高中数学 必修二 :第2章 2.3.1 (人教A版必修2) Word版含答案
- 格式:doc
- 大小:486.00 KB
- 文档页数:6
2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定学习目标核心素养1.了解直线与平面垂直的定义.(重点)2.理解直线与平面垂直的判定定理,并会用其判断直线与平面垂直.(难点)3.理解直线与平面所成角的概念,并能解决简单的线面角问题.(易错点)1.通过学习直线与平面垂直的判定,提升直观想象、逻辑推理的数学素养.2.通过学习直线与平面所成的角,提升直观想象、数学运算的数学素养.1.直线与平面垂直定义如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直记法l⊥α有关概念直线l叫做平面α的垂线,平面α叫做直线l的垂面.它们唯一的公共点P叫做垂足图示画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直文字语言一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直符号语言l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l⊥α图形语言3.直线和平面所成的角有关概念对应图形斜线与平面α相交,但不和平面α垂直,图中直线P A斜足斜线和平面的交点,图中点A射影过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影,图中斜线P A在平面α上的射影为AO直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的锐角.规定:一条直线垂直于平面,它们所成的角是直角;一条直线和平面平行或在平面内,它们所成的角是0°的角取值范围[0°,90°]有直线”“无数条直线”?[提示]定义中的“任意一条直线”与“所有直线”是等效的,但是不可说成“无数条直线”,因为一条直线与某平面内无数条平行直线垂直,该直线与这个平面不一定垂直.1.若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABCC[由线面垂直的判定定理知OA垂直于平面OBC.]2.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()A.平行B.垂直C.相交不垂直D.不确定B[一条直线和三角形的两边同时垂直,则其垂直于三角形所在平面,从而垂直第三边.]3.在正方体ABCD-A1B1C1D1中,直线AB1与平面ABCD所成的角等于________.45°[如图所示,因为正方体ABCD-A1B1C1D1中,B1B⊥平面ABCD,所以AB即为AB1在平面ABCD中的射影,∠B1AB即为直线AB1与平面ABCD所成的角.由题意知,∠B1AB=45°,故所求角为45°.]直线与平面垂直的判定【例1】如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.[证明](1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD.又AC∩BD=D,AC,BD⊂平面ABC,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知SD⊥BD.又因为SD∩AC=D,SD,AC⊂平面SAC,所以BD⊥平面SAC.证线面垂直的方法:(1)线线垂直证明线面垂直:①定义法(不常用,但由线面垂直可得出线线垂直);②判定定理最常用:要着力寻找平面内哪两条相交直线(有时作辅助线);结合平面图形的性质(如勾股定理逆定理、等腰三角形底边中线等)及一条直线与平行线中一条垂直,也与另一条垂直等结论来论证线线垂直.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.如图,AB是圆O的直径,P A垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,垂足为N.求证:AN⊥平面PBM.[证明]设圆O所在的平面为α,∵P A⊥α,且BM⊂α,∴P A⊥BM.又∵AB为⊙O的直径,点M为圆周上一点,∴AM⊥BM. 由于直线P A∩AM=A,∴BM⊥平面P AM,而AN⊂平面P AM,∴BM⊥AN.∴AN与PM、BM两条相交直线互相垂直.故A N⊥平面PBM.直线与平面所成的角[探究问题]1.若图中的∠POA是斜线PO与平面α所成的角,则需具备哪些条件?[提示]需要P A⊥α,A为垂足,OA为斜线PO的射影,这样∠POA就是斜线PO与平面α所成的角.2.空间几何体中,确定线面角的关键是什么?[提示]在空间几何体中确定线面角时,过斜线上一点向平面作垂线,确定垂足位置是关键,垂足确定,则射影确定,线面角确定.【例2】在正方体ABCD-A1B1C1D1中,(1)求直线A1C与平面ABCD所成的角的正切值;(2)求直线A1B与平面BDD1B1所成的角.[证明](1)∵直线A1A⊥平面ABCD,∴∠A1CA为直线A1C与平面ABCD所成的角,设A1A=1,则AC=2,∴tan∠A1CA=2 2.(2)连接A1C1交B1D1于O(见题图),在正方形A1B1C1D1中,A1C1⊥B1D1,∵BB1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴BB1⊥A1C1,又BB1∩B1D1=B1,∴A1C1⊥平面BDD1B1,垂足为O.∴∠A1BO为直线A1B与平面BDD1B1所成的角,在Rt △A 1BO 中,A 1O =12A 1C 1=12A 1B , ∴∠A 1BO=30°,即A 1B 与平面BDD 1B 1所成的角为30°.在本例正方体中,若E 为棱AB 的中点,求直线B 1E 与平面BB 1D 1D所成角的正切值.[解] 连接AC 交BD 于点O ,过E 作EO 1∥AC 交BD 于点O 1,易证AC ⊥平面BB 1D 1D ,∴EO 1⊥平面BB 1D 1D ,∴B 1O 1是B 1E 在平面BB 1D 1D 内的射影, ∴∠EB 1O 1为B 1E 与平面BB 1D 1D 所成的角. 设正方体的棱长为a , ∵E 是AB 的中点,EO 1∥AC , ∴O 1是BO 的中点,∴EO 1=12AO =12×2a 2=2a4, B 1O 1=BO 21+BB 21=⎝ ⎛⎭⎪⎫2a 42+a 2=3a 22, ∴tan ∠EB 1O 1=EO 1B 1O 1=2a 43a 22=13.求斜线与平面所成角的步骤:(1)作图:作(或找)出斜线在平面内的射影,作射影要过斜线上一点作平面的垂线,再过垂足和斜足作直线,注意斜线上点的选取以及垂足的位置要与问题中已知量有关,才能便于计算.(2)证明:证明某平面角就是斜线与平面所成的角.(3)计算:通常在垂线段、斜线和射影所组成的直角三角形中计算.1.线线垂直和线面垂直的相互转化:2.证明线面垂直的方法:(1)线面垂直的定义.(2)线面垂直的判定定理.(3)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(4)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.1.直线l⊥平面α,直线m⊂α,则l与m不可能()A.平行B.相交C.异面D.垂直A[若l∥m,l⊄α,m⊂α,则l∥α,这与已知l⊥α矛盾.所以直线l与m 不可能平行.]2.垂直于梯形两腰的直线与梯形所在平面的位置关系是()A.垂直B.相交但不垂直C.平行D.不确定A[因为梯形两腰所在直线为两条相交直线,所以由线面垂直的判定定理知,直线与平面垂直.选A.]3.如图所示,若斜线段AB是它在平面α上的射影BO的2倍,则AB与平面α所成的角是()A.60°B.45°C.30°D.120°A[∠ABO即是斜线AB与平面α所成的角,在Rt△AOB中,AB=2BO,所以cos∠ABO=12,即∠ABO=60°. 故选A.]4.在正方体ABCD-A1B1C1D1中,求证:A1C⊥平面BC1D. [证明]如图,连接AC,∴AC⊥BD,又∵BD⊥A1A,AC∩AA1=A,AC,A1A⊂平面A1AC,∴BD⊥平面A1AC,∵A1C⊂平面A1AC,∴BD⊥A1C.同理可证BC1⊥A1C.又∵BD∩BC1=B,BD,BC1⊂平面BC1D,∴A1C⊥平面BC1D.。
1.1.1棱柱、棱锥、棱台的结构特征课前自主预习知识点一空间几何体的定义、分类及相关概念1.空间几何体的定义2.空间几何体的分类3.相关概念知识点二棱柱的结构特征1.棱柱的定义、图形及相关概念2.棱柱的分类(1)依据:□6底面多边形的边数.(2)举例:三棱柱(底面是三角形)、四棱柱(底面是四边形)……知识点三棱锥的结构特征1.棱锥的定义、图形及相关概念2.棱锥的分类(1)依据:□6底面多边形的边数.(2)举例:□7三棱锥(底面是三角形)□8四棱锥(底面是四边形)……知识点四棱台的结构特征1.棱台的定义、图形及相关概念2.棱台的分类(1)依据:□5由几棱锥截得.(2)举例:□6三棱台(由三棱锥截得)、四棱台(由四棱锥截得)……判断棱柱、棱锥、棱台形状的方法(1)棱柱:①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.(2)棱锥:①只有一个面是多边形,此面即为底面;②侧棱相交于一点.(3)棱台:①两个互相平行的面,即为底面;②侧棱延长后相交于一点.1.判一判(正确的打“√”,错误的打“×”)(1)棱柱的侧面可以不是平行四边形.()(2)各面都是三角形的多面体是三棱锥.()(3)(教材改编,P8,T1(2))棱台的上下底面互相平行,且各侧棱延长线相交于一点.()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)面数最少的多面体的面的个数是________.(2)三棱锥的四个面中可以作为底面的有________个.(3)四棱台有________个顶点,________个面,________条边.答案(1)四(2)四(3)八六十二3.(教材改编,P7,T2)有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错答案 B课堂互动探究探究1对棱柱、棱锥、棱台概念的理解例1下列命题中,真命题有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.解析棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.因而真命题有①②④⑤.答案①②④⑤拓展提升关于棱柱、棱锥、棱台结构特征问题的解题方法(1)根据几何体的结构特征的描述,结合棱柱、棱锥、棱台的定义进行判断,注意判断时要充分发挥空间想象能力,必要时做几何模型通过演示进行准确判断.(2)解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念类的命题进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【跟踪训练1】下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.答案①②解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥.探究2对棱柱、棱锥、棱台的识别与判断例2如图长方体ABCD-A1B1C1D1,(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分的几何体还是棱柱吗?解(1)是棱柱.是四棱柱,因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)截后的各部分都是棱柱,分别为棱柱BB1F-CC1E和棱柱ABF A1-DCED1.[条件探究]若本例(2)中将平面BCEF改为平面ABC1D1,则分成的两部分各是什么体?解截后的两部分分别为棱柱ADD1-BCC1和棱柱AA1D1-BB1C1.拓展提升棱柱判断的方法判断棱柱,依据棱柱的定义,先确定两个平行的面——底面,再判断其余面——侧面是否为四边形及侧棱是否平行.【跟踪训练2】判断下图甲、乙、丙所示的多面体是不是棱台?解根据棱台的定义,可以得到判断一个多面体是不是棱台的标准有两个:一是共点,二是平行,即各侧棱延长线要交于一点,上、下两个底面要平行,二者缺一不可.据此,在图甲中多面体侧棱延长线不相交于同一点,不是棱台;图乙中多面体不是由棱锥截得的,不是棱台;图丙中多面体虽是由棱锥截得的,但截面与底面不平行,因此也不是棱台.探究3空间几何体的展开图问题例3如下图是三个几何体的侧面展开图,请问各是什么几何体?解由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以(1)为五棱柱,(2)为五棱锥,(3)为三棱台.拓展提升空间几何体的展开图(1)解答空间几何体的展开图问题要结合多面体的结构特征发挥空间想象能力和动手能力.(2)若给出多面体画其展开图,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.(3)若是给出表面展开图,则按上述过程逆推.【跟踪训练3】根据如下图所给的平面图形,画出立体图.解将各平面图折起来的空间图形如下图所示.1.正确理解多面体的概念对多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,不是由圆面或其他曲面围成,也不是由空间多边形围成.(2)我们所说的多边形包括它内部的部分,故多面体是一个“封闭”的几何体.2.正确理解棱柱的定义可以从以下三个方面理解棱柱:(1)棱柱的两个主要结构特征:①有两个面平行;②各侧棱都平行,各侧面都是平行四边形.通俗地讲,棱柱“两头一样平,上下一样粗”.(2)有两个面互相平行,并不表明只有两个面互相平行,如长方体,有三组对面互相平行,其中任意一组对面都可以作为底面.(3)从运动的观点来看,棱柱也可以看成是一个平面多边形从一个位置沿一条不与其共面的直线运动到另一位置时,其运动轨迹所形成的几何体.3.正确认识棱锥的结构特征棱锥是一种非常重要的多面体,它有两个本质特征:(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.4.正确认识棱台的结构特征(1)上底面与下底面是互相平行的相似多边形;(2)侧面都是梯形;(3)侧棱延长线必相交于一点.5.立体图形的展开和平面图形的折叠立体图形的展开或平面图形的折叠是培养空间立体感的较好方法,解此类问题可以结合常见几何体的定义和结构特征,进行空间想象或亲自动手制作侧面展开图进行实践.课堂达标自测1.下列说法中,正确的是()A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形答案 D解析A选项不符合棱柱的特点;B选项中,如图①,构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的特点.故选D.2.下列三种叙述,正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案 A解析本题考查棱台的结构特征.①中的平面不一定平行于底面,故①错;②③可用如图的反例检验,故②③不正确.故选A.3.下列图形中,不是三棱柱展开图的是()答案 C解析本题考查三棱柱展开图的形状.显然C无法将其折成三棱柱,故选C.4.下列说法中,正确的是()①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④答案 B解析由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错误;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错误.5.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.答案12解析由n棱柱有2n个顶点,于是知此棱柱为五棱柱,故有5条侧棱.又每条侧棱长都相等,且和为60 cm,可知每条侧棱长为12 cm.课后课时精练A级:基础巩固练一、选择题1.下列几何体中,柱体有()A.1个B.2个C.3个D.4个答案 D解析根据棱柱的定义知,这4个几何体都是棱柱.2.下列图形经过折叠可以围成一个棱柱的是()答案 D解析图A缺少一个面;图B有五个侧面而两底面是四边形,多了一个侧面;图C也是多一个侧面,故选D.3.具有下列哪个条件的多面体是棱台()A.两底面是相似多边形的多面体B.侧面是梯形的多面体C.两底面平行的多面体D.两底面平行,侧棱延长后交于一点的多面体答案 D解析棱台是由棱锥截得的,因此一个几何体要是棱台应具备两个条件:一是上、下底面平行,二是各侧棱延长后必须交于一点,选项C只具备一个条件,选项A,B则两条件都不具备.4.某同学制作了一个对面图案相同的正方体礼品盒(如图),则这个正方体礼品盒的表面展开图应该为()答案 A解析两个☆不能并列相邻,B、D错误;两个※不能并列相邻,C错误,故选A.也可通过实物制作检验来判定.5.下列三种叙述,其中正确的有()①两个底面平行且相似,其余的面都是梯形的多面体是棱台;②如图所示,截正方体所得的几何体是棱台;③有两个面互相平行,其余四个面都是梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案 A解析①不正确,因为不能保证各侧棱的延长线交于一点;②不正确,因为侧棱延长后不交于一点;③不正确,因为它们的侧棱延长后不一定交于一点,用一个平行于楔形底面的平面去截楔形,截得的几何体虽有两个面平行,其余各面是梯形,但它不是棱台.二、填空题6.对棱柱而言,下列说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形;②所有的棱长都相等;③棱柱中至少有2个面的形状完全相同;④相邻两个面的交线叫做侧棱.答案①③解析①正确,根据棱柱的定义可知;②错误,因为侧棱与底面上的棱长不一定相等;③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,棱柱中至少有两个面的形状完全相同;④错误,因为底面和侧面的交线不是侧棱.7.如图,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.答案三棱锥(或四面体)解析此多面体由四个面构成,故为三棱锥,也叫四面体.8.长方体AC1的长、宽、高分别为3、2、1,从A到C1沿长方体的表面的最短距离为________.答案3 2解析如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=1.如图(1)所示,将侧面ABB1A1和侧面BCC1B1展开,则有AC1=52+12=26,即经过侧面ABB1A1和侧面BCC1B1时的最短距离是26;如图(2)所示,将侧面ABB1A1和底面A1B1C1D1展开,则有AC1=32+32=32,即经过侧面ABB1A1和底面A1B1C1D1时的最短距离是32;如图(3)所示,将侧面ADD1A1和底面A1B1C1D1展开,则有AC1=42+22=25,即经过侧面ADD1A1和底面A1B1C1D1时的最短距离是2 5.由于32<25,32<26,所以由A到C1在长方体表面上的最短距离为3 2.三、解答题9.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.解(1)上海世博园中国馆,其主体结构是四棱台.(2)法国卢浮宫,其主体结构是四棱锥.(3)国家游泳中心“水立方”,其主体结构是四棱柱.(4)美国五角大楼,其主体结构是五棱柱.B级:能力提升练10.在一个长方体的容器中,里面装有少量水,现将容器绕着其底部的一条棱倾斜,在倾斜的过程中.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?解(1)不对;水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而可以是矩形,但不可能是其他非矩形的平行四边形.(2)不对;水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体,此几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱,或五棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.故此时(1)对,(2)不对.1.1.2圆柱、圆锥、圆台、球和简单组合体的结构特征课前自主预习知识点一圆柱、圆锥和圆台的结构特征1.圆柱的定义、图形及表示2.圆锥的定义、图形及表示3.圆台的定义、图形及表示知识点二球的结构特征知识点三组合体1.概念:由□1简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.2.基本形式:一种是由简单几何体□2拼接而成的简单组合体;另一种是由简单几何体□3截去或□4挖去一部分而成的简单组合体.1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会并运用空间几何平面化的思想.1.判一判(正确的打“√”,错误的打“×”)(1)到定点的距离等于定长的点的集合是球.()(2)用平面去截圆锥、圆柱和圆台,得到的截面都是圆.()(3)(教材改编,P9,T2)用平面截球,无论怎么截,截面都是圆面.()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(2)(教材改编,P9,T3)图②的组合体是由________和________构成.(3)图③中的几何体有________个面.答案(1)球球心半径直径(2)圆柱圆锥(3)三3.圆锥的母线有()A.1条B.2条C.3条D.无数条答案 D课堂互动探究探究1旋转体的概念例1下列命题:(1)以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;(2)以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;(3)圆柱、圆锥、圆台的底面都是圆;(4)用一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0 B.1 C.2 D.3解析根据圆柱、圆锥、圆台的概念不难做出判断.(1)以直角三角形的一条直角边为轴旋转才可以得到圆锥;(2)以直角梯形垂直于底边的一腰为轴旋转才可以得到圆台;(3)圆柱、圆锥、圆台的底面都是圆面;(4)用平行于圆锥底面的平面截圆锥,才可得到一个圆锥和一个圆台.故4个均不正确.答案 A[条件探究]若本例中(2)改为以直角梯形的各边为轴旋转,得到的几何体是由哪些简单几何体组成的?解①以垂直于底边的腰为轴旋转得到圆台;②以较长的底为轴旋转得到的几何体为一圆柱加上一个圆锥;③以较短的底为轴旋转得到的几何体为一圆柱挖去一个同底圆锥;④以斜腰为轴旋转得到的几何体为圆锥加上一个圆台挖去一个小圆锥.拓展提升平面图形旋转形成的几何体的结构特征圆柱、圆锥、圆台和球都是由平面图形绕着某条轴旋转而成的,平面图形不同,得到的旋转体也不同,即使是同一平面图形,所选轴不同,得到的旋转体也不一样.判断旋转体,要抓住定义,分清哪条线是轴,什么图形,怎样旋转,旋转后生成什么样的几何体.【跟踪训练1】一个有30°角的直角三角尺绕其各条边所在直线旋转所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解如图(1)和(2)所示,绕其直角边所在直线旋转一周围成的几何体是圆锥;如图(3)所示,绕其斜边所在直线旋转一周围成的几何体是两个同底相对的圆锥.如图(4)所示,绕其斜边上的高所在直线旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.探究2简单组合体的结构特征例2描述下图几何体的结构特征.解图(1)中的几何体是由一个四棱柱和一个四棱锥拼接而成的组合体.图(2)中的几何体是在一个圆台中挖去一个圆锥后得到的组合体.图(3)中的几何体是在一个圆柱中挖去一个三棱柱后得到的组合体.图(4)中的几何体是由两个同底的四棱锥拼接而成的简单组合体.拓展提升简单组合体的两种构成方法(1)简单组合体的构成一般有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.(2)识别或运用几何体的结构特征,要从几何体的概念入手,掌握画图或识图的方法,并善于运用身边的特殊几何体进行判断、比较、分析.【跟踪训练2】观察下列几何体,并分析它们是由哪些基本几何体组成的.解图(1)是由一个圆柱中挖去一个圆台形成的.图(2)是由一个球、一个四棱柱和一个四棱台组合而成的.探究3旋转体的计算问题例3一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.解(1)如图,圆台的轴截面是等腰梯形ABCD,由已知可得上底面半径O1A=2 cm,下底面半径OB=5 cm,又腰长AB=12 cm,所以圆台的高为AM=122-(5-2)2=315(cm).(2)设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO可得l -12l =25,所以l =20(cm).故截得此圆台的圆锥的母线长为20 cm. 拓展提升旋转体中的计算问题及截面性质(1)圆柱、圆锥和圆台中的计算问题,一要结合它们的形成过程,分辨清轴、母线及底面半径与旋转前平面图形量的关系;二要切实体现轴截面的作用.解题时,可把轴截面从旋转体中分离出来,以平面图形的计算解决立体问题.(2)球中的计算应注意一个重要的直角三角形,设球的半径为R ,截面圆的半径为r ,球心到截面的距离为d ,则R 2=d 2+r 2.(3)用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.【跟踪训练3】 圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解 将圆台还原为圆锥,如图所示.O 2,O 1,O 分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h ,O 2O 1=h 1,O 1O =h 2,设上底面的面积为S 1,半径为r 1,则S 1=πr 21=1,下底面的面积为S 2,半径为r 2,则S 2=πr 22=49,截面的面积为S =S 1+S 22=25,半径为r 3,则S =πr 23.由三角形相似得⎩⎪⎨⎪⎧ h +h 1h =49+121,h +h 1+h 2h =491,所以⎩⎨⎧ h 1=4h ,h 2=2h ,即h 1∶h 2=2∶1. 探究4 圆柱、圆锥、圆台侧面展开图的应用例4 如图所示,已知圆柱的高为 80 cm ,底面半径为10 cm ,轴截面上有P ,Q 两点,且P A =40 cm ,B 1Q =30 cm ,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?解 将圆柱侧面沿母线AA 1展开,得如图所示矩形.则=12·2πr =πr =10π(cm).过点Q 作QS ⊥AA 1于点S ,在Rt △PQS 中,PS =80-40-30=10(cm),QS =A 1B 1=10π(cm).∴PQ =PS 2+QS 2=10π2+1(cm).即蚂蚁爬过的最短路径长是10π2+1 cm.拓展提升求圆柱、圆锥、圆台侧面上两点间最短距离都要转化到侧面展开图中,“化曲为直”是求几何体表面上两点间最短距离的好方法.【跟踪训练4】 国庆节期间,要在一圆锥形建筑物上挂一宣传标语,经测量得圆锥的母线长为3米,高为22米,如图所示.为了美观需要,在底面圆周上找一点M拴系彩绸的一端,沿圆锥的侧面绕一周挂彩绸,彩绸的另一端仍回到原处M,则彩绸最短要多少米?解把圆锥的侧面沿过点M的母线剪开,并铺平得扇形MOM1,如图所示.这样把空间问题转化为平面问题,易知彩绸的最短长度即为线段MM1的长度,由母线长为3米,高为22米,得底面半径为1米,所以扇形的圆心角为120°,所以MM1=33米,即彩绸最短要33米.1.透析圆柱的结构特征(1)圆柱有两个互相平行的面且这两个面是等圆;(2)有无数条母线,长度相等且都与轴平行;(3)圆柱上底面圆周上一点和下底面圆周上一点的连线不一定是圆柱的母线,只有这两点连线平行于轴时才是母线.2.透析圆锥的结构特征(1)底面是圆面;(2)侧面是由无数条母线组成的,且母线长均相等.3.透析圆台的结构特征(1)圆台上、下底面是相似的圆;(2)有无数条母线且等长,各母线的延长线交于一点.圆台可以由直角梯形以垂直于底边的腰所在直线为旋转轴,旋转而形成.4.透析球的概念球也是旋转体,球的表面是旋转形成的曲面,球是由球面及其内部空间组成的几何体.根据球的定义,铅球是一个球,而足球、乒乓球、篮球、排球等,虽然它们的名字中有“球”字,但它们是空心的,不符合球的定义,都不是真正的球.5.柱体、锥体、台体之间的关系课堂达标自测1.下列几何体中不是旋转体的是()答案 D解析正方体不可能是旋转体.2.一个等腰三角形绕它的底边所在直线旋转360°形成的曲面所围成的几何体是()A.球体B.圆柱C.圆台D.两个共底面的圆锥的组合体答案 D解析过等腰三角形的顶点向底边作垂线,得到两个有一条公共边的全等直角三角形,而直角三角形以一条直角边为轴旋转得到的几何体是圆锥,故选D.3.下列几何体中是旋转体的是()①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤B.①C.③和④D.①和④答案 D解析根据旋转体的概念知①④正确.4.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解分割图形,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.5.圆台的两底面圆的半径分别为2,5,母线长是310,求其轴截面的面积.解 如图,在轴截面内过点A 作AB ⊥O 1A 1,垂足为B .由已知OA =2,O 1A 1=5,AA 1=310,∴A 1B =3.∴AB =AA 21-A 1B 2=90-9=9.∴S 轴截面=12(2OA +2O 1A 1)·AB =12×(4+10)×9=63(cm 2).故圆台轴截面的面积为63 cm 2.课后课时精练A 级:基础巩固练一、选择题1.下列几何体是简单组合体的是( )答案 D解析 A 项中的几何体是圆锥,B 项中的几何体是圆柱,C 项中的几何体是球,D 项中的几何体是一个圆台中挖去一个圆锥,是简单组合体.2.给出下列命题:①圆柱的底面是圆;②经过圆柱任意两条母线的截面是一个矩形;③连接圆柱上、下底面圆周上两点的线段是圆柱的母线;④圆柱的任意两条母线互相平行.其中正确命题的个数为( )A .1B .2C .3D .4答案 B解析 本题的判断依据是圆柱的定义及结构特征.①中圆柱的底面是圆面,而不是圆,故①错;②和④中,圆柱有无数条母线,它们平行且相等,并且母线都与底面垂直,②和④正确;③中连接圆柱上、下底面圆周上两点的线段不一定与圆柱的轴平行,故③错.故选B.3.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体。
人教A版高中数学必修第二册全册学案人教A版高中数学必修第二册全册学案一、学案概述本学案是以人教A版高中数学必修第二册全册教材为基础,为学生提供全面的学习指导。
旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。
二、知识梳理本学案按照教材章节顺序,对各章节知识点进行了梳理。
对于每个知识点,学案提供了相关例题和解析,以便学生加深对知识点的理解和掌握。
第一章集合与函数1.1 集合及其表示方法 1.2 集合之间的关系 1.3 函数及其表示方法 1.4 函数的性质第二章三角函数2.1 正弦、余弦、正切函数的定义与性质 2.2 三角函数的图像及变换方法 2.3 三角函数的应用第三章数列3.1 数列的概念与分类 3.2 等差数列和等比数列的通项公式 3.3 数列的前n项和公式 3.4 数列的应用第四章平面几何4.1 点、线、面的基本概念和性质 4.2 三角形、四边形的性质和判定方法 4.3 多边形、圆、扇形、弓形的性质和面积计算方法 4.4 几何图形的作图方法第五章概率与统计5.1 概率的基本概念和计算方法 5.2 统计的基本概念和方法 5.3 中心极限定理的应用三、学习建议1、学生应根据个人学习情况,制定合理的学习计划,逐步掌握各章节知识点。
2、对于每个知识点,学生应通过多种方式进行练习,例如课堂练习、课后作业、自主解题等,加深对知识点的理解和掌握。
3、学生应注意知识点的归纳和总结,形成自己的知识体系。
4、学生应积极参加课堂讨论和提问,与老师和同学交流学习心得,提高学习效果。
四、总结归纳本学案对人教A版高中数学必修第二册全册教材进行了全面的知识梳理和学习指导,旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。
学生应根据个人学习情况,制定合理的学习计划,通过多种方式进行练习,注意知识点的归纳和总结,积极参加课堂讨论和提问,提高学习效果。
外研版高中英语必修3全册学案版本外研版高中英语必修3全册学案版本外语教学与研究出版社出版的《高中英语必修3》是一本针对高中英语教学的教材,旨在帮助学生掌握英语语言知识,提高英语应用能力。
新人教A版高中数学教材目录(必修+选修)【很全面】人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策附录探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告。
223直线与平面平行的性质学习目标1. 了解直线与平面平行的性质定理的探究以及证明过 程.2. 理解直线与平面平行的性质定理的含义并能应用.(重点) 3. 能够综合应用直线与平面平行的判定定理和性质定 理进行线面平行的相互转化.(难点) 自主预习。
播新和 zizHi jyt xi口新知初探I直线与平面平行的性质定理 文字语言一条直线与一个平面平行, 面的交线与该直线平行• 过该直线的任意一个平面与已知平符号语言a // a, a? 3, aA b? a /b 图形语言思考:若a // a b? a,则直线a 一定与直线b 平行吗?[提示]不一定.由a / a,可知直线a 与平面a 无公共点,又b? a,,所以a 与b 无公共点,所以直线a 与直线b 平行或异面.口初试身^□1. 如图,过正方体 ABCD-A'B C 'D 的棱BB '作一平面交平面 CDD'C 于EE : 则BB 与EE 的位置关系是()核心素养通过学习直线与平面 平行的性质,提升直观 想象、逻辑推理的数学 素养•A .平行B .相交C•异面D .不确定A [因为BB'// 平面CDD C ;BB 7 平面BB'E'E,平面BB'E^G 平面CDD C=EE 所以BB ' // EE '.]2. 设m、n是平面a外的两条直线,给出以下三个论断:①m// n;②m// a;③n// a以其中两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:________ .(用序号表示)①②?③(或①③?②)[设过m的平面B与a交于I •因为m//a,所以m//l,因为m // n,所以n // I,因为n?a, I? a,所以n // a]合作探究。
I星驀养直线与平面平行性质定理的应用[探究问题]1. 直线与平面平行性质定理的条件有哪些?[提示]线面平行的性质定理的条件有三个:(1) 直线a与平面a平行,即a / a;(2) 平面a、B相交于一条直线,即aG b;(3) 直线a在平面B内,即a? B三个条件缺一不可.2. 直线与平面平行的性质定理有什么作用?[提示]定理的作用:(1) 线面平行?线线平行;(2) 画一条直线与已知直线平行.3. 直线与平面平行的判定定理和性质定理有什么联系?[提示]经常利用判定定理证明线面平行,再利用性质定理证明线线平行.【例1】 如图,用平行于四面体 ABCD 的一组对棱AB , CD 的平面截此 四面体•求证:截面 MNPQ 是平行四边形.[证明] 因为AB //平面 MNPQ ,平面 ABC A 平面 MNPQ = MN ,且 AB?平面 ABC ,所以由线面平行的性质定理,知AB / MN ,同理,AB//PQ ,所以MN // PQ.同理可得 MQ // NP.所以截面MNPQ 为平行四边形.对蕊凍吭 将本例变为:如图所示,四边形 ABCD 是矩形,P ■ 平面ABCD , 过BC 作平面BCFE 交AP 于E ,交DP 于F.[证明]因为四边形ABCD 为矩形,所以BC / AD ,因为AD?平面PAD , BC?平面PAD ,所以BC /平面PAD.因为平面BCFE G 平面FAD = EF ,所以 BC //EF. 求证:四边形因为AD = BC, AD托F,所以BC M EF,所以四边形BCFE是梯形.1.利用线面平行性质定理解题的步骤:2 •证明线线平行的方法:(1) 定义:在同一个平面内没有公共点的两条直线平行.(2) 平行公理:平行于同一条直线的两条直线平行.a //a(3) 线面平行的性质定理:a? B ? a//b,应用时题目条件中需有线面aA b平行.【例2】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且PA=3,点F在棱RA上,且AF = 1,点E在棱PD上,若CE//平面BDF,求PE : ED 的值.B[解]过点E作EG // FD交AP于点G,连接CG,连接AC交BD于点O, 连接FO.因为EG// FD , EG?平面BDF, FD?平面BDF ,所以EG//平面BDF ,又EG A CE= E, CE//平面BDF, EG?平面CGE, CE?平面CGE,所以平面CGE//平面BDF,又CG?平面CGE,所以CG//平面BDF,又平面BDF A平面PAC= FO, CG?平面PAC,所以FO // CG,又O为AC的中点,所以F为AG的中点,所以FG = GP= 1,所以E为PD的中点,PE : ED= 1 : 1.利用线面平行的性质定理计算有关问题的三个关键点:(1) 根据已知线面平行关系推出线线平行关系.(2) 在三角形内利用三角形中位线性质、平行线分线段成比例定理推出有关线段的关系.(3) 利用所得关系计算求值.働跟礙训练I如图所示,在棱长为6的正方体ABCD-A i B i C i D i 中,点E, F 分别是棱C i D i , B i C i 的中点,过A , E , F 三点作该正方体的截面,则截面的周长为 ____________ .6 13+ 3 2 [如图所示,延长EF ,A i B i 相交于点M ,连接AM ,交BB i 于 点H ,连接FH ,延长FE , A i D i 相交于点N ,连接AN 交DD i 于点G ,连接EG ,可得截面五边形AHFEG ,因为几何体ABCD-A i B i C i D i 是棱长为6的正方体,且ii E 、F 分别是棱 C i D i , B i C i 的中点,所以 EF = 3 2,易知 B i M = C i E = QC i D i = 2 A i B i ,又 B i H //AA i ,所以 B i H = iAA i = 2, J 则 BH = 4,易知 AG = AH = 62 + 42= 2 i3, EG = FH =、32 + 22= i3,所以截面的周长为 6 i3+ 3,2]i •在遇到线面平行时,常需作出过已知直线与已知平面相交的辅助平面, 以便运用线面平行的性质.2 •要灵活应用线线平行、线面平行的相互联系、相互转化•在解决立体几 何中的平行问题时,一般都要用到平行关系的转化.转化思想是解决这类问题的 最有效的方法.当堂达标科固观基1 •如图,在三棱锥SABC中,E, F分别是SB SC上的点,且EF //平面ABC,则()A. EF与BC相交B. EF // BCC. EF与BC异面D. 以上均有可能B [因为平面SBC n平面ABC= BC,又因为EF //平面ABC,所以EF // BC.]2 .直线a//平面a, a内有n条直线交于一点,则这n条直线中与直线a平行的直线有()A. 0条B . 1条C. 0条或1条 D .无数条C [过直线a与交点作平面B,设平面B与a交于直线b,则a// b,若所给n 条直线中有1条是与b重合的,则此直线与直线a平行,若没有与b重合的,则与直线a平行的直线有0条.]3. 过正方体ABCD-A1B1C1D1的三顶点A1, C1, B的平面与底面ABCD所在的平面的交线为I,则I与A1C1的位置关系是__________ .平行[因为A1C1 /平面ABCD,A1C1?平面A1C1B,平面ABCD n平面A1C1B= I,由线面平行的性质定理,所以A1C1//IJ4. 如图,在三棱柱ABC-A1B1C1中,D是棱CC1上的一点,P是AD的延长线与A1C1延长线的交点,且PB1//平面BDA1,求证:CD = C1D.[证明]如图,连接AB1与BA1交于点0,连接0D,因为PB i // 平面BDA i, PB i?平面AB i P,平面AB i P n平面BDA i = OD,所以OD // PB i, 又AO= B i O,所以AD = PD,又AC// C i P,所以CD = C i D.。
第二章 一元二次函数、方程和不等式2.2.3 二次函数与一元二次方程、不等式(第1课时)本节课是新版教材人教A 版普通高中课程标准实验教科书数学必修1第二章第3节《一元二次不等式及其解法》第1课时。
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出本现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
课程目标学科素养1.理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;2.经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
a.数学抽象: 一元二次不等式的定义及解法; b.逻辑推理:理解三个二次的关系; c.数学运算:按步骤解决一元二次不等式; d.直观想象:运用二次函数图像解一元二次不等式;e.数学建模:将生中的不等关系转化为一元二次不等式解决;重点:1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想. 难点:理解二次函数、一元二次方程与一元二次不等式的关系.多媒体(一)、情境导学问题园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m2,则这个矩形的边长为多少米?设这个矩形的一条边长为xm,则另一条边长为(12-x)m.由题意,得:(12-x)x>20,其中x∈{x|0<x<12}.整理得x2-12x+20<0,x∈{x|0<x<12}.①求得不等式①的解集,就得到了问题的答案.一元二次不等式的定义:我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般表达式ax2+bx+c>0 (a≠0)或ax2+bx+c<0 (a≠0),其中a,b,c均为常数.(二)、探索新知问题:二次函数y=x2-5x的函数图像如下,思考:当x为何值时,y=0,函数图像与x轴有什么关系?当x为何值时,y<0,函数图像与x轴有和关系?当x为何值时,y>0,函数图像与x轴有什么关系?思考:对于一般一元二次不等式的解集怎么求呢?我们知道,对于一元二次方程a x2+b x+c=0(a>0),设其判别式为Δ=b2-4ac,它的解按照Δ>0,Δ=0,Δ<0分为三种情况,相应地,抛物线y=a x2+b x+c(a>0)与x轴的相关位置也分为三种情况(如下图),因此,对相应的一元二次不等式a x2+b x+c>0或a x2+b x+c<0(a>0)的解集我们也分这三种情况进行讨论.根据二次函数及其对应的不[来解:结合以上例题总结:1、求解一元二次不等式的步骤是什么?2、解一元二次不等式中常见的错误是什么?应如何避免? 解一元二次不等式ax 2+bx+c>0、ax 2+bx+c<0 (a >0)的步骤: (1)二次项的系数变为正 (a>0)(2) 看能否因式分解,不能分解的计算△, (3) 求出方程ax 2+bx+c=0的实根;(画出函数图像)(4)(结合函数图象)写出不等式的解集.三、当堂达标04432>++x x 、解不等式例0)22>+⇔x (原不等式}2{-≠⇔x x解析:∵-6x 2-x +2≤0,∴6x 2+x -2≥0,∴(2x -1)(3x +2)≥0,∴ ⎩⎨⎧x ⎪⎪⎭⎬⎫x ≤-23或x ≥12.选B 3.解下列一元二次不等式: (1)x 2-2x-3>0.解:因为Δ>0,x 2-2x-3=0的解是x 1=-1,x 2=3.所以不等式的解集是{x|x <-1或x >3}. (2)4x 2+4x+1>0.解:因为Δ=0,方程4x 2+4x+1=0的解是x 1=x 2=21-.所以不等式的解集是{x|x≠21-}. (3)-x 2+2x-6>0.解:整理化简,得x 2-2x+6<0.因为Δ<0,方程x 2-2x+6=0无实数解,所以不等式的解集是∅.4.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},求a 的值。
第二章2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定课时分层训练‖层级一‖……………………|学业水平达标|1.直线l与平面α内的两条直线都垂直,则直线l与平面α的位置关系是()A.平行B.垂直C.在平面α内D.无法确定解析:选D当平面α内的两条直线相交时,直线l⊥平面α,即l与α相交,当面α内的两直线平行时,l⊂α或l∥α或l与α斜交.2.下列说法中正确的个数是()①若直线l与平面α内的一条直线垂直,则l⊥α;②若直线l与平面α内的两条相交直线垂直,则l⊥α;③若直线l与平面α内的任意一条直线垂直,则l⊥α.A.3 B.2C.1 D.0解析:选B对于①不能断定该直线与平面垂直,该直线与平面可能平行,也可能斜交,也可能在平面内,所以是错误的,②③是正确的.3.如图所示,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是()A.平行B.垂直相交C.垂直但不相交D.相交但不垂直解析:选C连接AC,因为ABCD是菱形,所以BD⊥AC.又MC⊥平面ABCD,则BD⊥MC.因为AC∩MC=C,所以BD⊥平面AMC.又MA⊂平面AMC,所以MA⊥BD.显然直线MA与直线BD不共面,因此直线MA与BD的位置关系是垂直但不相交.4.在△ABC中,AB=AC=5,BC=6,P A⊥平面ABC,P A=8,则P到BC 的距离是()A. 5 B.2 5C.3 5 D.4 5解析:选D取BC中点为D,连接AD.∵AB=AC=5,BC=6.∴AD⊥BC,AD=4,∵P A⊥平面ABC,∴P A⊥BC.AD∩BC=D,∴BC⊥平面P AD,∴BC⊥PD,∴PD的长即为P到BC的距离,P A=8,AD=4,∴PD=82+42=4 5.5.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成的角的余弦值为()A.23 B.33C.23 D.63解析:选D如图,设正方体的棱长为1,上、下底面的中心分别为O1,O,则OO1∥BB1,O1O与平面ACD1所成的角就是BB1与平面ACD1所成的角,即∠O1OD1,cos∠O1OD1=|O1O||OD1|=132=63.6.在三棱锥V-ABC中,当三条侧棱VA,VB,VC之间满足条件________时,有VC⊥AB.(注:填上你认为正确的一种条件即可)解析:只要VC⊥平面VAB,即有VC⊥AB;故只要VC⊥VA,VC⊥VB即可.答案:VC⊥VA,VC⊥VB(答案不唯一,只要能保证VC⊥AB即可)7.如图,∠BCA=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中:(1)与PC垂直的直线有______________________;(2)与AP垂直的直线有______________________.解析:(1)∵PC⊥平面ABC,AB,AC,BC⊂平面ABC.∴PC⊥AB,PC⊥AC,PC⊥BC.(2)∠BCA=90°即BC⊥AC,又BC⊥PC,AC∩PC=C,∴BC⊥平面P AC,∴BC⊥AP.答案:(1)AB,AC,BC(2)BC8.正方体ABCD-A1B1C1D1中,面对角线A1B与对角面BB1D1D所成的角为________.解析:连接A1C1,交B1D1于E,则A1C1⊥B1D1,即A1E⊥B1D1.又DD1⊥A1C1,即DD1⊥A1E,∴A1E⊥平面BB1D1D.连接BE,则∠A1BE是A1B与对角面BB1D1D所成的角.在Rt△A1BE中,∵A1E=12A1B,∴∠A1BE=30°,即A1B与对角面BB1D1D所成的角为30°.答案:30°9.如图所示,在直角△BMC中,∠BCM=90°,∠MBC=60°,BM=5,MA=3且MA⊥AC,AB=4,求MC与平面ABC所成角的正弦值.解:因为BM=5,MA=3,AB=4,所以AB2+AM2=BM2,所以MA⊥AB.又因为MA⊥AC,AB,AC⊂平面ABC,且AB∩AC=A,所以MA⊥平面ABC,所以∠MCA即为MC与平面ABC所成的角.又因为∠MBC=60°,所以MC=53 2,所以sin∠MCA=MAMC=3532=235.10.如图所示,在锥体P-ABCD中,ABCD是菱形,且∠DAB=60°,P A=PD,E,F分别是BC,PC的中点.证明:AD⊥平面DEF.证明:取AD的中点G,连接PG,BG.∵P A=PD,∴AD⊥PG.设菱形ABCD边长为1.在△ABG中,∵∠GAB=60°,AG=12,AB=1,∴∠AGB=90°,即AD⊥GB.又PG∩GB=G,∴AD⊥平面PGB,从而AD⊥PB.∵E,F分别是BC,PC的中点,∴EF∥PB,从而AD⊥EF.又DE∥GB,AD⊥GB,∴AD⊥DE,∵DE∩EF=E,∴AD⊥平面DEF.‖层级二‖………………|应试能力达标|1.在正方体ABCD-A1B1C1D1中,与AD1垂直的平面是()A.平面DD1C1C B.平面A1DB1C.平面A1B1C1D1D.平面A1DB答案:B2.下面四个命题:①过一点和一条直线垂直的直线有且只有一条;②过一点和一个平面垂直的直线有且只有一条;③过一点和一条直线垂直的平面有且只有一个;④过一点和一个平面垂直的平面有且只有一个.其中正确的是()A.①④B.②③C.①②D.③④解析:选B过一点和一条直线垂直的直线有无数条,故①不正确;过一点和一个平面垂直的平面有无数个,故④不正确;易知②③均正确.故选B.3.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是() A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m解析:选B根据两条平行线中的一条直线垂直于一个平面,则另一条直线也垂直于这个平面,知选项B正确.4.如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角解析:选D选项A正确,∵SD⊥底面ABCD,AC⊂平面ABCD,∴AC⊥SD,又由ABCD为正方形,∴AC⊥BD,又BD∩SD=D,∴AC⊥平面SBD⇒AC⊥SB;选项B正确,∵AB∥CD,CD⊂平面SCD,AB⊄SCD,∴AB∥平面SCD;选项C正确,设AC∩BD=O,连接SO,则SA与平面SBD所成的角就是∠ASO,SC与平面SBD所成的角就是∠CSO,易知这两个角相等;选项D错误,AB与SC所成的角等于∠SCD,面DC与SA所成的角是∠SAB,这两个角不相等.5.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是AD的中点,F是BB1的中点,则直线EF与平面ABCD所成角的正切值为________.解析:连接EB,由BB1⊥平面ABCD,知∠FEB即直线EF与平面ABCD所成的角.在Rt△FBE中,BF=1,BE=5,则tan ∠FEB=55.答案:5 56.如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=________.解析:∵B1C1⊥平面ABB1A1,MN⊂平面ABB1A1,∴B1C1⊥MN.又∵MN⊥B1M,B1M∩B1C1=B1,∴MN⊥平面C1B1M,∴MN⊥C1M,即∠C1MN=90°.答案:90°7.如图所示,将平面四边形ABCD沿对角线AC折成空间四边形,当平面四边形ABCD满足________时,空间四边形中的两条对角线互相垂直.(填上你认为正确的一种条件即可,不必考虑所有可能情况)解析:在平面四边形中,设AC与BD交于E,假设AC⊥BD,则AC⊥DE,AC⊥BE.折叠后,AC与DE,AC与BE依然垂直,所以AC⊥平面BDE,所以AC⊥BD.若四边形ABCD为菱形或正方形,因为它们的对角线互相垂直,同上可证AC ⊥BD.答案:AC⊥BD(或四边形ABCD为菱形、正方形等)8.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1.(1)求证:AB1⊥平面A1BC1;(2)若D为B1C1的中点,求AD与平面A1B1C1所成角的正弦值.解:(1)证明:由题意知四边形AA1B1B是正方形,∴AB1⊥BA1.由AA1⊥平面A1B1C1得AA1⊥A1C1.又∵A1C1⊥A1B1,AA1∩A1B1=A1,∴A1C1⊥平面AA1B1B,又∵AB1⊂平面AA1B1B,∴A1C1⊥AB1.又∵BA1∩A1C1=A1,∴AB1⊥平面A1BC1.(2)连接A1D.设AB=AC=AA1=1,∵AA1⊥平面A1B1C1,∴∠A1DA是AD与平面A1B1C1所成的角.在等腰直角三角形A1B1C1中,D为斜边的中点,∴A1D=12×B1C1=22.在Rt △A 1DA 中,AD =A 1D 2+A 1A 2=62.∴sin ∠A 1DA =A 1A AD =63,即AD 与平面A 1B 1C 1所成角的正弦值为63.。
人教版A版高中数学必修二全册课件【完整版】一、直线与方程1. 直线的斜率定义:直线斜率是指直线上任意两点之间的纵坐标之差与横坐标之差的比值。
计算公式:k = (y2 y1) / (x2 x1)性质:斜率k与直线倾斜角度的关系为k = tan(θ),其中θ为直线与x轴正方向的夹角。
2. 直线的截距定义:直线截距是指直线与y轴的交点的纵坐标。
计算公式:b = y kx,其中k为直线斜率,x为直线与x轴的交点的横坐标,y为直线与y轴的交点的纵坐标。
3. 直线方程点斜式:y y1 = k(x x1),其中k为直线斜率,(x1, y1)为直线上的一点。
斜截式:y = kx + b,其中k为直线斜率,b为直线截距。
一般式:Ax + By + C = 0,其中A、B、C为常数,且A、B 不同时为0。
4. 两条直线的位置关系平行:两条直线的斜率相等。
垂直:两条直线的斜率互为负倒数。
相交:两条直线的斜率不相等。
二、圆与方程1. 圆的定义定义:圆是平面上所有与一个固定点(圆心)距离相等的点的集合。
2. 圆的标准方程方程:(x a)² + (y b)² = r²,其中(a, b)为圆心坐标,r 为半径。
3. 圆的一般方程方程:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。
4. 圆与直线的位置关系相离:直线与圆没有交点。
相切:直线与圆有且仅有一个交点。
相交:直线与圆有两个交点。
三、椭圆与方程1. 椭圆的定义定义:椭圆是平面上所有与两个固定点(焦点)距离之和等于常数的点的集合。
2. 椭圆的标准方程方程:(x h)²/a² + (y k)²/b² = 1,其中(h, k)为椭圆中心坐标,a为椭圆长轴的一半,b为椭圆短轴的一半。
3. 椭圆的一般方程方程:Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E 为常数,且A、B不同时为0。
2.3.2 平面与平面垂直的判定【课时目标】 1.掌握二面角的概念,二面角的平面角的概念,会求简单的二面角的大小.2.掌握两个平面互相垂直的概念,并能利用判定定理判定两个平面垂直.1.二面角:从一条直线出发的________________所组成的图形叫做二面角.________________叫做二面角的棱.________________________叫做二面角的面.2.二面角的平面角如图:在二面角α-l -β的棱l 上任取一点O ,以点O 为________,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的________叫做二面角的平面角.3.平面与平面的垂直(1)定义:如果两个平面相交,且它们所成的二面角是________________,就说这两个平面互相垂直.(2)面面垂直的判定定理文字语言:一个平面过另一个平面的________,则这两个平面垂直.符号表示:⎭⎪⎬⎪⎫a ⊥β ⇒α⊥β.一、选择题1.下列命题:①两个相交平面组成的图形叫做二面角;②异面直线a 、b 分别和一个二面角的两个面垂直,则a 、b 组成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角; ④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是( )A .①③B .②④C .③④D .①②2.下列命题中正确的是( )A .平面α和β分别过两条互相垂直的直线,则α⊥βB .若平面α内的一条直线垂直于平面β内两条平行线,则α⊥βC .若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥βD .若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β3.设有直线M 、n 和平面α、β,则下列结论中正确的是( )①若M ∥n ,n ⊥β,M ⊂α,则α⊥β;②若M ⊥n ,α∩β=M ,n ⊂α,则α⊥β;③若M ⊥α,n ⊥β,M ⊥n ,则α⊥β.A .①②B .①③C .②③D .①②③4.过两点与一个已知平面垂直的平面( )A .有且只有一个B .有无数个C .有且只有一个或无数个D .可能不存在 5.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A .13B .12C .223D .326.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC二、填空题7.过正方形ABCD 的顶点A 作线段AP ⊥平面ABCD ,且AP =AB ,则平面ABP 与平面CDP 所成的二面角的度数是________.8.如图所示,已知P A ⊥矩形ABCD 所在的平面,图中互相垂直的平面有________对.9.已知α、β是两个不同的平面,M 、n 是平面α及β之外的两条不同直线,给出四个论断:①M ⊥n ;②α⊥β;③n ⊥β;④M ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________.三、解答题10.如图所示,在空间四边形ABCD 中,AB =BC ,CD =DA ,E 、F 、G 分别为CD 、DA 和对角线AC 的中点.求证:平面BEF ⊥平面BGD .11.如图所示,四棱锥P —ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =3.(1)证明:平面PBE ⊥平面P AB ;(2)求二面角A —BE —P 的大小.能力提升12.如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C.求证:(1)EF∥平面ABC;(2)平面A1FD⊥平面BB1C1C.13.如图,在三棱锥P—ABC中,P A⊥底面ABC,P A=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面P AC.(2)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.1.证明两个平面垂直的主要途径(1)利用面面垂直的定义,即如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.(2)面面垂直的判定定理,即如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.2.利用面面垂直的判定定理证明面面垂直时的一般方法:先从现有的直线中寻找平面的垂线,若图中存在这样的直线,则可通过线面垂直来证明面面垂直;若图中不存在这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论依据并有利于证明,不能随意添加.3.证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现的,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每一垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的的.2.3.2 平面与平面垂直的判定 答案知识梳理1.两个半平面 这条直线 这两个半平面2.垂足 ∠AOB3.(1)直二面角 (2)垂线 a ⊂α作业设计1.B [①不符合二面角定义,③从运动的角度演示可知,二面角的平面角不是最小角.故选B .]2.C3.B [②错,当两平面不垂直时,在一个平面内可以找到无数条直线与两个平面的交线垂直.]4.C [当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.]5.B [如图所示,由二面角的定义知∠BOD 即为二面角的平面角.∵DO =OB =BD =32, ∴∠BOD =60°.]6.C [如图所示,∵BC ∥DF ,∴BC ∥平面PDF .∴A 正确.由BC ⊥PE ,BC ⊥AE ,∴BC ⊥平面PAE .∴DF ⊥平面PAE .∴B 正确.∴平面ABC ⊥平面PAE(BC ⊥平面PAE).∴D 正确.]7.45°解析 可将图形补成以AB 、AP 为棱的正方体,不难求出二面角的大小为45°.8.5解析 由PA ⊥面ABCD 知面PAD ⊥面ABCD ,面PAB ⊥面ABCD ,又PA ⊥AD ,PA ⊥AB 且AD ⊥AB ,∴∠DAB 为二面角D —PA —B 的平面角,∴面DPA ⊥面PAB .又BC ⊥面PAB ,∴面PBC ⊥面PAB ,同理DC ⊥面PDA ,∴面PDC ⊥面PDA .9.①③④⇒②(或②③④⇒①)10.证明 ∵AB =BC ,CD =AD ,G 是AC 的中点,∴BG ⊥AC ,DG ⊥AC ,∴AC ⊥平面BGD .又EF ∥AC ,∴EF ⊥平面BGD .∵EF ⊂平面BEF ,∴平面BEF ⊥平面BGD .11.(1)证明 如图所示,连接BD ,由ABCD 是菱形且∠BCD =60°知,△BCD 是等边三角形.因为E 是CD 的中点,所以BE ⊥CD .又AB ∥CD ,所以BE ⊥AB .又因为PA ⊥平面ABCD ,BE ⊂平面ABCD ,所以PA ⊥BE .而PA ∩AB =A ,因此BE ⊥平面PAB .又BE ⊂平面PBE ,所以平面PBE ⊥平面PAB .(2)解 由(1)知,BE ⊥平面PAB ,PB ⊂平面PAB ,所以PB ⊥BE .又AB ⊥BE ,所以∠PBA 是二面角A —BE —P 的平面角.在Rt △PAB 中,tan ∠PBA =PA AB =3,则∠PBA =60°. 故二面角A —BE —P 的大小是60°.12.证明 (1)由E 、F 分别是A 1B 、A 1C 的中点知EF ∥BC .因为EF ⊄平面ABC .BC ⊂平面ABC .所以EF ∥平面ABC .(2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1.又A 1D ⊂平面A 1B 1C 1,故CC 1⊥A 1D .又因为A 1D ⊥B 1C ,CC 1∩B 1C =C ,故A 1D ⊥平面BB 1C 1C ,又A 1D ⊂平面A 1FD ,所以平面A 1FD ⊥平面BB 1C 1C .13.(1)证明 ∵PA ⊥底面ABC ,∴PA ⊥BC .又∠BCA =90°,∴AC ⊥BC .又∵AC ∩PA =A ,∴BC ⊥平面PAC .(2)解 ∵DE ∥BC ,又由(1)知,BC ⊥平面PAC ,∴DE ⊥平面PAC .又∵AE ⊂平面PAC ,PE ⊂平面PAC ,∴DE ⊥AE ,DE ⊥PE .∴∠AEP 为二面角A —DE —P 的平面角.∵PA ⊥底面ABC ,∴PA ⊥AC ,∴∠PAC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角.。
高中数学《直线与平面垂直的判定》教学设计(全国一等奖)《普通高中课程标准实验教科书—数学必修(二)》人教A版直线与平面垂直的判定姓名:单位:《直线与平面垂直的判定(第一课时)》教学设计一、内容和内容解析:本节内容选自人教A版《普通高中课程标准实验教科书——数学必修(二)》第二章第三节:2.3.1直线与平面垂直的判定(第一课时),属于新授概念课.本节课的内容包括直线与平面垂直的定义和判定定理两部分.直线与平面垂直的研究是直线与直线垂直研究的继续,也为平面与平面垂直的研究做了准备;判定定理的教学,尽管新课标在必修课程中不要求证明,但通过定理的探索过程,培养和发展学生的几何直觉以及运用图形语言进行交流的能力,是本节课的重要任务.线面垂直是在学生掌握了线在面内,线面平行之后紧接着研究的线面相交位置关系中的特例.在线面平行中,我们研究了定义、判定定理以及性质定理,为本节课提供了研究内容和研究方法上的范式.线面垂直是线线垂直的拓展,又是面面垂直的基础,后续内容如空间的角和距离等又都使用它来定义,在本章中起着承上启下的作用.通过本节课的学习与研究,可进一步完善学生的知识结构,更好地培养学生观察发现、空间想象及推理能力,体会由特殊到一般、类比、归纳、猜想、化归等数学思想方法.因此学习这部分知识有着非常重要的意义.二、目标和目标解析:《数学课程标准》中与本节课相关的要求是:① 在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面垂直位置关系的定义;② 通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的判定定理;③ 能运用已获得的结论证明一些空间位置关系的简单命题.本节课的课程标准分解如下:(1)从认知角度进行分解:(2)从能力角度进行分解:根据《课程标准》,依据教材内容和学生情况,确定本课时的学习目标为:(1)在直观认识和理解空间点、线、面的位置关系的基础上,抽象出直线与平面垂直的定义;(2)通过直观感知、操作确认,归纳出直线与平面垂直的判定定理;(3)能运用直线与平面垂直的定义和判定定理证明一些空间位置关系的简单命题.针对本节课的学习目标,我设计了如下的评价任务:评价任务一:能否从生活现象中直观感受到直线与平面垂直的形象,并将其抽象出直线与平面垂直的概念;评价任务二:学生积极参与,通过影子实验,在动手操作、思考、归纳等一系列活动中完成探索.评价任务三:能够从正反例中,通过对比归纳出直线与平面垂直的定义,并用自己的语言描述定义内容.评价任务四:能够根据定义得到直线与平面垂直时,直线与平面内任意一条直线垂直的结论,并写出符号语言,了解定义的双向叙述功能.评价任务五:能够利用将无限转化为有限的思想,寻找判定直线与平面垂直的可能性假设. 评价任务六:能在实验操作中,确认直线与平面垂直的判定定理,能用自己的语言叙述出定理内容并写出相应的符号语言.评价任务七:能够用定义和判定定理解决空间位置关系的简单命题.三、教学问题诊断分析:1、学生已有基础:学生已经学习了两条直线互相垂直的位置关系,学习了直线、平面平行的判定及性质,有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,有了一定的几何直观能力、推理论证能力等,具备学习本节课所需的知识.2、学生面临的问题:高一学生仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维.认识到这点,教学中要控制要求的拔高,关注学习过程.因此我确定本节课的难点为:直线与平面垂直的定义的生成,操作确认直线与平面垂直的判定定理.因此,在教学过程中我抓住学生好奇心强,学习积极性较高的特点,我让学生以小组为单位进行合作,通过动手操作,观察、思考、归纳总结,发现直线与平面垂直时,直线与平面内的直线有怎样的位置关系;再通过操作,反向验证,当直线与平面内的直线具有上述位置关系时,能否得到直线与平面垂直,让学生在实验中自然生成直线与平面垂直的定义.在探究直线与平面垂直的判定定理时,让学生从寻找合理假设出发,通过操作验证假设的正确性,从而获得直线与平面垂直的判定定理.由于学生对这种用“有限”代替“无限”的过程,在形成理解上的可能会有思维障碍,所以强调关于定理的证明,会在后续学习中获得.四、教学策略分析:新课程标准明确指出:数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维.因此本节课在“目标导引教学”这一理念的指引下,主要采用的是引导发现教学法.教学中,我利用学生感兴趣的图片引出直线与平面垂直的形象,抽象出直线与平面垂直的概念.让学生在分析操作过程发现规律特点,从而自发地生成定义;接着让学生在实际应用中自觉提出判定直线与平面垂直是否有更简洁方便的方法,通过折纸活动,让学生在游戏中学习,在活动中获得知识.我设计了分组探究等实践活动,通过活动引导学生进行观察、思考、操作、归纳、应用,使学生始终处于积极、主动、有趣的学习状态中,深刻体会到了“做数学、学数学”的乐趣,最终达成了本节课的学习目标.五、课前准备:多媒体课件、三角形纸片(多种形状)、三角板、手电筒、彩色手环、笔(表直线)、纸(表平面)等.六、教学过程:验证跨栏的支架与地面是否垂直,七、教学设计说明:兴趣是最好的老师,它是学生主动学习、积极思考、勇于探索的强大内驱力.因此,本节课我在“目标导引教学”理念及“数学源于生活、又应用于生活”的理念的指引下,以激发学生的学习兴趣为出发点,设置了一系列的动手操作、自主探索的活动,引导学生通过感受、思考、交流、总结,真正对所学内容有所感悟,进而内化为己有.课堂上加入了多种探究实验与动手操作活动,增加了学生学习的兴趣;加入了影子实验、折纸环节,使学生体会到了学数学的乐趣,达到了让教学生活化、让教学活动化、让教学趣味化的目的.符合新课标中“数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维,要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法”的要求.此外,在整个教学过程中,“学生是学习的主体”这一理念,“让不同的人在数学上得到不同的发展”的理念都得到了充分的体现.总之,本节课的设计使学生的情感和能力都得到了一定的发展,成长过程和长期发展也得到了一定的关注,体现了新课程的要求.八、教学反思:本节课的设计从理解数学、理解学生、理解教学三个维度出发,对高中数学课程结构体系及本节课教学重点的知识进行了较为系统的分析;对学生学习本节课的难点进行了深入思考,并精心设计了重点、难点知识的教学解释;评估了学生的知识理解水平等方面,以达到教学设计的科学、完整和精细,具有一定的可操作性和调控性.本节课树立理解数学、理解学生、理解教学的观念来设计课堂教学,本质与核心是“以学生的发展为本”,这是时代发展的要求.这就要求教师在教学设计中,不仅要看到所教的学科知识,而且要看到相应的知识在学生发展中起什么作用;不仅要研究学生的发展规律,思考学习与发展的关系,而且要研究学生是如何学习的;不仅要以适合学生认知特点的方式传《直线与平面垂直(第一课时)》教学设计授数学知识,而且要在教学过程中时刻体现思想性,从而在提高学生在知识水平的同时,提高他们的素质,丰富他们的精神世界.点评这堂课给人的感觉是充满青春的朝气,一气呵成,如沐春风。
[A基础达标]
1.直线l与平面α所成角θ的范围是()
A.(0°,180°)B.(0°,90°)
C.[0°,90°] D.(0°,90°]
解析:选C.根据定义可知选C.
2.如果一条直线垂直于一个平面内的下列各种情况,能保证该直线与平面垂直的是()
①三角形的两边②梯形的两边③圆的两条直径
④正六边形的两条边
A.①③B.②
C.②④D.①②③
解析:选A.由线面垂直的判定定理可知①③是正确的,而②中线面可能平行、相交,也可能直线在平面内.④中由于正六边形的两边不一定相交,所以也无法判定线面垂直,故选A.
3.在正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成的角的余弦值为()
A.
2
3B.
3
3
C.2
3D.
6
3
解析:选D.如图所示,连接BD交AC于点O,连接D1O,由于BB1∥DD1,所以DD1与平面ACD1所成的角就是BB1与平面ACD1所成的角.易知∠DD1O即
为所求.设正方体的棱长为1,则DD1=1,DO=
2
2,D1O=
6
2,所以cos∠DD1O
=DD1
D1O=
2
6
=
6
3.
所以BB1与平面ACD1所成的角的余弦值为
6
3.
4.如图所示,P A⊥平面ABC,△ABC中BC⊥AC,∠PBA=θ1,∠PBC=θ2,
∠ABC=θ3.
则下列关系一定成立的是()
A.cos θ1cos θ2=cos θ3B.cos θ1cos θ3=cos θ2 C.sin θ1sin θ2=sin θ3D.sin θ1sin θ3=sin θ2
解析:选B.
⎭
⎬⎫
P A ⊥平面ABC BC ⊂平面ABC ⇒
⎭
⎬⎫
P A ⊥BC
AC ⊥BC P A ∩AC =A ⇒BC ⊥平面P AC ⇒BC ⊥PC ,
所以cos θ1=AB PB ,cos θ2=BC PB ,cos θ3=BC
AB . 则有cos θ1cos θ3=cos θ2. 5.在正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总
保持AP ⊥BD 1,则动点P 的轨迹是( )
A .线段
B 1
C B .线段BC 1
C .BB 1中点与CC 1中点连成的线段
D .BC 中点与B 1C 1中点连成的线段
解析:选A.如图,由于BD 1⊥平面AB 1C ,故点P 一定位于B 1C 上.
6.在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C
的中心,则AD 与平面BB 1C 1C 所成角的大小是________.
解析:
如图所示,取BC 的中点E ,连接DE ,AE ,则AE ⊥平面BB 1C 1C . 所以AE ⊥DE ,因此AD 与平面BB 1C 1C 所成角即为∠ADE ,
设AB =a ,则AE =32a ,DE =a
2,
即有tan ∠ADE =3,所以∠ADE =60°. 答案:
60°
7.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面
A 1
B 1
C 1
D 1所成角的正弦值为________.
解析:连接A 1C 1(图略),
因为AA1⊥平面A1B1C1D1,
所以∠AC1A1为AC1与平面A1B1C1D1所成的角.又A1B1=B1C1=2,AA1=1,所以AC1=3.
在Rt△AA1C1中,sin∠AC1A1=AA1 AC1=
1
3.
答案:1 3
8.如图所示,在矩形ABCD中,AB=1,BC=a(a>0),P A⊥平面AC,且P A =1,若BC边上存在点Q,使得PQ⊥QD,则a的最小值为________.
解析:因为P A⊥平面ABCD,所以P A⊥QD.
若BC边上存在一点Q,使得QD⊥PQ,
则有QD⊥平面P AQ,从而QD⊥AQ.
在矩形ABCD中,当AD=a<2时,直线BC与以AD为直径的圆相离,故不存在点Q,使PQ⊥DQ.
所以当a≥2时,才存在点Q,使得PQ⊥QD.所以a的最小值为2.
答案:2
9.如图,在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC,D是BC的中点,点E在棱BB1上运动.证明:AD⊥C1E.
证明:因为AB=AC,D是BC的中点,
所以AD⊥BC.①
又在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,
而AD⊂平面ABC,所以AD⊥BB1.②
由①②得AD⊥平面BB1C1C.
由点E在棱BB1上运动,得C1E⊂平面BB1C1C,
所以AD⊥C1E.
10.如图所示,在长方体ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M是棱CC1上一点.是否存在这样的点M,使得BM⊥平面A1B1M?若存在,求出C1M 的长;若不存在,请说明理由.
解:假设存在点M使得BM⊥平面A1B1M,并设C1M=x,则有Rt△B1C1M∽Rt△BMB1.
所以C1M
B1M=
B1M
BB1,所以4+x
2=5x,
所以x=4或x=1.
当C1M=1或4时,使得BM⊥平面A1B1M.
[B能力提升]
1.已知三条相交于一点的线段P A、PB、PC两两垂直,且A、B、C在同一平面内,P在平面ABC外,PH⊥平面ABC于点H,则垂足H是△ABC的() A.外心B.内心
C.垂心D.重心
解析:选C.易证AH⊥BC,BH⊥AC,CH⊥AB,故点H为△ABC的垂心.2.在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,P A⊥平面ABCD,且P A=6,则PC与平面ABCD所成角的大小为()
A.30°B.45°
C.60°D.90°
解析:选C.如图,连接AC.
因为P A⊥平面ABCD,
所以∠PCA就是PC与平面ABCD所成的角.
因为AC=2,P A=6,
所以tan∠PCA=P A
AC=
6
2
= 3.
所以∠PCA=60°.
3.如图,ABCDA1B1C1D1为正方体,下面结论错误的是________.(填序号)
①BD∥平面CB1D1;
②AC1⊥BD;
③AC1⊥平面CB1D1;
④异面直线AD与CB1所成的角为60°.
解析:由于BD∥B1D1,BD⊄平面CB1D1,B1D1⊂平面CB1D1,则BD∥平面CB1D1,所以①正确;
由于BD⊥AC,BD⊥CC1,AC∩CC1=C,
所以BD⊥平面ACC1,所以AC1⊥BD.所以②正确;
可以证明AC1⊥B1D1,AC1⊥B1C,
所以AC1⊥平面CB1D1,所以③正确;
由于AD∥BC,则∠BCB1=45°是异面直线AD与CB1所成的角,所以④错误.
答案:④
4.(选做题)如图所示,在矩形ABCD 中,AB =33,BC =3,沿对角线BD 将△BCD 折起,使点C 移到C ′点,且C ′点在平面ABD 上的射影O 恰在AB 上.
(1)求证:BC ′⊥平面AC ′D ;
(2)求直线AB 与平面BC ′D 所成角的正弦值.
解:(1)证明:因为点C ′在平面ABD 上的射影O 在AB 上, 所以C ′O ⊥平面ABD ,所以C ′O ⊥DA . 又因为DA ⊥AB ,AB ∩C ′O =O , 所以DA ⊥平面ABC ′,所以DA ⊥BC ′. 又因为BC ⊥CD ,所以BC ′⊥C ′D .
因为DA ∩C ′D =D ,所以BC ′⊥平面AC ′D .
(2)如图所示,过A 作AE ⊥C ′D ,垂足为E . 因为BC ′⊥平面AC ′D , 所以BC ′⊥AE .
又因为BC ′∩C ′D =C ′, 所以AE ⊥平面BC ′D .
连接BE ,则BE 是AB 在平面BC ′D 上的射影,故∠ABE 就是直线AB 与平面BC ′D 所成的角.
由(1)知DA ⊥平面ABC ′,所以DA ⊥AC ′. 在Rt △AC ′B 中,
AC ′=AB 2-BC ′2=3 2.
在Rt △BC ′D 中,C ′D =CD =3 3. 在Rt △C ′AD 中,由等面积法,得
AE =AC ′·AD C ′D =32×333
= 6.
所以在Rt △AEB 中,
sin ∠ABE =AE AB =633
=2
3,
即直线AB 与平面BC ′D 所成角的正弦值为2
3.。