南京市玄武区2017-2018学年九年级上数学期末试卷含答案
- 格式:doc
- 大小:225.50 KB
- 文档页数:12
玄武区2016届九年级(上)期末考试数学试卷一、选择题(本大题共6小题,每小题2分,共计12分)1.一元二次方程x 2=1的解是 ( ) A .x =1B .x =-1C .x 1=1,x 2=-1D .x =02.⊙O 的半径为1,同一平面内,若点P 与圆心O 的距离为1,则点P 与⊙O 的位置关系 是 ( ) A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定3.9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A . 中位数B .极差C .平均数D .方差4.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则方程ax 2+bx +c =0的一个解的范围是 ( )x 6.17 6.18 6.19 6.20 y-0.03-0.010.020.04A .-0.01<x <0.02B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.205.若点A (-1,a ),B (2,b ),C (3,c )在抛物线y =x 2上,则下列结论正确的是 ( ) A .a <c <b B . b <a <c C .c <b <a D . a <b <c6.如图,点E 在y 轴上,⊙E 与x 轴交于点A 、B ,与y 轴交于点C 、D ,若C (0, 9),D (0,-1),则线段AB 的长度为( )A .3B .4C .6D .8 二、填空题(本大题共10小题,每小题2分,共20分)7.若ba =3,则b +a a = .8.一组数据:2,3,-1,5的极差为 .9.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1•x 2的值是 .10.某产品原来每件成本是100元,连续两次降低成本后,现在成本是81元,设平均每次降低成本的百分率为x ,可得方程 .11.在平面直角坐标系中,将抛物线y =2x 2先向右平移3个单位,再向上平移1个单位,得到的抛物线的函数表达式为 .12.已知圆锥的底面半径为6 cm ,母线长为8 cm ,它的侧面积为 cm 2.13.如图,根据所给信息,可知BCB ′C ′的值为 .14.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则当x =3时,y = .ByA BE DxO C(第6题)x … -3 -2 -1 0 1 … y…73113…15.如图,AB 是⊙O 的一条弦,C 是⊙O 上一动点且∠ACB =45°,E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于点G 、H .若⊙O 的半径为2,则GE +FH 的最大值为 .16.如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,点P 、Q 在DC 边上,且PQ =14DC .若AB =16,BC =20,则图中阴影部分的面积是 .三、解答题(本大题共11小题,共88分.解答时应写出文字说明、推理过程或演算步骤) 17.(10分)(1)解方程:(x +1)2=9; (2)解方程:x 2-4x +2=0.18.(6分)已知关于x 的一元二次方程(a +1)x 2-x +a 2-2a -2=0有一根是1,求a 的值.19.(8分)射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次 第二次 第三次 第四次 第五次 第六次 平均成绩中位数甲108981099①(第13题)OO CBHFEGA(第15题)ABN CQP D MO(第16题)乙 10 7 10 10 9 8②9.5(1)完成表中填空① ;② ;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩方差为43,你认为推荐谁参加比赛更合适,请说明理由.20.(7分)一只不透明的袋子中,装有三个分别标记为“1”、“2”、“3”的球,这三个球除了标记不同外,其余均相同.搅匀后,从中摸出一个球,记录球上的标记后放回袋中并搅匀,再从中摸出一个球,再次记录球上的标记.(1)请列出上述实验中所记录球上标记的所有可能的结果; (2)求两次记录球上标记均为“1”的概率.21.(8分)如图,在半径为2的⊙O 中,弦AB 长为2.(1)求点O 到AB 的距离.(2)若点C 为⊙O 上一点(不与点A ,B 重合),求∠BCA 的度数;22.(8分)已知二次函数y =x 2-2x -3.(1)该二次函数图象的对称轴为 ; (2)判断该函数与x 轴交点的个数,并说明理由;(3)下列说法正确的是 (填写所有正确说法的序号)①顶点坐标为(1,-4); ②当y >0时,-1<x <3;③在同一平面直角坐标系内,该函数图象与函数y =-x 2+2x +3的图象关于x 轴对称.23.(8分)如图,在四边形ABCD 中,AC 、BD 相交于点F ,点E 在BD 上,且AB AE =BC ED =AC AD. (1)求证:∠BAE =∠CAD ; (2)求证:△ABE ∽△ACD .24.(7分)课本1.4有这样一道例题:A BO(第21题)ABCDFE(第23题)据此,一位同学提出问题:“用这根长22 cm 的铁丝能否围成面积最大的矩形?若能围成,求出面积最大值;若不能围成,请说明理由.”请你完成该同学提出的问题.25.(8分)如图,在△ABC 中,AB =BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点,交BD 于点G ,交AB 于点F . (1)判断直线AC 与⊙O 的位置关系,并说明理由; (2)当BD =6,AB =10时,求⊙O 的半径.26.(9分)已知一次函数y =x +4的图象与二次函数y =ax (x -2)的图象相交于A (-1,b )和B ,ABF OED GC(第25题)点P 是线段AB 上的动点(不与A 、B 重合),过点P 作PC ⊥x 轴,与二次函数y =ax (x -2)的图象交于点C . (1)求a 、b 的值(2)求线段PC 长的最大值;(3)若△P AC 为直角三角形,请直接写出点P 的坐标.27.(9分)如图,折叠边长为a 的正方形ABCD ,使点C 落在边AB 上的点M 处(不与点A ,B 重ABPCOxy(第26题)合),点D 落在点 N 处,折痕EF 分别与边BC 、AD 交于点E 、F ,MN 与边AD 交于点G . 证明:(1)△AGM ∽△BME ;(2)若M 为AB 中点,则AM 3=AG 4=MG5;(3)△AGM 的周长为2a .ABCDMNE FG(第27题)2015-2016学年度第一学期期末学情调研 九年级数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. 48. 69. 110.100(1-x )2=8111.y =2(x -3)2+112.48π 13.1214.13 15.4- 216.92三、解答题(本大题共11小题,共88分) 17.(本题10分)(1)解:x +1=±3,∴x 1=2,x 2=-4.………………………………………………………5分(2)方法一:解:a =1,b =-4,c =2, b 2-4ac =8>0,x =4±2 22=2± 2 ,………………………………………… 3分∴x 1=2+ 2 ,x 2=2- 2 .…………………………………… 5分方法二:解:x 2-4x =-2, x 2-4x +4=-2+4,(x -2)2=2,…………………………………………………… 3分 x -2=± 2 ,∴x 1=2+ 2 ,x 2=2- 2 .……………………………… 5分18.(本题6分)解:将x =1代入,得:(a +1)2-1+a 2-2a -2=0,解得:a 1=-1,a 2=2.………………………………………………… 5分 ∵a +1≠0,∴a ≠-1,∴a =2.………………………………………………………………… 6分19.(本题8分)解:(1)9;9.……………………………………………………………… 2分(2)S 甲2= 23.……………………………………………………………… 4分(3)∵X X 甲乙, S 甲2<S 乙2,∴推荐甲参加比赛合适.……………………………………………… 8分20.(本题7分)题号 1 2 3 4 5 6 答案CBACDC解:(1)列表如下:…………………………………………………………………………… 4分 (2)在这种情况下,共包含9种结果,它们是等可能的.……………… 5分 所有的结果中,满足“两次记录球上标记均为‘1’”(记为事件A )的结果只有一种,所以P(A )= 19. …………………………………………………… 7分21.(本题8分)解:(1)过点O 作OD ⊥AB 于点D ,连接AO ,BO . ∵OD ⊥AB 且过圆心,AB =2,∴AD =12AB =1,∠ADO =90°.……………………………………… 2分在Rt △ADO 中,∠ADO =90°,AO =2,AD =1,∴OD =AO 2-AD 2 = 3 .即点O 到AB 的距离为 3 .………… 4分 (2)∵AO =BO =2,AB =2,∴△ABO 是等边三角形,∴∠AOB =60°. ………………………… 6分若点C 在优弧⌒ACB 上,则∠BCA =30°;若点C 在劣弧 ⌒AB上,则∠BCA = 12(360°-∠AOB )=150°.…… 8分 22.(本题8分)解:(1)直线x =1.……………………………………………… 2分(2)令y =0,得:x 2-2x -3=0. ∵b 2-4ac =16>0,∴方程有两个不相等的实数根,∴该函数与x 轴有两个交点.……………………………………… 6分 (3)①③.……………………………………………………………… 8分 23.(本题8分)证明:(1)在△ABC 与△AED 中,∵AB AE =BC ED =ACAD,∴△ABC ∽△AED .…………………………………………………… 2分 ∴∠BAC =∠EAD , ∴∠BAC -∠EAF =∠EAD -∠EAF ,即∠BAE =∠CAD .…………………………………………………… 4分(2)∵AB AE =AC AD ,∴AB AC =AEAD. …………………………………………… 6分在△ABE 与△ACD 中,∵∠BAE =∠CAD ,AB AC =AEAD,∴ △ABE ∽△ACD . ………………………………………………… 8分 24.(本题7分)解:能围成.设当矩形的一边长为x cm 时,面积为y cm 2.结果 1 2 3 1 (1,1) (1,2) (1,3)2 (2,1) (2,2) (2,3)3 (3,1) (3,2) (3,3)由题意得:y =x ·(222-x )…………………………………………………… 3分=-x 2+11x=-(x -112)2+1214…………………………………………… 5分∵(x -112)2≥0,∴-(x -112)2+1214≤1214.∴当x =112时,y 有最大值,y max =1214,此时222-x =112.答:当矩形的各边长均为112 cm 时,围成的面积最大,最大面积是1214cm 2.… 7分25.(本题8分)解:(1)AC 与⊙O 相切.本题答案不惟一,下列解法供参考.证法一:∵BE 平分∠ABD ,∴∠OBE =∠DBO . ∵OE =OB ,∴∠OBE =∠OEB ,∴∠OBE =∠DBO ,∴OE ∥BD .………………………………… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥AC .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 证法二:∵BE 平分∠ABD ,∴∠ABD =2∠ABE .又∵∠ADE =2∠ABE ,∴∠ABD =∠ADE .∴OE ∥BD .……… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥AC .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 (2)设⊙O 半径为r ,则AO =10-r .由(1)知,OE ∥BD ,∴△AOE ∽△ABD .………………………… 6分∴AO AB =OEBD ,即10-r 10=r 6,……………………………………………… 7分∴r =154.∴⊙O 半径是154.……………………………………… 8分26.(本题9分)解:(1)∵A (-1,b )在直线y =x +4上,∴b =-1+4=3,∴A (-1,3).又∵A (-1,3)在抛物线y =ax (x -2)上,∴3=-a ·(-1-2),解得:a =1.…………………………… 2分 (2)设P (m ,m +4),则C (m ,m 2-2m ). ∴PC =(m +4)-(m 2-2m )=-m 2+3m +4=-(m -32)2+254………………………………………… 5分∵(m -32)2≥0,∴-(m -32)2+254≤254.∴当m =32时,PC 有最大值,最大值为254.……………………… 7分(3)P 1(2,6),P 2(3,7).……………………………………… 9分27.(本题9分)证明:(1)∵四边形ABCD 是正方形,∴∠A =∠B =∠C =90°,∴∠AMG +∠AGM =90°.∵EF 为折痕,∴∠GME =∠C =90°,∴∠AMG +∠BME =90°,∴∠AGM =∠BME . ………………………………………………… 2分 在△AGM 与△BME 中,∵∠A =∠B ,∠AGM =∠BME ,∴△AGM ∽△BME . ………………………………………………… 3分(2)∵M 为AB 中点,∴BM =AM =a 2. 设BE =x ,则ME =CE =a -x .在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即(a 2)2+x 2=(a -x )2, ∴x =38a ,∴BE =38a ,ME =58a . 由(1)知,△AGM ∽△BME ,∴AG BM =GM ME =AM BE =43. ∴AG =43BM =23a ,GM =43ME =56a , ∴AM 3=AG 4=MG 5.…………………………………………………… 6分 (3)设BM =x ,则AM =a -x ,ME =CE =a -BE .在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即x 2+BE 2=(a -BE )2,解得:BE =a 2-x 22a. 由(1)知,△AGM ∽△BME ,∴C △AGM C △BME =AM BE =2a a +x. ∵C △BME =BM +BE +ME =BM +BE +CE =BM +BC =a +x ,∴C △AGM =C △BME ·AM BE =(a +x )·2a a +x=2a .……………………… 9分。
玄武区2016届九年级(上)期末考试数学试卷一、选择题(本大题共6小题,每小题2分,共计12分)1.一元二次方程x 2=1的解是 ( ) A .x =1B .x =-1C .x 1=1,x 2=-1D .x =02.⊙O 的半径为1,同一平面内,若点P 与圆心O 的距离为1,则点P 与⊙O 的位置关系 是 ( ) A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定3.9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A . 中位数B .极差C .平均数D .方差4.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则方程ax 2+bx +c =0的一个解的范围是 ( )x 6.17 6.18 6.19 6.20 y-0.03-0.010.020.04A .-0.01<x <0.02B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.205.若点A (-1,a ),B (2,b ),C (3,c )在抛物线y =x 2上,则下列结论正确的是 ( ) A .a <c <b B . b <a <c C .c <b <a D . a <b <c6.如图,点E 在y 轴上,⊙E 与x 轴交于点A 、B ,与y 轴交于点C 、D ,若C (0, 9),D (0,-1),则线段AB 的长度为( )A .3B .4C .6D .8 二、填空题(本大题共10小题,每小题2分,共20分)7.若ba =3,则b +a a = .8.一组数据:2,3,-1,5的极差为 .9.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1•x 2的值是 .10.某产品原来每件成本是100元,连续两次降低成本后,现在成本是81元,设平均每次降低成本的百分率为x ,可得方程 .11.在平面直角坐标系中,将抛物线y =2x 2先向右平移3个单位,再向上平移1个单位,得到的抛物线的函数表达式为 .12.已知圆锥的底面半径为6 cm ,母线长为8 cm ,它的侧面积为 cm 2.13.如图,根据所给信息,可知BCB ′C ′的值为 .14.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则当x =3时,y = .ByA BE DxO C(第6题)x … -3 -2 -1 0 1 … y…73113…15.如图,AB 是⊙O 的一条弦,C 是⊙O 上一动点且∠ACB =45°,E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于点G 、H .若⊙O 的半径为2,则GE +FH 的最大值为 .16.如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,点P 、Q 在DC 边上,且PQ =14DC .若AB =16,BC =20,则图中阴影部分的面积是 .三、解答题(本大题共11小题,共88分.解答时应写出文字说明、推理过程或演算步骤) 17.(10分)(1)解方程:(x +1)2=9; (2)解方程:x 2-4x +2=0.18.(6分)已知关于x 的一元二次方程(a +1)x 2-x +a 2-2a -2=0有一根是1,求a 的值.19.(8分)射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次 第二次 第三次 第四次 第五次 第六次 平均成绩中位数甲108981099①(第13题)OO CBHFEGA(第15题)ABN CQP D MO(第16题)乙 10 7 10 10 9 8②9.5(1)完成表中填空① ;② ;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩方差为43,你认为推荐谁参加比赛更合适,请说明理由.20.(7分)一只不透明的袋子中,装有三个分别标记为“1”、“2”、“3”的球,这三个球除了标记不同外,其余均相同.搅匀后,从中摸出一个球,记录球上的标记后放回袋中并搅匀,再从中摸出一个球,再次记录球上的标记.(1)请列出上述实验中所记录球上标记的所有可能的结果; (2)求两次记录球上标记均为“1”的概率.21.(8分)如图,在半径为2的⊙O 中,弦AB 长为2.(1)求点O 到AB 的距离.(2)若点C 为⊙O 上一点(不与点A ,B 重合),求∠BCA 的度数;22.(8分)已知二次函数y =x 2-2x -3.(1)该二次函数图象的对称轴为 ; (2)判断该函数与x 轴交点的个数,并说明理由;(3)下列说法正确的是 (填写所有正确说法的序号)①顶点坐标为(1,-4); ②当y >0时,-1<x <3;③在同一平面直角坐标系内,该函数图象与函数y =-x 2+2x +3的图象关于x 轴对称.23.(8分)如图,在四边形ABCD 中,AC 、BD 相交于点F ,点E 在BD 上,且AB AE =BC ED =AC AD. (1)求证:∠BAE =∠CAD ; (2)求证:△ABE ∽△ACD .24.(7分)课本1.4有这样一道例题:A BO(第21题)ABCDFE(第23题)据此,一位同学提出问题:“用这根长22 cm 的铁丝能否围成面积最大的矩形?若能围成,求出面积最大值;若不能围成,请说明理由.”请你完成该同学提出的问题.25.(8分)如图,在△ABC 中,AB =BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点,交BD 于点G ,交AB 于点F . (1)判断直线AC 与⊙O 的位置关系,并说明理由; (2)当BD =6,AB =10时,求⊙O 的半径.26.(9分)已知一次函数y =x +4的图象与二次函数y =ax (x -2)的图象相交于A (-1,b )和B ,ABF OED GC(第25题)点P 是线段AB 上的动点(不与A 、B 重合),过点P 作PC ⊥x 轴,与二次函数y =ax (x -2)的图象交于点C . (1)求a 、b 的值(2)求线段PC 长的最大值;(3)若△P AC 为直角三角形,请直接写出点P 的坐标.27.(9分)如图,折叠边长为a 的正方形ABCD ,使点C 落在边AB 上的点M 处(不与点A ,B 重ABPCOxy(第26题)合),点D 落在点 N 处,折痕EF 分别与边BC 、AD 交于点E 、F ,MN 与边AD 交于点G . 证明:(1)△AGM ∽△BME ;(2)若M 为AB 中点,则AM 3=AG 4=MG5;(3)△AGM 的周长为2a .ABCDMNE FG(第27题)2015-2016学年度第一学期期末学情调研 九年级数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. 48. 69. 110.100(1-x )2=8111.y =2(x -3)2+112.48π 13.1214.13 15.4- 216.92三、解答题(本大题共11小题,共88分) 17.(本题10分)(1)解:x +1=±3,∴x 1=2,x 2=-4.………………………………………………………5分(2)方法一:解:a =1,b =-4,c =2, b 2-4ac =8>0,x =4±2 22=2± 2 ,………………………………………… 3分∴x 1=2+ 2 ,x 2=2- 2 .…………………………………… 5分方法二:解:x 2-4x =-2, x 2-4x +4=-2+4,(x -2)2=2,…………………………………………………… 3分 x -2=± 2 ,∴x 1=2+ 2 ,x 2=2- 2 .……………………………… 5分18.(本题6分)解:将x =1代入,得:(a +1)2-1+a 2-2a -2=0,解得:a 1=-1,a 2=2.………………………………………………… 5分 ∵a +1≠0,∴a ≠-1,∴a =2.………………………………………………………………… 6分19.(本题8分)解:(1)9;9.……………………………………………………………… 2分(2)S 甲2= 23.……………………………………………………………… 4分(3)∵X X 甲乙, S 甲2<S 乙2,∴推荐甲参加比赛合适.……………………………………………… 8分20.(本题7分)题号 1 2 3 4 5 6 答案CBACDC解:(1)列表如下:…………………………………………………………………………… 4分 (2)在这种情况下,共包含9种结果,它们是等可能的.……………… 5分 所有的结果中,满足“两次记录球上标记均为‘1’”(记为事件A )的结果只有一种,所以P(A )= 19. …………………………………………………… 7分21.(本题8分)解:(1)过点O 作OD ⊥AB 于点D ,连接AO ,BO . ∵OD ⊥AB 且过圆心,AB =2,∴AD =12AB =1,∠ADO =90°.……………………………………… 2分在Rt △ADO 中,∠ADO =90°,AO =2,AD =1,∴OD =AO 2-AD 2 = 3 .即点O 到AB 的距离为 3 .………… 4分 (2)∵AO =BO =2,AB =2,∴△ABO 是等边三角形,∴∠AOB =60°. ………………………… 6分若点C 在优弧⌒ACB 上,则∠BCA =30°;若点C 在劣弧 ⌒AB上,则∠BCA = 12(360°-∠AOB )=150°.…… 8分 22.(本题8分)解:(1)直线x =1.……………………………………………… 2分(2)令y =0,得:x 2-2x -3=0. ∵b 2-4ac =16>0,∴方程有两个不相等的实数根,∴该函数与x 轴有两个交点.……………………………………… 6分 (3)①③.……………………………………………………………… 8分 23.(本题8分)证明:(1)在△ABC 与△AED 中,∵AB AE =BC ED =ACAD,∴△ABC ∽△AED .…………………………………………………… 2分 ∴∠BAC =∠EAD , ∴∠BAC -∠EAF =∠EAD -∠EAF ,即∠BAE =∠CAD .…………………………………………………… 4分(2)∵AB AE =AC AD ,∴AB AC =AEAD. …………………………………………… 6分在△ABE 与△ACD 中,∵∠BAE =∠CAD ,AB AC =AEAD,∴ △ABE ∽△ACD . ………………………………………………… 8分 24.(本题7分)解:能围成.设当矩形的一边长为x cm 时,面积为y cm 2.结果 1 2 3 1 (1,1) (1,2) (1,3)2 (2,1) (2,2) (2,3)3 (3,1) (3,2) (3,3)由题意得:y =x ·(222-x )…………………………………………………… 3分=-x 2+11x=-(x -112)2+1214…………………………………………… 5分∵(x -112)2≥0,∴-(x -112)2+1214≤1214.∴当x =112时,y 有最大值,y max =1214,此时222-x =112.答:当矩形的各边长均为112 cm 时,围成的面积最大,最大面积是1214cm 2.… 7分25.(本题8分)解:(1)AC 与⊙O 相切.本题答案不惟一,下列解法供参考.证法一:∵BE 平分∠ABD ,∴∠OBE =∠DBO . ∵OE =OB ,∴∠OBE =∠OEB ,∴∠OBE =∠DBO ,∴OE ∥BD .………………………………… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥AC .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 证法二:∵BE 平分∠ABD ,∴∠ABD =2∠ABE .又∵∠ADE =2∠ABE ,∴∠ABD =∠ADE .∴OE ∥BD .……… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥AC .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 (2)设⊙O 半径为r ,则AO =10-r .由(1)知,OE ∥BD ,∴△AOE ∽△ABD .………………………… 6分∴AO AB =OEBD ,即10-r 10=r 6,……………………………………………… 7分∴r =154.∴⊙O 半径是154.……………………………………… 8分26.(本题9分)解:(1)∵A (-1,b )在直线y =x +4上,∴b =-1+4=3,∴A (-1,3).又∵A (-1,3)在抛物线y =ax (x -2)上,∴3=-a ·(-1-2),解得:a =1.…………………………… 2分 (2)设P (m ,m +4),则C (m ,m 2-2m ). ∴PC =(m +4)-(m 2-2m )=-m 2+3m +4=-(m -32)2+254………………………………………… 5分∵(m -32)2≥0,∴-(m -32)2+254≤254.∴当m =32时,PC 有最大值,最大值为254.……………………… 7分(3)P 1(2,6),P 2(3,7).……………………………………… 9分27.(本题9分)证明:(1)∵四边形ABCD 是正方形,∴∠A =∠B =∠C =90°,∴∠AMG +∠AGM =90°.∵EF 为折痕,∴∠GME =∠C =90°,∴∠AMG +∠BME =90°,∴∠AGM =∠BME . ………………………………………………… 2分 在△AGM 与△BME 中,∵∠A =∠B ,∠AGM =∠BME ,∴△AGM ∽△BME . ………………………………………………… 3分(2)∵M 为AB 中点,∴BM =AM =a 2. 设BE =x ,则ME =CE =a -x .在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即(a 2)2+x 2=(a -x )2, ∴x =38a ,∴BE =38a ,ME =58a . 由(1)知,△AGM ∽△BME ,∴AG BM =GM ME =AM BE =43. ∴AG =43BM =23a ,GM =43ME =56a , ∴AM 3=AG 4=MG 5.…………………………………………………… 6分 (3)设BM =x ,则AM =a -x ,ME =CE =a -BE .在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即x 2+BE 2=(a -BE )2,解得:BE =a 2-x 22a. 由(1)知,△AGM ∽△BME ,∴C △AGM C △BME =AM BE =2a a +x. ∵C △BME =BM +BE +ME =BM +BE +CE =BM +BC =a +x ,∴C △AGM =C △BME ·AM BE =(a +x )·2a a +x=2a .……………………… 9分。
2017— 2018学年第一学期期末学情分析样题九年级数学(满分:120分、选择题(共6小题,每小题2分,共12分) 下列哪个方程是一元二次方程( ▲)卄 x 2 血x y7.若 一=3,贝V ——=▲ .y 3 y&若O O 的半径是4,圆心O 到直线I 的距离为3,则直线I 与O O 的位置关系是 ▲ 9.若关于x 的一元二次方程 x 2 + 4x + k - 1 = 0有实数根,则 k 的取值范围是▲.10 .若方程x 2 + 2x — 11 = 0的两根分别为 m 、n ,贝V mn (m + n )=▲. 11. __________________________________________________________ 已知P 是线段AB 的黄金分割点,AP > PB ,AB = 2,贝U AP = ______________________________________________ ▲ _____ (用根式表示) 12.若一个圆锥的侧面展开图是一个半径为 3cm ,圆心角为120。
的扇形,2. 3.12x + y = 1 B . x 2+ 1 = 2xy C . x 2+-= 3 x 函数y = 3 (x - 2) 2 + 4的图像的顶点坐标是( (3, 4) B . (- 2, 4) C . ( 2, 4) 八年级某同学 6次数学小测验的成绩分别为: D . x 2= 2x — 3D . ( 2,- 4) 80分,85分,95分,95分, 95 分,100 分, 则该同学这6次成绩的众数和中位数分别是( ▲) C . 90 分,95 分 D . 95 分, O , AC 平分Z BAD ,则下列结论正确的是( 4. 95分,95分 如图,四边形 B . 95 分, ABCD 内接于O 90分 85分AB = AD B . BC = CD D . Z BCA = Z DCA C . AB=AD -3),以原点 ▲) 如图,在平面直角坐标系中, 1为丄,把△ ABO 缩小,则点A 的对应点A 的坐标是( 3A . (- 1, 2) 6.—组数据1 , 5. O 为位似中心, 相似比 A •平均数 二、填空题(共 -18) D . (- 1 , 2)或B . (- 9, 18)C (- 9, 18)或(9, 2, 3, 3, 4, 5.若添加一个数据 3,则下列统计量中,发生变化的是((1- 2) ▲ B .众数 C .中位数 D •方差 10小题,每小题2分,共20 分)考试时间:120分钟)1.则该圆锥的侧面面积为▲ ___ cm2(结果保留n)13. 如图,在△ ABC 中,D 、E 分别是 AB 、AC 上的点,且 DE//BC ,若 AD : AB = 4: 9,贝U G ADE : S SBC15. 如图,以正六边形 ADHGFE 的一边AD 为边向外作正方形 ABCD ,则/ BED= ▲ ° 16. 如图,已知函数y = ax 2 + bx + c (a >0)的图像的对称轴经过点(2, 0),且与x 轴的一个交点坐标为 (4, 0).下列结论:①b 2- 4ac >0;②当x v 2时,y 随x 增大而增大; ③a -b + c v 0;④抛物线过原 点;⑤当0v x v 4时,y v 0.其中结论正确的是▲.(填序号)三、解答题(共11小题,共88分•解答时应写出文字说明、证明过程或演算步骤) 17. (( 8分)解方程:_(1) x 2+2x -3= 0;(2) x (x + 1) = 2(x + 1).18. (6 分)如图,已知 AD?AC = AB?AE . 求证:△ ADE ABC .19. ( 6分)已知抛物线的顶点坐标是(1 , - 4),且经过点(0,— 3),求与该抛物线相应的二次函数 表达式.▲1 .则点B 的坐标是 ▲(第 18 题)20. (8分)初三(1)班要从2男2女共4名同学中选人做晨会的升旗手.21. ( 8分)某市射击队甲、乙两名队员在相同的条件下各射耙 *7\//T 1L一二三四五六七八扎十1 _ — —S 2= n [(X 1— x )2+ (X 2 - x )2+ …+ (X n — x )2])平均数 方差 中位数 甲 7 ▲ 7 乙▲5.4▲(2)请从下列三个不同的角度对这次测试结果进行分析: ① 从平均数和方差相结合看, ▲ 的成绩好些; ② 从平均数和中位数相结合看,▲ 的成绩好些;③ 若其他队选手最好成绩在 9环左右,现要选一人参赛,你认为选谁参加,并说明理由.22. ( 8分)如图,大圆的弦 AB 、AC 分别切小圆于点 M 、N . (1) 求证:AB=AC ; (2) 若AB = 8,求圆环的面积.(1)若从这41人,则所选的同学性别为男生的概率是 (2)若从这42人,求这2名同学性别相同的概率. 10次,每次射耙的成绩情况如图所示:(1)请将下表补充完整:(参考公式:方差23.( 8分)如图,一电线杆 AB 的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN ,量得其影长 MF 为0.5米,量得电线杆 AB 落在地上的影子 BD 长3米,落在墙上的影子 CD 的高为2 米. 请利用小明测量的数据算出电线杆 AB 的高.24. ( 8分)如图,四边形 ABCD 是O O 的内接四边形,AD = B D , AC 为直径, (1) 求证:CD 平分/ ACE ;(2) 若 AC = 9, CE = 3,求 CD 的长.25. (10分)商场某种商品平均每天可销售 30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施•经调査发现,每件商品每降价 1元,商场平均每天可多售出2件.(1)若某天该商品每件降价 3元,当天可获利多少元?(2) 设每件商品降价x 元,则商场日销售量增加 ▲ 件,每件商品盈利 ▲ 元(用含x 的代数式表示)(3) 在上述情况下,每件商品降价多少元时,商场日盈利可达到2000元?DE 丄BC ,垂足为E .F B D(第 23 题)(第 24 题)26. (8分)对于实数a, b,我们可以用min {a, b}表示a, b两数中较小的数,例如mi n{3 , - 1} = - 1, min{2 , 2} = 2.类似地,若函数y i、y2都是x的函数,则y= min{ y i, y2}表示函数y i和y的"取小函数”.1 1(1)设y1 = x, y2 = 1,则函数y= min{x , ?的图像应该是▲中的实线部分.\ 1 i V J1 1 1 *L 1 \ 1f »f 11 11 1 f iF f1 】' t\ i' i、U ¥1 /\ ** 1 >h 1 /J O2(第26题)①____________________ ▲______________________________②____________________ ▲______________________________③ _______________________ ▲ _____________________________ ;(3) ___________________________________________________ 函数y= mi n{(x—4)2, (x+ 2)2}的图像关于____________________________________________________________ ▲ ____________ 对称.27. (10分)如图,在△ ABC中,AB=AC=10,/ B=30° O是线段AB上的一个动点,以O为圆心,OB 为半径作O O交BC于点D,过点D作直线AC的垂线,垂足为E.条不同性质:(1)求证:DE 是O O 的切线;(2)设OB=x ,求/ ODE 的内部与厶ABC 重合部分的面积y 的最大值.2017— 2018学年第一学期期末学情分析样题九年级数学参考答案、选择题(本大题共 6小题,每小题2分,共计12分)题号 1 2 3 4 5 6 答案DCABDD、填空题(本大题共 10小题,每小题2分,共20分)17.- ;8.相交. 9. k w 5. 10. 22. 11. .5-1. 312. 3 n13. 16: 81 .14. (5, 1).15. 45°.16.①④⑤.三、解答题(本大题共 11小题,共88 分) 17. ( 8 分)(1 )解:(x + 3) (x — 1)= 0 ................................. 2 分X 1 = — 3 , X 2= 1 解二:a = 1, b = 2, c =— 3—b ± * b 2 — 4ac 2a —2土 162 X 1=— 3, X 2= 1.(2) x(x + 1) — 2(x + 1) = 0 .............................. 1 分(x + 1) (x — 2) = 0 x 1=— 1, X 2 = 218. ( 6 分)证明:T AD?AC = AE2AB ,• AD = AE 'AB = AC在厶ABC 与厶ADE 中 ••• AB = AC ,/A =/A△ ABCADE ............................. 6 分(备用图)19. ................................................................................................ (6 分)解:设y=a(x—1)2—4, 1 分T经过点(0, —3 ),「. 一3= a(0 —1)2—4, ................................. 3 分解得a=1•••二次函数表达式为y=(x—1)2—4或y=x2—2 x—3解法二:设y= ax2+ bx+ c ................................... 1 分•••顶点坐标是(1,—4),且经过点(0,—3),—3= c,_b_•••—亦=1, ................ 4 分4ac—b2~4a~ =—4-解得a=1, b= —2, c= —3........................... 5分• y=x2—2 x—3 ............................. 6 分120. ................................................................................................................................................... (8 分)(1)2;.................................................................................... 2分(2)从4人中随机选2人,所有可能出现的结果有:(男1,男2)、(男1,女1)、(男1,女2)、(男2,男1)、(男2,女1)、(男2,女2)、(女1,男1)、(女1,男2)、(女1,女2)、(女2,男1)、(女2,男2)、(女2,女1),共有12种,................................ 6分它们出现的可能性相同,.......................................................... 7分满足“这2名同学性别相同”(记为事件A)的结果有种,所以P(A)= 142= 1. ....................... 8分12 321 .(8 分)(:1)平均数方差中位数甲 1.2乙77.5.................... 3分(2 )①甲;......... 4分②乙;......... 5分③选乙;........ 6分理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙 .......... 8分22. .................................................................................................................... ( 8 分)(1)证明:连结OM、ON、OA ......................................................................................................................... 1 分• AB、AC分别切小圆于点M、N .• AM=AN , OM 丄AB, ON 丄AC, .............................................. 2 分• AM= BM , AN=NC , ................................................................................ 3 分• AB=AC ...................................................................................................... 4 分(2)解:••弦AB切与小圆O O相切于点M• OM 丄AB ................................................................................................ 5 分• AM = BM= 4 ........................................................................................ 6 分•在Rt△ AOM 中,OA2—OM2= AM 2= 16 .............................................. 7 分• S 圆环=n OA2— n OM 2= T AM2= 16 n ....................................................... 8 分23. ( 8分)解:过 C 点作CG 丄AB 于点G , .•.GC = BD = 3 米,GB = CD = 2 米.•••/ NMF = Z AGC = 90° NF // AC , •••/ NFM = Z ACG ,•••△ NMF s\ AGC, ........................................................仝二二AG "GC ,...= i -= 6 ........................................................................MF 0. 5• AB = AG + GB = 6+ 2 = 8 (米),故电线杆子的高为 注:不证明相似的扣 1分。
九年级数学期末试卷 共6页 第1页2018-2019(上)南京市玄武区九年级期末数学试卷数 学注意事项:1.本试卷共6页,全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上, 答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再 将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净 后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定 位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.抛物线y =(x -2)2-3的顶点坐标为( ▲ ) A .(2,3) B .(2,-3) C .(-2,-3) D .(-2,3)2.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则△ADE 的面积△ABC 的面积=( ▲ )A .13B .14C .16D .193.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1、l 2、l 3于点A 、B 、C ,直线DF 分别交l 1、l 2、l 3于点D 、E 、F ,若AB =3,BC =5,则DEEF的值为( ▲ )A .13B .35C .12D .254.如图,四边形ABCD 是⊙O 的内接四边形,若∠A =115°,则∠BOD 的度数为( ▲ ) A .110° B .120° C .130° D .140°5.设x 1、x 2是关于x的方程x 2-mx -6=0的两个根,且x 1+x 2=5,则m 的值为( ▲ ) A .5 B .1 C .0 D .-56.已知二次函数y =-2(x -1)(x -m +3)(m 为常数),则下列结论正确的有( ▲ ) ①抛物线开口向下; ②抛物线与y 轴交点坐标为(0,-2m +6);③当x <1时,y 随x 增大而增大; ④抛物线的顶点坐标为(m -22,(m -4)22).A B D C E (第2题) A (第3题)B E DC F l 3 l 2l 1(第4题)九年级数学期末试卷 共6页 第2页A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接 填写在答题卡相应位置.......上) 7.若x y =23,则 x -y x +y= ▲ .8.某社团5名女生的身高(单位:cm )分别为:166,166,167,167,169,则她们身高的方差为 ▲ cm 2.9.已知点C 是线段AB 的黄金分割点(AC >BC ),若AB =4,则AC = ▲ .(结果保 留根号)10.已知圆锥的底面圆半径为3 cm ,母线长为4 cm ,则该圆锥的侧面积为 ▲ cm 2. 11.一只不透明的袋子中装有若干个蓝球和2个红球,这些球除颜色外都相同,搅匀后从中 任意摸出1个球,若摸到蓝球的概率是0.8,则袋子中有 ▲ 个蓝球.12.把函数y =-x 2的图像先向左平移2个单位长度,再向下平移3个单位长度得到新函数 的图像,则新函数的表达式是 ▲ .132则关于x 的方程ax +bx +c =0的解是 ▲ .14.如图,在扇形OAC 中,B 是 ⌒AC上一点,且AB 、BC 分别是⊙O 的内接正六边形、正五 边形的边,则∠A +∠C = ▲ °.15.如图,若点A (1-n 2,a ),B (n 2+2,b )在二次函数y =mx 2-2mx +3(m 为常数)的图像上,则a ▲ b .(填“>”、“<”或“=”)16.若-3≤a <1,则满足a (a +b )=b (a +1)-3a 的整数b 的值有 ▲ 个.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字 说明、证明过程或演算步骤) 17.(本题10分)解方程:(1)2x 2-4x -3=0;(2)x (2x -1)=x .18.(本题7:(1)该公司营销人员该月销售量的平均数是 ▲ 台,中位数是 ▲ 台,众数是 ▲ 台; (2)假设你是销售部负责人,你认为应怎样制定每位营销人员的月销售量指标?说说你的A B C O(第14题)23 (第15题)九年级数学期末试卷 共6页 第3页理由. 19.(本题7分)为了丰富学生的课余生活,拓展学生的视野,某学校开设了特色选修课程. 本学期该校共开设A 、B 、C 三类课程,如下表所示.(1)若小明从A 类课程中随机选择一门课程,则他恰好选中“合唱”的概率是 ▲ . (2)若小明分别从B 类课程和C 类课程中各随机选择一门课程,求他恰好选中“汉字的故 事”和“乒乓球”的概率.20.(本题7分)如图,已知二次函数y =ax 2+bx +3的图像经过点A (1,0),B (-2,3). (1)求该二次函数的表达式; (2)求该二次函数的最大值;(3)结合图像,解答问题:当y >3时,x21.(本题8分)如图,在Rt △ABC 和Rt △ADE 中,∠BAC =∠DAE =90°,AB 与DE 交于点F ,连接DB 、CE .(1)若AD ED =DFDA ,求∠AFD 的度数;(2)若∠ADE =∠ABC ,求证△ADB ∽△AEC . B(第21题)(第20题)九年级数学期末试卷 共6页 第4页22.(本题8分)如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两个点,且D 是 ⌒BC的中 点,OD 与BC 交于点E ,连接AC . 若∠A =70°,求∠CBD 的度数; 若DE =2,BC =6,求半圆O 的半径.23.(本题8分)已知二次函数y =-x 2+(m +1)x -m (m(1)求证:不论m 为何值,该二次函数的图像与x 轴总有公共点;(2)若该二次函数的图像与x 轴交于不同的两点A 、B,与y 轴交于点C ,且AB 2=2OC 2(O 为坐标原点),求m 的值.24.(本题8分)某网店销售一种手帕,每条进价为30元,经市场调研,售价为50元时, 每月可销售200条;售价每降低1元,销售量将增加10条. (1)每条售价为40元时,每月可获得利润 ▲ 元;(2)如果规定月销售量不低于250条,且售价不低于进价,当售价为多少元时,每月获得 利润最大?最大利润为多少元?25.(本题9分)如图,⊙O 是Rt △ABC 的外接圆,∠BAC =90°,AD 平分∠BAC ,且交⊙O 于点D ,过点D 作DE ∥BC ,交AB 的延长线于点E ,连接BD 、CD . (1)求证:DE 是⊙O 的切线; (2)若AB =8,AC =6,求BE 的长.C(第25题)九年级数学期末试卷 共6页 第5页26.(本题7分)如图①,有两个△ABC 和△A ′B ′C ′,其中∠C +∠C ′=180°,且两个三角形 不相似.问:能否分别用一条直线分割这两个三角形,使△ABC 所分割成的两个三角 形与△A ′B ′C ′所分割成的两个三角形分别相似?如果能,画出分割线,并标明相等的角; 如果不能,请说明理由.小明经过思考后,尝试从特殊情况入手,画出了当∠C =∠C ′=90°时的分割线:(1)小明在完成画图后给出了如下证明思路,请补全他的证明思路. 由画图可得△BCD ∽△ ▲ . 由∠A +∠B =90°,∠A′C′D′+∠B ′C ′D ′=90°,∠A′C′D′=∠B , 得 ▲ .同理可得∠B ′=∠ACD .由此得△ACD ∽△ ▲ .(2)当∠C >∠C ′时,请在图①的两个三角形中分别画出满足题意的分割线,并标明相等的角.(不写画法)C A B (第26题)图①C' B' A' 当∠C =∠C ′=90°时,在△ABC 中,过点C 画直线CD 与AB 相交于点D ,使得∠BCD =∠A′;在△A′B′C′中,过点C′画直线C′D′与A′B′相交于点D′,使得∠A′C′D′=∠B .CA B D C'A' B' D'九年级数学期末试卷 共6页 第6页27.(本题9分) 【数学概念】若等边三角形的三个顶点D 、E 、F 分别在△ABC 的三条边上,我们称等边三角形DEF 是△ABC 的内接正三角形. 【概念辨析】(1)下列图中△DEF 均为等边三角形,则满足△DEF 是△ABC 的内接正三角形的是 ▲ .【操作验证】(2)如图①,在△ABC 中,∠B =60°,D 为边AB 上一定点(BC >BD ),DE =DB ,EM 平 分∠DEC ,交边AC 于点M ,△DME 的外接圆与边BC 的另一个交点为N .求证:△DMN 是△ABC 的内接正三角形.【知识应用】(3)如图②,在△ABC 中,∠B =60°,∠A =45°,BC =2,D 是边AB 上的动点,若边BC上存在一点E ,使得以DE 为边的等边三角形DEF 是△ABC 的内接正三角形.设△DEF 的外接圆⊙O 与边BC 的另一个交点为K ,则DK 的最大值为 ▲ ,最小值为▲ .AB C DEFABC DEFA CBFDEA .B .C .① ②九年级数学期末试卷 共6页 第7页2018~2019学年度第一学期九年级期末学情调研试卷数学参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.-15 8.65 9.25-2 10.12π 11.812.y =-(x +2)2-3 13.x 1=-3,x 2=1 14.114° 15.< 16.6 三、解答题(本大题共11小题,共88分) 17.(本题10分)(1)解:2x 2-4x -3=0 x 2-2x =32…………………1分x 2-2x +1=52 …………………2分(x -1)2=52 …………………3分x -1=±102…………………4分 ∴x 1=1+102,x 2=1-102. …………………5分 (2)解:x (2x -1)=xx (2x -1)-x =0 …………………2分 x (2x -2)=0 …………………3分 ∴x 1=0,x 2=1. …………………5分18.(本题7分)(1)解:360,350,300; …………………3分 (2)解:用中位数350台定为每位营销人员的月销售量指标. …………………5分九年级数学期末试卷 共6页 第8页如果将中位数350台定为每位营销人员的月销售量指标,则大多数营销人员能完成,调动营销人员的积极性. ………………7分 (答案不唯一)19.(本题7分)(1)13; ………………3分(2)将B 类课程分别标记为B1,B2,B3,将C 类课程分别标记为C1,C2,C3. 用表格列出所有可能的的结果:由表格可知,共有9种可能出现的结果,并且它们都是等可能的. “恰好选中‘汉字的故事’和‘乒乓球’”记为事件A ,它的发生有1种可能,即(B1,C2),所以事件A 发生的概率P (A )=19 ……………7分即恰好选中“汉字的故事”和“乒乓球”的概率是19.20.(本题7分)解:(1)将 A (1,0),B (-2,3)代入y =ax 2+bx +3中得: ⎩⎪⎨⎪⎧a +b +3=0,4a -2b +3=3.………………1分 解得:⎩⎪⎨⎪⎧a =-1,b =-2. ………………2分该二次函数的表达式为y =-x 2-2x +3. ………………3分 解:(2)∵y =-x 2-2x +3=-(x +1)2+4. ………………4分 ∴当x =-1时,该二次函数的最大值为4. ………………5分 (3)-2<x <0. ………………7分21.(本题8分) 解:(1=DFDA,∠ADF =∠EDA , ………………1分九年级数学期末试卷 共6页 第9页∴△ADF ∽△EDA . ………………2分 ∴∠AFD =∠EDA . ………………3分 ∵∠DAE =90°,∴∠AFD =90°. ………………4分 证明:(2)∵∠ADE =∠ABC ,∠BAC =∠DAE ,∴△ADE ∽△ABC . ………………5分∴AD AB =AEAC .∴AD AE =ABAC . ………………6分又∵∠BAC =∠DAE ,∴∠BAC -∠BAE =∠DAE -∠BAE .∴∠DAB =∠EAC . ………………7分 ∴△ADB ∽△AEC . ………………8分22. (本题8分) 解:(1)连接CO . ∵∠A =70°,∴∠COB =2∠A =140°. …………………1分又∵D 是 ⌒BC的中点, ∴∠COD =70°. …………………3分 ∴∠CBD =12∠COD =35° …………………4分解:(2)∵CO =BO ,∠COD =∠DOB , ∴OD ⊥BC . …………………5分 又∵OD 是半径,∴CE =BE =12BC …………………6分∵BC =6, ∴BE =3.设半圆O 的半径为x ,则OB =OD =x ,OE =x -2, (x -2)2+32=x 2 …………………7分解得x =134.即半圆O 的半径为134. …………………8分23.(本题8分)(1)证明:当y =0时,-x 2+(m +1)x -m =0.…………1分九年级数学期末试卷 共6页 第10页∵a =-1, b =(m +1) ,c =-m∴b 2-4ac =(m +1)2-4×(-1)×(-m )=(m -1)2≥0. …………2分 ∴-x 2+(m +1)x -m =0有实数解. …………3分 ∴不论m 为何值,该函数的图像与x 轴总有公共点. …………4分 (2)解:当y =0时,-x 2+(m +1)x -m =0. ∴x 2-(m +1)x +m =0. ∴x 1=m ,x 2=1.∴AB 2=(m -1) 2. …………5分 当x =0时,y =-m .∴OC 2=(-m ) 2. …………6分 ∵AB 2=2OC 2,∴(m -1) 2=2 (-m ) 2. …………7分 ∴m 1=-1+2,m 2=-1-2. …………8分 即m 的值为-1+2或-1-2.24.(本题8分)(1)解:3000. …………2分 (2)解:设每条手帕售价为x 元时,每月所得利润为w 元.…………3分 根据题意得:w =(x -30)[200+10(50-x )] …………4分 =-10 x 2+1000 x -21000 …………5分 ∵200+10(50-x )≥0,x ≥30,∴30≤x ≤45. …………6分∴w =-10(x -50)2+4000(30≤x ≤45). …………7分 ∵-10<0,∴当x <50时,w 随x 的增大而增大.∴当x =45时,w 最大,最大值为3750元. …………8分 答:当售价为45元时,每月所得利润最大,最大利润为3750元.25.(本题9分) (1)证明:连接OD .∵∠BAC =90°,AD 平分∠BAC ,∴∠BAD =∠DAC =12∠BAC =45°. (1)∴∠COD =2∠DAC =90°. ∠BOD =2∠BAD =90°.∵DE ∥BC ,∴∠COD =∠EDO =90°. ……………2分 ∵∠EDO =90°,C(第25题)∴OD ⊥ED . ……………3分∵OD 为半径,OD ⊥ED ,垂足为点D ,∴DE 是⊙O 的切线. ……………4分(2)解:∵∠BAC =90°,∴BC 是⊙O 的直径. ……………5分在Rt △BAC 中,∠BAC =90°,BC =AB 2+AC 2 =82+62 =10 ,∴OB =OC =OD =5.∵OB =OD =5,∴∠OBD =∠ODB =12(180°-∠BOD )=45°. ∴∠BDE =∠EDO -∠ODB =45°.在Rt △BOD 中,∠BOD =90°,BD =OB 2+OD 2 =52+52 =52.在Rt △DOC 中,∠COD =90°,CD =OC 2+OD 2 =52+52 =52. ……………6分∵四边形ABCD 是⊙O 的内接四边形,∴∠ACD +∠ABD =180°.又∵∠EBD +∠ABD =180°,∴∠ACD =∠DBE . ………………7分∵∠ACD =∠EBD ,∠BDE =∠DAC =45°,∴△EBD ∽△DCA . ………………8分∴EB DC = BD CA . ∴ EB 52=52 6. ∴EB =253. ………………9分 答:BE 的长为253.26.(本题7分)(1)由画图可得△BCD ∽△ C ′A ′D ′ .由∠A +∠B =90°,∠A′C′D′+∠B ′C ′D ′=90°,∠A′C′D′=∠B ,得∠A =∠B ′C ′D ′ .同理可得∠B ′=∠ACD .由此得△ACD ∽△ C ′B ′D ′ . ……………3分 (2)九年级数学期末试卷 共6页 第12页……………7分27.(本题9分)(1)C ……………2分(2)证明:∵∠B =60°,DE =DB ,∴△BDE 为等边三角形. ……………3分 ∴∠BED =60°.∴∠DEC =120°. ……………4分∵EM 平分∠DEC ,∠DEM =∠MEC =12∠DEC =60°. ……………5分 ∵四边形ABCD 是△DME 的外接圆的内接四边形,∴∠NDM +∠NEM =180°,又∵∠NEM +∠MEC =180°,∴∠NDM =∠MEC =60°,∴∠NDM =60°, ……………6分又∵ ∠DNM =∠DEM ,∴∠ DNM =60°.∴△DMN 为等边三角形. ……………7分即△DMN 是△ABC 的内接正三角形.(3)2,4-23. ……………9分。
江苏省南京市玄武区2018届九年级数学上学期期末试题注意事项:1.本试卷共6页,全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.若a b =23,则a +b b的值为A .23B .53C .35D .322.把函数y =2x 2的图像先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图像,则新函数的表达式是A .y =2(x -3)2+2B .y =2(x +3)2-2C .y =2(x +3)2+2D .y =2(x -3)2-23.小明根据演讲比赛中9位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是A .平均数B .中位数C .众数D .方差4.如图,在△ABC 中,DE ∥BC ,AD AB =13,则下列结论中正确的是5.在二次函数y =ax 2+bx +c 中,x 与y 的部分对应值如下表:0 ①该二次函数的图像经过原点; ②该二次函数的图像开口向下; ③该二次函数的图像经过点(-1,3);④当x >0时,y 随着x 的增大而增大;⑤方程ax 2+bx +c =0有两个不相等的实数根. 其中正确的是A .AE EC =13B .DE BC =12C .△ADE 的周长△ABC 的周长=13D .△ADE 的面积△ABC 的面积=13ECBA(第4题)DA.①②③B.①③④C.①③⑤D.①④⑤6.如图①,在正方形ABCD 中,点P 从点D 出发,沿着D →A 方向匀速运动,到达点A 后停止运动.点Q 从点D 出发,沿着D →C →B →A 的方向匀速运动,到达点A 后停止运动.已知点P 的运动速度为a ,图②表示P 、Q 两点同时出发x 秒后,△APQ 的面积y 与x 的函数关系,则点Q 的运动速度可能是 A .13aB .12aC .2aD .3a二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:sin60°= ▲ .8.一元二次方程x 2+3x +1=0的两根分别为x 1,x 2,则x 1+x 2+x 1x 2= ▲ . 9.二次函数y =x 2-2x +2的图像的顶点坐标为 ▲ .10.如图,l 1∥l 2∥l 3,如果AB =2,BC =3,DF =4,那么DE = ▲ .11.如图,在⊙O 的内接四边形ABCD 中,AB =AD ,∠C =110°,则∠ABD = ▲ °. 12.如图,⊙O 的半径是2,点A 、B 、C 在⊙O 上,∠ACB =20°,则 ⌒AB 的长为 ▲ . 13.如图,△ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D ,若AB =4,AC =3,则cos ∠BAD 的值为 ▲ .(第6题)①l 1l 2l 3ABC EF D(第10题)(第11题)A(第12题)ACBD(第13题)(第16题)14.已知二次函数y=x2-2mx+1,当x≥1时,y随x的增大而增大,则m的取值范围是▲.15.我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线的比值,叫做这个正n边形的“特征值”,记为a n,那么a6=▲.16.如图,AC,BC是⊙O的两条弦,M是⌒AB的中点,作MF⊥AC,垂足为F,若BC=3,AC =3,则AF=▲.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x2-2x-4=0;(2)(x-2)2-x+2=0.18.(7分)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会.(1)抽取一名同学,恰好是甲的概率为▲;(2)抽取两名同学,求甲在其中的概率.19.(8分)我市某中学举行十佳歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据所给信息填空:(第19题)初中部高中部(220.(8分)已知二次函数的图像如图所示. (1)求这个二次函数的表达式;(2)将该二次函数图像向上平移 ▲ 个单位长度后恰好过点(-2,0); (3)观察图像,当-2<x <1时,y21.(8分)如图,在⊙O 中,AB 是⊙O 的弦,CD 是⊙O 的直径,且AB ⊥CD ,垂足为G ,点E在劣弧 ⌒AB 上,连接CE . (1)求证CE 平分∠AEB ;(2)连接BC ,若BC ∥AE ,且CG =4,AB =6,求BE 的长.D(第21题)(第20题)22.(8分)如图,在△ABC中,AD 和BG 是△ABC 的高,连接GD . (1)求证△ADC ∽△BGC ; (2)求证CG ·AB =CB ·DG .23.(8分)如图,在一笔直的海岸线上有A 、B 两个观测点,B 在A 的正东方向,AB =4 km .从A 测得灯塔C 在北偏东53°方向上,从B 测得灯塔C 在北偏西45°方向上,求灯塔C 与观测点A 的距离(精确到0.1 km ).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37cos53°≈0.60,tan53°≈1.33)24.(8分)在△ABC 中,以AC 上一点O 为圆心的⊙O 与BC 相切于点C ,与AC 相交于点D ,AC=12,BC =5.(1)如图①,若⊙O 经过AB 上的点E ,BC =BE ,求证AB 与⊙O 相切;(2)如图②,若⊙O 与AB 相交于点F 和点G ,∠FOG =120°,求⊙O 的半径.(第23题)A(第22题)25.(9分)某超市销售一种饮料,每瓶进价为9元.当每瓶售价为10元时,日均销售量为560瓶,经市场调查表明,每瓶售价每增加0.5元,日均销售量减少40瓶. (1)当每瓶售价为11元时,日均销售量为 ▲ 瓶; (2)当每瓶售价为多少元时,所得日均总利润为1200元;(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?26.(6分)在四边形ABCD 中,P 为CD 边上一点,且△ADP ∽△PCB .分别在图①和图②中用尺规作出所有满足条件的点P .(保留作图痕迹,不写作法) (1)如图①,四边形ABCD 是矩形;(2)如图②,在四边形ABCD 中,∠D =∠C =60°.CBABCD(第26题)①②27.(10分)已知二次函数y =-x 2+2mx -m 2+4.(1)求证:该二次函数的图像与x 轴必有两个交点;(2)若该二次函数的图像与x 轴交于点A 、B (点A 在点B 的左侧),顶点为C , ①求△ABC 的面积;②若点P 为该二次函数图像上位于A 、C 之间的一点,则△PAC 面积的最大值为 ▲ , 此时点P 的坐标为 ▲ .2017—2018学年度第一学期期末学情调研试卷九年级数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.32 8.-2 9.(1,1) 10.85 11.55 12.49π 13.35 14.m ≤1 15.32 16.3+32三、解答题(本大题共11小题,共88分)17.(本题8分)(1)解: x 2-2x =4x 2-2x +1=4+1(x -1)2=5 x -1=± 5∴x 1=1+5, x 2=1- 5(2)解: (x -2)2-x +2=0 (x -2) (x -2-1)=0(x -2) (x -3)=0∴x 1=2, x 2=3. ………8分18.(本题7分)(1) 14.(2)解:树状图或表格或列举抽取两名同学,所有可能出现的结果共有6种(列举法),它们出现的可能性相同.所有的结果中,满足“甲在其中”(记为事件A )的结果只有3种,所以P (A )=12.……7分19.(本题8分)(1)(2方差比高中部小,成绩更整齐. …………8分20.(本题8分)(1) 设y =a (x +h )2-k .∵图像经过顶点(-1,-4)和点(1,0),∴y =a (x +1)2-4.将(1,0)代入可得a =1,∴y =(x +1)2-4.(2)3.(3)-4≤y <0. …………8分21.(本题8分)(1)证明:∵CD ⊥AB ,CD 是直径,∴ ⌒AC = ⌒BC . ∴∠AEC =∠BEC . ∴CE 平分∠AEB .(2)∵CD ⊥AB ,CD 是直径,∴BG =AG =3.∠BGC =90°. 在Rt △BGC 中,CG =4,BG =3, ∴BC =CG 2+BG 2=5. ∵BC ∥AE , ∴∠AEC =∠BCE . 又∠AEC =∠BEC , ∴∠BCE =∠BEC .∴BE =BC =5. ………8分D(第21题)22.(本题8分)(1) ∵在△ABC 中,AD 和BG 是△ABC 的高,∴∠BGC =∠ADC =90°. 又∠C =∠C ,∴△ADC ∽△BGC .(2)∵△ADC ∽△BGC ,∴CG DC =BCAC . ∴CG BC =DC AC. 又∠C =∠C ,∴△GDC ∽△BAC . ∴CG BC =DG AB. ∴CG ·AB =CB ·DG . ………8分23.(本题8分)解:如图,作CD ⊥AB ,垂足为D .由题意可知:∠CAB =90°-53°=37°,∠CBA =90°-45°=45°,∴在Rt △ADC 中,cos ∠CAB =ADAC ,即AD =AC cos37°;sin ∠CAB =CDAC,即CD =AC sin 37°.在Rt △BDC 中,tan ∠CBA =CD BD ,即BD =CDtan45°=CD .∵AB =AD +DB ,∴AC cos37°+AC sin 37°=4.∴AC =4cos 37°+sin37°≈2.9.答:灯塔C 与观测点A 的距离为2.9 km .………8分 24.(本题8分)(1) ∵⊙O 与BC 相切于点C ,∴OC ⊥BC .∴∠ACB =90°. ∴连接OE ,CE . ∵OC =OE ,∴∠OCE =∠OEC .∵BC =BE ,∴∠BEC =∠BCE .∴∠OEB =∠OEC +∠BEC =∠OCE +∠BCE =90°. ∴OE ⊥AB ,且AB 过半径OE 的外端.(第23题)A(第22题)A BE∴AB 与⊙O 相切. (2) 过点O 作OH ⊥FG ,垂足为H .∵在Rt △ABC 中,AC =12,BC =5,∴AB =AC 2+BC 2=13.∵OG =OF , ∠FOG =120°, ∴∠OFG =∠OGF =30°.设半径为r ,则OH =12r .∵OH ⊥FG , ∴∠OHA =90° ∴∠OHA =∠ACB , 又∠A =∠A ,∴△OHA ∽△BCA .∴OH BC =OABA. 即 12r5=12-r 13.解得:r =12023. ………8分25.(本题9分) (1)480.(2)设每瓶售价增加x 元.(1+x )(560-80x )=1200.解得:x 1=2, x 2=4.答:当每瓶售价为12或14元时,所得日均总利润为1200元. (3)设每瓶售价增加x 元,日均总利润为y 元.y =(1+x )(560-80x )=-80x 2+480x +560=-80(x -3)2+1280.当x =3时,y 有最大值1280.答:当每瓶售价为1326.C B①CB(1)如图①,点P 1,P 2即为所求.(2)如图②,点P 1,P 2即为所求.………6分 27.(本题10分) (1)当y =0时,-x 2+2mx -m 2+4=0.∵b 2-4ac = 4m 2-4(-1)(-m 2+4)=16>0, ∴此一元二次方程有两个解.∴该该二次函数的图像与x 轴必有两个交点. (2)当y =0时,-x 2+2mx -m 2+4=0.解得x 1=m +2, x 2=m -2. 当x =m 时,y =4.∴△ABC 面积=12×4×4=8.(3) 1, (m -1,3). ………10分。
2017—2018学年第一学期期末学业水平检测九年级数学试题参考答案各位老师:提前祝假期快乐,阅卷时请注意:评分标准仅做参考,只要学生作答正确,均可得分。
对于解答题目,答案错误原则上得分不超过分值的一半,有些题目有多种方法,只要做对,13. -3 14.-2 15. 516.2:3 17.24 18.(2,1) 19.解:(1)将x=1代入方程得:9-3a+a-1=0, 解得:a=4……………………………………………………………1分所以方程为:03x 4x 2=++,解得:3-x 1-x 21==,,所以方程的另一根为x=-3。
……………………………………3分(用根与系数的关系来解也可以)(2)证明:⊿=a 2-4×(a -1)= (a -2)2,∵(a -2)2≥0,⊿≥0. ∴不论a 取何实数,该方程都有两个不相等的实数根.………………8分20.解∶(1)21;………………………………………………2分 (2)乙家庭没有孩子,准备生两个孩子所有可能出现得结果有(男,男),(男,女),(女,男),(女,女),一共有4种结果,它们出现得可能性相同,所有结果种,满足“至少有一个是女孩”的结果有三种,所以至少有一个孩子是女孩的概率是43.………………7分 21.由题意得, 在直角ADC ∆中,∠APQ=45°,CD=60米,∴tan45°=ADCD ,即 ………2分 在直角BDC ∆中, ∠BPQ=60°,∴tan60°=CD BD ,即60BD =3, ∴BD=360………4分∴AB=BD-AD=60360-(米)。
答:海丰塔AB 的高为60360-米. ………8分22.(1)证明:连结OD .∵EF AC ⊥∴90DFA ∠=︒,∵AB AC =,∴1C ∠=∠……………………2分∵OB OD =,∴12∠=∠,∴2C ∠=∠ ,∴OD ∥AC …………3分∴90EDO DFA ∠=∠=︒,即OD EF ⊥.∴EF 是⊙O 的切线.…………………………5分(其他方法参照本题标准)(2)解: 连结AD .∵AB 是直径,∴AD BC ⊥.又AB AC =,∴CD=BD=5,在Rt CFD ∆中,DF=4, ∴CF=3…………………………………………6分在Rt CFD ∆中,DF AC ⊥∴CFD ∆∽ADC △ ………………………7分 ∴DC CF DA DF =,即534=DA ,∴320=DA ………………………9 根据勾股定理得:∴2222)320(5+=+=BD AD AB =325……………………10分 23. (1)∵ 四边形AMPN 是矩形,∴PN ∥AB ,PN =AM ,∴△DNP ∽△DAB . ∴ABNP DA DN =. ……………………………………………………2分 ∵AB =160,AD =100,AN =x ,AM =y ,∴160100100y x =-. ∴16058+-=x y . ………………………………………………4分 (2)设花坛AMPN 的面积为S ,则()40005058)16058(2+--=+-==x x x xy S …6分 ∵058<-,∴当50=x 时,S 有最大值, 4000=最大值S . ∴当AM =80,AN =50时,花坛AMPN 的最大面积为4000m 2 ………………8分24. 解:(1)∵直线y =ax +1与x 轴交于点A(-2,0),∴-2a +1=0,解得a =12,∴直线的解析式为y =12x +1,……2分 由PC ⊥x 轴,且PC =2,∴y =2=12x +1,解得x =2, ∴点P 的坐标为(2,2),………………………………3分∵点P 在反比例函数y =k x的图象上,∴k =2×2=4, ∴反比例函数解析式为y =4x.…………………………4分 (2)∵直线y =12x +1与y 轴交于点B ,∴点B 的坐标为(0,1),∴AO =2,OB = 1. ) 12如解图,过点Q 作QH ⊥x 轴于点H ,连接CQ ,则∠QHC =∠AOB =90°.∵点Q 在反比例函数y =4x 的图象上,∴设点Q 的坐标为(t ,4t),t >2, 则QH =4t,CH =t -2,……………………6分 若以点Q 、C 、H 为顶点的三角形S △AOB 相似时,则有两种可能,(ⅰ)当△QCH ∽△BAO 时,AO CH =OB QH ,即QH CH =OB AO =12,∴2×4t=t -2,解得t 1=4,t 2=-2(舍去), 则点Q 的坐标为(4,1);……………………………………7分(ⅱ)当△QCH ∽△ABO 时,AO QH =OB CH ,即QH CH =AO OB =2,∴4t=2(t -2),解得t 1=3+1,t 2=1-3(舍去),则点Q 的坐标为(3+1,23-2).……………………………………8分 综上所述,Q 点的坐标为(4,1)或(1+3,23-2).………………9分25.解:(1)设抛物线解析式为y=a (x+4)(x ﹣2),将B (0,﹣4)代入得:﹣4=﹣8a ,即a=,则抛物线解析式为y=(x+4)(x ﹣2)=x 2+x ﹣4;……………………4分(2)过M 作MN ⊥x 轴,将x=m 代入抛物线得:y=m 2+m ﹣4,即M (m , m 2+m ﹣4),∴MN=|m 2+m ﹣4|=﹣m 2﹣m+4,ON=﹣m ,………………………………6分∵A (﹣4,0),B (0,﹣4),∴OA=OB=4,∴△AMB 的面积为S=S △AMN +S 梯形MNOB ﹣S △AOB=×(4+m )×(﹣m 2﹣m+4)+×(﹣m )×(﹣m 2﹣m+4+4)﹣×4×4=2(﹣m 2﹣m+4)﹣2m ﹣8=﹣m 2﹣4m=﹣(m+2)2+4,当m=﹣2时,S 取得最大值,最大值为4.…………………………10分。
玄武区2016届九年级(上)期末考试数学试卷一、选择题(本大题共6小题,每小题2分,共计12分)1.一元二次方程x 2=1的解是 ( ) A .x =1B .x =-1C .x 1=1,x 2=-1D .x =02.⊙O 的半径为1,同一平面内,若点P 与圆心O 的距离为1,则点P 与⊙O 的位置关系 是 ( ) A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定3.9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A . 中位数B .极差C .平均数D .方差4.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则方程ax 2+bx +c =0的一个解的范围是 ( )x 6.17 6.18 6.19 6.20 y-0.03-0.010.020.04A .-0.01<x <0.02B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.205.若点A (-1,a ),B (2,b ),C (3,c )在抛物线y =x 2上,则下列结论正确的是 ( ) A .a <c <b B . b <a <c C .c <b <a D . a <b <c6.如图,点E 在y 轴上,⊙E 与x 轴交于点A 、B ,与y 轴交于点C 、D ,若C (0, 9),D (0,-1),则线段AB 的长度为( )A .3B .4C .6D .8 二、填空题(本大题共10小题,每小题2分,共20分)7.若ba =3,则b +a a = .8.一组数据:2,3,-1,5的极差为 .9.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1•x 2的值是 .10.某产品原来每件成本是100元,连续两次降低成本后,现在成本是81元,设平均每次降低成本的百分率为x ,可得方程 .11.在平面直角坐标系中,将抛物线y =2x 2先向右平移3个单位,再向上平移1个单位,得到的抛物线的函数表达式为 .12.已知圆锥的底面半径为6 cm ,母线长为8 cm ,它的侧面积为 cm 2.13.如图,根据所给信息,可知BCB ′C ′的值为 .14.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则当x =3时,y = .ByA BE DxO C(第6题)x … -3 -2 -1 0 1 … y…73113…15.如图,AB 是⊙O 的一条弦,C 是⊙O 上一动点且∠ACB =45°,E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于点G 、H .若⊙O 的半径为2,则GE +FH 的最大值为 .16.如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,点P 、Q 在DC 边上,且PQ =14DC .若AB =16,BC =20,则图中阴影部分的面积是 .三、解答题(本大题共11小题,共88分.解答时应写出文字说明、推理过程或演算步骤) 17.(10分)(1)解方程:(x +1)2=9; (2)解方程:x 2-4x +2=0.18.(6分)已知关于x 的一元二次方程(a +1)x 2-x +a 2-2a -2=0有一根是1,求a 的值.19.(8分)射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次 第二次 第三次 第四次 第五次 第六次 平均成绩中位数甲108981099①(第13题)OO CBHFEGA(第15题)ABN CQP D MO(第16题)乙 10 7 10 10 9 8②9.5(1)完成表中填空① ;② ;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩方差为43,你认为推荐谁参加比赛更合适,请说明理由.20.(7分)一只不透明的袋子中,装有三个分别标记为“1”、“2”、“3”的球,这三个球除了标记不同外,其余均相同.搅匀后,从中摸出一个球,记录球上的标记后放回袋中并搅匀,再从中摸出一个球,再次记录球上的标记.(1)请列出上述实验中所记录球上标记的所有可能的结果; (2)求两次记录球上标记均为“1”的概率.21.(8分)如图,在半径为2的⊙O 中,弦AB 长为2.(1)求点O 到AB 的距离.(2)若点C 为⊙O 上一点(不与点A ,B 重合),求∠BCA 的度数;22.(8分)已知二次函数y =x 2-2x -3.(1)该二次函数图象的对称轴为 ; (2)判断该函数与x 轴交点的个数,并说明理由;(3)下列说法正确的是 (填写所有正确说法的序号)①顶点坐标为(1,-4); ②当y >0时,-1<x <3;③在同一平面直角坐标系内,该函数图象与函数y =-x 2+2x +3的图象关于x 轴对称.23.(8分)如图,在四边形ABCD 中,AC 、BD 相交于点F ,点E 在BD 上,且AB AE =BC ED =AC AD. (1)求证:∠BAE =∠CAD ; (2)求证:△ABE ∽△ACD .24.(7分)课本1.4有这样一道例题:A BO(第21题)ABCDFE(第23题)据此,一位同学提出问题:“用这根长22 cm 的铁丝能否围成面积最大的矩形?若能围成,求出面积最大值;若不能围成,请说明理由.”请你完成该同学提出的问题.25.(8分)如图,在△ABC 中,AB =BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点,交BD 于点G ,交AB 于点F . (1)判断直线AC 与⊙O 的位置关系,并说明理由; (2)当BD =6,AB =10时,求⊙O 的半径.26.(9分)已知一次函数y =x +4的图象与二次函数y =ax (x -2)的图象相交于A (-1,b )和B ,ABF OED GC(第25题)点P 是线段AB 上的动点(不与A 、B 重合),过点P 作PC ⊥x 轴,与二次函数y =ax (x -2)的图象交于点C . (1)求a 、b 的值(2)求线段PC 长的最大值;(3)若△P AC 为直角三角形,请直接写出点P 的坐标.27.(9分)如图,折叠边长为a 的正方形ABCD ,使点C 落在边AB 上的点M 处(不与点A ,B 重ABPCOxy(第26题)合),点D 落在点 N 处,折痕EF 分别与边BC 、AD 交于点E 、F ,MN 与边AD 交于点G . 证明:(1)△AGM ∽△BME ;(2)若M 为AB 中点,则AM 3=AG 4=MG5;(3)△AGM 的周长为2a .ABCDMNE FG(第27题)2015-2016学年度第一学期期末学情调研 九年级数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. 48. 69. 110.100(1-x )2=8111.y =2(x -3)2+112.48π 13.1214.13 15.4- 216.92三、解答题(本大题共11小题,共88分) 17.(本题10分)(1)解:x +1=±3,∴x 1=2,x 2=-4.………………………………………………………5分(2)方法一:解:a =1,b =-4,c =2, b 2-4ac =8>0,x =4±2 22=2± 2 ,………………………………………… 3分∴x 1=2+ 2 ,x 2=2- 2 .…………………………………… 5分方法二:解:x 2-4x =-2, x 2-4x +4=-2+4,(x -2)2=2,…………………………………………………… 3分 x -2=± 2 ,∴x 1=2+ 2 ,x 2=2- 2 .……………………………… 5分18.(本题6分)解:将x =1代入,得:(a +1)2-1+a 2-2a -2=0,解得:a 1=-1,a 2=2.………………………………………………… 5分 ∵a +1≠0,∴a ≠-1,∴a =2.………………………………………………………………… 6分19.(本题8分)解:(1)9;9.……………………………………………………………… 2分(2)S 甲2= 23.……………………………………………………………… 4分(3)∵X X 甲乙, S 甲2<S 乙2,∴推荐甲参加比赛合适.……………………………………………… 8分20.(本题7分)题号 1 2 3 4 5 6 答案CBACDC解:(1)列表如下:…………………………………………………………………………… 4分 (2)在这种情况下,共包含9种结果,它们是等可能的.……………… 5分 所有的结果中,满足“两次记录球上标记均为‘1’”(记为事件A )的结果只有一种,所以P(A )= 19. …………………………………………………… 7分21.(本题8分)解:(1)过点O 作OD ⊥AB 于点D ,连接AO ,BO . ∵OD ⊥AB 且过圆心,AB =2,∴AD =12AB =1,∠ADO =90°.……………………………………… 2分在Rt △ADO 中,∠ADO =90°,AO =2,AD =1,∴OD =AO 2-AD 2 = 3 .即点O 到AB 的距离为 3 .………… 4分 (2)∵AO =BO =2,AB =2,∴△ABO 是等边三角形,∴∠AOB =60°. ………………………… 6分若点C 在优弧⌒ACB 上,则∠BCA =30°;若点C 在劣弧 ⌒AB上,则∠BCA = 12(360°-∠AOB )=150°.…… 8分 22.(本题8分)解:(1)直线x =1.……………………………………………… 2分(2)令y =0,得:x 2-2x -3=0. ∵b 2-4ac =16>0,∴方程有两个不相等的实数根,∴该函数与x 轴有两个交点.……………………………………… 6分 (3)①③.……………………………………………………………… 8分 23.(本题8分)证明:(1)在△ABC 与△AED 中,∵AB AE =BC ED =ACAD,∴△ABC ∽△AED .…………………………………………………… 2分 ∴∠BAC =∠EAD , ∴∠BAC -∠EAF =∠EAD -∠EAF ,即∠BAE =∠CAD .…………………………………………………… 4分(2)∵AB AE =AC AD ,∴AB AC =AEAD. …………………………………………… 6分在△ABE 与△ACD 中,∵∠BAE =∠CAD ,AB AC =AEAD,∴ △ABE ∽△ACD . ………………………………………………… 8分 24.(本题7分)解:能围成.设当矩形的一边长为x cm 时,面积为y cm 2.结果 1 2 3 1 (1,1) (1,2) (1,3)2 (2,1) (2,2) (2,3)3 (3,1) (3,2) (3,3)由题意得:y =x ·(222-x )…………………………………………………… 3分=-x 2+11x=-(x -112)2+1214…………………………………………… 5分∵(x -112)2≥0,∴-(x -112)2+1214≤1214.∴当x =112时,y 有最大值,y max =1214,此时222-x =112.答:当矩形的各边长均为112 cm 时,围成的面积最大,最大面积是1214cm 2.… 7分25.(本题8分)解:(1)AC 与⊙O 相切.本题答案不惟一,下列解法供参考.证法一:∵BE 平分∠ABD ,∴∠OBE =∠DBO . ∵OE =OB ,∴∠OBE =∠OEB ,∴∠OBE =∠DBO ,∴OE ∥BD .………………………………… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥AC .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 证法二:∵BE 平分∠ABD ,∴∠ABD =2∠ABE .又∵∠ADE =2∠ABE ,∴∠ABD =∠ADE .∴OE ∥BD .……… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥AC .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 (2)设⊙O 半径为r ,则AO =10-r .由(1)知,OE ∥BD ,∴△AOE ∽△ABD .………………………… 6分∴AO AB =OEBD ,即10-r 10=r 6,……………………………………………… 7分∴r =154.∴⊙O 半径是154.……………………………………… 8分26.(本题9分)解:(1)∵A (-1,b )在直线y =x +4上,∴b =-1+4=3,∴A (-1,3).又∵A (-1,3)在抛物线y =ax (x -2)上,∴3=-a ·(-1-2),解得:a =1.…………………………… 2分 (2)设P (m ,m +4),则C (m ,m 2-2m ). ∴PC =(m +4)-(m 2-2m )=-m 2+3m +4=-(m -32)2+254………………………………………… 5分∵(m -32)2≥0,∴-(m -32)2+254≤254.∴当m =32时,PC 有最大值,最大值为254.……………………… 7分(3)P 1(2,6),P 2(3,7).……………………………………… 9分27.(本题9分)证明:(1)∵四边形ABCD 是正方形,∴∠A =∠B =∠C =90°,∴∠AMG +∠AGM =90°.∵EF 为折痕,∴∠GME =∠C =90°,∴∠AMG +∠BME =90°,∴∠AGM =∠BME . ………………………………………………… 2分 在△AGM 与△BME 中,∵∠A =∠B ,∠AGM =∠BME ,∴△AGM ∽△BME . ………………………………………………… 3分(2)∵M 为AB 中点,∴BM =AM =a 2. 设BE =x ,则ME =CE =a -x .在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即(a 2)2+x 2=(a -x )2, ∴x =38a ,∴BE =38a ,ME =58a . 由(1)知,△AGM ∽△BME ,∴AG BM =GM ME =AM BE =43. ∴AG =43BM =23a ,GM =43ME =56a , ∴AM 3=AG 4=MG 5.…………………………………………………… 6分 (3)设BM =x ,则AM =a -x ,ME =CE =a -BE .在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即x 2+BE 2=(a -BE )2,解得:BE =a 2-x 22a. 由(1)知,△AGM ∽△BME ,∴C △AGM C △BME =AM BE =2a a +x. ∵C △BME =BM +BE +ME =BM +BE +CE =BM +BC =a +x ,∴C △AGM =C △BME ·AM BE =(a +x )·2a a +x=2a .……………………… 9分。
2018【玄武区】初三期末试卷数学一、选择题1.抛物线()223y x =--的顶点坐标为( ) A .(2,3) B .(2,3-) C .(2-,3-) D .(2-,3)2.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC =△的面积△的面积( )A .13B .14C .16D .193.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1、l 2、l 3于点A 、B 、C ,直线DF 分别交于l 1、l 2、l 3于点D 、E 、F .若AB =3,BC =5,则DEEF的值为( ) A .13B .35C .12D .254.如图,四边形ABCD 是O 的内接四边形,若∠A =115°,则∠BOD 的度数为( ) A .110° B .120° C .130° D .140°5.设x 1、x 2是关于x 的方程260x mx --=的两个根,且x 1+x 2=5,则m 的值为( ) A .5 B .1 C .0 D .56.已知二次函数()()213y x x m =---+(m 为常数),则下列结论正确的有( ) ①抛物线开口向下;②抛物线与y 轴交点坐标为(0,-2m +6);③当x <1时,y 随x 增大而增大; ④抛物线的顶点坐标为()242,22m m ⎛⎫-- ⎪ ⎪⎝⎭A .1个B .2个C .3个D .4个二、填空题 7.若23x y =,则x y x y-=+________. 8.某社团5名女生的身高(单位:cm )分别为:166,166,167,167,169,则她们身高的方差为________cm 2.9.已知点C 是线段AB 的黄金分割点(AC >BC ),若AB =4,则AC =________.(结果保留根号)10.已知圆锥的底面半径为3cm ,母线长为4cm ,则该圆锥的侧面积为________ cm 2. 11.一只不透明的袋子中装有若干个蓝球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,若摸到蓝球的概率是0.8,则袋子中有________个蓝球. 12.把函数2y x =-的图像先向左平移2个单位长度,再向下平移3个单位长度得到新函数的图像,则新函数的表达式是_________.13.已知二次函数2y ax bx c =++的自变量x 与函数y 的部分对应值列表如下:x (3)2 1 0 ··· y···34 3···则关于x 的方程20ax bx c ++=的解是________.14.如图,在扇形OAC 中,B 是AC 上一点,且AB 、BC 分别是O 的内接正六边形、正五边形的边,则∠A +∠C =________°.15.如图,若点A (21n -,a ),B (n 2+2,b )在二次函数223y mx mx =-+(m 为常数)的图像上,则a _________b .(填“>”、“<”或“=”)16.若3-≤a <1,则满足()()13a a b b a a +=+-的整数b 的值有________个.三、解答题17.(本题10分)解方程:(1)22430x x --=;(2)()21x x x -=18.(本题7分)某公司25名营销人员某月销售某种商品的数量如下(单位:台):月销售量 600 500 400 350 300 200 人数144673(1)该公司营销人员该月销售量的平均数是__________台,中位数是___________台,众数是__________台;(2)假设你是销售部负责人,你认为应怎样制定每位营销人员的月销售量指标?说说你的理由.19.(本题7分)为了丰富学生的课余生活,拓展学生的视野,某学校开设了特色选修课程;本学期该校共开设A 、B 、C 三类课程,如下表所示:A 类课程B 类课程C 类课程 合唱 汉字的故事 篮球 机器人 游戏中的数学 乒乓球 武术中英文化对比羽毛球(1)若小明从A 类课程中随机选择一门课程,则他恰好选中“合唱”的概率是_________. (2)若小明分别从B 类课程和 C 类课程中各随机选择一门课程,求他恰好选中“汉字的故事”和“乒乓球”的概率.20.(本题7分)如图,已知二次函数23y ax bx =++的图像经过点A (1,0),B (2-,3). (1)求该二次函数的表达式; (2)求该二次函数的最大值;(3)结合图像,解答问题:当y >3时,x 的取值范围是____________.21.(本题8分)如图,在Rt △ABC 和Rt △ADE 中,∠BAC =∠DAE =90°,AB 与DE 交于点F ,连接DB 、CE .(1)若AD DFED DA,求∠AFD 的度数; (2)若∠ADE =∠ABC ,求证△ADB ∽△AEC .22.(本题8分)如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两个点,且D 是 BC的中点,OD 与BC 交于点E ,连接AC .(1)若∠A =70°,求∠CBD 的度数;(2)若DE =2,BC =6,求半圆O 的半径.23.(本题8分)已知二次函数2(1)y x m x m =-++-(m 为常数). (1)求证:不论m 为何值,该二次函数的图像与x 轴总有公共点;(2)若该二次函数的图像与x 轴交于不同的两点A ,B ,与y 轴交于点C ,且222AB OC(O 为坐标原点),求m 的值. 24.(本题8分)某网店销售一种手帕,每条进价为30元,经市场调研,售价为50元时,每月可销售200条;售价每降低1元,销售量将增加10条. (1)每条售价为40元时,每月可获得利润 元;(2)如果规定月销售量不低于250条,且销售不低于进价,当售价为多少元时,每月获得利润最大?最大利润为多少元?25.(本题9分)如图,⊙O 是Rt △ABC 的外接圆,∠BAC =90°,AD 平分∠BAC ,且交⊙O 于点D ,过点D 作DE ∥BC ,交AB 的延长线于点E ,连接BD 、CD . (1)求证:DE 是⊙O 的切线;(2)若AB =8,AC =6,求BE 的长.CEDO BA26.(本题7分)如图①,有两个△ABC和△A'B'C',其中∠C+∠C'=180°,且两个三角形不相似.问:能否分别用一条直线分割这两个三角形,使△ABC所分割的两个三角形与△A'B'C'所分割成的两个三角形分别相似?如果能,画出分割线,并标明相等的角;如果不能,请说明理由.图①小明经过思考后,尝试从特殊情况入手,画出了当∠C=∠C'=90°时的分割线:当∠C=∠C'=90°时,在△ABC中,过点C画直线CD与AB相交于点D,使得∠BCD=∠A';在△A'B'C'中,过点C'画直线C'D'与A'B'相交于点D',使得∠A'C'D'=∠B.(1)小明在完成画图后给出了如下证明思路,请补全他的证明思路.由画图可得△BCD∽△.由∠A+∠B=90°,∠A'C'D'+∠B'C'D'=90°,∠A'C'D'=∠B,得.同理可得∠B'=∠ACD.由此得△ACD∽△.(2)当∠C>∠C'时,请在图①的两个三角形中分别画出满足题意的分割线,并标明相等的角.(不写画法)27.(本题9分)【数学概念】若等边三角形的三个顶点D、E、F分别在△ABC的三条边上,我们称等边三角形DEF 是△ABC的内接正三角形.【概念辨析】(1)下列图中△DEF均为等边三角形,则满足△DEF是△ABC的内接正三角形的是.A.B.C.【操作验证】(2)如图①,在△ABC中,∠B=60°,D为边AB上一定点(BC>BD),DE=DB,EM 平分∠DEC,交边AC于点M,△DME的外接圆与边BC的另一个交点为N.求证:△DMN是△ABC的内接正三角形.图①【知识应用】(3)如图②,在△ABC中,∠B=60°,∠A=45°,BC=2,D是边AB上的动点,若边BC上存在一点E,使得以DE为边的等边三角形DEF是△ABC的内接正三角形.设△DEF的外接圆⊙O与边BC的另一个交点为K,则DK的最大值为,最小值为.图②2018【玄武区】初三数学期末试卷(答案)一、选择题 题号 1 2 3 4 5 6 答案 BDBCAC三、解答题17、⑴11x =+, 21x =- ⑵11x =,20x = 18、⑴360,350,300⑵制定月销售量指标时,要能使大部分员工达标,应该以众数为参考依据,将每位营销人员的月销售量定为300件。
玄武区2019届九年级(上)期末考试数学试卷一、选择题(本大题共6小题,每小题2分,共计12分)1.一元二次方程x 2=1的解是 ( ) A .x =1B .x =-1C .x 1=1,x 2=-1D .x =02.⊙O 的半径为1,同一平面内,若点P 与圆心O 的距离为1,则点P 与⊙O 的位置关系 是 ( ) A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定3.9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A . 中位数B .极差C .平均数D .方差4.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则方程ax 2+bx +c =0的一个解的范围是 ( )A .-0.01<x <0.02B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.205.若点A (-1,a ),B (2,b ),C (3,c )在抛物线y =x 2上,则下列结论正确的是 ( ) A .a <c <b B . b <a <c C .c <b <a D . a <b <c6.如图,点E 在y 轴上,⊙E 与x 轴交于点A 、B ,与y 轴交于点C 、D ,若C (0, 9),D (0,-1),则线段AB 的长度为( )A .3B .4C .6D .8 二、填空题(本大题共10小题,每小题2分,共20分)7.若ba =3,则b +a a = .8.一组数据:2,3,-1,5的极差为 .9.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1•x 2的值是 .10.某产品原来每件成本是100元,连续两次降低成本后,现在成本是81元,设平均每次降低成本的百分率为x ,可得方程 .11.在平面直角坐标系中,将抛物线y =2x 2先向右平移3个单位,再向上平移1个单位,得到的抛物线的函数表达式为 .12.已知圆锥的底面半径为6 cm ,母线长为8 cm ,它的侧面积为 cm 2.13.如图,根据所给信息,可知BCB ′C ′的值为 .14.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则当x =3时,y = .B(第6题)x … -3 -2 -1 0 1 … y…73113…15.如图,AB 是⊙O 的一条弦,C 是⊙O 上一动点且∠ACB =45°,E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于点G 、H .若⊙O 的半径为2,则GE +FH 的最大值为 .16.如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,点P 、Q 在DC 边上,且PQ =14DC .若AB =16,BC =20,则图中阴影部分的面积是 .三、解答题(本大题共11小题,共88分.解答时应写出文字说明、推理过程或演算步骤) 17.(10分)(1)解方程:(x +1)2=9; (2)解方程:x 2-4x +2=0.18.(6分)已知关于x 的一元二次方程(a +1)x 2-x +a 2-2a -2=0有一根是1,求a 的值.19.(8分)射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩第一次 第二次 第三次 第四次 第五次 第六次 平均成绩中位数甲108981099①(第13题)OOCBFEGA(第15题)A BN CQP MO(第16题)(1)完成表中填空① ;② ;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩方差为43,你认为推荐谁参加比赛更合适,请说明理由.20.(7分)一只不透明的袋子中,装有三个分别标记为“1”、“2”、“3”的球,这三个球除了标记不同外,其余均相同.搅匀后,从中摸出一个球,记录球上的标记后放回袋中并搅匀,再从中摸出一个球,再次记录球上的标记.(1)请列出上述实验中所记录球上标记的所有可能的结果; (2)求两次记录球上标记均为“1”的概率.21.(8分)如图,在半径为2的⊙O 中,弦AB 长为2.(1)求点O 到AB 的距离.(2)若点C 为⊙O 上一点(不与点A ,B 重合),求∠BCA 的度数;22.(8分)已知二次函数y =x 2-2x -3.(1)该二次函数图象的对称轴为 ; (2)判断该函数与x 轴交点的个数,并说明理由;(3)下列说法正确的是 (填写所有正确说法的序号)①顶点坐标为(1,-4); ②当y >0时,-1<x <3;③在同一平面直角坐标系内,该函数图象与函数y =-x 2+2x +3的图象关于x 轴对称.23.(8分)如图,在四边形ABCD 中,AC 、BD 相交于点F ,点E 在BD 上,且AB AE =BC ED =AC AD. (1)求证:∠BAE =∠CAD ; (2)求证:△ABE ∽△ACD .24.(7分)课本1.4有这样一道例题:A (第21题)ABCDFE(第23题)据此,一位同学提出问题:“用这根长22 cm 的铁丝能否围成面积最大的矩形?若能围成,求出面积最大值;若不能围成,请说明理由.”请你完成该同学提出的问题.25.(8分)如图,在△ABC 中,AB =BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点,交BD 于点G ,交AB 于点F . (1)判断直线AC 与⊙O 的位置关系,并说明理由; (2)当BD =6,AB =10时,求⊙O 的半径.26.(9分)已知一次函数y =x +4的图象与二次函数y =ax (x -2)的图象相交于A (-1,b )和B ,BF OED G(第25题)点P是线段AB上的动点(不与A、B重合),过点P作PC⊥x轴,与二次函数y=ax(x-2)的图象交于点C.(1)求a、b的值(2)求线段PC长的最大值;(3)若△P AC为直角三角形,请直接写出点P的坐标.(第26题)27.(9分)如图,折叠边长为a的正方形ABCD,使点C落在边AB上的点M处(不与点A,B重合),点D 落在点 N 处,折痕EF 分别与边BC 、AD 交于点E 、F ,MN 与边AD 交于点G . 证明:(1)△AGM ∽△BME ;(2)若M 为AB 中点,则AM 3=AG 4=MG5;(3)△AGM 的周长为2a .ABCDMNE FG(第27题)2019-2019学年度第一学期期末学情调研 九年级数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. 48. 69. 110.100(1-x )2=8111.y =2(x -3)2+112.48π 13.1214.13 15.4- 216.92三、解答题(本大题共11小题,共88分) 17.(本题10分)(1)解:x +1=±3,∴x 1=2,x 2=-4.………………………………………………………5分(2)方法一:解:a =1,b =-4,c =2, b 2-4ac =8>0,x =4±2 22=2± 2 ,………………………………………… 3分∴x 1=2+ 2 ,x 2=2- 2 .…………………………………… 5分方法二:解:x 2-4x =-2, x 2-4x +4=-2+4,(x -2)2=2,…………………………………………………… 3分 x -2=± 2 ,∴x 1=2+ 2 ,x 2=2- 2 .……………………………… 5分18.(本题6分)解:将x =1代入,得:(a +1)2-1+a 2-2a -2=0,解得:a 1=-1,a 2=2.………………………………………………… 5分 ∵a +1≠0,∴a ≠-1,∴a =2.………………………………………………………………… 6分19.(本题8分)解:(1)9;9.……………………………………………………………… 2分(2)S 甲2= 23.……………………………………………………………… 4分(3)∵X X 甲乙, S 甲2<S 乙2,∴推荐甲参加比赛合适.……………………………………………… 8分20.(本题7分)解:(1)列表如下:…………………………………………………………………………… 4分 (2)在这种情况下,共包含9种结果,它们是等可能的.……………… 5分 所有的结果中,满足“两次记录球上标记均为‘1’”(记为事件A )的结果只有一种,所以P(A )= 19. …………………………………………………… 7分21.(本题8分)解:(1)过点O 作OD ⊥AB 于点D ,连接AO ,BO . ∵OD ⊥AB 且过圆心,AB =2,∴AD =12AB =1,∠ADO =90°.……………………………………… 2分在Rt △ADO 中,∠ADO =90°,AO =2,AD =1,∴OD =AO 2-AD 2 = 3 .即点O 到AB 的距离为 3 .………… 4分 (2)∵AO =BO =2,AB =2,∴△ABO 是等边三角形,∴∠AOB =60°. ………………………… 6分若点C 在优弧⌒ACB 上,则∠BCA =30°;若点C 在劣弧 ⌒AB上,则∠BCA = 12(360°-∠AOB )=150°.…… 8分 22.(本题8分)解:(1)直线x =1.……………………………………………… 2分(2)令y =0,得:x 2-2x -3=0. ∵b 2-4ac =16>0,∴方程有两个不相等的实数根,∴该函数与x 轴有两个交点.……………………………………… 6分 (3)①③.……………………………………………………………… 8分 23.(本题8分)证明:(1)在△ABC 与△AED 中,∵AB AE =BC ED =ACAD,∴△ABC ∽△AED .…………………………………………………… 2分 ∴∠BAC =∠EAD , ∴∠BAC -∠EAF =∠EAD -∠EAF ,即∠BAE =∠CAD .…………………………………………………… 4分(2)∵AB AE =AC AD ,∴AB AC =AEAD. …………………………………………… 6分在△ABE 与△ACD 中,∵∠BAE =∠CAD ,AB AC =AEAD,∴ △ABE ∽△ACD . ………………………………………………… 8分 24.(本题7分)解:能围成.设当矩形的一边长为x cm 时,面积为y cm 2.由题意得:y =x ·(222-x )…………………………………………………… 3分=-x 2+11x=-(x -112)2+1214…………………………………………… 5分∵(x -112)2≥0,∴-(x -112)2+1214≤1214.∴当x =112时,y 有最大值,y max =1214,此时222-x =112.答:当矩形的各边长均为112 cm 时,围成的面积最大,最大面积是1214cm 2.… 7分25.(本题8分)解:(1)AC 与⊙O 相切.本题答案不惟一,下列解法供参考.证法一:∵BE 平分∠ABD ,∴∠OBE =∠DBO . ∵OE =OB ,∴∠OBE =∠OEB ,∴∠OBE =∠DBO ,∴OE ∥BD .………………………………… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥AC .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 证法二:∵BE 平分∠ABD ,∴∠ABD =2∠ABE .又∵∠ADE =2∠ABE ,∴∠ABD =∠ADE .∴OE ∥BD .……… 2分 ∵AB =BC ,D 是AC 中点,∴BD ⊥AC .∴∠ADB =90°.∵AC 经过⊙O 半径OE 的外端点E ,∴AC 与⊙O 相切.……… 4分 (2)设⊙O 半径为r ,则AO =10-r .由(1)知,OE ∥BD ,∴△AOE ∽△ABD .………………………… 6分∴AO AB =OEBD ,即10-r 10=r 6,……………………………………………… 7分∴r =154.∴⊙O 半径是154.……………………………………… 8分26.(本题9分)解:(1)∵A (-1,b )在直线y =x +4上,∴b =-1+4=3,∴A (-1,3).又∵A (-1,3)在抛物线y =ax (x -2)上,∴3=-a ·(-1-2),解得:a =1.…………………………… 2分 (2)设P (m ,m +4),则C (m ,m 2-2m ). ∴PC =(m +4)-(m 2-2m )=-m 2+3m +4=-(m -32)2+254………………………………………… 5分∵(m -32)2≥0,∴-(m -32)2+254≤254.∴当m =32时,PC 有最大值,最大值为254.……………………… 7分(3)P 1(2,6),P 2(3,7).……………………………………… 9分27.(本题9分)证明:(1)∵四边形ABCD 是正方形,∴∠A =∠B =∠C =90°,∴∠AMG +∠AGM =90°.∵EF 为折痕,∴∠GME =∠C =90°,∴∠AMG +∠BME =90°,∴∠AGM =∠BME . ………………………………………………… 2分 在△AGM 与△BME 中,∵∠A =∠B ,∠AGM =∠BME ,∴△AGM ∽△BME . ………………………………………………… 3分(2)∵M 为AB 中点,∴BM =AM =a 2. 设BE =x ,则ME =CE =a -x .在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即(a 2)2+x 2=(a -x )2, ∴x =38a ,∴BE =38a ,ME =58a . 由(1)知,△AGM ∽△BME ,∴AG BM =GM ME =AM BE =43. ∴AG =43BM =23a ,GM =43ME =56a , ∴AM 3=AG 4=MG 5.…………………………………………………… 6分 (3)设BM =x ,则AM =a -x ,ME =CE =a -BE .在Rt △BME 中,∠B =90°,∴BM 2+BE 2=ME 2,即x 2+BE 2=(a -BE )2,解得:BE =a 2-x 22a. 由(1)知,△AGM ∽△BME ,∴C △AGM C △BME =AM BE =2a a +x. ∵C △BME =BM +BE +ME =BM +BE +CE =BM +BC =a +x ,∴C △AGM =C △BME ·AM BE =(a +x )·2a a +x=2a .……………………… 9分。
2017—2018学年度第一学期期末学情调研试卷九年级数学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.若a b =23,则a +b b 的值为A .23B .53C .35D .322.把函数y =2x 2的图像先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图像,则新函数的表达式是A .y =2(x -3)2+2B .y =2(x +3)2-2C .y =2(x +3)2+2D .y =2(x -3)2-2 3.小明根据演讲比赛中9位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 A .平均数B .中位数C .众数D .方差4.如图,在△ABC 中,DE ∥BC ,AD AB =13,则下列结论中正确的是5.在二次函数y =ax 2+bx +c 中,x 与y 的部分对应值如下表:①该二次函数的图像经过原点; ②该二次函数的图像开口向下; ③该二次函数的图像经过点(-1,3);④当x >0时,y 随着x 的增大而增大;⑤方程ax 2+bx +c =0有两个不相等的实数根. 其中正确的是 A .①②③ B . ①③④ C .①③⑤ D .①④⑤A .AE EC =13B .DE BC =12C .△ADE 的周长△ABC 的周长=13D .△ADE 的面积△ABC 的面积=13ECBA(第4题)D6.如图①,在正方形ABCD 中,点P 从点D 出发,沿着D →A 方向匀速运动,到达点A 后停止运动.点Q 从点D 出发,沿着D →C →B →A 的方向匀速运动,到达点A 后停止运动.已知点P 的运动速度为a ,图②表示P 、Q 两点同时出发x 秒后,△APQ 的面积y 与x 的函数关系,则点Q 的运动速度可能是 A .13aB .12aC .2aD .3a二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:sin60°= ▲ .8.一元二次方程x 2+3x +1=0的两根分别为x 1,x 2,则x 1+x 2+x 1x 2= ▲ . 9.二次函数y =x 2-2x +2的图像的顶点坐标为 ▲ .10.如图,l 1∥l 2∥l 3,如果AB =2,BC =3,DF =4,那么DE = ▲ .11.如图,在⊙O 的内接四边形ABCD 中,AB =AD ,∠C =110°,则∠ABD = ▲ °. 12.如图,⊙O 的半径是2,点A 、B 、C 在⊙O 上,∠ACB =20°,则 ⌒AB 的长为 ▲ . 13.如图,△ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D ,若AB =4,AC =3,则cos ∠BAD的值为 ▲ .(第6题)①l 1 l 2l 3A BC EF D (第10题)(第11题)A(第12题)ACBD(第13题)(第16题)14.已知二次函数y =x 2-2mx +1,当x ≥1时,y 随x 的增大而增大,则m 的取值范围是 ▲ . 15.我们规定:一个正n 边形(n 为整数,n ≥4)的最短对角线与最长对角线的比值,叫做这个正n 边形的“特征值”,记为a n ,那么a 6= ▲ .16.如图,AC ,BC 是⊙O 的两条弦,M 是 ⌒AB的中点,作 MF ⊥AC ,垂足为F ,若BC =3,AC =3,则AF = ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x 2-2x -4=0; (2)(x -2)2-x +2=0.18.(7分)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会. (1)抽取一名同学,恰好是甲的概率为 ▲ ; (2)抽取两名同学,求甲在其中的概率.19.(8分)我市某中学举行十佳歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据所给信息填空:(2(第19题)初中部高中部20.(8分)已知二次函数的图像如图所示. (1)求这个二次函数的表达式;(2)将该二次函数图像向上平移 ▲ 个单位长度后恰好过点(-2,0); (3)观察图像,当-2<x <1时,y21.(8分)如图,在⊙O 中,AB 是⊙O 的弦,CD 是⊙O 的直径,且AB ⊥CD ,垂足为G ,点E 在劣弧 ⌒AB上,连接CE . (1)求证CE 平分∠AEB ;(2)连接BC ,若BC ∥AE ,且CG =4,AB =6,求BE 的长.D(第21题)(第20题)22.(8分)如图,在△ABC中,AD和BG是△ABC的高,连接GD.(1)求证△ADC∽△BGC;(2)求证CG·AB=CB·DG.23.(8分)如图,在一笔直的海岸线上有A、B两个观测点,B在A的正东方向,AB=4 km.从A测得灯塔C在北偏东53°方向上,从B测得灯塔C在北偏西45°方向上,求灯塔C 与观测点A的距离(精确到0.1 km).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37tan53°≈1.33)24.(8分)在△ABC中,以AC上一点O为圆心的⊙O与BC相切于点C,与AC相交于点D,AC=12,BC=5.(1)如图①,若⊙O经过AB上的点E,BC=BE,求证AB与⊙O相切;(2)如图②,若⊙O与AB相交于点F和点G,∠FOG=120°,求⊙O的半径.B B①②(第24题)(第23题)A(第22题)25.(9分)某超市销售一种饮料,每瓶进价为9元.当每瓶售价为10元时,日均销售量为560瓶,经市场调查表明,每瓶售价每增加0.5元,日均销售量减少40瓶. (1)当每瓶售价为11元时,日均销售量为 ▲ 瓶; (2)当每瓶售价为多少元时,所得日均总利润为1200元;(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?26.(6分)在四边形ABCD 中,P 为CD 边上一点,且△ADP ∽△PCB .分别在图①和图②中用尺规作出所有满足条件的点P .(保留作图痕迹,不写作法) (1)如图①,四边形ABCD 是矩形;(2)如图②,在四边形ABCD 中,∠D =∠C =60°.27.(10分)已知二次函数y =-x 2+2mx -m 2+4.(1)求证:该二次函数的图像与x 轴必有两个交点;(2)若该二次函数的图像与x 轴交于点A 、B (点A 在点B 的左侧),顶点为C , ①求△ABC 的面积;②若点P 为该二次函数图像上位于A 、C 之间的一点,则△P AC 面积的最大值为 ▲ , 此时点P 的坐标为 ▲ .CBABCD(第26题)①②2017—2018学年度第一学期期末学情调研试卷九年级数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.32 8.-2 9.(1,1) 10.8511.55 12.49π 13.35 14.m ≤1 15.32 16.3+32三、解答题(本大题共11小题,共88分)17.(本题8分)(1)解: x 2-2x =4x 2-2x +1=4+1 (x -1)2=5 x -1=± 5∴x 1=1+5, x 2=1- 5(2)解: (x -2)2-x +2=0 (x -2) (x -2-1)=0(x -2) (x -3)=0∴x 1=2, x 2=3. ………8分18.(本题7分)(1) 14.(2)解:树状图或表格或列举抽取两名同学,所有可能出现的结果共有6种(列举法),它们出现的可能性相同.所有的结果中,满足“甲在其中”(记为事件A )的结果只有3种,所以P (A )=12.……7分19.(本题8分)(1)(2)答:我觉得初中部的成绩更好,因为初中部和高中部的成绩平均数一样,但是初中部的方差比高中部小,成绩更整齐.…………8分20.(本题8分)(1)设y=a(x+h)2-k.∵图像经过顶点(-1,-4)和点(1,0),∴y=a(x+1)2-4.将(1,0)代入可得a=1,∴y=(x+1)2-4.(2)3.(3)-4≤y<0.…………8分21.(本题8分)(1)证明:∵CD⊥AB,CD是直径,∴⌒AC=⌒BC.∴∠AEC=∠BEC.∴CE平分∠AEB.(2)∵CD⊥AB,CD是直径,∴BG=AG=3.∠BGC=90°.在Rt△BGC中,CG=4,BG=3,∴BC=CG2+BG2=5.∵BC∥AE,∴∠AEC=∠BCE.又∠AEC=∠BEC,∴∠BCE=∠BEC.∴BE=BC=5.………8分22.(本题8分)(1)∵在△ABC中,AD和BG是△ABC的高,∴∠BGC=∠ADC=90°.又∠C=∠C,∴△ADC∽△BGC.(2)∵△ADC∽△BGC,∴CGDC=BCAC.∴CGBC=DCAC.又∠C=∠C,A(第22题)D (第21题)∴△GDC ∽△BAC . ∴CG BC =DG AB. ∴CG ·AB =CB ·DG . ………8分23.(本题8分)解:如图,作CD ⊥AB ,垂足为D .由题意可知:∠CAB =90°-53°=37°,∠CBA =90°-45°=45°, ∴在Rt △ADC 中,cos ∠CAB =ADAC ,即AD =AC cos37°;sin ∠CAB =CDAC,即CD =AC sin37°.在Rt △BDC 中,tan ∠CBA =CD BD ,即BD =CDtan45°=CD .∵AB =AD +DB , ∴AC cos37°+AC sin37°=4.∴AC =4cos37°+sin37°≈2.9.答:灯塔C 与观测点A 的距离为2.9 km .………8分 24.(本题8分)(1) ∵⊙O 与BC 相切于点C ,∴OC ⊥BC .∴∠ACB =90°. ∴连接OE ,CE .∵OC =OE ,∴∠OCE =∠OEC .∵BC =BE ,∴∠BEC =∠BCE .∴∠OEB =∠OEC +∠BEC =∠OCE +∠BCE =90°. ∴OE ⊥AB ,且AB 过半径OE 的外端. ∴AB 与⊙O 相切. (2) 过点O 作OH ⊥FG ,垂足为H .∵在Rt △ABC 中,AC =12,BC =5, ∴AB =AC 2+BC 2=13.∵OG =OF , ∠FOG =120°, ∴∠OFG =∠OGF =30°.设半径为r ,则OH =12r .∵OH ⊥FG , ∴∠OHA =90° ∴∠OHA =∠ACB , 又∠A =∠A ,∴△OHA ∽△BCA . ∴OH BC =OABA.(第23题)BB即 12r5=12-r 13.解得:r =12023. ………8分25.(本题9分) (1)480.(2)设每瓶售价增加x 元. (1+x )(560-80x )=1 200.解得:x 1=2, x 2=4.答:当每瓶售价为12或14元时,所得日均总利润为1 200元. (3)设每瓶售价增加x 元,日均总利润为y 元.y =(1+x )(560-80x ) =-80x 2+480x +560 =-80(x -3)2+1 280.当x =3时,y 有最大值1280.答:当每瓶售价为1326.(1)如图①,点P 1,P 2即为所求.(2)如图②,点P 1,P 2即为所求.………6分 27.(本题10分) (1)当y =0时,-x 2+2mx -m 2+4=0.∵b 2-4ac = 4m 2-4(-1)(-m 2+4)=16>0, ∴此一元二次方程有两个解.∴该该二次函数的图像与x 轴必有两个交点. (2)当y =0时,-x 2+2mx -m 2+4=0.解得x 1=m +2, x 2=m -2. 当x =m 时,y =4.C B① C∴△ABC 面积=12×4×4=8. (3) 1, (m -1,3). ………10分。
2017-2018学年九年级数学上期末试卷含详细答案解析数学试卷一、选择题(每小题3分,满分30分)1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.2.ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(﹣2,5)4.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.07.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30°8.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+49.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F.S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.2710.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于()A.6:3:2 B.2:1:1 C.5:3:2 D.1:1:1二、填空题(每小题3分,满分18分.)11.点A(1,﹣2)关于原点对称的点A′的坐标为.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.5013.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.14.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.15.已知一等腰三角形的底边长和腰长分别是方程x2﹣3x=4(x﹣3)的两个实数根,则该等腰三角形的周长是.16.如图,在平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P是线段BO、OA上的动点,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.三、解答题(本大题共9小题,满分102分)17.(9分)解方程:x2﹣6x+8=0.18.(9分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A 与点D之间的距离.19.(10分)在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.20.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.21.(12分)随着市民环保意识的增强,春节期间烟花爆竹销售量逐年下降.某市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.(1)求该市2015年到2017年烟花爆竹年销售量的平均下降率;(2)预测该市2018年春节期间的烟花爆竹销售量.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O 相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.23.(12分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且,双曲线y=(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.24.(14分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.25.(14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.参考答案一、选择题1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.解:A、B、C是中心对称图形,D不是中心对称图形,故选:D.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(﹣2,5)【分析】由抛物线解析式即可求得答案.解:∵y=﹣2(x﹣3)2+5,∴抛物线顶点坐标为(3,5),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.4.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定【分析】先计算出“22选5”和“29选7”获奖的可能性,再进行比较,即可得出答案.解:“22选5”福利彩票中,全部获奖的可能性为:,“29选7”福利彩票中,全部获奖的可能性为:,∵<,∴获一等奖机会大的是“29选7”,故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 【分析】利用待定系数法求出函数值即可判断.解:当x=﹣3时,y1=1,当x=﹣1时,y2=3,当x=1时,y3=﹣3,∴y3<y1<y2故选:C.【点评】本题考查反比例函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.0【分析】根据判别式的意义得到△=(﹣2)2﹣4m>0,然后解关于m的不等式,最后对各选项进行判断.解:根据题意得△=(﹣2)2﹣4m>0,解得m<1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30°【分析】首先连接AC,由AB是⊙O的直径,可得∠ACB=90°,然后由圆周角定理,求得∠A=∠D,继而求得答案.解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=∠CDB=40°,∴∠CBA=90°﹣∠A=50°.故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.8.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+4【分析】抛物线y=2x2的顶点坐标为(0,0),则把它向左平移3个单位,再向上平移4个单位,所得抛物线的顶点坐标为(﹣3,4),然后根据顶点式写出解析式.解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F.S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.27【分析】先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.解:∵四边形ABCD是平行四边形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴,解得S△FCD=27.故选:D.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.10.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于()A.6:3:2 B.2:1:1 C.5:3:2 D.1:1:1【分析】连结MF,如图,先证明MF为△CEA的中位线,则AE=2MF,AE∥MF,利用NE∥MF得到==1,==,即BN=NM,MF =2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,所以AN=3b,然后利用AN∥MF得到===,所以NQ=a,QM=a,再计算BN:NQ:QM的值.解:连结MF,如图,∵M是AC的中点,EF=FC,∴MF为△CEA的中位线,∴AE=2MF,AE∥MF,∵NE∥MF,∴==1,==,∴BN=NM,MF=2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,∴AN=3b,∵AN∥MF,∴===,∴NQ=a,QM=a,∴BN:NQ:QM=a:a:a=5:3:2.故选:C.【点评】本题考查了平行线分线段成比例定理、三角形中位线性质等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,学会利用参数解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,满分18分.)11.点A(1,﹣2)关于原点对称的点A′的坐标为(﹣1,2).【分析】直接利用关于原点对称点的性质进而得出答案.解:点A(1,﹣2)关于原点对称的点A′的坐标为:(﹣1,2).故答案为:(﹣1,2).【点评】此题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为0.5(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.解:由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.5.故答案为:0.5.【点评】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.13.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.【分析】由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故答案为:x1=﹣1或x2=3.【点评】本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.14.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是144度.【分析】根据圆锥的侧面积公式得出圆锥侧面积,再利用扇形面积求出圆心角的度数.解:∵将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,∴圆锥侧面积公式为:S=πrl=π×6×15=90πcm2,∴扇形面积为90π=,解得:n=144,∴侧面展开图的圆心角是144度.故答案为:144【点评】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥侧面积是解决问题的关键.15.已知一等腰三角形的底边长和腰长分别是方程x2﹣3x=4(x﹣3)的两个实数根,则该等腰三角形的周长是10或11.【分析】因式分解法解方程求得x的值,再分两种情况求解可得.解:解方程x2﹣3x=4(x﹣3),即(x﹣3)(x﹣4)=0得x=3或x =4,若腰长为3时,周长为3+3+4=10,若腰长为4时,周长为4+4+3=11,故答案为:10或11.【点评】本题主要考查解一元二次方程和等腰三角形的能力,解题的关键是熟练掌握因式分解法解一元二次方程的能力和等腰三角形的定义.16.如图,在平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P是线段BO、OA上的动点,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是(0,),(2,0),(,0).【分析】分类讨论:当PC∥OA时,△BPC∽△BOA,易得P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,易得P点坐标为(2,0);当PC⊥AB时,如图,由于∠CAP=∠OAB,则Rt△APC∽Rt △ABC,得到=,再计算出AB、AC,则可利用比例式计算出AP,于是可得到OP的长,从而得到P点坐标.解:当PC∥OA时,△BPC∽△BOA,由点C是AB的中点,所以P 为OB的中点,此时P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,由点C是AB的中点,所以P为OA的中点,此时P点坐标为(2,0);当PC⊥AB时,如图,∵∠CAP=∠OAB,∴Rt△APC∽Rt△ABC,∴=,∵点A(4,0)和点B(0,3),∴AB==5,∵点C是AB的中点,∴AC=,∴=,∴AP=,∴OP=OA﹣AP=4﹣=,此时P点坐标为(,0),综上所述,满足条件的P点坐标为(0,),(2,0),(,0).故答案为:(0,),(2,0),(,0).【点评】本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;有两组角对应相等的两个三角形相似.也考查了坐标与图形性质.注意分类讨论思想解决此题.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤.)17.(9分)解方程:x2﹣6x+8=0.【分析】把方程左边分解得到(x﹣2)(x﹣4)=0,则原方程可化为x﹣2=0或x﹣4=0,然后解两个一次方程即可.解:x2﹣6x+8=0(x﹣2)(x﹣4)=0,∴x﹣2=0或x﹣4=0,∴x1=2 x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.(9分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A 与点D之间的距离.【分析】首先根据题意画出旋转后的三角形,易得△ACD是等腰直角三角形,然后由勾股定理求得AC的长.解:如图,∵在△ABC中,∠ACB=90°,AB=5,BC=4,∴AC==3,∵将△ABC绕点C顺时针旋转90°,点A,B的对应点分别是点D,E,∴AC=CD=3,∠ACD=90°,∴AD==3.【点评】此题考查了旋转的性质以及勾股定理.注意掌握旋转前后图形的对应关系是解此题的关键.19.(10分)在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画出树状图,得出所以等可能的结果数,再找出张辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解即可.解:(1)张辉同学选择清理类岗位的概率为:=;故答案为:;(2)根据题意画树状图如下:共有16种等可能的结果数,张辉和夏明恰好选择同一岗位的结果数为4,所以他们恰好选择同一岗位的概率:=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.【分析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.解:(1)如图所示,CD即为所求;(2)∵CD⊥AC,∴∠ACD=90°∵∠A=∠B=30°,∴∠ACB=120°∴∠DCB=∠A=30°,∵∠B=∠B,∴△CDB∽△ACB,∴=,∴BC2=BD•AB.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和相似三角形的判定和性质.21.(12分)随着市民环保意识的增强,春节期间烟花爆竹销售量逐年下降.某市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.(1)求该市2015年到2017年烟花爆竹年销售量的平均下降率;(2)预测该市2018年春节期间的烟花爆竹销售量.【分析】(1)设该市2015年到2017年烟花爆竹年销售量的平均下降率为x,根据2015年和2017年销售的箱数,列出方程,求解即可.(2)根据(1)中的平均下降率预测该市2018年春节期间的烟花爆竹销售量.解:(1)设该市2015年到2017年烟花爆竹年销售量的平均下降率为x,依题意得:20(1+x)2=9.8,解这个方程,得x1=0.3,x2=1.7,由于x2=1.7不符合题意,即x=0.3=30%.答:该市2015年到2017年烟花爆竹年销售量的平均下降率为30%.(2)由题意,得9.8×(1﹣30%)=6.86(万箱)答:预测该市2018年春节期间的烟花爆竹销售量为6.86万箱.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O 相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,∠DBC=∠A=60°,BC⊥OB,∴OC=12,∵△OBC的面积=OC•BE=OB•BC,∴BE=,∴BD=2BE=6,即弦BD的长为6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.23.(12分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且,双曲线y=(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.【分析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC ﹣S△OCE﹣S△OAD进行计算.解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.【点评】本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.24.(14分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.【分析】(1)将抛物线解析式配方成顶点式即可得;(2)①画出函数的大致图象,由图象知直线l经过顶点式时,直线l 与抛物线只有一个交点,据此可得;②画出翻折后函数图象,由直线l与新的图象恰好有三个公共点可得﹣2m+3=﹣7,解之可得;(3)由开口向上及函数值都不小于1可得,解之即可.解:(1)∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,∴对称轴方程为x=1.(2)①如图,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+3.②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.∴m=5.(3)抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).依题可得解得∴m的取值范围是﹣2<m≤1.【点评】本题主要考查抛物线与x轴的交点及解不等式组得能力,根据题意画出函数的图象,结合函数图象得出对应方程或不等式组是解题的关键.25.(14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.【分析】(1)若使PQ⊥AC,则根据路程=速度×时间表示出CP和CQ的长,再根据30度的直角三角形的性质列方程求解;若使PQ⊥AB,则根据路程=速度×时间表示出BP,BQ的长,再根据30度的直角三角形的性质列方程求解;(2)首先画出符合题意的图形,再根据路程=速度×时间表示出BP,CQ的长,根据等边三角形的三线合一求得PD的长,根据30度的直角三角形的性质求得PD边上的高,再根据面积公式进行求解;(3)根据(1)中求得的值,确定圆与AB、AC相切时的t的值,即可分情况进行讨论.解:(1)当Q在AB上时,显然PQ不垂直于AC,当Q在AC上时,由题意得,BP=x,CQ=2x,PC=4﹣x;∵AB=BC=CA=4,∴∠C=60°;若PQ⊥AC,则有∠QPC=30°,∴PC=2CQ,∴4﹣x=2×2x,∴x=;当x=(Q在AC上)时,PQ⊥AC;(2)如图②,当0<x<2时,P在BD上,Q在AC上,过点Q作QN⊥BC于N;∵∠C=60°,QC=2x,∴QN=QC×sin60°=x;∵AB=AC,AD⊥BC,∴BD=CD=BC=2,∴DP=2﹣x,∴y=PD•QN=(2﹣x)•x=﹣x2+x;(3)显然,不存在x的值,使得以PQ为直径的圆与AC相离,由(1)可知,当x=时,以PQ为直径的圆与AC相切;当点Q在AB上时,8﹣2x=,解得x=,故当x=或时,以PQ为直径的圆与AC相切,当0≤x<或<x<或<x≤4时,以PQ为直径的圆与AC相交.【点评】本题考查三角形综合题、等边三角形的性质、直角三角形的性质以及直线和圆的位置关系求解.解题的关键是用动点的时间x和速度表示线段的长度,学会利用参数解决问题,属于中考压轴题.。
2017-2018学年度第一学期期中学情调研试卷九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答名(第4题)(第6题)ACFOD BE二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7.某地某日最高气温为12℃,最低气温为-7℃,该日气温的极差是▲℃.8.把函数y=x2的图像向右平移2个单位长度,再向下平移1个单位长度,得到函数▲的图像.9.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为▲.18.(8分)甲、乙两名队员在相同条件下7次射击的成绩如图所示:甲队员射击训练成绩条形统计图乙队员射击训练成绩折线统计图20.(6分)已知二次函数y=x2+6x-5.(1)求这个二次函数的图像的顶点坐标;(2)若y随x的增大而减小,则x的取值范围是▲.当24.(9分)如图,在Rt△ABC中,∠C=90°,点D在AB上,以AD为直径的⊙O与BC相交于点E,且AE平分∠BAC.(1)求证:BC是⊙O的切线;(2)若∠EAB=30°,OD=3,求图中阴影部分的面积.25.(8分)如图,点A、B、C在⊙O上,用无刻度的直尺画图.(1)在图①中,画一个与∠B互补的圆周角;(2)在图②中,画一个与∠B互余的圆周角.26.(9分)某宾馆有房间40间,当每间房间定价为300元/天时,可全部住满.每间房间定价每增加10元/天,未入住的房间将增加1间.入住的房间的维护费为20元/天,未入住的房间的维护费为5元/天.(1)当每间房间定价为360元/天时,入住的房间有多少间?(2)设该宾馆未入住的房间有x间,①用x的代数式表示每间房间的定价;②当每间房间定价为多少元/天时,该宾馆每天的收入可达到11350元?(宾馆每天的收入=入住的房费-维护费)AB上的任一点(不与A、B重合),CM⊥OA,27.(10分)已知扇形OAB的半径为r,C为⌒垂足为M,CN⊥OB,垂足为N,连接MN.(1)如图①,∠AOB=90°,求证MN=r;(2)如图②,∠AOB=45°,探索MN与r的数量关系.2017-2018学年度第一学期期中学情调研试卷九年级数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)更稳定,所以应选甲队员参赛.………8分19.(本题8分)解:(1)搅匀后从中任意摸出1个球,所有可能出现的结果共有4种,它们出现的可能性相同.所有的结果中,满足“恰好是白球”(记为事件A)的结果有2种,所以P(A)=24=12.……3分(2)解:把2个白球分别记为白1,白2,搅匀后从中任意摸出2个球,所有可能出现的结果有:(白1,白2)、(白1,红)、(白2,红)、(白1,黄)、(白2,黄)、(红,黄),共有6种,它们出现的可能性相同.所有的结果中,满足“2个都是白球”(记为事件B)在Rt△BOD中OD=OB2-BD2=132-52=12即点O到BC的距离为12.……8分23.(本题6分)解:(1)2t;6-t……2分(2)12×2t(6-t)=5……4分化简得t2-6t+5=0t1=1,t2=5(不合题意,舍去)∴t为1s时,△PCQ的面积等于5cm2……6分24.(本题9分)26.(本题9分)解:(1)40-360-30010=34∴入住的房间有34间……2分(2)①每间房间定价为(300+10x )元/天……4分②根据题意得在Rt △OPQ 中PQ =2OP =2r ……9分∴MN =22r ……10分。
2017~2018学年度第一学期期中学情调研试卷九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.⊙O 的半径为4,点A 到圆心O 的距离为2,点A 与⊙O 的位置关系是A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .不能确定2.下列函数是二次函数的是A .y =2x -3B .y =x -1+1C .y =x 2D .y =+13x23.设x 1,x 2是方程x 2+5x -3=0的两个根,则x 1+x 2的值为A .5B .-5C .3D .-34.如图,△ABC 是⊙O 内接三角形,若∠C =30°,AB =3,则⊙O 的半径为A .3B .3C .3D .6325.某科普小组有5名成员,身高分别为:160,165,170,163,167(单位:cm ).增加1名身高为165 cm 的成员后,现在6名成员的身高与原来5名成员的身高相比,下列说法正确的是A .平均数不变,方差不变B .平均数不变,方差变大C .平均数不变,方差变小D .平均数变小,方差不变6.如图,扇形OAB 的圆心角为45°,正方形CDEF 的顶点C 在OA 上,顶点D 、E 在OB上,顶点F 在上,则扇形OAB 的面积与正方形CDEF 的外接圆面积之比为⌒AB A .8︰7B .7︰6C .6︰5D .5︰4B(第4题)(第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.某地某日最高气温为12 ℃,最低气温为-7 ℃,该日气温的极差是 ▲ ℃.8. 把函数y =x 2的图像向右平移2个单位长度,再向下平移1个单位长度,得到函数 ▲ 的图像.9.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为 ▲ .10.如图,转盘中有6个面积都相等的扇形,任意转动转盘1次,当转盘停止转动时,“指针所落扇形中的数为偶数”发生的概率为 ▲ .11.若关于x 的方程x 2+2x -m =0有两个相等的实数根,则m 的值为 ▲ .12.某城市2 015年底已有绿化面积300公顷,经过两年绿化,到2 017年底绿化面积为363公顷.设绿化面积平均每年的增长率为x ,由题意所列方程是 ▲ .13.如图,PA ,PB 分别与⊙O 相切于点A 、B ,若PA =2,∠P =60°,则⊙O 的半径为 ▲ .14.如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,若CD =4 m ,EM =6 m ,则⊙O 的半径为 ▲ m .15.点O 是△ABC 的外心,若∠BOC =80°,则∠BAC = ▲ °.16.已知P 是边长为2的正方形ABCD 内的一点,且∠BPC =60°,当∠BAP 最大时,3AP 2的值为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(10分)解下列方程:(1)x 2-2x -5=0(2)(x-3)2=2(x -3)(第14题)(第10题)(第13题)P18.(8分)甲、乙两名队员在相同条件下7次射击的成绩如图所示:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差/环2甲9② ▲9③ ▲乙① ▲91087(1)完成表格填空;(2)若选派其中一名参赛,你认为应选哪名队员,并说明理由.19.(8分)一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球;(2)搅匀后从中任意摸出2个球,2个都是白球.成绩/环甲队员射击训练成绩条形统计图乙队员射击训练成绩折线统计图1234567820.(6分)已知二次函数y =x 2+6x -5.(1)求这个二次函数的图像的顶点坐标;(2)若y 随x 的增大而减小,则x 的取值范围是 ▲ .21.(6分)已知关于x 的一元二次方程2x 2+kx +k -3=0. (1)若方程有一个根是1,求k 的值;(2)证明:不论k 为何值,这个方程总有两个不相等的实数根.22.(8分)如图,在⊙O 中.(1)若 =,∠ACB =70°,求∠BOC 的度数;⌒ AB ⌒AC (2)若⊙O 的半径为13,BC =10,求点O 到BC 的距离.23.(6分)如图,在△ABC 中,∠C =90°,AC =6 cm ,BC =8 cm ,点P 从点A 出发沿AC 以1 cm/s 的速度向点C 移动;同时,点Q 从点C 出发沿CB 以2 cm/s 的速度向点B 移动.当Q 运动到B 点时,P ,Q 停止运动.设点P 运动的时间为t s .(1)CQ = ▲ cm ,CP = ▲ cm ;(用含t 的代数式表示)(2)t 为何值时,△PCQ 的面积等于5 cm 2.PQ(第23题)A(第22题)24.(9分)如图,在Rt △ABC 中,∠C =90°,点D 在AB 上,以AD 为直径的⊙O 与BC相交于点E ,且AE 平分∠BAC .(1)求证:BC 是⊙O 的切线;(2)若∠EAB =30°,OD =3,求图中阴影部分的面积.25.(8分)如图,点A 、B 、C 在⊙O 上,用无刻度的直尺画图.(1)在图①中,画一个与∠B 互补的圆周角;(2)在图②中,画一个与∠B 互余的圆周角.AB(第24题)A A图①图②(第25题)26.(9分)某宾馆有房间40间,当每间房间定价为300元/天时,可全部住满.每间房间定价每增加10元/天,未入住的房间将增加1间.入住的房间的维护费为20元/天,未入住的房间的维护费为5元/天.(1)当每间房间定价为360元/天时,入住的房间有多少间?(2)设该宾馆未入住的房间有x 间,①用x 的代数式表示每间房间的定价;②当每间房间定价为多少元/天时,该宾馆每天的收入可达到11 350元?(宾馆每天的收入=入住的房费-维护费)27.(10分)已知扇形OAB 的半径为r ,C 为上的任一点(不与A 、B 重合),CM ⊥⌒AB OA ,垂足为M ,CN ⊥OB ,垂足为N ,连接MN .(1)如图①,∠AOB =90°,求证MN =r ;(2)如图②,∠AOB =45°,探索MN 与r 的数量关系.ABCOM N图①OA CBNM图②2017~2018学年度第一学期期中学情调研试卷九年级数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.198.y =(x -2)2-19.1510.11.-11212. 300(1+x )2=363 13. 14.15. 40°或140° 16.12-4231033三、解答题(本大题共11小题,共88分)17.(本题10分)(1)(本题5分)解: x 2-2x =5x 2-2x +1=5+1(x -1)2=6x -1=±6x 1=1+,x 2=1-. ……5分66(2)(本题5分)(x -3)2-2(x -3)=0(x -3) (x -5)=0x 1=3,x 2=5.……5分18.(本题8分)(1)① 9② 9③ ………6分47(2) ∵=,S 甲2 <S 乙2_ x 甲_x 乙∴应选甲队员参赛,因为甲乙队员的平均成绩相同,但甲的方差较小,说明甲队员成题号123456答案ACBACD绩更稳定,所以应选甲队员参赛. ………8分19.(本题8分)解:(1)搅匀后从中任意摸出1个球,所有可能出现的结果共有4种,它们出现的可能性相同.所有的结果中,满足“恰好是白球”(记为事件A )的结果有2种,所以P (A )==24.……3分12(2)解: 把2个白球分别记为白1,白2,搅匀后从中任意摸出2个球,所有可能出现的结果有:(白1,白2)、(白1,红)、(白2,红)、(白1,黄)、(白2,黄)、(红,黄),共有6种,它们出现的可能性相同.所有的结果中,满足“2个都是白球”(记为事件B )的结果只有1种,所以P (B )=. …8分1620.(本题6分)解:(1)y =x 2+6x +9-9-5=(x +3)2-14 ……2分顶点坐标(-3,-14) ……4分(2)x <-3 ……6分21.(本题6分)解:(1)将x =1代入方程,得2+2k +k -3=0,解得:k =. ……2分12(2)b 2-4ac =k 2-8(k -3)=k 2-8k +24=(k -4)2+8……4分∵ (k -4)2≥0∴ (k -4)2+8>0即 b 2-4ac >0……5分∴不论k 为何值,这个方程总有两个不相等的实数根. ……6分22.(本题8分)(1)证明: ∵=⌒ AB ⌒A C∴AB =AC∴∠ABC =∠ACB =70°……2分 ∴在△ABC 中,∠A =180°-∠ABC -∠ACB =40° ……3分 ∴∠BOC =2∠A =80° . ……4分(2)解:作OD ⊥BC ,垂足为点D……5分∵ OD ⊥BC ,OD 过圆心∴BD =BC =5……6分12在Rt △BOD 中OD ===12O B 2-BD 2132-52即点O 到BC 的距离为12.……8分23.(本题6分)解:(1)2t ;6-t……2分 (2)×2t (6-t )=5……4分12化简得t 2-6t +5=0t 1=1,t 2=5(不合题意,舍去)∴t 为1s 时,△PCQ 的面积等于5 cm 2 ……6分24.(本题9分)(1)证明:连接 OE . ∵AE 平分∠BAC ∴∠CAE =∠EAD ∵OA =OE ∴∠EAD =∠OEA ∴∠OEA =∠CAE ∴OE ∥AC∴∠OEB =∠C =90°∴OE ⊥BC ,且点E 在⊙O 上 ……3分∴BC 是⊙O 的切线. ……4分 (2)解: ∵∠EAB =30°∴∠EOD =60°∵∠OEB =90°∴∠B =30°∴OB =2OE =2OD =6∴BE ==3O B 2-OE 23∴S △OEB = ,S 扇形OED = ……8分923π2∴S 阴影=S △OEB -S 扇形OED =- ……9分923π225.(本题8分)(1)如图①,∠P 即为所求.……4分(2)如图②,∠CBQ 即为所求. (4)A图①A图②26.(本题9分)解:(1)40-=34360-30010∴入住的房间有34间 ……2分(2)①每间房间定价为(300+10x )元/天……4分②根据题意得(300+10x ) (40-x )-20(40-x )-5x =11350 ……6分 化简,得 2x 2-23x +30=0解得 x 1=10,x 2=1.5(不符合题意,舍去)∴300+10 x =400.……8分答:每间房间定价为400元/天时,该宾馆每天的收入可达到11 350元.……9分27.(本题10分)(1)证明:连接OC∵CM ⊥OA , CN ⊥OB ∴∠CMO =∠CNO =90°又∠AOB =90°∴四边形OMCN 是矩形. ……2分∴MN =OC =r……4分(2)解:以O 为圆心,OA 为半径画⊙O ,延长CM ,CN 分别与⊙O 交于点P ,Q ,连接OP ,OQ ,PQ ,OC∵OA ⊥PC∴PA =AC ,=⌒ PA ⌒AC同理CN =NQ , = ……6分⌒ CB ⌒BQ ∴∠POA =∠COA ,∠QOB =∠COB ∴∠POQ =2∠AOB =90° ……7分在△CPQ 中MN 是△CPQ 的中位线∴MN =PQ……8分12在Rt △OPQ 中OA CBNM图②P QABCOMN 图①22PQ=OP=r ……9分∴MN=r……10分2。
2017—2018学年度第一学期期末学情调研试卷九年级数学注意事项:1.本试卷共6页,全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效. 2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.若a b =23,则a +b b 的值为A .23B .53C .35D .322.把函数y =2x 2的图像先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图像,则新函数的表达式是A .y =2(x -3)2+2B .y =2(x +3)2-2C .y =2(x +3)2+2D .y =2(x -3)2-2 3.小明根据演讲比赛中9位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 A .平均数B .中位数C .众数D .方差4.如图,在△ABC 中,DE ∥BC ,AD AB =13,则下列结论中正确的是5.在二次函数y =ax 2+bx +c 中,x 与y 的部分对应值如下表:①该二次函数的图像经过原点; ②该二次函数的图像开口向下; ③该二次函数的图像经过点(-1,3);④当x >0时,y 随着x 的增大而增大; ⑤方程ax 2+bx +c =0有两个不相等的实数根. 其中正确的是A .AE EC =13B .DE BC =12C .△ADE 的周长△ABC 的周长=13D .△ADE 的面积△ABC 的面积=13ECBA(第4题)DA.①②③B.①③④C.①③⑤D.①④⑤6.如图①,在正方形ABCD 中,点P 从点D 出发,沿着D →A 方向匀速运动,到达点A 后停止运动.点Q 从点D 出发,沿着D →C →B →A 的方向匀速运动,到达点A 后停止运动.已知点P 的运动速度为a ,图②表示P 、Q 两点同时出发x 秒后,△APQ 的面积y 与x 的函数关系,则点Q 的运动速度可能是 A .13aB .12aC .2aD .3a二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:sin60°= ▲ .8.一元二次方程x 2+3x +1=0的两根分别为x 1,x 2,则x 1+x 2+x 1x 2= ▲ . 9.二次函数y =x 2-2x +2的图像的顶点坐标为 ▲ .10.如图,l 1∥l 2∥l 3,如果AB =2,BC =3,DF =4,那么DE = ▲ .11.如图,在⊙O 的内接四边形ABCD 中,AB =AD ,∠C =110°,则∠ABD = ▲ °. 12.如图,⊙O 的半径是2,点A 、B 、C 在⊙O 上,∠ACB =20°,则 ⌒AB 的长为 ▲ . 13.如图,△ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D ,若AB =4,AC =3,则cos ∠BAD的值为 ▲ .(第6题)①l 1 l 2l 3A BC EF D (第10题)(第11题)A(第12题)ACBD(第13题)(第16题)14.已知二次函数y =x 2-2mx +1,当x ≥1时,y 随x 的增大而增大,则m 的取值范围是 ▲ . 15.我们规定:一个正n 边形(n 为整数,n ≥4)的最短对角线与最长对角线的比值,叫做这个正n 边形的“特征值”,记为a n ,那么a 6= ▲ .16.如图,AC ,BC 是⊙O 的两条弦,M 是 ⌒AB的中点,作 MF ⊥AC ,垂足为F ,若BC =3,AC =3,则AF = ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x 2-2x -4=0; (2)(x -2)2-x +2=0.18.(7分)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会. (1)抽取一名同学,恰好是甲的概率为 ▲ ; (2)抽取两名同学,求甲在其中的概率.19.(8分)我市某中学举行十佳歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据所给信息填空:(2(第19题)初中部高中部20.(8分)已知二次函数的图像如图所示. (1)求这个二次函数的表达式;(2)将该二次函数图像向上平移 ▲ 个单位长度后恰好过点(-2,0); (3)观察图像,当-2<x <1时,y21.(8分)如图,在⊙O 中,AB 是⊙O 的弦,CD 是⊙O 的直径,且AB ⊥CD ,垂足为G ,点E 在劣弧 ⌒AB上,连接CE . (1)求证CE 平分∠AEB ;(2)连接BC ,若BC ∥AE ,且CG =4,AB =6,求BE 的长.D(第21题)(第20题)22.(8分)如图,在△ABC中,AD和BG是△ABC的高,连接GD.(1)求证△ADC∽△BGC;(2)求证CG·AB=CB·DG.23.(8分)如图,在一笔直的海岸线上有A、B两个观测点,B在A的正东方向,AB=4 km.从A测得灯塔C在北偏东53°方向上,从B测得灯塔C在北偏西45°方向上,求灯塔C 与观测点A的距离(精确到0.1 km).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37tan53°≈1.33)24.(8分)在△ABC中,以AC上一点O为圆心的⊙O与BC相切于点C,与AC相交于点D,AC=12,BC=5.(1)如图①,若⊙O经过AB上的点E,BC=BE,求证AB与⊙O相切;(2)如图②,若⊙O与AB相交于点F和点G,∠FOG=120°,求⊙O的半径.B B①②(第24题)(第23题)A(第22题)25.(9分)某超市销售一种饮料,每瓶进价为9元.当每瓶售价为10元时,日均销售量为560瓶,经市场调查表明,每瓶售价每增加0.5元,日均销售量减少40瓶. (1)当每瓶售价为11元时,日均销售量为 ▲ 瓶; (2)当每瓶售价为多少元时,所得日均总利润为1200元;(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?26.(6分)在四边形ABCD 中,P 为CD 边上一点,且△ADP ∽△PCB .分别在图①和图②中用尺规作出所有满足条件的点P .(保留作图痕迹,不写作法) (1)如图①,四边形ABCD 是矩形;(2)如图②,在四边形ABCD 中,∠D =∠C =60°.27.(10分)已知二次函数y =-x 2+2mx -m 2+4.(1)求证:该二次函数的图像与x 轴必有两个交点;(2)若该二次函数的图像与x 轴交于点A 、B (点A 在点B 的左侧),顶点为C , ①求△ABC 的面积;②若点P 为该二次函数图像上位于A 、C 之间的一点,则△P AC 面积的最大值为 ▲ , 此时点P 的坐标为 ▲ .CBABCD(第26题)①②2017—2018学年度第一学期期末学情调研试卷九年级数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.32 8.-2 9.(1,1) 10.8511.55 12.49π 13.35 14.m ≤1 15.32 16.3+32三、解答题(本大题共11小题,共88分)17.(本题8分)(1)解: x 2-2x =4x 2-2x +1=4+1 (x -1)2=5 x -1=± 5∴x 1=1+5, x 2=1- 5(2)解: (x -2)2-x +2=0 (x -2) (x -2-1)=0(x -2) (x -3)=0∴x 1=2, x 2=3. ………8分18.(本题7分)(1) 14.(2)解:树状图或表格或列举抽取两名同学,所有可能出现的结果共有6种(列举法),它们出现的可能性相同.所有的结果中,满足“甲在其中”(记为事件A )的结果只有3种,所以P (A )=12.……7分19.(本题8分)(1)(2)答:我觉得初中部的成绩更好,因为初中部和高中部的成绩平均数一样,但是初中部的方差比高中部小,成绩更整齐.…………8分20.(本题8分)(1)设y=a(x+h)2-k.∵图像经过顶点(-1,-4)和点(1,0),∴y=a(x+1)2-4.将(1,0)代入可得a=1,∴y=(x+1)2-4.(2)3.(3)-4≤y<0.…………8分21.(本题8分)(1)证明:∵CD⊥AB,CD是直径,∴⌒AC=⌒BC.∴∠AEC=∠BEC.∴CE平分∠AEB.(2)∵CD⊥AB,CD是直径,∴BG=AG=3.∠BGC=90°.在Rt△BGC中,CG=4,BG=3,∴BC=CG2+BG2=5.∵BC∥AE,∴∠AEC=∠BCE.又∠AEC=∠BEC,∴∠BCE=∠BEC.∴BE=BC=5.………8分22.(本题8分)(1)∵在△ABC中,AD和BG是△ABC的高,∴∠BGC=∠ADC=90°.又∠C=∠C,∴△ADC∽△BGC.(2)∵△ADC∽△BGC,∴CGDC=BCAC.∴CGBC=DCAC.又∠C=∠C,∴△GDC∽△BAC.(第22题)D (第21题)∴CG BC =DG AB. ∴CG ·AB =CB ·DG . ………8分23.(本题8分)解:如图,作CD ⊥AB ,垂足为D .由题意可知:∠CAB =90°-53°=37°,∠CBA =90°-45°=45°, ∴在Rt △ADC 中,cos ∠CAB =ADAC ,即AD =AC cos37°;sin ∠CAB =CDAC,即CD =AC sin37°.在Rt △BDC 中,tan ∠CBA =CD BD ,即BD =CDtan45°=CD .∵AB =AD +DB , ∴AC cos37°+AC sin37°=4.∴AC =4cos37°+sin37°≈2.9.答:灯塔C 与观测点A 的距离为2.9 km .………8分 24.(本题8分)(1) ∵⊙O 与BC 相切于点C ,∴OC ⊥BC .∴∠ACB =90°. ∴连接OE ,CE .∵OC =OE ,∴∠OCE =∠OEC .∵BC =BE ,∴∠BEC =∠BCE .∴∠OEB =∠OEC +∠BEC =∠OCE +∠BCE =90°. ∴OE ⊥AB ,且AB 过半径OE 的外端. ∴AB 与⊙O 相切. (2) 过点O 作OH ⊥FG ,垂足为H .∵在Rt △ABC 中,AC =12,BC =5, ∴AB =AC 2+BC 2=13.∵OG =OF , ∠FOG =120°, ∴∠OFG =∠OGF =30°.设半径为r ,则OH =12r .∵OH ⊥FG , ∴∠OHA =90° ∴∠OHA =∠ACB , 又∠A =∠A ,∴△OHA ∽△BCA . ∴OH BC =OABA.(第23题)BB即 12r 5=12-r 13. 解得:r =12023. ………8分 25.(本题9分)(1)480.(2)设每瓶售价增加x 元.(1+x )(560-80x )=1 200.解得:x 1=2, x 2=4.答:当每瓶售价为12或14元时,所得日均总利润为1 200元.(3)设每瓶售价增加x 元,日均总利润为y 元.y =(1+x )(560-80x )=-80x 2+480x +560=-80(x -3)2+1 280.当x =3时,y 有最大值1280.答:当每瓶售价为1326.(1)如图①,点P 1,P 2即为所求.(2)如图②,点P 1,P 2即为所求.………6分27.(本题10分)(1)当y =0时,-x 2+2mx -m 2+4=0.∵b 2-4ac = 4m 2-4(-1)(-m 2+4)=16>0,∴此一元二次方程有两个解.∴该该二次函数的图像与x 轴必有两个交点.(2)当y =0时,-x 2+2mx -m 2+4=0.解得x 1=m +2, x 2=m -2.当x =m 时,y =4.C B ① C∴△ABC 面积=12×4×4=8. (3) 1, (m -1,3). ………10分。