-= 3s i n3s i n 3l i m2=---=→x x x π. (9)22221lim 11)1(111lim cot arc )11ln(lim xx x xx x x x x x x ++=+--⋅+=++∞→+∞→+∞→122lim 212lim ==+=+∞→+∞→x x x x .(10)x x xx x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→1s i n lim )sin (cos 22lim00==--=→→x x x x x x x . (注: cos x ⋅ln(1+x 2)~x 2) (11)2122sec 1lim 2tan lim2cot lim 2000=⋅==→→→x x x x x x x x .(12)+∞====+∞→+∞→→→1lim lim 1limlim 21012022tt t t x x x x e t e x e ex (注: 当x →0时, +∞→=21xt . (13)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x . (14)因为)1ln(lim )1(lim x ax x x x exa +∞→∞→=+, 而 221)(11lim 1)1ln(lim )1(ln(lim xx a x ax x a x a x x x x --⋅+=+=+∞→∞→∞→a a a x ax x x ==+=∞→∞→1lim lim ,所以 a x ax x x x e e xa ==++∞→∞→)1l n (l i m )1(l i m. .(15)因为x x x x x e x ln sin 0sin 0lim lim +→+→=,而 x x x x x x x x x x c o tc s c 1lim csc ln lim ln sin lim 000⋅-==+→+→+→c o s s i n l i m 20=-=+→xx x x ,所以 1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .(16)因为x x x x e xln tan tan 0)1(lim -+→=, 而 xx x x x x x x x 2000c s c 1limcot ln lim ln tan lim -==+→+→+→ 0s i n l i m 20=-=+→xx x ,所以 1l i m )1(l i m 0ln tan 0tan 0===-+→+→e e x x x x x x .2. 验证极限x x x x sin lim +∞→存在, 但不能用洛必达法则得出.解 1)s i n 1(l i m s i n l i m =+=+∞→∞→x x x x x x x , 极限x x x x sin lim +∞→是存在的. 但)cos 1(lim 1cos 1lim )()sin (limx x x x x x x x +=+=''+∞→∞→∞→不存在, 不能用洛必达法则. 3. 验证极限xx x x sin 1sin lim20→存在, 但不能用洛必达法则得出. 解 0011sin sin lim sin 1sin lim020=⋅=⋅=→→xx x x x x x x x , 极限x x x x sin 1sin lim 20→是存在的. 但xx x x x x x x x cos 1cos 1sin 2lim )(sin )1sin (lim020-=''→→不存在, 不能用洛必达法则. 4. 讨论函数⎪⎪⎩⎪⎪⎨⎧≤>+=-0 0])1([)(2111x e x ex x f x x 在点x =0处的连续性. 解 21)0(-=e f ,)0(lim)(lim 21210f e e x f x x ===---→-→,因为]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x x x x x x x x e ex x f ,而 200)1l n (l i m]1)1l n (1[1l i m x xx x x x x x -+=-++→+→ 21)1(21lim 2111lim 00-=+-=-+=+→+→x x x x x ,所以]1)1l n (1[101100lim])1([lim )(lim -+-→-→+→=+=x x x x x x x x e ex x f)0(21f e ==-.因此f (x )在点x =0处连续. 习题3-31. 按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解 设f (x )=x 4-5x 3+x 2-3x +4. 因为 f (4)=-56,f '(4)=(4x 3-15x 2+2x -3)|x =4=21, f ''(4)=(12x 2-30x +2)|x =4=74, f '''(4)=(24x -30)|x =4=66, f (4)(4)=24, 所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(-+-'''+-''+-'+=x f x f x f x f f x f =-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4.2. 应用麦克劳林公式, 按x 幂展开函数f (x )=(x 2-3x +1)3. 解 因为f '(x )=3(x 2-3x +1)2(2x -3),f ''(x )=6(x 2-3x +1)(2x -3)2+6(x 2-3x +1)2=30(x 2-3x +1)(x 2-3x +2), f '''(x )=30(2x -3)(x 2-3x +2)+30(x 2-3x +1)(2x -3)=30(2x -3)(2x 2-6x +3), f (4)(x )=60(2x 2-6x +3)+30(2x -3)(4x -6)=360(x 2-3x +2), f (5)(x )=360(2x -3), f (6)(x )=720;f (0)=1, f '(0)=-9, f ''(0)=60, f '''(0)=-270, f (4)(0)=720, f (5)(0)=-1080, f (6)(0)=720, 所以6)6(5)5(4)4(32!6)0(!5)0(!4)0(!3)0(!2)0()0()0()(x f x f x f x f x f x f f x f +++'''+''+'+= =1-9x +30x 3-45x 3+30x 4-9x 5+x 6.3. 求函数x x f =)(按(x -4)的幂展开的带有拉格朗日型余项的3阶泰勒公式. 解 因为24)4(==f , 4121)4(421=='=-x x f , 32141)4(423-=-=''=-x x f ,328383)4(425⋅=='''=-x x f , 27)4(1615)(--=x x f , 所以 4)4(32)4(!4)()4(!3)4()4(!2)4()4)(4()4(-+-'''+-''+-'+=x f x f x f x f f x ξ 4732)4()]4(4[1615!41)4(5121)4(641)4(412--+⋅--+---+=x x x x x θ(0<θ<1). 4. 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为f '(x )=x -1, f ''(x )=(-1)x -2, f '''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ ,nn nn x n x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--;kk k k f 2)!1()1()2(1)(--=-(k =1, 2, ⋅ ⋅ ⋅, n +1),所以])2[()2(!)2( )2(!3)2()2(!2)2()2)(2()2(ln )(32n n n x o x n f x f x f x f f x -+-+⋅⋅⋅+-'''+-''+-'+= ])2[()2(2)1( )2(231)2(221)2(212ln 13322n n n n x o x n x x x -+-⋅-+⋅⋅⋅--⋅+-⋅--+=-. 5. 求函数x x f 1)(=按(x +1)的幂展开的带有拉格朗日型余项的n 阶泰勒公式.解 因为f (x )=x -1, f '(x )=(-1)x -2, f ''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ , 1)1()(!)1()( )2)(1()(++--=-⋅⋅⋅--=n n n n xn xn x f;!)1(!)1()1(1)(k k fk k k -=--=-+(k =1, 2, ⋅ ⋅ ⋅, n ),所以 )1(!3)1()1(!2)1()1)(1()1(132⋅⋅⋅++-'''++-''++-'+-=x f x f x f f x 1)1()()1()!1()()1(!)1(++++++-+n n nn x n f x n f ξ 12132)1()]1(1[)1(])1( )1()1()1(1[++++++--+++⋅⋅⋅+++++++-=n n n nx x x x x x θ (0<θ<1).6. 求函数f (x )=tan x 的带有拉格朗日型余项的3阶麦克劳林公式. 解 因为 f '(x )=sec 2x ,f ''(x )=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x ,f '''(x )=4sec x ⋅sec x ⋅tan 2x +2sec 4x =4sec 2x ⋅tan 2x +2sec 4x ,f (4)(x )=8sec 2x ⋅tan 3x +8sec 4x ⋅tan x +8sec 4x ⋅tan x xx x 52cos )2(sin sin 8+=;f (0)=0, f '(0)=1, f ''(0)=0, f '''(0)=2,所以 4523)(c o s 3]2)()[s i n s i n (31t a n x x x x x x x θθθ+++=(0<θ<1). 7. 求函数f (x )=xe x 的带有佩亚诺型余项的n 阶麦克劳林公式. 解 因为 f '(x )=e x +xe x ,f ''(x )=e x +e x +xe x =2e x +xe x , f '''(x )=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅, f (n )(x )=ne x +xe x ;f (k )(0)=k (k =1, 2, ⋅ ⋅ ⋅, n ),所以 )(!)0( !3)0(!2)0()0()0()(32n n n xx o x n f x f x f x f f xe ++⋅⋅⋅⋅+'''+''+'+= )()!1(1 !2132n n x o x n x x x +-⋅⋅⋅+++=.8. 验证当210≤≤x 时, 按公式62132x x x e x +++≈计算e x 的近似值时, 所产生的误差小于0.01, 并求e 的近似值, 使误差小于0.01.解 因为公式62132xx x e x+++≈右端为e x 的三阶麦克劳林公式, 其余项为43!4)(x e x R ξ=,所以当210≤≤x 时,按公式62132x x x e x+++≈计算e x 的误差01.00045.0)21(!43|!4||)(|42143<≈≤=x e x R ξ.645.1)21(61)21(212113221≈⋅+⋅++≈=e e .9. 应用三阶泰勒公式求下列各数的近似值, 并估计误差: (1)330; (2)sin18︒.解 (1)设3)(x x f =, 则f (x )在x 0=27点展开成三阶泰勒公式为2353233)27)(2792(!21)27(273127)(-⋅-⋅+-⋅+==--x x x x f4311338)27)(8180(!41)27)(272710(!31--⋅+-⋅⋅+--x x ξ(ξ介于27与x 之间).于是33823532333)272710(!313)2792(!21327312730⋅⋅⋅+⋅⋅-⋅+⋅⋅+≈---10724.3)3531311(31063≈+-+≈, 其误差为5114311431131088.13!4803278180!41|3)8180(!41||)30(|---⨯=⋅=⋅⋅⋅<⋅-⋅=ξR .(2) 已知43!4s i n !31s i nx x x x ξ+-=(ξ介于0与x 之间), 所以 sin 18︒3090.0)10(!311010sin 3≈-≈=πππ,其误差为44431003.2)10(!46sin |)10(!4sin ||)10(|-⨯=<=πππξπR . 10. 利用泰勒公式求下列极限: (1))23(lim 434323x x x x x --++∞→;(2))]1ln([cos lim222x x x e x x x -+--→;(3)2220sin )(cos 1211lim 2x e x x x x x -+-+→. 解 (1)tt t xx x x x x x t x x 430434343232131lim 12131lim)23(lim --+=--+=--++→+∞→+∞→.因为)(1313t o t t ++=+,)(211214t o t t +-=-, 所以23])(23[lim )](211[)](1[lim)23(lim 00434323=+=+--++=--++→+→+∞→t t o t t o t t o t x x x x t t x . (2)])1ln(1[)](41!21211[)](!41!211[lim)]1ln([cos lim1344244202202x x xx x xx o x x x o x x x x x e x -++⋅+--++-=-+-→-→ 010)1l n (1)(121lim 11340=+=-++-=-→ex x x o x xx .(3)2442442442202220))](!211())(!41!211[()](!43!211[211lim sin )(cos 1211lim 2xx o x x x o x x x o x x x x e x x x x x x +++-++-+-+-+=-+-+→→ 12123!43)(241123)(!43lim )(241123)(!43lim 2424404264440-=-=+--+=⋅+--+=→→x x o x x x o x o x x x x o x x x . 习题3-41. 判定函数f (x )=arctan x -x 单调性.解 因为011111)(22≤+-=-+='xx x f , 且仅当x =0时等号成立, 所以f (x )在(-∞,+∞)内单调减少.2. 判定函数f (x )=x +cos x (0≤x ≤2π)的单调性.解 因为f '(x )=1-sin x ≥0, 所以f (x )=x +cos x 在[0, 2π]上单调增加. 3. 确定下列函数的单调区间: (1) y =2x 3-6x 2-18x -7; (2)xx y 82+=(x >0);(3)x x x y 6941023+-=;(4))1ln(2x x y ++=; (5) y =(x -1)(x +1)3;(6))0())(2(32>--=a x a a x y ; (7) y =x n e -x (n >0, x ≥0); (8)y =x +|sin 2x |.解 (1) y '=6x 2-12x -18=6(x -3)(x +1)=0, 令y '=0得驻点x 1=-1, x 2=3. 列表得x (-∞, -1) -1 (-1, 3) 3 (3, +∞) y ' + 0 - 0 + y↗↘↗可见函数在(-∞, -1]和[3, +∞)内单调增加, 在[-1, 3]内单调减少.(2) 0)2)(2(28222=+-=-='x x x x y ,令y '=0得驻点x 1=2, x 2=-2(舍去).因为当x >2时, y >0; 当0<x <2时, y '<0, 所以函数在(0, 2]内单调减少, 在[2, +∞)内单调增加. (3)223)694()1)(12(60x x x x x y +----=', 令y '=0得驻点211=x , x 2=1, 不可导点为x =0. 列表得x (-∞, 0) 0 (0, 21) 21 (21, 1) 1 (1, +∞)y ' - 不存在 - 0 + 0 - y↘↘↗↘可见函数在(-∞, 0), ]21 ,0(, [1, +∞)内单调减少, 在]1 ,21[上单调增加.(4)因为011)1221(11222>+=++++='x x x x x y , 所以函数在(-∞, +∞)内单调增加.(5) y '=(x +1)3+3(x -1)(x +1)22)1)(21(4+-=x x . 因为当21<x 时, y '<0; 当21>x 时,y '>0, 所以函数在]21 ,(-∞内单调减少, 在) ,21[∞+内单调增加.(6)32)()2(3)32(x a a x a x y ----=', 驻点为321a x =, 不可导点为22a x =, x 3=a .列表得x )2 ,(a -∞2a )32 ,2(a a 32a ) ,32(a aa (a , +∞) y ' + 不存在 + 0 - 不存在 + y↗↗↘↗可见函数在)2 ,(a -∞, ]32 ,2(a a , (a , +∞)内单调增加, 在) ,32[a a 内单调减少.(7)y '=e -x x n -1(n -x ), 驻点为x =n . 因为当0<x <n 时, y '>0; 当x >n 时, y '<0, 所以函数在[0, n ]上单调增加, 在[n , +∞)内单调减少.(8)⎪⎩⎪⎨⎧+<<+-+≤≤+=πππππππk x k x x k x k x x y 2 2sin 2 2sin (k =0, ±1, ±2, ⋅ ⋅ ⋅),⎪⎩⎪⎨⎧+<<+-+≤≤+='πππππππk x k x k x k x y 2 2cos 212 2cos 21(k =0, ±1, ±2, ⋅ ⋅ ⋅).y '是以π为周期的函数, 在[0, π]内令y '=0, 得驻点21π=x , 652π=x , 不可导点为23π=x .列表得x )3 ,0(π3π )2,3(ππ 2π)65 ,2(ππ 65π ) ,65(ππ y ' + 0 - 不存在+ 0 - y↗↘↗↘根据函数在[0, π]上的单调性及y '在(-∞, +∞)的周期性可知函数在]32 ,2[πππ+k k 上单调增加, 在]22 ,32[ππππ++k k 上单调减少(k =0, ±1, ±2, ⋅ ⋅ ⋅).4. 证明下列不等式: (1)当x >0时, x x +>+1211;(2)当x >0时, 221)1ln(1x x x x +>+++; (3)当20π<<x 时, sin x +tan x >2x ;(4)当20π<<x 时, 331tan x x x +>;(5)当x >4时, 2x >x 2;证明 (1)设x x x f +-+=1211)(, 则f (x )在[0, +∞)内是连续的. 因为x x f +-='12121)(01211>+-+=xx , 所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01211>+-+x x , 也就是 x x +>+1211.(2)设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的. 因为0)1l n (1)11(11)1l n ()(22222>++=+-++⋅++⋅+++='x x x x x x x x x x xx f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1l n (122>+-+++x x x x , 也就是 221)1l n (1x x x x +>+++.(3)设f (x )=sin x +tan x -2x , 则f (x )在)2,0[π内连续,f '(x )=cos x +sec 2x -2xx x x 22cos ]cos )1)[(cos 1(cos ---=.因为在)2,0(π内cos x -1<0, cos 2x -1<0, -cos x <0, 所以f '(x )>0, 从而f (x )在)2 ,0(π内单调增加, 因此当20π<<x 时, f (x )>f (0)=0, 即 sin x +tan x -2x >0, 也就是 sin x +tan x >2x .(4)设331tan )(x x x x f --=, 则f (x )在)2 ,0[π内连续,))(t a n (t a n t a n 1s e c )(2222x x x x x x x x x f +-=-=--='.因为当20π<<x 时, tan x >x , tan x +x >0, 所以f '(x )在)2 ,0(π内单调增加, 因此当20π<<x 时, f (x )>f (0)=0, 即031t a n 3>--x x x ,也就是 231t a n x x x +>.(5)设f (x )=x ln2-2ln x , 则f (x )在[4, +∞)内连续, 因为 0422ln 224ln 22ln )(=->-=-='e x x x f ,所以当x >4时, f '(x )>0, 即f (x )内单调增加.因此当x >4时, f (x )>f (4)=0, 即x ln2-2ln x >0, 也就是2x >x 2. 5. 讨论方程ln x =ax (其中a >0)有几个实根?解 设f (x )=ln x -ax . 则f (x )在(0, +∞)内连续, x ax a x x f -=-='11)(, 驻点为ax 1=.因为当a x 10<<时, f '(x )>0, 所以f (x )在)1 ,0(a 内单调增加; 当ax 1>时, f '(x )<0,所以f (x )在) ,1(∞+a内单调减少. 又因为当x →0及x →+∞时, f (x )→-∞, 所以如果011ln )1(>-=a a f , 即e a 1<, 则方程有且仅有两个实根; 如果011ln )1(<-=aa f , 即e a 1>, 则方程没有实根. 如果011ln )1(=-=a a f , 即e a 1=, 则方程仅有一个实根. 6. 单调函数的导函数是否必为单调函数?研究下面这个例子: f (x )=x +sin x .解 单调函数的导函数不一定为单调函数.例如f (x )=x +sin x 在(-∞,+∞)内是单调增加的, 但其导数不是单调函数. 事实上,f '(x )=1+cos x ≥0,这就明f (x )在(-∞, +∞)内是单调增加的. f ''(x )=-sin x 在(-∞, +∞)内不保持确定的符号, 故f '(x )在(-∞, +∞)内不是单调的.7. 判定下列曲线的凹凸性: (1) y =4x -x 2 ; (2) y =sh x ; (3)xy 11+=(x >0);(4) y =x arctan x ; 解 (1)y '=4-2x , y ''=-2,因为y ''<0, 所以曲线在(-∞, +∞)内是凸的. (2)y '=ch x , y ''=sh x . 令y ''=0, 得x =0.因为当x <0时, y ''=sh x <0; 当x >0时, y ''=sh x >0, 所以曲线在(-∞, 0]内是凸的, 在[0, +∞)内是凹的.(3)21xy -=', 32x y =''.因为当x >0时, y ''>0, 所以曲线在(0, +∞)内是凹的.(4)21arctan xx x y ++=',22)1(2x y +=''. 因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.8. 求下列函数图形的拐点及凹或凸的区间: (1).y =x 3-5x 2+3x +5 ; (2) y =xe -x ; (3) y =(x +1)4+e x ; (4) y =ln(x 2+1); (5) y =e arctan x ; (6) y =x 4(12ln x -7),解 (1)y '=3x 2-10x +3, y ''=6x -10. 令y ''=0, 得35=x .因为当35<x 时, y ''<0; 当35>x 时, y ''>0, 所以曲线在]35 ,(-∞内是凸的, 在) ,35[∞+内是凹的, 拐点为)2720 ,35(. (2)y '=e -x -xe -x , y ''=-e -x -e -x +xe -x =e -x (x -2). 令y ''=0, 得x =2.因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2).(3)y '=4(x +1)3+e x , y ''=12(x +1)2+e x .因为在(-∞, +∞)内, y ''>0, 所以曲线y =(x +1)4+e x 的在(-∞, +∞)内是凹的, 无拐点.(4)122+='x x y , 22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1. 列表得 可见曲线在(-∞, -1]和[1, +∞)内是凸的, 在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1, ln2).(5)2arctan 11x e y x+⋅=',)21(12arctan x x e y x -+=''. 令y ''=0得, 21=x . 因为当21<x 时, y ''>0; 当21>x 时, y ''<0, 所以曲线y =e arctg x 在]21 ,(-∞内是凹的,在) ,21[∞+内是凸的, 拐点是) ,21(21arctane. (6) y '=4x 3(12ln x -7)+12x 3, y ''=144x 2⋅ln x . 令y ''=0, 得x =1.因为当0<x <1时, y ''<0; 当x >1时, y ''>0, 所以曲线在(0, 1]内是凸的, 在[1, +∞)内是凹的, 拐点为(1, -7).9. 利用函数图形的凹凸性, 证明下列不等式:(1) nn n y x y x )2()(21+>+(x >0, y >0, x ≠y , n >1); (2))(22y x e e e yx y x ≠>++;(3)2ln)(ln ln yx y x y y x x ++>+ (x >0, y >0, x ≠y ). 证明 (1)设f (t )=t n , 则f '(t )=nt n -1, f ''(t )=n (n -1)t n -2. 因为当t >0时, f ''(t )>0, 所以曲线f (t )=t n 在区间(0, +∞)内是凹的. 由定义, 对任意的x >0, y >0, x ≠y 有)2()]()([21yx f y f x f +>+, x (-∞, -1) -1 (-1, 1) 1 (1, +∞) y '' - 0 + 0 - y⋂ln2 拐点⋃ln2 拐点⋂即 nn n y x y x )2()(21+>+. (2)设f (t )=e t , 则f '(t )=e t , f ''(t )=e t . 因为f ''(t )>0, 所以曲线f (t )=e t 在(-∞, +∞)内是凹的. 由定义, 对任意的x , y ∈(-∞, +∞), x ≠y 有)2()]()([21yx f y f x f +>+, 即)(22y x e e e yx y x ≠>++.(3)设f (t )=t ln t , 则 f '(t )=ln t +1, tt f 1)(=''.因为当t >0时, f ''(t )>0, 所以函数f (t )=t ln t 的图形在(0, +∞)内是凹的. 由定义, 对任意的x >0, y >0, x ≠y 有)2()]()([21yx f y f x f +>+, 即 2ln )(ln ln yx y x y y x x ++>+.10. 试证明曲线112+-=x x y 有三个拐点位于同一直线上.证明 222)1(12+++-='x x x y , 323223)1()]32()][32()[1(2)1(2662++---+=++--=''x x x x x x x x y . 令y ''=0, 得x 1=-1, 322-=x , 323+=x . 例表得 x (-∞. -1) -1 )32 ,1(-- 32- )32 ,32(+-32+ ) ,32(∞++y ' - 0 + 0- 0+ y⋂-1⋃)32(431--⋂)32(431++ ⋃可见拐点为(-1, -1), ))32(431 ,32(---, ))32(431 ,32(+++. 因为41)1(32)1()32(431=-------, 41)1(32)1()32(431=--+--++,所以这三个拐点在一条直线上.11. 问a 、b 为何值时, 点(1, 3)为曲线y =ax 3+bx 2的拐点?解 y '=3ax 2+2bx , y ''=6ax +2b . 要使(1, 3)成为曲线y =ax 3+bx 2的拐点, 必须y (1)=3且y ''(1)=0, 即a +b =3且6a +2b =0, 解此方程组得23-=a , 29=b .12. 试决定曲线y =ax 3+bx 2+cx +d 中的a 、b 、c 、d , 使得x =-2处曲线有水平切线, (1, -10)为拐点, 且点(-2, 44)在曲线上. 解 y '=3ax 2+2bx +c , y ''=6ax +2b . 依条件有⎪⎩⎪⎨⎧=''=-'-==-0)1(0)2(10)1(44)2(y y y y , 即⎪⎩⎪⎨⎧=+=+--=+++=+-+-02604121044248b a c b a d c b a d c b a .解之得a =1, b =-3, c =-24, d =16.13. 试决定y =k (x 2-3)2中k 的值, 使曲线的拐点处的法线通过原点. 解y '=4kx 3-12kx , y ''=12k (x -1)(x +1). 令y ''=0, 得x 1=-1, x 2=1.因为在x 1=-1的两侧y ''是异号的, 又当x =-1时y =4k , 所以点(-1, 4k )是拐点. 因为y '(-1)=8k , 所以过拐点(-1, 4k )的法线方程为)1(814+-=-x k k y . 要使法线过原点, 则(0, 0)应满足法线方程, 即kk 814-=-, 82±=k .同理, 因为在x 1=1的两侧y ''是异号的, 又当x =1时y =4k , 所以点(1, 4k )也是拐点.因为y '(1)=-8k , 所以过拐点(-1, 4k )的法线方程为)1(814-=-x k k y . 要使法线过原点, 则(0, 0)应满足法线方程, 即kk 814-=-, 82±=k .因此当82±=k 时, 该曲线的拐点处的法线通过原点.14. 设y =f (x )在x =x 0的某邻域内具有三阶连续导数, 如果f ''(x 0)=0, 而f '''(x 0)≠0, 试问 (x 0, f (x 0))是否为拐点?为什么?解 不妨设f '''(x 0)>0. 由f '''(x )的连续性, 存在x 0的某一邻域(x 0-δ, x 0+δ), 在此邻域内有f '''(x )>0. 由拉格朗日中值定理, 有f ''(x )-f ''(x 0)=f '''(ξ)(x -x 0) (ξ介于x 0与x 之间), 即 f ''(x )=f '''(ξ)(x -x 0).因为当x 0-δ<x <x 0时, f ''(x )<0; 当x 0<x <x 0+δ 时, f ''(x )>0, 所以(x 0, f (x 0))是拐点.习题3-51. 求函数的极值: (1) y =2x 3-6x 2-18x +7; (2) y =x -ln(1+x ) ; (3) y =-x 4+2x 2 ; (4)x x y -+=1; (5)25431xx y ++=;(6)144322++++=x x x x y ;(7) y =e x cos x ;(8)xx y 1=;(9)31)1(23+-=x y ;(10) y =x +tan x .解 (1)函数的定义为(-∞, +∞), y '=6x 2-12x -18=6(x 2-2x -3)=6(x -3)(x +1), 驻点为x 1=-1, x 2=3. 列表x (-∞, -1) -1 (-1, 3) 3 (3, +∞) y ' + 0 - 0 + y↗17极大值↘-47极小值↗可见函数在x =-1处取得极大值17, 在x =3处取得极小值-47. (2)函数的定义为(-1, +∞), xxx y +=+-='1111, 驻点为x =0. 因为当-1<x <0时, y '<0; 当x >0时, y '>0, 所以函数在x =0处取得极小值, 极小值为y (0)=0. (3)函数的定义为(-∞, +∞),y '=-4x 3+4x =-4x (x 2-1), y ''=-12x 2+4, 令y '=0, 得x 1=0, x 2=-1, x 3=1.因为y ''(0)=4>0, y ''(-1)=-8<0, y ''(1)=-8<0, 所以y (0)=0是函数的极小值, y (-1)=1和y (1)=1是函数的极大值.(4)函数的定义域为(-∞, 1], )112(1243121121211+---=---=--='x x x xx xy ,令y '=0, 得驻点43=x .因为当43<x 时, y '>0; 当143<<x 时, y '<0, 所以45)1(=y 为函数的极大值.(5)函数的定义为(-∞, +∞), 32)54()512(5x x y +--=', 驻点为512=x . 因为当512<x 时, y '>0; 当512>x 时, y '<0, 所以函数在512=x 处取得极大值, 极大值为10205)512(=y . (6)函数的定义为(-∞, +∞), 22)1()2(+++-='x x x x y , 驻点为x 1=0, x 2=-2.列表x (-∞, -2) -2(-2, 0) 0 (0, +∞) y ' - 0+ 0 - y↘38极小值 ↗4极大值↘可见函数在x =-2处取得极小值38, 在x =0处取得极大值4.(7)函数的定义域为(-∞, +∞). y '=e x (cos x -sin x ), y ''=-e x sin x .令y '=0, 得驻点ππk x 24+=, ππ)1(24++=k x , (k =0, ±1, ±2, ⋅ ⋅ ⋅).因为0)24(<+''ππk y , 所以22)24(24⋅=++ππππk e k y 是函数的极大值.因为y ''0])1(24[>++ππk , 所以22])1(24[)1(24⋅-=++++ππππk e k y 是函数的极小值. (8)函数xx y 1=的定义域为(0, +∞),)ln 1(121x x x y x-⋅='.令y '=0, 得驻点x =e .因为当x <e 时, y '>0; 当x >e 时, y '<0, 所以ee e y 1)(=为函数f (x )的极大值.(9)函数的定义域为(-∞, +∞), 3/2)1(132+-='x y , 因为y '<0, 所以函数在(-∞, +∞)是单调减少的, 无极值.(10)函数y =x +tg x 的定义域为ππk x +≠2(k =0, ±1, ±2, ⋅ ⋅ ⋅). 因为y '=1+sec 2x >0, 所以函数f (x )无极值.2. 试证明: 如果函数y =ax 3+bx 2+cx +d 满足条件b 2 -3ac <0, 那么这函数没有极值 . 证明y '=3a x 2+2b x +c . 由b 2 -3ac <0, 知a ≠0. 于是配方得到 y '=3a x 2+2b x +c ab ac a b x a a c x a b x a 33)3(3)332(32222-++=++=,因3ac -b 2>0, 所以当a >0时, y '>0; 当a <0时, y '<0. 因此y =ax 3+bx 2+cx +d 是单调函数, 没有极值.3. 试问a 为何值时, 函数x x a x f 3sin 31sin )(+=在3π=x 处取得极值?它是极大值还是极小值?并求此极值.解 f '(x )=a cos x +cos 3x , f ''(x )=-a sin x -3 sin x . 要使函数f (x )在3π=x 处取得极值, 必有0)3(='πf , 即0121=-⋅a , a =2 . 当a =2时, 0232)3(<⋅-=''πf . 因此, 当a =2时, 函数f (x )在3π=x 处取得极值, 而且取得极大值, 极大值为3)23(=f . 4. 求下列函数的最大值、最小值:(1) y =2x 3-3x 2 , -1≤x ≤4; (2) y =x 4-8x 2+2, -1≤x ≤3 ; (3)x x y -+=1, -5≤x ≤1.解 (1)y '=6x 2-6x =6x (x -1), 令y '=0, 得x 1=0, x 2=1. 计算函数值得y (-1)=-5, y (0)=0, y (1)=-1, y (4)=80,经比较得出函数的最小值为y (-1)=-5, 最大值为y (4)=80.(2)y '=4x 3-16x =4x (x 2-4), 令y '=0, 得x 1=0, x 2=-2(舍去), x 3=2. 计算函数值得 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11,经比较得出函数的最小值为y (2)=-14, 最大值为y (3)=11.(3)xy --='1211, 令y '=0, 得43=x . 计算函数值得65)5(+-=-y , 45)43(=y , y (1)=1,经比较得出函数的最小值为65)5(+-=-y , 最大值为45)43(=y .5. 问函数y =2x 3-6x 2-18x -7(1≤x ≤4)在何处取得最大值?并求出它的最大值. 解 y '=6x 2-12x -18=6(x -3)(x +1), 函数f (x )在1≤x ≤4内的驻点为x =3. 比较函数值:f (1)=-29, f (3)=-61, f (4)=-47,函数f (x )在x =1处取得最大值, 最大值为f (1)=-29. 6. 问函数xx y 542-=(x <0)在何处取得最小值? 解 2542x x y +=', 在(-∞, 0)的驻点为x =-3. 因为 31082x y -='', 0271082)3(>+=-''y , 所以函数在x =-3处取得极小值. 又因为驻点只有一个, 所以这个极小值也就是最小值, 即函数在x =-3处取得最小值, 最小值为27)3(=-y .7. 问函数12+=x x y (x ≥0)在何处取得最大值?解 222)1(1+-='x x y . 函数在(0, +∞)内的驻点为x =1.因为当0<x <1时, y '>0; 当x >1时y '<0, 所以函数在x =1处取得极大值. 又因为函数在 (0, +∞)内只有一个驻点, 所以此极大值也是函数的最大值, 即函数在x =1处取得最大值, 最大值为f (1)=21. 8. 某车间靠墙壁要盖一间长方形小屋, 现有存砖只够砌20cm 长的墙壁, 问应围成怎样的长方形才能使这间小屋的面积最大?解 设宽为x 长为y , 则2x +y =20, y =20-2x , 于是面积为 S = xy =x (20-2x )=20x -2x 2. S '=20-4x =4(10-x ), S ''=-4.。
第一章 行列式1.()()[][][]23154110103631254=520010=8(1)3(1)321(1)(2)(3)2441(1)3214243(1)321012)4n n n n n n n n m n m n n n m n m n n m 1τ=++++=2τ+++++-τ-⋯=-+-+-+⋯+2+1+0===+τ-⋯=+=+τ-⋯=⋯()该数列为奇排列()该排列为偶排列() 当或时,为偶数,排列为偶排列当或时,为奇数,排列为奇排列(其中,,()[][][]12(1)13521)246(2)0123(1)244113521)246(2)424313521)246(2)012)2.(1)(2)(n n n n n n n m n m n n n m n m n n m i i i k n n n -τ⋯-⋯=++++⋯+-===+τ⋯-⋯=+=+τ⋯-⋯=⋯⋯-+-+( 当或时,(为偶数,排列为偶排列当或时,(为奇数,排列为奇排列(其中,,解:已知排列的逆序数为,这个数按从大到小排列时逆序数为()()111112(1)3)2(1)2x x x n x n x n n n n n n x i r i i i n x r i n x n n i i i i i i -+-+---+⋯+2+1+0=----τ⋯=-τ⋯个.设第数之后有个数比小,则倒排后的位置变为,其后个数比小,两者相加为故3 证明:.因为:对换改变排列的奇偶性,即一次变换后,奇排列改变为偶排列,偶排列改变为奇排列∴当n ≥2时,将所有偶排列变为奇排列,将所有奇排列变为偶排列 因为两个数列依然相等,即所有的情况不变。
∴偶排列与奇排列各占一半。
4 (1)13243341a a a a 不是行列式的项 14233142a a a a 是行列式的项 因为它的列排排列逆序列τ=(4321)=3+2+0+0=5为奇数,∴应带负号(2)5142332451a a a a a 不是行列式的项 1352413524a a a a a =1324354152a a a a a 因为它的列排排列逆序列τ(34512)=2+2+2+0+0=6 为偶数∴应带正号。
第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.i 位的不足近似值,赋给a 第i 位的过剩近似值,赋给b . 第三步,计算55bam =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值. 算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 12、程序:3练习(P29) 12、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52.4、34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序:习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第二章 复习参考题A 组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.34、程序框图:5(1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m(3)全程共经过约299.609 m第二章 复习参考题B 组(P35)12、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计2.1随机抽样 练习(P57)1、.之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地). 习题2.1 A 组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间. 2、调查的总体是所有可能看电视的人群.学生A 的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A 方案抽取的样本的代表性差.学生B 的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B 方案抽取的样本的代表性差.学生C 的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C 方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率. 3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等. (3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天 用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a ,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm.(4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多. 6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26.(2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些.(1)散点图如下:(2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、 (2)回归直线如下图所示:(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高.习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法.(2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把 指标定为17.46千元时,月65%的推销员 经过努力才能完成销售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率练习(P140)1、(1)1;(2)38.2、如果射到靶子上任何一点是等可能的,那么大约有100个镖落在红色区域.说明:在实际投镖中,命中率可能不同,这里既有技术方面的因素,又是随机因素的影响,所以在投掷飞镖、射击或射箭比赛中不会以一枪或一箭定输赢,而是取多次成绩的总和,这就是为了减少随机因素的影响.习题3.3 A组(P142)1、(1)49;(2)13;(3)29;(4)23;(5)59.2、(1)126;(2)12;(3)326;(4)326;(5)12;(6)313.说明:(4)是指落在6,23,9三个相邻区域的情况,而不是编号为6,7,8,9,四个区域.。
第三章 微分中值定理习题课一、判断题(每题3分)1.函数)(x f 在0x 点处可导,且在0x 点处取得极值,那么0)(0='x f .( √ )2.函数)(x f 在0x 点处可导,且0)(0='x f ,那么)(x f 在0x 点处取得极值.( × )3.若0x 是()f x 的极值点,则0x 是()f x 的驻点. ( × )4.函数()x f 在区间()b a ,内的极大值一定大于极小值 . ( × )5.若()0,(,)f x x a b ''>∈,则()f x '在(,)a b 内单调增加 . ( √ )6.0()0f x '=且0()0f x ''<是函数()y f x =在0x 处取得极大值的充要条件. ( × )7.函数()arctan f x x x =的图形没有拐点. ( √ )8.因为函数y =0x =点不可导,所以()0,0点不是曲线y =.( × )二、选择题(每题3分)1.下列函数中,在闭区间[-1,1]上满足罗尔定理条件的是( D ). A .xe B .ln x C .x D .21x - 2.对于函数()211f x x=+,满足罗尔定理全部条件的区间是( D ). (A )[]2,0-;(B )[]0,1;(C );[]1,2-(D )[]2,2-3. 设函数()()()12sin f x x x x =--,则方程()0f x '=在 (0,)π内根的个数( D )(A) 0个 ; (B)至多1个; (C) 2个; (D)至少3个.4.已知函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的条件,使得该定理成立的ξ=( D ). (A )13 (B (C )12 (D 5.若函数)(),(x g x f 在区间),(b a 上的导函数相等,则该两函数在),(b a 上( C ).A.不相等 B .相等 C.至多相差一个常数 D.均为常数 6.arcsin y x x =- 在定义域内( B ).A. 单调减函数B.单调增函数C. 有单调增区间也有单调减区间D. 没有单调性7. 函数2129223-+-=x x x y 的单调减少区间是 ( C ).(A )),(+∞-∞ (B ))1,(-∞ (C ))2,1( (D )),2(+∞8.设(),a b 内()0f x ''>,则曲线()y f x =在(),a b 内的曲线弧位于其上任一条切线的( A ). (A )上方;(B )下方; (C )左方; (D )右方.9.曲线32y ax bx =+的拐点为(1,3),则 ( A ). (A )3,30a b a b +=+= (B )0,30a b a b +=+= (C )2,320a b a b +=+=(D )0,340a b a b +<+=10. 设函数()y f x =在开区间(,)a b 内有()'0f x <且()"0f x <,则()y f x =在(,)a b 内( C )A.单调增加,图像是凹的B.单调减少,图像是凹的C.单调减少,图像是凸的D. 单调增加,图像是凸的11.函数2y ax c =+在区间()0,+∞内单调增加,则a 和c 应满足( C ).(A )0a <且0c =; (B )0a >且c 是任意实数; (C )0a <且0c ≠;(D )0a <且c 是任意实数.12. 函数23++=x x y 在其定义域内( B ) (A )单调减少 (B) 单调增加 (C) 图形是凹的(D) 图形是凸的13.若()()00,x f x 为连续曲线()y f x =上凹弧与凸弧的分界点,则( A ). (A )()()00,x f x 必为曲线的拐点; (B )()()00,x f x 必为曲线的驻点;(C )0x 点必为曲线的极值点;(D )0x x =必为曲线的拐点.14.函数()2ln f x x x =-的驻点是( B ). (A )1x = (B )12x =(C )(1,2) (D) 1(,1ln 2)2+15.函数2ln(1)y x x =-+的极值( D ). A .是1ln 2-- B .是0 C .是1ln 2- D .不存在16.设()[0,1]()f x x f x ''=在上有<0,则下述正确的是( A ) ( A ) (1)f '<)0()1(f f -<(0)f '; ( B ) (0)f '<)0()1(f f -<(1)f '; ( C ) (1)f '<(0)f '<)0()1(f f -; ( D ) (0)f '<(1)f '<)0()1(f f - 17.设()f x 具有二阶连续的导数,且20()lim3,ln(1)x f x x →=-+则(0)f 是()f x 的( A )(A )极大值; (B )极小值; (C )驻点; (D )拐点.18.设函数()y f x =在0x x =处有()0f x '=0,在1x x =处导数不存在,则( C ). A. 0x x =,1x x =一定都是极值点 B.只有0x x =可以是极值点C. 0x x =, 1x x =都可能不是极值点D. 0x x =,1x x =至少有一个是极值点三、解答题(求极限每题4分其余每题 8分) 1.求极限220000011sin sin 1cos 2(1)lim lim lim lim lim 0sin sin 22→→→→→---⎛⎫-===== ⎪⎝⎭x x x x x x x x x x x x x x x x x x (2)11lim 1ln x xx x →⎛⎫⎪⎝⎭-- =()()11ln 1ln 11limlim 11ln ln x x x x x x x x x x x→→--+-=--+11ln ln 11limlim ln 1ln 22x x x x x x x x x →→+===+-+0(3)11lim 1→⎛⎫ ⎪⎝⎭--x x x e 01lim (1)→--=-xx x e x x e 0011lim lim 12xxx x x x x x x e e e xe e e xe →→-===-+++ (4)200011ln(1)ln(1)lim()lim lim ln(1)ln(1)x x x x x x x x x x x x →→→-+-+-==++0011111limlim lim 22(1)2(1)2x x x x x x x x x →→→-+====++20sin (5)limtan →-x x xx x 2200sin 1cos lim lim tan 3x x x x x x x x→→--==0sin 1lim 66x x x →== 222201(6)lim (1)→---x x x e xx e 22401lim →--=x x e x x 2232002211lim lim 42x x x x xe x e x x →→--==12=2223220000tan tan sec 1tan 1(7)lim lim lim lim ln(1)333→→→→---====+x x x x x x x x x x x x x x x1ln 1(8)lim cot →+∞⎛⎫+ ⎪⎝⎭x x arc x 1lim cot →+∞=x x arc x 222211lim lim 111x x x x x x x →+∞→+∞-+===+-+sin sin cos (9)limlim cos 1→→-==-x a x a x a xa x a22200021sec 77ln tan 7tan 2sec 77tan 7(10)lim lim lim 11ln tan 2tan 7sec 22sec 22tan 2+++→→→⋅⋅⋅===⋅⋅⋅x x x x x x x x x x x x x(11)lim arctan 2→+∞⎛⎫- ⎪⎝⎭x x x π22221arctan 12lim limlim 1111→+∞→+∞→+∞--+====+-x x x x x x x xxπ2lim ln(arctan )2(12)lim arctan →+∞→+∞⎛⎫= ⎪⎝⎭x xx x x x e ππ2lim ln(arctan )→+∞x x x π222211ln arctan lnln arctan arctan 1limlimlim 111→+∞→+∞→+∞+⋅+===-x x x x x x x xxxππ2222lim 1x x x ππ→+∞=-=-+22lim arctan -→+∞⎛⎫∴= ⎪⎝⎭xx x e ππ .()tan 21(13)lim 2→-x x x π解:()()()11sin ln 22limlim tan ln 2cos tan 2221lim 2x x x x x x xx x x eeππππ→→--→-==1122sinlim22x xx e eπππ→---⋅==tan 0(14)1lim +→⎛⎫⎪⎝⎭xx x 0011lim tan lnlim ln++→→⋅⋅==x x x x xxee2001110ln limlim1x x x xx xe ee++→→---====2. 验证罗尔中值定理对函数32452y x x x =-+-在区间[]0,1上的正确性.解:()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,()()012f f ==-满足罗尔定理条件.(3分)令()2121010f x x x '=-+=,得()0,1x =,满足罗尔定理结论.3. 试证明对函数2y px qx r =++应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间.证明:在区间[],a b 上,()()()f b f a f b aξ-'=-代入:()()222pb qb r pa qa r p q b aξ++-++=+-解得:2a bξ+=. 4. 证明方程531xx -=在()1,2之间有且仅有一个实根.证明:令()531f x x x =--,()11310f =--<, ()522610f =-->所以 ()0f x =在()1,2上至少一个根,又()4'53f x x =-, 当()1,2x ∈时()'0f x >,所以单增,因此在()1,2上至多有一个根. ()0f x =在()1,2上有且仅有一个根.5. 设()f x 在[,]a b 上连续,在(,)a b 内可导,且()()0f a f b ==,证明:至少存在一个(,)a b ξ∈,使得()()0f f ξξ'+=. 提示:令()()x F x e f x =证明:令()()xF x e f x =,显然()F x 在[,]a b 上连续,在(,)a b 内可导,且()()()()xF x ef x f x ''=+ (3分)由Larange 中值定理,则至少(,)a b ξ∈,使得()()()F b F a F b aξ-'=-又()()0f a f b == ∴()()0f f ξξ'+=6. 设()f x 在[0,]a 上连续,在(0,)a 内可导,且()0f a =,证明存在一点(0,)a ξ∈,使得()()0f f ξξξ'+=.提示:令 ()()F x xf x =.证明:构造辅助函数()()F x xf x =, ()f x 在[0,]a 上连续,在(0,)a内可导∴()F x 在[0,]a 上连续,在(0,)a 内可导,()()()F x f x xf x ''=+且(0)()0F F a ==由Rolle 定理,至少(0,)a ξ∃∈,有()0F ξ'=即()()0f f ξξξ'+=7. 证明:不论b 取何值,方程033=+-b x x 在区间[]1,1-上至多有一个实根证:令()()()()323,33311f x x x b f x x x x '=-+=-=+-()1,1x ∈-时,0,,f f'<故()f x 在区间[]1,1-上至多有一个实根.8. 证明:当1x >时,xe x e >⋅.证明: 令()xf x e x e =-⋅,显然()f x 在[1,]x 上满足Lagrange 中值定理的条件,由中值定理,至少存在一点(1,)x ξ∈,使得()(1)(1)()(1)()f x f x f x e e ξξ'-=-=--即()(1)0f x f >=又即x e x e >⋅9. 证明:当0x >时,112x +>证:()()111022f x x f x '=+==>()()00f x f >=,即有112x +>10. 求证:1,(0,)>+∈+∞xex x证明:令()1,,[0,)xf x e x x =--∈+∞当(0,)x ∈+∞时,()10x f x e '=->故在区间[0,)+∞上,()f x 单调递增从而当(0,)x ∈+∞时,()(0)0f x f >=即1x e x >+或者:证明:()221112!2xf e e x x x x x ξξ''=++=++>+……8分11. 当1>x 时,证明:13>-x. 答案参看课本p148 例6 12. 证明:当0x >时, ln(1).1xx x x<+<+ 答案参看课本P132 例1 13. 设0,1a b n >>>, 证明:11()()n n n n nba b a b na a b ---<-<-.证明:令()nf x x =,显然()f x 在[,]b a 上满足lagrange 定理条件,故至少存在一点(,)b a ξ∈,使得()()()()f a f b f a b ξ'-=- 即1()n n n a b n a b ξ--=-又由b a ξ<<及1(1)n n n ξ->的单增性,得11()()n n n n nba b a b na a b ---<-<-14. 设0a b >>,证明:ln a b b a ba a b--<< 证明:令()ln f x x =,在区间[],b a 上连续,在区间(,)b a 内可导,有拉格朗日中值定理,至少存在一点(),b a ξ∈,使得1ln ln ()a b a b ξ-=-,又因为1110,a b ξ<<<因此,ln a b a a ba b b--<<. 15. 证明恒等式()arcsin arccos ,112x x x π+=-≤≤.证:令()arcsin arccos f x x x =+ 则()f x 在[]1,1-上连续.在()1,1-内有:()0,f x f C '=≡≡令0,,arcsin arccos 22x C x x ππ==+=在()1,1-内成立.再根据()f x 在[]1,1-上的连续性,可知上式在[]1,1-上成立.16. 求函数2y x =的极值点和单调区间. 解:132(1)y x-'=-因此,2y x =在定义域(,)-∞+∞内有不可导点10x =和驻点21x =17. 求函数32535y x x x =-++的单调区间,拐点及凹或凸的区间. 解:23103y x x '=-+,易得函数的单调递增区间为1(,)(3,)3-∞+∞,单调减区间1(,3)3.610y x ''=-,令0y ''=,得53x =. 当53x -∞<<时,0y ''<,因此曲线在5(,]3-∞上是凸的;当53x <<+∞时,0y ''>,因此曲线在5[,)3+∞上是凹的,故520(,)327是拐点18. 试确定,,a b c 的值,使曲线32y x ax bx c =-++在(1,1-)为一拐点,在0x =处有极值,并求曲线的凹凸区间.解:232y x ax b '=-+ 62y x a ''=-(1,1)-为拐点,则062a =- 3a ∴=由0y '=,则2360x x b -+= , 代入0x =,则0b =.11,1a b c c -++=-=曲线为3231y x x =-+, 66y x ''=-. 凸区间为(,1)-∞-, 凹区间为(1,)+∞.19. 求函数()7ln 124-=x x y 的单调区间,拐点及凹或凸的区间. 解: 34314(12ln 7)124(12ln 4)y x x x x x x'=-+⋅⋅=-, 易得函数的单调递增区间为13(,)e +∞,单调减区间13(0,)e . ()232112(12ln 4)412144ln 0y x x x x x x x''=-+⋅⋅=>, 令0y ''=,得1x =.当01x <<时,0y ''<,因此曲线在(0,1]上是凸的;当1x <<+∞时,0y ''>,因此曲线在[1,)+∞上是凹的,故(1,7)-是拐点 20. 求函数arctan xy e=的单调区间,拐点及凹或凸的区间.解:arctan 211x y e x '=⋅+>0,因此单调增区间是R , arctan arctan arctan 2222221212(1)(1)(1)xx x x x y e e e x x x ⎡⎤⎡⎤-''=+-=⎢⎥⎢⎥+++⎣⎦⎣⎦, 令0y ''=,得12x =. 当12x -∞<<时,0y ''>,因此曲线在1(,]2-∞上是凹的; 当12x <<+∞时,0y ''<,因此曲线在1[,)2+∞上是凸的,故1arctan 21(,)2e是拐点 21. 求函数1234+-=x x y 的拐点和凹凸区间. 解:3246y x x '=- 2121212(1)y x x x x ''=-=-令0y ''=,得10x =,21x =22. 求函数32391=+-+y x x x 的极值.解:2'3693(1)(3)y x x x x =+-=-+ ''66y x =+ 令0'=y 得驻点:121,3x x ==-.当21x =时,''0,y >取得极小值,其值为4-. 当33x =-时,''0y <,取得极大值,其值为28. 23. 求函数23(1)1=-+y x 的极值.解: 226(1)y x x '=-22226(1)24(1)y x x x ''=-+-令0y '=,得1231,0,1x x x =-==(0)60y ''=>,故20x =是极小值点.(1)0y ''±=, 无法用第二充分条件进行判定.在11x =-的附近的左右两侧取值均有0y '<,故11x =-不是极值点. 在21x =的附近的左右两侧取值均有0y '>,故21x =不是极值点. 极小值(0)0y =24. 求函数32(1)(23)=-+y x x 的极值点和单调区间.解:22323(1)(23)4(1)(23)(1)(23)(105)0y x x x x x x x '=-++-+=-++=所以,驻点11x =,232x =-,312x =-列表∴()f x 在32x =-处取得极大值3()02f -= ()f x 在12x =-处取得极小值127()22f -=- 单调递增区间31(,],[,)22-∞--+∞,单调递增区间31[,]22-- 25. 试问a 为何值时,函数1()sin sin 23=+f x a x x 在3π处取得极值?它是极大值还是极小值?并求此极值. 解:2()cos cos 23f x a x x '=+()f x 在3π处取得极值 22121()coscos 03333232f a a πππ'∴=+=⋅-⋅= 23a ∴=即 ()2()cos cos 23f x x x '=+ ()2()sin 2sin 23f x x x ''∴=--222()sin 2sin 203333322f πππ⎛⎫⎛⎫''∴=--=-⋅+⋅< ⎪ ⎪ ⎪⎝⎭⎝⎭所以它是极大值,极大值为212()sin sin 333332f πππ∴=+=26. 求函数3223y x x =-在区间[]1,4上的最大值与最小值.解:212660,0,1y x x x x '=-===(舍去x =)()()11,480,f f =-=,故最大值为80,最小值为-1.27.、某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20m 长的墙壁.问应围成怎样的长方形才能使这间小屋的面积最大?解:设小屋长 x m ,宽 y m ,220,102xx y y +==-.2101022x x S x x ⎛⎫=-=- ⎪⎝⎭,100,10S x x '=-==故小屋长10米,宽5米时,面积最大.28.某厂每批生产产品x 单位的总费用为()5200C x x =+(元), 得到的收入是()2100.01R x x x =-(元).问每批生产多少个单位产品时总利润()L x 最大?解:()()()22100.0152000.015200L x x x x x x =--+=-+-()0.0250,250L x x x '=-+==(单位)()0.020L x ''=-<,故250x =单位时总利润最大.。
第三章中值定理与导数的应用典型例题解析例1验证函数()f x =在[0,1]上满足罗尔定理的条件. 解 因()f x 是在[0,1]上有定义的初等函数,所以()f x 在[0,1]上连续,且212233212()3(1)x f x x x -'=⋅- 在(0,1)内存在;(0)(1)0f f ==.故()f x 在[0,1]上满足罗尔定理的条件,由定理知至少存在一点(0,1)ξ∈使()0f ξ'=.即2120ξ-=,于是解得ξ=(0,1)∈.例2 已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,求证在(0,1)内至少存在一点ξ使等式()()f f ξξξ'=-成立.分析 要证()()f f ξξξ'=-成立,即证()()0f f ξξξ'+=,即[()]0x xf x ξ='=,作辅助函数()()F x xf x =,对()F x 在区间[0,1]上应用罗尔定理.证明 设()()F x xf x =,则它在[0,1]上连续,在(0,1)内可导,且(0)(1)0F F ==.由罗尔定理知至少存在一点(0,1)ξ∈使得()0F ξ'=,即()()f f ξξξ'=-.证毕.例3 设()f x 在[,]a b 上连续,在(,)a b 内可导,且()()0f a f b ==,证明对于任意实数λ,在(,)a b 内至少存在一点ξ,使得()()f f ξλξ'=-.分析 要证()()0f f ξλξ'+=,即证[()()]0e f f λξξλξ'+=,即[(()())]|0xx e f x f x λξλ='+=,即证[()]|0xx e f x λξ='=,作辅助函数()()x F x e f x λ=,并对()F x 在区间[,]a b 上应用罗尔定理.证明 令()()x F x e f x λ=,易知()F x 在[,]a b 上连续,在(,)a b 内可导,且()()0F a F b ==,由罗尔定理知,至少存在一点(,)a b ξ∈,使()0F ξ'=,即[()()]0e f f λξξλξ'+=,而0e λξ≠,故()()0f f ξλξ'+=,即()()f f ξλξ'=-,(,)a b ξ∈.证毕.注 证明至少存在一点满足抽象函数一阶或二阶导数的关系式,且题中没有给出函数关系式的命题时,用罗尔定理证明的方法和步骤:(1)把要证的中值等式改写成右端为零的等式,改写后常见的等式有()()0f f ξξξ'+=, ()()()()0f g f g ξξξξ''+=,()()0f f ξξξ'-=, ()()0f kf ξξξ'-=,()()()()0f g f g ξξξξ''-=, ()()()()0f g f g ξξξξ''''-=, ()()0f f ξλξ'±=, ()()()0f f g ξξξ''±=等等.(2)作辅助函数()F x ,使()F ξ'等于上述等式的左端.对于(1)中所述等式,分别对应辅助函数()F x 为()()F x xf x =, ()()()F x f x g x =,()()f x x F x =, ()()k f x F x x =, ()()()f x F xg x =, ()()()()()F x f x g x f x g x ''=-,()()x F x e f x λ±=, ()()()g x F x e f x ±=.(3)在指定区间上对()F x 应用罗尔定理证明. 例4 设01,,,n a a a L 为满足1200231n a a a a n ++++=+L 的实数,证明:方程 2301230n n a a x a x a x a x +++++=L 在(0,1)内至少有一个实根.分析 函数230123()n n f x a a x a x a x a x =+++++L 虽然在[0,1]上连续,但是难以验证()f x 在[0,1]的某个子区间的端点处的函数值是否异号,所以不能用闭区间上连续函数的零点定理,但发现函数231310()231n n a a a F x a x x x x n +=+++++L 在1x =处的值为 120(1)0231n a a aF a n =++++=+L ,且(0)0F =,所以该命题可以用罗尔定理来证.证明 作辅助函数231120()231n n a a a F x a x x x x n +=+++++L ,显然()F x 在[0,1]上连续,在(0,1)内可导且(0)0F =,120(1)0231n a a aF a n =++++=+L .对()F x 在区间[0,1]上应用罗尔定理,则至少存在一点(0,1)ξ∈,使得()0F ξ'=,即2301230n n a a a a a ξξξξ+++++=L ,即方程2301230n n a a x a x a x a x +++++=L 在(0,1)内至少有一个实根ξ.证毕.注 关于()0f x =的根(或()f x 的零点)的存在性的两种常用证明方法证法1 如果只知()f x 在[,]a b 或(,)a b 上连续,而没有说明()f x 是否可导,则一般用闭区间上连续函数的零点定理证明;证法2 先根据题目结论构造辅助函数()F x ,使得()()F x f x '=,然后在指定区间上验证()F x 满足罗尔定理的条件,从而得出()f x 的零点存在性的证明.例5 若()f x 在[1,1]-上有二阶导数,且(0)(1)0f f ==,设2()()F x x f x =,则在(0,1)内至少存在一点ξ,使得()0F ξ''=.分析 要证()0F ξ''=,只要证在()F x '区间[0,1]上满足罗尔定理,关键是找到两个使()F x '相等的点.此外,该题还可以用泰勒公式证明.证法1 (用罗尔定理证)因为2()()F x x f x =,则2()2()()F x xf x x f x ''=+.因为(0)(1)0f f ==,所以(0)(1)0F F ==.()F x 在[0,1]上满足罗尔定理的条件,则至少存在一点1(0,1)ξ∈使得1()0F ξ'=,而(0)0F '=,即1(0)()0F F ξ''==.对()F x '在1[0,]ξ上用罗尔定理,则至少存在一点1(0,)ξξ∈使得()0F ξ''=,而1(0,)(0,1)ξξ∈⊂,即在(0,1)内至少存在一点ξ,使得()0F ξ''=.证毕.证法2(用泰勒公式证)()F x 的带有拉格朗日型余项的一阶麦克劳林公式为2()()(0)(0)2!F F x F F x x ξ'''=++, 其中(0,)x ξ∈.令1x =,注意到(0)(1)0F F ==,(0)0F '=,可得()0F ξ''=,(0,1)ξ∈.证毕.注 结论为()()0 (2)n f n ξ=≥的命题的证明常见方法有两种: (1)对(1)()n f x -应用罗尔定理;(2)利用()f x 的1n -阶泰勒公式.例6 设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个x ,函数()f x 的值都在开区间(0,1)之内,且()1f x '≠,证明在(0,1)内有且仅有一个x ,使得()f x x =.分析 根据题目结论,容易联想构造辅助函数()()F x f x x =-,用零点定理证()F x 存在零点;而唯一性常用反证法证之.证明 作辅助函数()()F x f x x =-,易知()F x 在区间[0,1]上连续,又0()1(0)(0)0f x F f <<⇒=>,(1)(1)10F f =-<,根据闭区间上连续函数的零点定理可知,至少存在一个(0,1)ξ∈,使得()()0F f ξξξ=-=,即()f ξξ=.下面用反证法证明唯一性.假设存在1x ,2(0,1)x ∈,且不妨设12x x <,使得11()f x x =,22()f x x =,12()()0F x F x ==.显然()F x 在12[,]x x 上满足罗尔定理的三个条件,于是存在12(,)(0,1)x x η∈⊂使得()0F η'=,即()1f η'=,这与题设()1f x '≠((0,1))x ∈矛盾,故唯一性也成立.证毕.例7 假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0g x ''≠,()()()()0f a f b g a g b ====,试证:(1)在开区间(,)a b 内()0g x ≠;(2)在开区间(,)a b 内至少存在一点ξ,使()()()()f fg g ξξξξ''=''. 分析 证(1)可采用反证法,设存在(,)c a b ∈使得()0g c =,且由已知条件()()0g a g b ==,可以两次利用罗尔定理推出与()0g x ''≠相矛盾的结论.问题(1)是基本题.证(2)的关键是构造辅助函数()x ϕ,使得()()0a b ϕϕ==,且()()()x f x g x ϕ'''=-()()f x g x '',通过观察可知()()()()()x f x g x f x g x ϕ''=-.构造()x ϕ是本题的难点.证 (1)反证法.设存在(,)c a b ∈,使得()0g c =,由于()()()0g a g b g c ===,对()g x 分别在区间[,]a c 和[,]c b 上应用罗尔定理,知至少存在一点1(,)a c ξ∈,使得1()0g ξ'=.至少存在一点2(,)c b ξ∈,使得2()0g ξ'=.再对()g x '在区间12[,]ξξ上应用罗尔定理,知至少存在一点312(,)ξξξ∈,使得3()0g ξ''=,这与题设()0g x ''≠矛盾,从而得证.(2)令()()()()()x f x g x f x g x ϕ''=-,则()()0a b ϕϕ==.对()x ϕ在区间[,]a b 上应用罗尔定理,知至少存在一点(,)a b ξ∈,使得()0ϕξ'=,即()()()()0f g f g ξξξξ''''-=.又因()0g x ≠,(,)x a b ∈,故()0g ξ≠,又因为()0g x ''≠,所以()0g ξ''≠,因此有()()()()f fg g ξξξξ''=''. 证毕.例8 验证函数,0()1,x e x f x x x ⎧≤=⎨+>⎩在1[1,]e-上拉格朗日中值定理的正确性.分析 此题主要考查拉格朗日中值定理的条件是否满足.解 因为0lim ()lim 1x x x f x e --→→==,00lim ()lim(1)1x x f x x ++→→=+=,则 (0)(0)(0)f f f -+==,故()f x 在0x =处连续,故()f x 在1[1,]e-上连续.又因为00(0)(0)1(0)lim lim 1x x x f x f e f x x--∆-∆→∆→+∆--'===∆∆,0(0)(0)(1)1(0)lim lim 1x x f x f x f x x++∆→∆→+∆-+∆-'===+∆∆, 故(0)1f '=从而()f x 在1(1,)e -内可导.则由拉格朗日中值定理知存在ξ∈1(1,)e-使11()(1)()(1)f f f e eξ'--=+, 即()1e f e ξ'=+,而,0()1,0x e x f x x ⎧≤'=⎨>⎩,所以1ee e ξ=+,解得1ln(1)e ξ=-+.例9 设02πβα<≤<,证明22tan tan cos cos αβαβαββα--≤-≤. 分析 当βα<时,即证221tan tan 1cos cos αββαβα-≤≤-. 此式中的tan tan αβαβ--可看成函数()tan f x x =在区间[,]βα上的改变量与相应自变量的改变量之商,故可考虑用拉格朗日中值定理证明.证明 当βα=时,不等式中等号成立.当βα<时,设()tan f x x =.由于()f x 在[,]βα(0)2πβα<<<上连续,在(,)βα内可导,利用拉格朗日中值定理得2tan tan 1cos αβαβξ-=-,(0)2πβξα<<<<.因为02πβξα<<<<,所以222111cos cos cos βξα<<.从而可得 221tan tan 1cos cos αββαβα-≤≤-, 即22tan tan cos cos αβαβαββα--≤-≤.证毕. 注 用中值定理(通常是用拉格朗日中值定理)证明不等式的具体做法:首先选择适当的函数及区间,然后利用中值定理,得到一含有ξ的等式;其次对等式进行适当地放大或缩小,去掉含有ξ的项即可.例10 设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()()f a f b =.证明在(,)a b 内至少存在一点ξ,使得()0f ξ'>.证法1 因为()f x 不恒为常数,故至少存在一点0(,)x a b ∈,使得0()()()f x f a f b ≠=. 先设0()()()f x f a f b >=,在0[,][,]a x a b ⊂上运用拉格朗日中值定理,于是可知存在0(,)(,)a x a b ξ∈⊂,使得001()[()()]0f f x f a x a ξ'=->-.若0()()()f x f a f b <=,则在0[,][,]x b a b ⊂上运用拉格朗日中值定理知,同样可知存在0(,)(,)x b a b ξ∈⊂,001()[()()]0f f b f x b x ξ'=->-.综上所述,命题得证.证法2 反证法. 若不存在这样的点ξ,则对任意的(,)x a b ∈,()0f x '≤,所以()f x 在[,]a b 上单调不增,而()()f a f b =,故()f x 在[,]a b 上为常数,与题设矛盾.所以命题得证.证毕.例11 设函数()f x 在[0,1]上可导,且0()1f x <<,()1f x '≠-,证明:方程()f x 1x =-在(0,1)内有唯一的实根.分析 要证方程()f x 1x =-在(0,1)内有唯一的实根,实际上相当于证明函数()()1F x f x x =+- 有唯一的零点,零点的存在可以根据已知用零点定理或者罗尔定理证明,唯一性可以利用反证法或函数的单调性来证明.证明 先证存在性.令()()1F x f x x =+-,则()F x 在[0,1]内连续,且(0)(0)10F f =-<,(1)(1)0F f =>.由闭区间上连续函数的零点定理知,存在(0,1)ξ∈,使()0F ξ=,即ξ为方程()f x 1x =-的实根.唯一性(用反证法证)若()f x 1x =-在(0,1)内有两个不等实根1x ,2x 12(01)x x <<<,即11()1f x x =-,22()1f x x =-.对()f x 在12[,]x x 上利用拉格朗日中值定理,至少存在一点12(,)(0,1)x x ξ∈⊂,使得21212121()()(1)(1)()1f x f x x x f x x x x ξ----'===---.这与题设条件()1f x '≠-矛盾.唯一性得证.证毕.注 此题与例6类似.例12 (05研) 已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0f =,(1)1f =. 证明:(1)存在(0,1)ξ∈,使得()1f ξξ=-;(2)存在两个不同的点η,(0,1)ζ∈,使得()()1f f ηζ''=. 证明 (1)令()()1g x f x x =+-,则()g x 在[0,1]上连续,且(0)10g =-<,(1)10g =>, 故由零点定理知存在(0,1)ξ∈,使得()()10g f ξξξ=+-=,即()1f ξξ=-.(2)由题设及拉格朗日中值定理知,存在(0,)ηξ∈,(,1)ζξ∈,使得()(0)1()0f f f ξξηξξ--'==-,(1)()1(1)()111f f f ξξξζξξξ---'===---,从而1()()11f f ξξηζξξ-''==-.证毕.注 要证在(,)a b 内存在ξ、η,使某种关系式成立的命题,常利用两次拉格朗日中值定理,或两次柯西中值定理,或者柯西中值定理与拉格朗日中值定理并用.例13 求极限sin 0lim sin x xx e e x x→--.分析 该极限属于0型,可用洛必达法则,根据题目的特点可用拉格朗日中值定理,可用导数的定义,也可以将指数差化成乘积后用等价代换.解法1 用洛必达法则.sin 0limsin x x x e e x x →--sin sin 2sin 00cos sin cos lim lim 1cos sin x x x x xx x e xe e xe xe x x→→-+-==- sin sin sin 3sin 0cos sin cos 2cos sin cos lim 1cos x x x x xx e xe x xe x xe xe x→+++-==.解法2 对函数()x f x e =在区间[sin ,]x x (或[,sin ]x x )上使用拉格朗日中值定理可得sin sin x xe e e x xξ-=-,其中sin x x ξ<<或sin x x ξ<<.当0x →时,0ξ→,故sin 0limsin x xx e e x x→--0lim 1e ξξ→==. 解法3 用导数的定义.sin 0limsin x x x e e x x →--sin 0sin 0sin 00lim lim sin 0sin 0x xx x x x x e e e e e x x x x --→→--==----000lim ()|10u u u u e e e u =→-'===-. 解法4 sin sin sin 1sin sin x x x xx e e e e x x x x---=--,当0x →时, sin 1sin x x e x x ---:,故sin 0lim sin x x x e e x x →--sin sin 01lim sin x xx x e ex x-→-=-0sin lim 1sin x x x x x →-==-. 例14 设()f x 在[,]a b 上可微(0)a b <<,证明:存在(,)a b ξ∈,使得22()()b a f ξ'-2[()()]f b f a ξ=-.分析 考虑将要证明的等式变为22()()()2f b f a f b a ξξ'-=-,则用柯西中值定理证明;也可将要证明的等式变形为222[()()(()())]0x b a f x x f b f a ξ='---=,则可用罗尔定理来证明.证法1 只要证明22()()()2f b f a f b a ξξ'-=-,易知()f x 和2()g x x =在[,]a b 上满足柯西中值定理的条件,故存在(,)a b ξ∈,使22()()()2f b f a f b a ξξ'-=-. 证法2 只要证明222[()()(()())]0x b a f x x f b f a ξ='---=.令222()()()(()())F x b a f x x f b f a =---,()F x 在[,]a b 可导,且22()()()()F a b f a a f b F b =-=,由罗尔定理知,至少存在一点(,)a b ξ∈,使()0F ξ'=,即22()()b a f ξ'-2[()()]f b f a ξ=-.证毕.错误证明 要证的结论可改写成22()()()2f b f a f b a ξξ'-=-.对函数()f x 和2()g x x =在区间[,]a b 上分别使用拉格朗日中值定理,存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-,222()b a b a ξ-=-,于是22()()()2f b f a f b a ξξ'-=-.错解分析 以上证法错在认为()f x 和2()x g x =分别使用拉格朗日中值定理所得的ξ是同一值,实际上这两个ξ不一定相同.例如,取3()f x x =,()f x 在(0,1)内使1(1)(0)()(10)f f f ξ'-=-成立的点是1ξ=;2()g x x =在(0,1)内使2(1)(0)()(10)g g g ξ'-=-成立的点是212ξ=;而使柯西中值公式 33()(1)(0)(1)(0)()f f f g g g ξξ'-='-成立的点是323ξ=. 例15 把函数()x f x xe -=展成带佩亚诺余项的n 阶麦克劳林公式.分析 将函数展成n 阶泰勒公式或者麦克劳林公式,通常有直接法和间接法两种方法,一般用间接法较为简单.解法1 直接法()x f x xe -=, (0)0f =. ()(1)x f x x e -'=--, (0)1f '=. 2()(1)(2)x f x x e -''=--, (0)2f ''=-.3()(1)(3)x f x x e -'''=--, (0)3f '''=.L L L L()()(1)()n n x f x x n e -=--, ()1(0)(1)n n f n -=-.所以()f x 的n 阶麦克劳林公式为2341(1)()1!2!3!(1)!n x n n x x x x xe x o x n --=-+-++-+-L .解法2 间接法在x e 的带佩亚诺余项的n 阶麦克劳林公式中,以x -代x ,得231(1)()2!3!!nx n n x x x e x o x n -=-+-++-+L . 上式两端同乘以x ,有2341(1)()1!2!3!!n xn n x x x x xex x o x n +-=-+-++-+⋅L .因为 10(1)()!lim0n nn nx x o x xn x +→-+⋅=, 故1(1)()()!n nn n x o x x o x n +-+⋅=,从而2341(1)()1!2!3!(1)!n x n n x x x x xe x o x n --=-+-++-+-L .例16 求2240cos limx x x ex -→-.分析 该极限属于型,如果用洛必达法则来求解将会比较复杂,根据题目的特点可考虑利用cos x ,x e 的泰勒公式.解 因为244cos 1()2!4!x x x o x =-++,222224224211()(())1()22!2228x x x x x x eo o x -=-+-+-=-++,2240cos limx x x e x -→-242444401()[1()]2!4!28lim x x x x x o x o x x→-++--++= 44401()112lim 12x x o x x →-+==-. 注1 此题属0型的不定式,可以利用洛必达法则,读者不妨一试,并与上述解法比较一下孰优孰劣.注2 在某些情况下,用泰勒公式求极限比用其它方法求极限更为简便,这种方法通常是把具有佩亚诺型余项的泰勒公式代入要求的极限式中,经过简便的有理运算,便可求出极限,应用该方法需要熟记内容提要中所列举的常用函数的麦克劳林公式.注3 几条高阶无穷小的运算规律(这些规律在用麦克劳林公式求极限时尤为有用): (这里以0x →为例):a .()()()n n n o x o x o x ±=;b .当m n >时,()()()m n n o x o x o x ±=;c .()()()m n m n o x o x o x +⋅=;d .当()x ϕ有界,则()()()n n x o x o x ϕ⋅=. 例17 求极限201lim cos31x x e x →--.分析 该极限属于0型,可以用洛必达法则,也可以采用等价无穷小替换定理.解法1 用洛必达法则.201lim cos31x x e x →--202lim 3sin3x x xe x →=-20232lim 9sin39x x x e x →=-⋅=-. 解法2 用等价无穷小替换定理.201lim cos31x x e x →--2202lim 19(3)2x x x →==--. 例18 求极限0ln tan(7)lim ln tan(2)x x x +→.分析 该极限属于∞∞型,可直接用洛必达法则;也可以先用洛必达法则,然后用等价无穷小替换定理.解法1 0ln tan(7)lim ln tan(2)x x x +→20217tan(7)cos (7)lim 12tan(2)cos (2)x x x x x +→⋅=⋅00177sin(4)sin(7)cos(7)lim lim 122sin(14)sin(2)cos(2)x x x x x x x x ++→→⋅==⋅07cos(4)4lim 12cos(14)14x x x +→=⋅=. 解法2 0ln tan(7)lim ln tan(2)x x x +→20217tan(7)cos (7)lim 12tan(2)cos (2)x x x x x +→⋅=⋅22007cos (2)tan(2)lim lim 2cos (7)tan(7)x x x x x x ++→→=⋅ 072lim 127x xx +→=⋅=例19(99研) 011lim()2tan x x x x→-=_______.分析 该极限属于∞-∞型.将211tan x x x-通分,然后再用洛必达法则.解 2011lim()tan x x x x →-20tan lim tan x x x x x →-=30tan limx x xx →-=220sec 1lim 3x x x →-=220tan 1lim 33x x x →==. 例20 求极限2lim x x xe -→∞.分析 该极限属于0⋅∞型,应当先变形为∞∞或00型,再用洛必达法则,究竟变形为何种类型,要根据实际情况确定,例如,2lim xx xe -→∞2222322lim lim lim 111x x xx x x e xe e x x x ---→∞→∞→∞====L ,按照该方法计算下去越来越复杂.若将它化为∞∞型,则简单得多. 解 2lim x x xe -→∞221limlim02xxx x x e xe →∞→∞===.例21 求极限sin 0lim xx x +→. 分析 该极限属于00型,先化为∞∞型,再用洛必达法则. 解 sin sin ln 0ln lim lim lim exp()1sin x x x x x x xx e x+++→→→==,而 200021ln sin lim lim lim 1cos cos sin sin x x x x x x x x x x x+++→→→==--00sin sin lim lim 0cos x x x x x x++→→=-⋅=. 故sin 0lim x x x +→01e ==. 例22 求极限1lim ()x xx x e →+∞+.分析 该极限属于0∞型,先取对数(或者用恒等式ln ,0x e x x =>)将其转化为0⋅∞型,然后将其转化为00或∞∞型,再用洛必达法则. 解法1 设1()x xy x e =+,1ln ln()x y x e x =+ln()1lim ln lim lim x x x x x x x e e y xx e →+∞→+∞→+∞++==+lim 11xx x e e →+∞==+, 故1lim ()xxx x e →+∞+lim ln 1x ye e e →+∞===.解法2 1lim ()x xx x e →+∞+1lim exp[ln()]x xx x e →+∞=+11exp[lim ln()]exp(lim )1xx x x x e x e x e x →+∞→+∞++=+=exp(lim )1x x x e e e →+∞==+.例23 求极限11cos0sin lim()x x x x-→.分析 该极限属于1∞型,可把1∞型变为ln1e ∞⋅型.于是,问题归结于求ln1∞⋅型即0⋅∞型的极限;也可以用重要极限.解法1 11cos 0sin lim()xx x x-→0sin ln lim 1cos x x x x e →-=,由于200sin lnln sin ln lim lim 1cos 2x x x x x x x x →→-=-0cos 1sin lim x x x x x→-= 20cos sin lim sin x x x x x x →-=30cos sin limx x x xx →-= 20sin lim3x x x x →-=0sin 1lim 33x x x →-==-. 故011cossin lim()x xx x→-13e -=. 解法2 利用重要极限1lim(1)xx x e →+=.11cos 0sin lim()x x x x -→1sin sin 1cos 0sin lim(1)xx xx x x xx x x x-⋅⋅--→-=+.因为 0021sin 1sin limlim 11cos 2x x x x x xx x x x→→--⋅=⋅-02cos 1lim 32x x x →-=202112lim 332x x x→-==-, 故11cos0sin lim()xx x x-→13e -=. 注1 对于00或∞∞型可直接利用洛必达法则,对于00型,1∞型,0∞型,可以利用对数的性质将00型转化为0ln 0e ⋅型,将0∞化0ln e ⋅∞型,将1∞化为ln1e ∞⋅型,于是问题就转化为求0⋅∞型,然后将其化为00或∞∞型,再用洛必达法则.注2 用洛必达法则求极限时应当考虑与前面所讲的其它方法(如等价无穷小替换定理,重要极限等 )综合使用,这样将会简化计算.例24 求极限211lim ()(0)nn n n a a a →∞->.分析 对于数列()f n 的极限lim ()n f n →∞不能直接用洛必达法则,这是因为数列不是连续变化的,从而更无导数可言.但可用洛必达法则先求出相应的连续变量的函数极限,再利用数列极限与函数极限的关系得lim ()lim ()n x f n f x →∞→+∞=,但当lim ()x f x →+∞不存在时,不能断定lim ()n f n →∞不存在,这时应使用其它方法去求.解法1 设2()x xa a f x x-=,则22000lim ()lim lim(ln 2ln )ln x xx x x x x a a f x a a a x a a x→→→-==-⋅=. 故211lim ()nn n n a a →∞-01lim ()lim ()ln n x f f x a n→∞→===. 解法2 令()x f x a =,于是()ln x f x a a '=.对()x f x a =在区间211[,]n n上使用拉格朗日中值定理,得到211211ln ()nn a a a a n nξ-=⋅-,其中211n nξ<<.当n →∞时,0ξ→,1a ξ→.故 211lim ()nn n n a a →∞-=211lim ln ()ln n na a a n nξ→∞⋅-=. 例25 求极限2cos lim3sin x x xx x→∞+-.解 由于当x →∞时,cos 1cos 0x x x x =→,sin 0xx→,故 2cos lim3sin x x x x x →∞+-cos 22lim sin 33x x x x x→∞+==-. 错误解答 由洛必达法则得2cos 2sin lim lim3sin 3cos x x x x x x x x →∞→∞+-=--,由于极限2sin lim 3cos x xx→∞--不存在,故原极限不存在.错解分析 上述解法错在将极限()lim()f x g x ''存在这一条件当成了极限()lim ()f xg x 存在的必要条件.事实上这仅仅是一个充分条件,所以此时不能用洛必达法则.例26 求sin lim cos x x x e xe x→+∞++.分析 该极限属于∞∞型,若用洛必达法则将会出现下列情况: sin lim cos x xx e x e x →+∞++=cos lim sin x x x e x e x →+∞+-(∞∞)sin lim cos x x x e x e x →+∞-=-(∞∞)=⋅⋅⋅. 每用一次洛必达法则得到类似的极限并循环往复,无法求出结果.必须要考虑用其它方法.解 sin lim cos xx x e x e x →+∞++=sin 110lim1cos 101x x xxe x e→+∞++==++. 注 在使用洛必达法则求极限时,首先要分析所求极限的类型是否为00或∞∞型;要 结合其它方法(主要是用等价代换以及将极限为非零的因子的极限先求出来)来化简所求极限;如有必要可以多次使用洛必达法则;当所求极限越来越复杂时,要考虑改用其它方法;不能用洛必达法则来判别极限的存在性.例27 设()f x 的二阶导数存在,且()0f x ''>,(0)0f =,证明()()f x F x x=在0x <<+∞上是单调增加的.分析 只需要证明2()()()0xf x f x F x x '-'=>,((0,))x ∈+∞即可.证明 因为2()()()xf x f x F x x '-'=,((0,))x ∈+∞.令()()()x xf x f x ϕ'=-,显然()x ϕ在(0,)+∞上连续,且()()0x xf x ϕ'''=>,(0,)x ∈+∞,故()x ϕ在(0,)+∞上是单调增加的.即()(0)0x ϕϕ>=.从而()0F x '>,(0,)x ∈+∞.故()()f x F x x=在0x <<+∞上是单调增加的.证毕. 例28 求曲线5233y x x =-的单调区间、凹凸区间和拐点.解 2113335252()3333x y x x x --'=-=-,在0x =处,y '不存在,在25x =处,0y '=.144333102102()9999y x x x x ---''=+=+,在15x =-处,0y ''= .由函数单调性的判定法可知函数的单调增加区间是(,0)-∞及2(,)5+∞,单调减少区间是2[0,]5;由函数的凹凸性判定法可知函数凸区间是1(,]5-∞-,凹区间是1(,)5-+∞和[0,)+∞.拐点为1(,5-.注1 求函数y =()f x 单调区间的步骤:(1)确定()f x 的定义域;(2)找出单调区间的分界点(即求驻点和()f x '不存在的点),并用分界点将定义域分成相应的小区间;(3)判断各小区间上()f x '的符号,进而确定y =()f x 在各小区间上的单调性. 注2 通常用下列步骤来判断区间I 上的连续曲线y =()f x 的拐点: (1)求()f x '';(2)令()0f x ''=,解出该方程在I 内的实根,并求出()f x ''在I 内不存在的点; (3)对于(2)中求出的每一个实根或二阶导数不存在的点0x ,检查()f x ''在0x 左右两侧邻近的符号,那么当两侧的符号相反时,点00(,())x f x 是拐点,当两侧的符号相同时,点00(,())x f x 不是拐点.设y =()f x 在0x x =处有三阶连续导数,如果0()0f x ''=,而0()0f x '''≠,则点00(,())x f x 一定是拐点.例29 求函数543121540y x x x =+-的极值点与极值.解 函数的定义域为(,)-∞+∞,4322606012060(1)(2)y x x x x x x '=+-=-+,令0y '=,求得驻点为10x =,21x =,32x =-.下面分别用极值第一、第二充分条件进行判断: 解法1 (用极值第一充分条件)点10x =,21x =,32x =-将定义域分成四个部分区间(,2)-∞-,(2,0)-,(0,1),(1,)+∞,由上表及极值第一充分条件可知1x =为极小值点,2x =-为极大值点,0x =不是极值点,且极小值(1)13y =-;极大值(2)176y -=.解法2 (用极值第二充分条件) 首先求y '',260(434)y x x x ''=+-.而(0)0y ''=,(1)1800y ''=>,(2)7200y ''-=-<.故1x =为极小值点,2x =-为极大值点,但对0x =点第二充分条件失效,需用第一充分条件判断,可知0x =不是极值点,且极小值(1)13y =-;极大值(2)176y -=.例30 可导函数()y f x =由方程3233232x xy y -+=所确定,试求()f x 的极大值与极小值.分析 函数()y f x =是由方程所确定的隐函数,可利用隐函数求导公式求出dydx及22d y dx ,将0dy dx=与原二元方程联立求解可得驻点,再用函数取得极值的第二充分条件判定. 解 在方程两边对x 求导,得22233663()(2)0x y xyy y y x y x y yy '''--+=-+-=.由于x y =不满足原来的方程,又()y f x =是可导函数,因此0x y -≠,20x y yy '+-=,即2dy x y dx y +=.令0dydx=,得0x y +=,与原二元方程联立求解可得2x =-,2y =,由此可知,函数()y f x =有唯一可能的极值点2x =-.又因为2222d y y xy dx y '-=, 故2222104x y d ydx=-==>, 因此由函数取得极值的第二充分条件知,函数()y f x =有唯一的极小值2,没有极大值.注 求极值的步骤:(1)找出全部可能的极值点(包括驻点和一阶导数不存在的点); (2)对可能的极值点,利用函数取得极值的第一或第二充分条件判定; (3)求极值.例31 设函数2,0()2,0x x x f x x x ⎧>=⎨+≤⎩,求()f x 的极值.解 先求出可能的极值点,再判别函数在这些点是否取得极值. 当0x >时,22ln 2ln 2()()()(2ln 2)2(ln 1)x x x x x x f x x e x e x x '''===+=+;当0x <时,()(2)1f x x ''=+=,因为0lim ()2x f x -→=且 22ln 0lim ()lim lim x x x x x x f x x e +++→→→==002ln exp(lim )exp[lim (2)]11x x xx x++→→==-=,可见()f x 在0x =点不连续,所以(0)f '不存在,于是有22(ln 1),0()1,0x x x x f x x ⎧+>'=⎨<⎩,令()0f x '=,即22(ln 1)0x x x +=,得1x e -=.所以可能的极值点为1x e -=和0x =,将定义域分成三个部分区间(,0)-∞,1-,1-由此可知()f x 在1x e -=处取得极小值,极小值为21()ef e e --=,显然,经过0x =点时,导数()f x '的符号由正号变为负号,即0x =点为极大值点,函数的极大值为(0)2f =.例32 (03研)设函数()f x 在(,)-∞+∞内连续,其导函数图形如图3-1所示,则()f x 有( ).A .一个极小值点和两个极大值点.B .两个极小值点和一个极大值点.C .两个极小值点和两个极大值点.D .三个极小值点和一个极大值点.图3-1分析 由()f x 的导函数图形可知导函数何时大于零、等于零、小于零,从而可知()f x 的单调性,进一步可推知其极值.解 选C . 由图形可看出,一阶导数为零的点有3个,而0x =则是导数不存在的点.三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个为极小值点,一个为极大值点,在0x =左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点,故()f x 有两个极小值点和两个极大值点,应选C .例33 讨论方程ln (0)x ax a =>在(0,)+∞内有几个实根?分析 如果对函数()f x 的单调性、极值、最值等问题讨论清楚了,则其零点也就弄明白了,讨论方程ln (0)x ax a =>在(0,)+∞内有几个实根等价于讨论()ln f x x ax =-在(0,)+∞内有几个零点.解 设()ln f x x ax =-,则只需讨论函数()ln f x x ax =-零点的个数.由1()0f x a x'=-=, 解得1x=.列表:由此可知()f x 在1(0],a 上单调递增,在1,)[a+∞上单调递减,且1()(ln 1)f a a =-+是函数的最大值,由0lim ()lim(ln )x x f x x ax ++→→=-=-∞,及ln lim ()lim[()]x x xf x x a x→+∞→+∞=-=-∞,可得(1)当1()0f a <,即1a e >时,1()()0f x f a <<,函数()f x 没有零点,故方程没有实根.(2)当1()0f a =,即1a e =时,函数()f x 仅有一个零点,故方程ln x ax =只有惟一实根1x e a ==.(3)当1()0f a >,即10a e <<时,由1()0f a >,0lim ()x f x +→=-∞,知()f x 在10)(,a内至少有一个零点.又()f x 在10)(,a内单调递增,所以()f x 在10)(,a内仅有一个零点,即方程ln x ax =在10)(,a 内只有一个实根.同理方程ln x ax =在1(,)a+∞内也只有一个实根.故当10a e <<时,方程ln x ax =恰有两个实根.例34 证明不等式:当02x π<<时,2sin x x π>.分析 证明不等式可用拉格朗日中值定理、函数的单调性和最值及凹凸性等.证法1 (用单调性证明)令sin ()xf x x=,则 22cos sin cos (tan )()x x x x x x f x x x --'==, 令()tan x x x ϕ=-,则22sin ()cos x x x ϕ-'=.所以在(0,)2π内,()0x ϕ'<,而(0)0ϕ=,所以()0x ϕ<,从而可知()0f x '<,故()f x 单调减少,由此得()()2f x f π>,即2sin x x π>.证法2 (用凹凸性证明)设2()sin xg x x π=-,则2()cos g x x π'=-,()sin 0g x x ''=-<.所以()g x 的图形是凸的.又(0)()02g g π==,因此()0g x >,即2sin x x π>.证法3 (用最值证明)设2()sin xF x x π=-,则由闭区间上连续函数的性质知()F x 在[0,]2π可取到最大最小值. 2()cos F x x π'=-,令()0F x '=,得()F x 在(0,)2π内的唯一驻点02arccos x π=,又因为()sin F x x ''=-,当02x π<<时,有()0F x ''<.所以()F x 在点02arccos x π=处取得极大值.因此()F x 在[0,]2π上的最小值必在端点处取得,这是因为()F x 在(0,)2π内没有极小值.又由于(0)()02F F π==,所以()F x 的最小值为零,因此,在(0,)2π内必有()(0)0F x F >=,即2sin x x π>.证毕.例35 证明:当0x >,0y >时,有不等式ln ln ()ln2x yx x y y x y ++≥+,且等号仅当x y =时成立.分析 将不等式两端同除以2,转化为ln ln ln222x x y y x y x y+++≥.可以看出,左端是函数()ln f t t t =在x ,y 两点取值的平均值,而右端是它在中点2x y+处的函数值.因此,可用函数图形的凹凸性来证明.证明 设()ln f t t t =,则在(0,)+∞内有()1ln f t t '=+,1()0f t t''=>,从而函数()ln f t t t=的图形是凹的.故对任意0x >,0y >且x y ≠,有()()()22x y f x f y f ++<成立,即ln ln ln222x x y y x y x y+++>成立. 当x y =时,等号显然成立.于是有ln ln ()ln 2x yx x y y x y ++≥+,且等号仅当x y =时成立.证毕.例36 设()f x 有二阶连续导数,且(0)0f '=,0()lim1||x f x x →''=,则( ). A .(0)f 是()f x 的极大值. B .(0)f 是()f x 的极小值.C .(0,(0))f 是曲线()y f x =的拐点. D .(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点.分析 要讨论函数()f x 的极值与凹凸性,则要讨论(0)f '、(0)f ''的正负号.解 选B .由题设0()lim 1||x f x x →''=,可得0lim ()0x f x →''=,且由保号性知存在0x =的某邻域使得()0f x ''≥,即在(0,(0))f 的左、右两侧都是上凹的,故(0,(0))f 不是拐点,排除C .由拉格朗日中值定理可得()(0)()f x f f x ξ''''-=,其中ξ介于0与x 之间,由于(0)0f '=,故()()f x f x ξ'''=,而()0f x ''≥,从而可知当0x <时,()f x 单调递减,当0x >时,()f x 单调递增,由此可知(0)f 是()f x 的极小值,选B .例37 求内接于22221x y a b+=且四边平行于x 轴和y 轴的面积最大的矩形(,0)a b >.分析 首先要求出矩形面积的表达式,然后求其最大值,此时对应的矩形即为所求. 解 设所求矩形在第一象限的顶点坐标为(,)x y ,则矩形的面积为()44S x xy ==,(0)x a <<,由2()4S x '=-,令()0S x '=得驻点x =而当0x <<时,()0S x '>;当x a <<时,()0S x '<.所以x =()S x 的最大值点.因而所求矩形在第一象限的顶点坐标为,最大矩形面积为2ab . 例38 描绘函数32(1)x y x =+的图形.解(1)求函数的定义域.定义域为(,1)-∞-,(1,)-+∞.(2)求渐近线. 因为lim ()1f x x =∞→-,故1x =-是一条铅直渐近线,而由lim ()x f x →∞=∞可知无水平渐近线,又因为32()lim lim 1(1)x x f x x x x x →∞→∞==+,且32lim[]2(1)x x x x →∞-=-+, 故2y x =-是斜渐近线.(3)求使y ',y ''为零的点及不存在的点.23(3)(1)x x y x +'=+;46(1)x y x ''=+. 当0x =,3x =-时,0y '=; 当0x =时,0y ''=;当1x =-时,y '和y ''不存在.(4)列表说明图形在每个小区间上的升、降、凹、凸,及函数的极值点,曲线的拐点,并作图,如图3-2所示.图3-2例39 求曲线tan y x =在点(,1)4π处的曲率与曲率半径.解 2sec y x '=,232sin 2sec tan cos xy x x x''==,则曲率K 及曲率半径R 分别为 K ''=, 1R K ==由4|2x y π='=及4|4x y π=''=,得在(,1)4π的曲率与曲率半径分别为 K =,1R K == 例40 曲线上曲率最大的点称为此曲线的顶点,试求x y e =的顶点,并求在该点处的曲率半径.解 x y e '=,x y e ''=,由曲率公式得x K ===为求出K 的最大值,只要求出2433()x xf x ee -=+的最小值即可.又243324()33x xf x e e -'=-+,令()0f x '=,得212x e =,1ln 22x =-,而 2433416()99x x f x e e -''=+,1(ln 2)02f ''->.所以1ln 22x =-是函数()f x 唯一的极小值点,也就是使曲线x y e =曲率最大的点,代入得y1(ln 2,2-,而曲线在该点的曲率半径为32123()122R K -===.。
习 题 3.11.验证拉格朗日中值定理对函数()ln f x x =在区间[]1,e 上的正确性。
解:函数()ln f x x =在区间[1,]e 上连续,在区间(1,)e 内可导,故()f x 在[1,]e 上满足拉格朗日中值定理的条件。
又1()f x x'=,解方程()(1)11(),,11f e f f e e ξξ-'==--即得1(1,)e e ξ=-∈。
因此,拉格朗日中值定理对函数()ln f x x =在区间[1,]e 上是正确的。
2.不求函数()(1)(2)(3)(4)f x x x x x =----的导数,说明方程'()0f x =有几个实根,并指出它们所在的区间。
解:函数()[1,2],[2,3],[3,4]f x 分别在区间上连续,(1,2),(2,3),(3,4)在区间上可导, 且(1)(2)(3)(4)0f f f f ====。
由罗尔定理知,至少存在1(1,2),ξ∈2(2,3),ξ∈3(3,4),ξ∈使()0 (1,2,3),i f i ξ'==即方程'()0f x =有至少三个实根。
又因方程'()0f x =为三次方程,故它至多有三个实根。
因此,方程'()0f x =有且只有三个实根,分别位于区间(1,2),(2,3),(3,4)内。
3.若方程 10110nn n a x a x a x --+++= 有一个正根0,x 证明:方程12011(1)0n n n a nxa n x a ---+-++= 必有一个小于0x 的正根。
解:取函数()1011nn n f x a x a xa x --=+++ 。
0()[0,]f x x 在上连续,在0(0,)x 内可导,且0(0)()0,f f x ==由罗尔定理知至少存在一点()00,x ξ∈使'()0,f ξ=即方程12011(1)0n n n a nx a n x a ---+-++= 必有一个小于0x 的正根。
4.设11,a b -<<< 求证不等式: arcsin arcsin .a b a b -≥- 证明:取函数()arcsin ,()f x x f x =在[a ,b ]上连续,在(a , b )内可导,由拉格朗日中值定理知,至少存在一点(,),a b ξ∈,使()()'()()f a f b f a b ξ-=-, 即arcsin arcsin )a b a b -=-,故arcsin arcsin .a b b a b -=-≥-5.设()f x 在[,](0)a b a b <<上连续,在(,)a b 内可导,证明存在(,),a b ξ∈使'222()()()().3f b f a f a ab b b a ξξ-=++- 证明:取函数3()g x x =,则()g x 在[,](0)a b a b <<上连续,在(,)a b 内可导,由柯西中值定理知,存在ξ∈(a,b),使333()()'()f b f a f b a ξξ-=-, 即222()()'()()3f b f a f a ab b b a ξξ-=++-。
6.证明恒等式: arctan cot .2x arc x π+=证明:取函数()arctan arccot f x x x =+,则2211'()011f x x x =-=++. 则()().f x c c =为常数因为(1)arctan1cot12f arc π=+=,故(1)()2f f x π==。
7.证明:若函数()f x 在(,)-∞+∞内满足关系式'()(),f x f x =且(0)1,f = 则()xf x e =.证明:2()()()()()(),()0,x x x x x f x f x e f x e f x f x F x F x e e e ''--'====取因故()F x C =,又()()()(0)1,1,1,.x xx F F x f x e e ====f 故即故习 题 3.21.求下列函数的带有皮亚诺型余项的麦克劳林公式.222322211236636321(1)(21)(1())1(())2(())(1())1222().(2)cos 1(1)().2!(2)!n n n n n n n n n n nn n o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x x x x n ++++++-=-+-++++-=-++++-+++++++++=-----+=-++-+2. 当01x =-时,求函数1()f x x=的n 阶泰勒公式。
解:因为()()()()1(1)!,1!,n n n n n fx f n x+-=-=-故()()()()()()()23''1'''111'11112!3!f f f f x x x x --=-+-+++++++ ()()()()()()()11111!1!n n nn f f x x n n ξ++-++++()()()()()()2112111111n n n n x x x x ξ++-+⎡⎤=-++++++++-+⎣⎦其中ξ介于x 与1-之间.3. 求函数()xf x xe =的带有拉格朗日型余项的麦克劳林公式。
解:因为()()()()(),0,n n x fx n x e f n =+=故()()()()()()()()()121''000'02!!1!n n xn n f f f f x xe f f x x x x n n ξ++==++++++()()32111.2!(1)!1!n n x x x x e n x n n ξξ+=+++++++⎡⎤⎣⎦-+ 其中ξ介于x 与0之间。
4. 利用Taylor 公式求下列极限:24224234002200000011()211(1)lim lim.sin 2816()111112(2)lim lim lim lim .1(1)(1)(())21cos 1sin (3)lim lim sin sin x x x x xx x x x x x x x x o o o x x x x x e x x x x x e x e x x e x e x e x x x x x x x x -→→→→→→→→⎛⎫---++⎪--⎝⎭==-+----⎛⎫-==== ⎪---+⎝⎭⎛⎫-= ⎪⎝⎭3233300cos 1sin sin ()1()62sin cos 1lim lim .3x x o x x x x x x x x x x x x x x x →→-⎛⎫ ⎪⎝⎭⎛⎫---+ ⎪-⎝⎭=== 5. 解22(27)(27)(27)(27)(27)(27)(27)23!f x f x f f x '''''--'≈+-++237121153(27)(27)(27)2733x x x =+---+-3.10724,≈误差为:(4)4(4)412()3(27)3100.000024!4!3f f ξ⋅≤=<6. 解:(1)355sin sin (01)3!5!2x x x x x πθθ⎛⎫=-++<< ⎪⎝⎭因此5541111|()|,5!5!238402xR x x ⎛⎫⎛⎫≤≤=≤ ⎪ ⎪⎝⎭⎝⎭; (2)解:设()f x =1211(0)1,()(1),(0)22f f x x f -''==+=3522113()(1),(0),()(1)448f x x f f x x --'''''''=-+=-=+所以()f x =52321(1),(01)2816x x x x θθ-=+-++<<,从而35221()(1),[0,1]1616xR x x x θ-=+≤∈。
习 题 3.31.用洛必达法则求下列极限(1) lim m mn nx a x a x a →--解:()11lim lim 0.m m m m nnn n x a x a x a mx m a a x a nx n---→→-==≠- (2) 0lim x xx a b x→-解:00ln ln limlim ln ln 1x x x x x x a b a a b ba b x →→--==- (3)22ln sin lim(2)x xx ππ→-解: 22222ln sin cot csc 1lim lim lim (2)4(2)88x x x x x x x x πππππ→→→-===----(4)log lim(1,0)a x xa x αα→+∞>>解: 11log 1ln lim lim lim 0ln a x x x x x a x x axααααα-→+∞→+∞→+∞=== (5)0ln(tan 7)limln(tan 2)x x x →+解:220002211sec 77sec 77ln(tan 7)tan 77lim lim lim 11ln(tan 2)sec 22sec 22tan 22x x x x x x x xx x x x x→+→+→+⋅⋅==⋅⋅ 2202sec 77lim 17sec 22x x x →+⋅==⋅ (6)0lim cot 2x x x →解:2200001cos 21lim cot 2lim lim lim tan22sec 222x x x x x x x x x x →→→→====(7)111lim()ln 1x x x →-- 解:11111111ln lim()lim limln 1ln (1)(1)ln x x x x xxx x x x x xx→→→----==---+ 11111lim lim 1(1)ln 21ln x x x x x x x x x→→-===-+++ (8)1ln(1)lim e x x-→+解:因为1ln ln(1)1ln(1)xx e xe xe--= ,而x 0x 0x 0ln 1limlim lim 1ln(1)x xx x x xx e e e xe e xe →+→+→+-===-+. 所以1ln(1)lim xex x e -→+=(9)tan 01lim()xx x→+解:因为tan tan ln 1()xx x e x-=,而221ln sin lim tan ln lim lim lim 0cot csc x x x x x xx x x x x x→+∞→+∞→+∞→+∞-=-===, 所以,tan 01lim() 1.x x x→+=2. 验证 sin lim x x xx→∞+ 存在,但是不能用洛必达法则求出。