174287368-Electrochemical-Lab-Report
- 格式:doc
- 大小:109.50 KB
- 文档页数:5
Q Large Scale HP说明书1.产品介绍Q Large Scale HP层析介质是蓝晓科技自主研发的一种新型高度交联的琼脂糖层析介质,是将三甲胺基烷基季铵基团键合在小粒度高流速琼脂糖微球上形成的一种强阴离子交换介质,其具有高流速、高分辨率、高动态载量、良好的化学稳定性和机械性能,非特异性吸附低,回收率高,方便进行规模放大,可缩短生产时间,提高生产效率。
广泛用于生物制药和生物工程下游蛋白质、核酸及多肽的离子交换制备。
2.性能介绍产品牌号Q Large Scale HP外观白色球状,无臭无味种类强阴离子交换填料基质Large Scale HP微球配基三甲胺基烷基季铵基团形态氯型粒径d50v(μm)~36-44pH稳定性2~12(长期),2~14(短期,在位清洗[CIP])在以下液体中稳定:所有常用的水相缓冲液;1mol/L 氢氧化钠;化学稳定性8mol/L 尿素;6mol/L 盐酸胍;70% 乙醇;30%异丙醇;1M 醋酸动态载量,Q B,10% >50mgBSA /ml离子交换量(mmol /ml)0.15~0.18Cl-工作温度4~30℃耐热性121℃,水中30min流速*柱床高20cm,压力0.3MPa,流速大于220cm/h应用用于生物制药和生物工程下游蛋白质、核酸及多肽的离子交换层析纯化3.使用方法3.1 装柱装柱按照标准操作规程操作。
必须保证每种材料都处于工作温度,凝胶装柱前需要脱气。
3.2平衡使用2~5倍柱床体积的上样平衡液平衡柱子,务必使流出液的电导和pH同上样缓冲液的电导和pH完全一致。
平衡液是低浓度的缓冲溶液,如T ris、PBS等。
3.3上样(1)样品用平衡液配制,浑浊的样品要离心和过滤后上样。
盐浓度太大的样品处理后再配。
(2)一般情况是让目标产品结合在柱子上,用平衡液洗去杂质,再选择一种洗脱液洗下目标产品。
(3)介质对样品组分吸附的程度取决于样品的带电性质、流动相的离子强度和pH值。
物 理 化 学 学 报Acta Phys. -Chim. Sin. 2024, 40 (1), 2303055 (1 of 9)Received: March 30, 2023; Revised: May 24, 2023; Accepted: May 25, 2023; Published online: June 5, 2023.*Correspondingauthors.Emails:******************(Y.K.);***************(X.S.);Tel.:+86-10-64448751(X.S.).The project was supported by the National Key R&D Program of China (2021YFA1502200), the National Natural Science Foundation of China (21935001, 22075013, 22179029), the Key Beijing Natural Science Foundation (Z210016), the S&T Program of Hebei (21344601D), the Fundamental Research Funds for the Central Universities.国家重点研发计划项目(2021YFA1502200), 国家自然科学基金项目(21935001, 22075013, 22179029), 北京市自然科学重点基金项目(Z210016), 河北省科技计划项目(21344601D)及中央高校基本科研业务费专项资金资助 © Editorial office of Acta Physico-Chimica Sinica[Article] doi: 10.3866/PKU.WHXB202303055 Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution CatalystsXinxuan Duan 1, Marshet Getaye Sendeku 2, Daoming Zhang 3, Daojin Zhou 1, Lijun Xu 4, Xueqing Gao 5, Aibing Chen 5, Yun Kuang 2,*, Xiaoming Sun 1,*1 State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.2 Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518071,Guangdong Province, China.3 China Institute of Nuclear Industry Strategy, Beijing 100048, China.4 Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Urumchi 830023, China.5 College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.Abstract: Electrochemical water splitting proves critical tosustainable and clean hydrogen fuel production. However, the anodicwater oxidation reaction—the major half-reaction in water splitting—has turned into a bottleneck due to the high energy barrier of thecomplex and sluggish four-electron transfer process. Nickel-ironlayered double hydroxides (NiFe-LDHs) are regarded as promisingnon-noble metal electrocatalysts for oxygen evolution reaction (OER)catalysis in alkaline conditions. However, the electrocatalytic activityof NiFe-LDH requires improvement because of poor conductivity, asmall number of exposed active sites, and weak adsorption of intermediates. As such, tremendous effort has been made to enhance the activity of NiFe-LDH, including introducing defects, doping, exfoliation to obtain single-layer structures, and constructing arrayed structures. In this study, researchers controllably doped NiFe-LDH with tungsten using a simple one-step alcohothermal method to afford nickel-iron-tungsten layered double hydroxides (NiFeW-LDHs). X-ray powder diffraction analysis was used to investigate the structure of NiFeW-LDH. The analysis revealed the presence of the primary diffraction peak corresponding to the perfectly hexagonal-phased NiFe-LDH, with no additional diffraction peaks observed, thereby ruling out the formation of tungsten-based nanoparticles. Furthermore, scanning electron microscopy (SEM) showed that the NiFeW-LDH nanosheets were approximately 500 nm in size and had a flower-like structure that consisted of interconnected nanosheets with smooth surfaces. Additionally, it was observed that NiFeW-LDH had a uniform distribution of Ni, Fe, and W throughout the nanosheets. X-ray photoelectron spectra (XPS) revealed the surface electronic structure of the NiFeW-LDH catalyst. It was determined that the oxidation state of W in NiFeW-LDH was +6 and that the XPS signal of Fe in NiFeW-LDH shifted to a higher oxidation state compared to NiFe-LDH. These results suggest electron redistribution between Fe and W. Simultaneously, the peak area of surface-adsorbed OH increased significantly after W doping, suggesting enhanced OH adsorption on the surface of NiFeW-LDH. Furthermore, density functional theory (DFT) calculations indicated that W(VI) facilitates the adsorption of H 2O and O *-intermediates and enhances the activity of Fe sites, which aligns with experimental results. The novel NiFeW-LDH catalyst displayed a low overpotential of 199 and 237 mV at 10 and 100 mA ∙cm −2 in 1 mol ∙L −1KOH, outperforming most NiFe-based colloid catalysts. Furthermore, experimental物理化学学报 Acta Phys. -Chim. Sin.2024,40 (1), 2303055 (2 of 9)characterizations and DFT+U calculations suggest that W doping plays an important role through strong electronic interactions with Fe and facilitating the adsorption of important O-containing intermediates.Key Words: Oxygen evolution reaction; Layered double hydroxide; Tungsten doping; Electronic interaction;Electrocatalysis钨掺杂镍铁水滑石高效电催化析氧反应段欣漩1,Marshet Getaye Sendeku 2,张道明3,周道金1,徐立军4,高学庆5,陈爱兵5,邝允2,*,孙晓明1,*1北京化工大学,化工资源有效利用国家重点实验室,北京软物质科学与工程高精尖创新中心,北京 1000292清华大学深圳研究院,海洋氢能研发中心,广东深圳 5180713中核战略规划研究总院,北京 1000484新疆工程学院,新疆煤矿机电工程技术研究中心,乌鲁木齐 8300235河北科技大学化学与制药工程学院,石家庄 050018摘要:电解水对制备可持续和清洁的氢气能源至关重要。
第28卷㊀第4期2023年8月㊀哈尔滨理工大学学报JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY㊀Vol.28No.4Aug.2023㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀固态电解质LiZr 2(PO 4)3的掺杂及其在电极中的应用刘少鹏,㊀王基任,㊀拓沅辛,㊀周春山,㊀周㊀爽,㊀张永泉(哈尔滨理工大学电气与电子工程学院工程电介质及其应用教育部重点实验室,哈尔滨150080)摘㊀要:NASICON 型固态电解质磷酸锆锂(LZP )具有优异的结构稳定性和性能可靠性,但其在室温下的锂离子电导率较低,限制锂离子的传输㊂针对上述问题,采用溶胶凝胶法对磷酸锆锂电解质材料进行阳离子掺杂,提高材料的电导率,进而提升锂离子在材料中的输运能力㊂同时,将掺杂的磷酸锆锂电解质对电极进行修饰,提升电极本身的锂离子输运性能㊂探究了离子掺杂电解质对电极的锂离子扩散动力学性能的影响机理㊂实验结果表明,LiTi 0.25Zr 1.75(PO 4)3对电极的锂离子扩散动力学性能提高最为显著,锂离子扩散系数达到3.25ˑ10-14cm 2㊃S -1,是未修饰电极的2.95倍,同时在5C 倍率下,LiTi 0.25Zr 1.75(PO 4)3修饰的电极比未修饰电极比容量提高了25.48mAh ㊃g -1㊂关键词:固态电解质;磷酸锆锂;掺杂;离子输运;电化学DOI :10.15938/j.jhust.2023.04.002中图分类号:TM911.3文献标志码:A文章编号:1007-2683(2023)04-0008-06Doping Modification of Solid Electrolyte LiZr 2(PO 4)3and Its Application in ElectrodesLIU Shaopeng,㊀WANG Jiren,㊀TUO Yuanxin,㊀ZHOU Chunshan,㊀ZHOU Shuang,㊀ZHANG Yongquan(Key Laboratory of Engineering Dielectrics and Its Application,Ministry of Education,School of Electric and Engineering,Harbin University of Science and Technology,Harbin 150080,China)Abstract :NASICON type solid electrolyte LiZr 2(PO 4)3has excellent structural stability and performance reliability,but its lowconductivity of lithium ions at room temperature limits the transport of lithium ions.In view of the above problems,cationic doping of LiZr 2(PO 4)3electrolyte material was studied by sol-gel method and thus improve the transport capacity of lithium ions in the material.Meanwhile,modified the electrode with doped LiZr 2(PO 4)3electrolyte to improve the lithium ion transport performance of the electrode itself.The influence mechanism of ion-doped electrolyte on lithium ion diffusion kinetics of electrode was investigated.The experimental results show that LiTi 0.25Zr 1.75(PO 4)3improves the lithium ion diffusion kinetics most significantly,and the lithium iondiffusion coefficient reaches 3.25ˑ10-14cm 2㊃S -1,which is 2.95times of that of the unmodified electrode.At 5C rate,the specific capacity of LiTi 0.25Zr 1.75(PO 4)3modified electrode is 25.48mAh g -1higher than that of the unmodified electrode.Keywords :solid-state electrolyte;LiZr 2(PO 4)3;doping;ionic transport;electrochemistry㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-06-03基金项目:黑龙江省自然科学基金(LH2020E093);黑龙江省留学回国人员择优资助;哈尔滨理工大学大学生创新创业训练计划项目(202110214218).作者简介:刘少鹏(2001 ),男,本科生;王基任(2001 ),男,本科生.通信作者:张永泉(1987 ),男,博士,副教授,E-mail:yqzhang@.0㊀引㊀言移动电子设备㊁智能电网市场㊁电动汽车等的快速发展极大地提高了人们对高能量密度锂电池的需求[1-2],然而传统的锂离子电池采用液体有机电解质,其存在一定的局限性以及安全隐患,如腐蚀㊁爆炸㊁漏液等问题[3-5]㊂在锂离子电池中,采用无机固态电解质代替易燃易爆炸的液态电解质,可以很大程度地规避以上问题,而固态电解质与金属锂做负极组成的锂金属电池也被称为下一代高能电池[6-9]㊂在无机固态电解质中,Li x M2(PO4)3化合物的NASICON型结构因其具有较高的离子电导率和较好的稳定性而被广泛关注[10-11]㊂NASICON型结构框架由一个共角的MO6八面体和PO4四面体组成,形成间隙隧道的3D网络,锂离子通过该网络扩散变得容易[12]㊂固体电解质LiTi2(PO4)3和LiGe2(PO4)3具有较高的离子导电性[13],但是,经过研究表明金属锂或石墨作为阳极材料时Ti4+和Ge4+的还原性能降低,含有该离子的固体电解质在强还原的环境当中化学稳定性存在着严重的问题,电池在进行充放电过程中伴随着氧化还原反应的发生,而还原性能的降低势必会导致脱嵌锂离子受到一定程度的影响,同时也会影响充放电过程中氧化还原反应的可逆性,限制了其在可充电电池中的应用[14]㊂Zr4+具有高度稳定性,LiZr2(PO4)3(LZP)对于锂金属和锂化石墨是稳定的[15],然而在室温下,LZP的离子电导率较差,仅为10-8~10-5S㊃cm-1,其主要原因是相对较高的体相阻抗和晶界阻抗[16],为此可以在LZP 晶格中进行阳离子掺杂来调节Li+的传输路径,进而提高LZP材料的离子电导率[17-19]㊂针对于阳离子掺杂LZP的结构和电化学性能前人已经进行了一些研究,2016年,Sunil Kumar 等[20]通过溶胶-凝胶法合成Li1.2Zr1.9Sr0.1(PO4)3,研究Sr2+取代对LZP陶瓷结构㊁微结构和导电性的影响,LZP样品的离子电导率得到显著改善,室温下的最高离子电导率达到0.34ˑ10-4S㊃cm-1㊂2017年,A Cassel等[21]合成Li1.2Zr1.9Ca0.1(PO4)3,其在室温下的离子电导率比LZP高约20倍,达到7.17ˑ10-7 S㊃cm-1㊂2020年,Neelakanta Reddy等[22]通过Al3+的掺杂提高了LZP的结构稳定性,降低了材料的界面电阻,同时加入了更多的Li+,整体提高了材料的离子电导率,Maho Harada等[23]通过Ca2+和Y3+的掺杂对LZP中Li+的迁移起到了俘获作用,促进Li+的传输,在室温下离子电导率提高到2.6ˑ10-5 S㊃cm-1㊂由此表明,元素的掺杂可以提高LZP的离子电导率,进而可提高其电化学性能㊂本文采用溶胶-凝胶法制备Zn2+㊁Fe3+㊁Ti4+掺杂的LZP固体电解质材料,通过离子掺杂调控LZP 电解质材料的晶体结构,降低阻抗;同时采用掺杂的LZP固体电解质修饰电极,探究其提高电极材料的Li+输运性能的机理㊂1㊀样品的制备与测试采用溶胶-凝胶法制备ZnSO4掺杂的LZP固体电解质材料Li1+2x Zn x Zr2-x(PO4)3(LZZP)㊁FeN3O9㊃9H2O掺杂的LZP固体电解质材料Li1+x Fe x Zr2-x(PO4)3(LZFP)和TiO2掺杂的LZP固体电解质材料LiTi x Zr2-x(PO4)3(LZTP),其中x均为0.25,LZP由LiNO3㊁NH4H2PO4㊁ZrOCl2㊃8H2O配制而成,除LiNO3的用量超过化学计量比的10%外,其余原料均按化学计量比进行配制形成溶胶,在80ħ下加热搅拌6h形成凝胶后再烘干箱内保持180ħ干燥12h形成干凝胶,将所得的干凝胶放在坩埚中在高温箱式电炉中保持500ħ高温烧结12h,待降温后取出坩埚,将物料放于研钵中研磨成粉末备用㊂将经过掺杂后的得到的无机固体电解质粉末LZZP㊁LZFP㊁LZTP分别对电极活性材料LiFePO4 (LFP)进行修饰,得到新的电极材料(LFP-LZZP㊁LFP-LZFP㊁LFP-LZTP),按照7ʒ1ʒ1ʒ1的质量比准确称量电极活性材料LFP㊁配制好的无机固体电解质粉末㊁聚偏氟乙烯(PVDF)和导电炭黑(SP),分别将上述4种物料缓慢加入适量的N-甲基吡咯烷酮(NMP)溶液里面,使用磁力搅拌器将这5种物料于室温下800r/min的速率进行充分搅拌,搅拌时间6h㊂将搅好的电极浆料涂覆到铝箔上然后将涂覆好的铝箔放入真空干燥箱中在80ħ进行干燥,经过12h取出,得到掺杂固态电解质的复合正极,并在圆柱形冲压机上压制成直径为12mm的电极片㊂按照8ʒ1ʒ1的质量比准确称量LFP㊁PVDF㊁SP,重复进行以上步骤,得到无掺杂的电极片㊂在氩气手套箱中组装CR2032型纽扣电池,首先将弹片放于负极壳上,然后将用作负极的金属锂片置于弹片上,然后在锂片上放置隔膜并且滴加几滴电解液将隔膜润湿,放上上述制作好的正极电极片,最后盖上正极电极壳㊂将装好的电池从手套箱中取出,用压力机对组装好的电池进行压制封装,得到电池㊂采用X光电子能谱分析掺杂材料的结构;采用X 衍射仪对涂覆的极片进行结构表征,步长为0.2ʎ,扫描速度为0.75s/步,扫描范围10ʎ~90ʎ;采用扫描电子显微镜在10kV的工作电压下对电极片的微观形貌进行表征;室温下,对电池进行循环及电化学阻抗测量,循环测试电压范围在3~4V,在阻抗测试中,电压微扰为5mV,频率范围为0.01Hz~0.1MHz㊂9第4期刘少鹏等:固态电解质LiZr2(PO4)3的掺杂及其在电极中的应用2㊀实验结果与讨论为了确定锌㊁铁㊁钛元素成功地掺杂到了磷酸锆锂材料当中,对所制备的样品进行了XPS 测试,对所测得的XPS 数据在Avantage 上进行数据拟合处理㊂图1(a)为3种元素掺杂后磷酸锆锂材料的XPS 测试全谱图㊂3个图谱中分别在结合能为1018.41eV㊁726.72eV 和456.22eV 左右出现了Zn2p㊁Fe2p㊁Ti2p,但是全谱图中的峰强变化不太明显,因此对其精细谱进行了拟合作图处理,图1(b)为3种掺杂元素精细谱,可以看出每个图谱中均出现两个明显的峰,表明元素成功掺杂到了磷酸锆锂材料当中㊂图1㊀3种元素掺杂LZP 的XPS 全谱图和Zn2p ㊁Fe2p ㊁Ti2p 的精细图谱Fig.1㊀XPS full spectrum of LZP doped with threeelements ,fine maps of Zn2p ,Fe2p ,Ti2p为了探究掺杂结果的测试值与理论值的关系,我们在Avantage 上进行碳位校正后又对掺杂元素与Zr 元素进行了半定量分析,拟合结果如表1㊁2㊁3所示㊂表1㊀LZZP 的半定量分析数据Tab.1㊀Data from semiquantitative analysis of LZZP 元素BE FWHM 面积原子Zn 2p 1022.07 2.953667.850.69Zr 2p184.082.4117171.18 4.60表2㊀LZFP 的半定量分析数据Tab.2㊀Data from semiquantitative analysis of LZFP 元素BE FWHM 面积原子Fe 2p 726.71 3.51987.010.59Zr 2p183.942.1611923.91 4.75表3㊀LZTP 的半定量分析数据Tab.3㊀Data from semiquantitative analysis of LZTP.元素BE FWHM 面积原子Ti 2p459.45 2.172377.620.98Zr 2p 183.051.4513901.47 6.48㊀㊀所制得的锌掺杂磷酸锆锂Li 1.5Zn 0.25Zr 1.75(PO 4)3㊁铁掺杂磷酸锆锂Li 1.25Fe 0.25Zr 1.75(PO 4)3㊁钛掺杂磷酸锆锂LiTi 0.25Zr 1.75(PO 4)3,计算得到掺杂元素占锆的理论原子数百分比均为14.29%㊂对半定量分析得到的实验数据进行分析计算,锌占锆的测试原子数百分比为15%,铁占锆的测试原子数百分比为12.42%,钛占锆的测试原子数百分比为15.12%㊂可以看出测试结果与理论结果较为接近,也可以表明元素成功地掺杂到了磷酸锆锂材料中,实验结果是较为可靠的㊂图2分别给出了3种掺杂后的电解质修饰的电极及纯磷酸铁锂电极材料的XRD 图谱㊂由图可见,掺杂Zn 2+,Fe 3+,Ti 4+后的LZP 电解质修饰的LFP 电极材料在20ʎɤ2θɤ35ʎ和50ʎɤ2θɤ70ʎ有多个衍射峰,在经过3种不同元素掺杂后修饰的LFP 电极材料XRD 图谱的峰位基本一致,各样品的衍射峰尖锐,峰位强度高,说明所制备样品的结晶性好,成功制备了3种电极材料㊂在2θ=65.32ʎ时达到峰值,并在2θ=78.46ʎ也产生了衍射峰,与标准卡片的结果不符,这是所涂覆铝箔产生的衍射峰,与掺杂的元素无关㊂同时图像中没有电解质材料的峰,也可以说明电解质材料没有对正极材料的结构产生影响㊂为了观察4种电极片的微观形貌,我们对其进行了扫描电子显微镜(SEM)的测试,图3(a),(d)为Fe01哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀掺杂电解质修饰磷酸铁锂电极,图3(b),(e)为Ti 掺杂电解质修饰磷酸铁锂电极,图3(c),(f)为Zn 掺杂电解质修饰磷酸铁锂电极,图3(g)-(i)为纯磷酸铁锂电极㊂显然,这些图像显示了一系列团聚粒子,并且所有样品都具有近似球形的形态㊂此外,Fe 和Ti 掺杂电解质修饰磷酸铁-电极主要为纳米尺寸,颗粒的直径大都约为300nm,而Zn 掺杂电解质修饰磷酸铁锂电极的最大颗粒直径可以达到1.5μm 左右,如图3(f)所示㊂从整体上看晶粒尺寸都相对均匀,与纯磷酸铁锂的图像没有明显的区别㊂图2㊀4种电极材料的XRD 图谱Fig.2㊀XRD patterns of four electrodematerials图3㊀电极材料的SEM 图像(其中(a )㊁(d )为LZFP 修饰电极材料,(b )㊁(e )为LZTP 修饰的电极材料,(c )㊁(f )为LZZP 修饰的电极材料,(g )㊁(h )㊁(i )为纯LFP 电极材料)Fig.3㊀SEM images of electrode materials.(where (a )and (d )are LZFP -modified electrode materials ,(b )and (e )are LZTP -modified electrode materials ,(c )and (f )are LZZP -modified electrode materials ,and (g ),(h )and (i )are pure LFP electrode materials )图4为3种电极材料的交流阻抗图,所有3个电极的交流阻抗谱均在高频范围内呈现一个半圆形,而在低频范围内呈现出一条倾斜的直线㊂其中,截距对应电池欧姆电阻,高频区的半圆弧的直径表示的是活性材料嵌脱锂离子对应电荷转移电阻(Rct),低频区的直线部分为锂离子在电极材料中的扩散电阻,表示有锂离子在电极材料中扩散㊂此外可以看出LFP-LZTP 具有较小的半圆直径,表明该材料具有较低的电荷转移电阻㊂图4㊀3种电极材料的交流阻抗图(a 为循环前㊁b 为循环后)Fig.4㊀AC impedance diagrams of three electrode materials(a is before cycling ,and b is after cycling )电荷转移电阻被认为是决定充放电过程中速率性能的关键因素㊂如图4中插图所示,通过ZView 软件创建了本文所述电池体系的等效电路模型以计算各部分电阻值,拟合结果如表4所示㊂从表中可以看出,经过电解质材料修饰后电极的电荷转移电阻都要比纯LFP 电极小,有利于锂离子的扩散,从而提高电解质材料的电化学倍率性能㊂而经过钛掺杂电解质修饰磷酸铁锂电极的电荷转移电阻要比铁掺杂和锌掺杂的电解质小,锂离子扩散更容易,具有更好的电化学倍率性能㊂表4㊀4种电极材料的阻抗拟合参数Tab.4㊀Impedance fitting parameters for fourelectrode materials电极材料Rs /ΩRct /ΩLFP-LZTP 2.44351.74LFP-LZFP 2.99553.02LFP-LZZP 3.00470.17纯LFP2.347111.9㊀㊀为了进一步分析锂离子在电极材料中的扩散性能,通过如下两个公式计算锂离子的扩散系数:Zᶄ=R s +R ct +A w ω-1/2D Li =0.5(RTn 2F 2AC Li A w)2式中:R 为气体常数;T 为绝对温度;F 为法拉第常数;n 为转移的电子数;A 为电极材料与电解液的有11第4期刘少鹏等:固态电解质LiZr 2(PO 4)3的掺杂及其在电极中的应用效接触面积;C Li 为锂离子的浓度;A w 为Zᶄ相对于ω-1/2的曲线的斜率㊂Zᶄ可以用上面公式计算得到㊂通过计算得到3种掺杂的电极材料中锂离子的扩散系数分别为LFP-LZFP:2.47ˑ10-14cm 2㊃s -1,LFP-LZTP:3.25ˑ10-14cm 2㊃s -1,LFP-LZZP:7.52ˑ10-15cm 2㊃s -1,而纯的LFP 锂离子的扩散系数为1.10ˑ10-14cm 2㊃s -1㊂由此可以看出,掺杂Fe 和Ti 元素的LZP 修饰后的电极材料要比纯的LFP 材料具有更大的锂离子扩散系数,其中掺杂Ti 元素的锂离子扩散系数最大㊂而掺杂Zn 元素的锂离子扩散系数比纯的LFP 锂离子扩散系数小㊂因此,可以得出LZZP 的掺杂效果不够理想,而经过LZFP 和LZTP 修饰的电极材料则具有较好的电化学倍率性能㊂图5为4种电极材料倍率性能对比测试结果㊂从图中可以看出,在不同的电流密度下,它们的放电比容量均呈现出逐渐减小的趋势,但掺杂之后的电极材料要比纯磷酸铁锂材料放电比容量要高㊂而放电比容量呈现减小趋势的原因是由于倍率的升高影响了锂离子在电极材料表面的扩散系数㊂在所得到的4种电极材料中锂离子在经过LZTP 修饰的电极材料的扩散系数最大,在5C 倍率下,比容量达到了29.44mAh ㊃g -1,而纯的LFP 电极材料在5C 倍率下只有3.96mAh ㊃g -1㊂因此可以看出,经过LZTP 修饰的电极材料中锂离子扩散更容易,在高电流密度下它具有更优异的电化学性能㊂但同时发现LZZP 修饰的电极材料的放电比容量要比LFP 低,这样的结果与锂离子的扩散系数结果一致,进一步说明锌的掺杂效果不够理想㊂另外,可以发现掺杂后电极材料的放电库仑效率接近100%,比纯磷酸铁锂电极材料具有更好的库仑效率,这主要归功于掺杂之后其具有较大的离子扩散系数㊂图5㊀3种电极材料与LFP 倍率性能Fig.5㊀Rate performance of three electrodematerials with LFP㊀㊀图6为4种电极材料在1000mA ㊃g -1电流密度下恒流充放电循环性能对比测试结果㊂从图中可以看出,经过钛掺杂磷酸锆锂修饰的磷酸铁锂材料放电比容量最高,并且在经过200次充放电循环后其放电比容量仍为116.67mAh ㊃g -1,表现出较好的循环稳定性㊂经过铁和锌掺杂磷酸锆锂修饰的磷酸铁锂材料在200次循环充放电后其放电比容量分别为96.56mAh ㊃g -1和91.67mAh ㊃g -1,而纯磷酸铁锂材料经过200次循环充放电后比容量为72.65mAh ㊃g -1,3种修饰后的电极材料相较于纯磷酸铁锂材料都表现出更好的循环性能㊂此外,从图中可以看出LZTP 修饰的磷酸铁锂材料的放电库伦效率非常平稳,具有较好的库伦效率㊂必须指出的是,LZTP 修饰的磷酸铁锂材料中锂离子扩散系数最大,电极材料的比表面积最大,为其良好的电化学性能提供了非常有利的条件㊂图6㊀3种电极材料与LFP 循环性能图Fig.6㊀Cycling performance of three electrodematerials with LFP3㊀结㊀论本文通过溶胶-凝胶法制备了钛㊁铁㊁锌掺杂的LZP 固态电解质材料,并且采用电解质材料修饰电极材料形成复合电极,表征了电解质材料及复合电极结构㊁形貌,通过掺杂增大了晶格体积,使得晶粒之间接触更为紧密,主体结构上掺杂离子的取代,很大程度的降低了晶界阻抗,使得Li +扩散更为容易,可以有效提高离子电导率㊂对复合电极进行了电化学性能测试,LZFP 修饰电极的Li +扩散系数为2.47ˑ10-14cm 2㊃s -1,LZTP 修饰电极的Li +扩散系数为3.25ˑ10-14cm 2㊃s -1,LZZP 修饰电极的Li +扩散系数为7.52ˑ10-15cm 2㊃s -1,可以看出LZTP 修饰的电极材料具有更高的锂离子扩散系数,并且LZTP 修饰的电极材料具有更好的循环稳定性,因此钛掺杂的LZP 固体电解质具有较好的电化学性能㊂21哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀参考文献:[1]㊀Van Noorden R.The Rechargeable Revolution:A BetterBattery[J].Nature,2014,507(7490):26. [2]㊀NUERNBERG R B,RODRINGUES A C M.A New NA-SCION Lithium Ion-conducting Glass-ceramic of the Li1+xCr x(Ge y Ti1-y)2-x(PO4)3System[J].Solid State Ion-ics,2017,301:1.[3]㊀KNAUTH P.Inorganic Solid Li Ion Conductors:An O-verview[J].Solid State Ionics,2009,180(3):911.[4]㊀YUAN C F.All-solid-state Lithium Ion Battery:Researchand Industrial Progress[J].Aeta Chimica Sinica,2013,71(1):869.[5]㊀岳昕阳,马萃,包戬,等.金属锂负极失效机制及其先进表征技术[J].物理化学学报,2021,37(2):2005012.YUE Xinyang,MA Cui,BAO Jian,et al.Failure Mech-anisms of Liyhium Metal Anode and Their AdvancedCharacterization Technologies[J].Acta Physi-co-ChimicaSinica,2021,37(2):2005012.[6]㊀KAMAYA N,HOMMA K,YAMAKAWA Y,et al.ALithium Superionic Conductor[J].Nature Materials,2011,10(9):682.[7]㊀BACHMAN J C,MUY S,GRIMAUD A,et al.Inorgan-icsolid-state Electrolytes for Lithium Batteries:Mecha-nisms and Properties Governing Ion Conduction[J].Chemical Reviews,2016,116(1):140.[8]㊀李文俊,徐航宇,杨琪,等.高能量密度锂电池开发策略[J].储能科学与技术,2020,9(2):448.LI Wenjun,XU Hangyu,YANG Qi,et al.Developmentof Strategies for High-energy-density Lithium Batteries[J].Energy Storage Science and Technology,2020,9(2):448.[9]㊀杨建锋,李林艳,吴振岳,等.无机固态锂离子电池电解质的研究进展[J].储能科学与技术,2019,8(5):829.YANG Jianfeng,LI Linyan,WU Zhenyue,et al.Pro-gress of Inorganic Solid Electrolyte for Lithium Ion Batter-ies[J].Energy Storage Science and Technology,2019,8(5):829.[10]ARBI K,HOELZEL M,KUHN A,et al.Structural Fac-tors that Enhance Lithium Mobility in Fast-ion Li1+x Ti2-xAl x(PO4)3(0ɤxɤ0.4)Conductors Investigated byNeutron Diffraction in the Temperature Range100-500K[J].Inorganic Chemistry,2013,52(16):9290. [11]ANANTHARAMULU N,RAO K K,RAMBABU G,etal.A Wide-ran-ging Review on NASICON Type Materials[J].Journal of Materials Science,2001,46(9):2821.[12]LANG B,ZIEBARTH B,ELSÄSSER C.Lithium IonConduction in LiTi2(PO4)3and Related CompoundsBased on the Environment[J].Journal Library Adminis-tration,2021,104(3):711.[13]ZHANG P,WANG H,SI Q,et al.High Lithium IonConductivity Solid Electrolyte of Chromium and Alumi-num Co-doped NASICON-type LiTi2(PO4)3[J].SolidState Ionics,2015,272(4):101.[14]HASEGAWA S,IMANISHI N,ZHANG T,et al.Studyon Lithium/Air Secondary Batteries-stability of NASI-CON-type Lithium Ion Conducting Glass-ceramics withWater[J].Journal of Power Sources,2009,189(1):371.[15]BRUMMELL A,DRURY D E,KITAHARA A R,et al.Temperature and Processing Effects on Lithium Ion Con-ductivity of Solution-deposited Lithium Zirconium Phos-phate(LiZr2P3O12)Thin Films[J].Journal of the Amer-ican Ceramic Society,2021,104(3):711. [16]吕晓娟,杨东昱.NASICON型无机固态锂离子电解质的研究进展[J].化工新型材料,2019,47(1):47.LÜXiaojuan,YANG Dongyu.Review on NASICON typeInorganic Solid Lithium Ion Electrolyte[J].New Chemi-cal Materials,2019,47(1):47.[17]XIE H,LI Y,GOODENOUGH J B.NASICON-typeLi1+2x Zr2-x Ca x(PO4)3with High Ionic Conductivity atRoom Temperature[J].RSC Advances,2011,1(9):1728.[18]ZHOU Q Y,XU B Y,CHIEN P,et al.NASICON Li1.2Mg0.1Zr1.9(PO4)3Solid Electrolyte for an All-Solid-StateLi-Metal Battery[J].Small Methods,2020,4(12):2000764.[19]YAZDANI S,SADABAD R K,M.D.MORALES-ACOS-TA,R D,et al.Thermal Transport in Phase-stabilizedLithium Zirconate Phosphates[J].Applied Physics Let-ters,2020,117(1):011903.[20]KUMAR S,BALAYA P.Improved Ionic Conductivity inNASICON-type Sr2+Doped LiZr2(PO4)3[J].Solid StateIonics,2016,296(11):1.[21]CASSEL A,FLEUTOT B,COURTY M.Sol-gel Synthesisand Electrochemical Properties Extracted by Phase Inflec-tion Detection Method of NASICON-type Solid ElectrolytesLiZr2(PO4)3and Li1.2Zr1.9Ca0.1(PO4)3[J].SoliedState Ionics,2017,309(10):63.[22]REDDY N,AKKINEPALLY B,REDDY C V,et al.ASystematic study of Annealing Environment and Al DopantEffect on NASICON-type LiZr2(PO4)3Solid Electrolyte[J].lonics,2020,26(6):4287.[23]HARADA M,TAKEDA H,SUZUKI S,et al.Bayesian-o-ptimization-guided Experimental Search of NASICON-type Solid Electrolytes for All-solid-state Li-ion Batteries[J].Journal of Materials Chemistry A,2020,8(27):15103.(编辑:温泽宇)31第4期刘少鹏等:固态电解质LiZr2(PO4)3的掺杂及其在电极中的应用。
第14卷第5期2023年10月有色金属科学与工程Nonferrous Metals Science and EngineeringVol.14,No.5Oct. 2023高效电解二氧化锰电化学分析研究裴启飞1, 卢文鹏1, 郭孟伟2, 邵伟春2, 王恩泽2, 张启波*2(1.云南驰宏锌锗股份有限公司,云南 曲靖 655011; 2.昆明理工大学冶金与能源工程学院, 昆明 650093)摘要:采用循环伏安、线性伏安、电化学阻抗谱等分析测试手段并结合电解实验,系统地研究了硫酸体系下Mn 2+的电化学氧化行为。
结果表明,Mn 2+ → MnO 2的电氧化过程存在钝化现象,为实现MnO 2的高效电解,需合理控制阳极电位,从而避免析氧和生成MnO 4‒。
升高电解温度可有效改善电解MnO 2过程的界面钝化;通过控制合理的阳极电流可获得更高的电流效率。
在50 g/L H 2SO 4 + 25 g/L Mn 2+电解液中,80 ℃下,当阳极电流密度为6 mA/cm 2时,电流效率可达到96.6%。
关键词:二氧化锰;阳极钝化;阳极电位;电流效率;高效电解中图分类号:TF803.27 文献标志码:AElectrochemical analysis for highly efficient manganese dioxide electrolysisPEI Qifei 1, LU Wenpeng 1, GUO Mengwei 2, SHAO Weichun 2, WANG Enze 2, ZHANG Qibo *2(1. Yunnan Chihong Zn & Ge Co., Ltd., Qujing 655011, Yunnan , China ;2. Faculty of Metallurgical and Energy Engineering ,Kunming University of Science and Technology , Kunming 650093, China )Abstract: In this work, the electrochemical oxidation behavior of Mn 2+ ions in sulfuric acid solutions was systematically studied via cyclic voltammetry, linear voltammetry, electrochemical impedance spectroscopy, and electrolytic experiments. The results show that a passivation phenomenon is present in the electro-oxidation process of Mn 2+ to MnO 2, suggesting that the applied current should be reasonably controlled to reduce the side reactions caused by polarization. To achieve high-efficient MnO 2 electrolysis, the anodic potential should be controlled within an appropriate range to avoid oxygen evolution and the generation of MnO 4- ions. Increasing the electrolytic temperature can significantly relieve the passivation on the interface during the electrolysis of MnO 2, and combined with reasonable anodic current control, a higher current efficiency can be obtained. The optimum current efficiency of 96.6% for MnO 2 electrolysis is achieved when the anodic current is 6 mA/cm 2 and at 80 ℃ in 50 g/L H 2SO 4 solution containing 25 g/L Mn 2+.Keywords: manganese dioxide ; anodic polarization ; anodic potential ; current efficiency ; high-efficient electrolysis二氧化锰(MnO 2)具有多种晶体结构和良好的电化学活性等[1-3],在电催化/光电催化、污染物降解、储能材料等领域有着广泛应用[4-7]。
54卷大麦VQ基因家族鉴定及表达分析倪守飞1,母景娇1,耿梓瀚1,王孜逸2,丛钰莹1,王月雪1,刘梦迪1,蔡倩1,赵彦宏1*,王艳芳2*(1鲁东大学农学院,山东烟台264025;2鲁东大学生命与科学学院,山东烟台264025)摘要:【目的】鉴定大麦VQ基因家族成员并进行表达分析,为大麦VQ基因的功能挖掘提供理论依据。
【方法】从大麦基因组中鉴定VQ基因家族成员,利用生物信息学方法对其结构特征及编码蛋白序列进行分析,基于转录组测序数据及实时荧光定量PCR方法进行大麦组织表达模式、盐胁迫和生物胁迫分析。
【结果】在大麦基因组中鉴定出29个HvVQ 基因(HvVQ1~HvVQ29),HvVQ蛋白序列平均长度较短(214aa),多数HvVQ蛋白为碱性或偏中性蛋白,HvVQ基因不均地分布在大麦染色体上,定位于细胞核中。
29个HvVQ蛋白均含有保守基序FxxxVQxhTG,近90%的HvVQ基因不含内含子。
进化分析将大麦、拟南芥与水稻的VQ基因家族成员分为7个亚族(Ⅰ~Ⅶ),HvVQs基因不均地分布在Ⅱ~Ⅶ亚族中。
大麦与水稻的共线性基因对数(17对)远多于与拟南芥的共线性基因对数(1对),种内共线性分析发现1对共线性基因对,非同义替换率/同义替换率(Ka/Ks)计算发现HvVQ蛋白主要处于纯化选择状态。
HvVQ基因启动区富含生长发育作用元件、非生物胁迫反应元件和激素反应元件,种类及分布均呈多样性。
对蛋白网络预测分析推断其与HvWRKY的2类亚族(Ⅱ-c和Ⅲ)存在互作关系。
大多数HvVQ基因在组织中表达,HvVQ19在受到盐胁迫时表达量明显上调,在根尖和根伸长区表达量分别上调1.40和1.10倍;对其中10个HvVQ基因进行实时荧光定量PCR检测,HvVQ2基因在蚜虫和黄矮病毒胁迫下表达量均显著下调(倍数变化<0.5为显著抑制,>2.0为显著诱导),HvVQ7和HvVQ15基因在蚜虫和黄矮病毒胁迫下表达量上调最显著,其他7个HvVQ基因也均表现出差异表达。
第41卷第6期2023年12月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)V o l.41N o.6D e c.2023文章编号:16735862(2023)06048806荧光素@U i O-66金属有机框架材料荧光检测曲利苯蓝刘丽艳1,乔丹1,刘珂帆1,2,刘笑言1,史建军1,于湛1(1.沈阳师范大学化学化工学院,沈阳110034;2.大连市一一七中学,辽宁大连116100)摘要:采用水热法制备了荧光素@U i O-66(F N@U i O-66)金属有机框架材料,借助X射线衍射和红外光谱技术确定了其物相结构,并利用扫描电子显微镜㊁动态光散射等技术表征了其形貌特征㊂结果表明,F N@U i O-66大小均匀,平均水合粒径为380.4n m㊂随后进行了F N@U i O-66对典型染料曲利苯蓝的荧光检测研究,实验结果表明,曲利苯蓝可以猝灭F N@U i O-66的荧光发射,其S t e r n-V o l m e r系数K S V为3593L㊃m o l-1,说明F N@U i O-66材料对曲利苯蓝具有良好的选择性,且曲利苯蓝的检出限为0.06μm o l㊃L-1㊂由此可见,F N@U i O-66可以高效地识别曲利苯蓝,且具有良好的选择性和检测灵敏度,可实现对曲利苯蓝的快速荧光检测㊂关键词:F N@U i O-66;合成;曲利苯蓝;荧光探针中图分类号:O657.3文献标志码:Ad o i:10.3969/j.i s s n.16735862.2023.06.002F l u o r e s c e n c e d e t e c t i o n o f t r y p a nb l u e b a s e d o n t h e f l u o r e s c e i n@U i O-66m e t a l-o r g a n i c f r a m e w o r km a t e r i a lL I U L i y a n1,Q I A O D a n1,L I U K e f a n1,2,L I U X i a o y a n1,S H I J i a n j u n1,Y UZ h a n1(1.C o l l e g e o fC h e m i s t r y a n dC h e m i c a lE n g i n e e r i n g,S h e n y a n g N o r m a lU n i v e r s i t y,S h e n y a n g110034,C h i n a;2.D a l i a nN o.117M i d d l eS c h o o l,D a l i a n116100,C h i n a)A b s t r a c t:I nt h i s w o r k,t h ec o m p o s i t ef l u o r e s c e i n@U i O-66(F N@U i O-66)m e t a l-o r g a n i cf r a m e w o r km a t e r i a lw a s s y n t h e s i z e db y ah y d r o t h e r m a l p r o t o c o l.T h es t r u c t u r a l c h a r a c t e r i s t i c so fF N@U i O-66w e r ed e t e r m i n e dw i t h t h eh e l p o fX-r a y d i f f r a c t i o na n d i n f r a r e ds p e c t r o s c o p y a sw e l la s t h em o r p h o l o g i c a l c h a r a c t e r i s t i c sw e r e i n v e s t i g a t e db y sc a n n i n g e l e c t r o nm i c r o s c o p y(S E M)a n dd y n a m i c l i g h t s c a t te r i n g(D L S).E x p e r i m e n t a l r e s u l t s s h o wt h a tF N@U i O-66i su n if o r mi ns i z e,w i t h a na v e r a g eh y d r o d y n a m i cd i a m e t e ro f380.4n m.S u b s e q u e n t l y,af l u o r e s c e n c es t u d y o fF N@U i O-66o n t r y p a nb l u e(T B)w a s c a r r i e do u t,a n d f u r t h e r e x p e r i m e n t s s h o wt h a t t h eS t e r n-V o l m e r c o e f f i c i e n t o fT B,K S V,i s3593L㊃m o l-1,w h i c h i n d i c a t e s t h a t t h eF N@U i O-66h a sag o o de f f e c t o nT B.T h e s e l e c t i v i t y o f F N@U i O-66f o rT B i s g o o d,a n d t h e d e t e c t i o n l i m i t o fT B i s0.06μm o l㊃L-1,s h o w i n g t h a t F N@U i O-66c a n r e c o g n i z eT Be f f i c i e n t l y.F N@U i O-66h a s a g o o ds e l e c t i v i t y a n dd e t e c t i o n s e n s i t i v i t y t oT B,a n d i t c a n r e a l i z e t h e r a p i d f l u o r e s c e n c e d e t e c t i o no fT B.K e y w o r d s:F N@U i O-66;s y n t h e s i s;t r y p a nb l u e;f l u o r e s c e n t p r o b e金属有机框架(m e t a l-o r g a n i c f r a m e w o r k s,MO F s)材料因其在结构上具有规律性㊁刚性㊁多变性㊁收稿日期:20230920基金项目:辽宁省教育厅高等学校基本科研项目(L J C202009)㊂作者简介:刘丽艳(1977 ),女,辽宁沈阳人,沈阳师范大学副教授,博士㊂可设计性,成为一类具有广泛应用前景的新型材料[1]㊂MO F s 具有可调控的多孔通道,可以容纳多种极性㊁体积不同的客体分子,因而常作为探针载体用于荧光传感中[2]㊂2008年,挪威奥斯陆大学的C a v k a 研究组[3]首次报道了一类以金属Z r 为中心㊁对苯二甲酸(H 2B D C )为有机配体的刚性金属有机框架材料,命名为U i O -66㊂与其他MO F s 材料相比,U i O -66具有特别的热稳定性和化学稳定性[4],晶体结构可在500ħ下保持稳定,其框架结构可承受1.0M P a 的机械压力㊂U i O -66在水㊁苯或丙酮等溶剂中可以保持结构稳定,并且还具有很强的耐酸性和一定的耐碱性[5]㊂曲利苯蓝(t r y pa nb l u e ,T B )是一种常见的偶氮类染料,可用于给棉㊁麻㊁蚕丝㊁化纤制品染色,并可作为纸张㊁皮革等材料的染色剂[6]㊂由于死细胞的细胞膜不完整,短时间T B 染色可将其染成蓝色,而具有完整细胞膜的活细胞会排斥染料,因而在生物学实验中,T B 也常用于区分正常细胞与死亡细胞㊂但是有文献[7]证实,经过5m i n 染色,T B 就会对细胞产生毒性,5~30m i n 染色会导致T B 染料渗透健康细胞的细胞膜,细胞会随着时间的推移而死亡,最终健康细胞也会被T B 染色,因而使用T B 进行细胞染色的最终结果是降低细胞活性[8]㊂本文成功制备了一种荧光素(f l u o r e s c e i n ,F N )与U i O -66的复合材料F N@U i O -66,表征了其结构并研究了其在水溶液中对T B 的荧光检测性能㊂实验研究表明,F N@U i O -66对T B 具有良好的选择性和灵敏度,可用于荧光检测T B ㊂1 材料与方法1.1 试剂与仪器四氯化锆㊁荧光素(F N )㊁曲利苯蓝(T B )㊁对苯二甲酸(H 2B D C )㊁N ,N -二甲基甲酰胺(D M F )㊁盐酸㊁甲醇㊁冰乙酸㊁醋酸钠㊁乙腈㊁乙酸乙酯㊁三氯甲烷㊁二甲基亚砜(D M S O )等试剂均为分析纯或更高纯度,实验中未进行纯化而直接使用;实验用水为超纯水(18.2MΩ㊃c m )㊂采用日本日立公司的S U 8010型扫描电子显微镜(s c a n n i n g e l e c t r o n m i c r o s c o p e ,S E M )对样品的表面形貌特征进行检测,工作距离为3.8mm ,加速电压为3.0k V ;采用日本理学公司的X 射线粉末衍射仪测定样品的X 射线衍射(X -r a y d i f f r a c t i o n ,X R D )图谱,铜靶K α线波长为0.15405n m ,扫描速度为10ʎ㊃m i n -1,扫描范围为5ʎ~50ʎ,管电压为40k V ,管电流为40m A ;采用英国马尔文公司的N a n o -Z S 90型纳米粒度分析仪测试样品的平均粒度;采用美国赛默飞公司的N i c o l e t i S5型傅里叶变换红外光谱仪测试样品的红外光谱;采用美国瓦里安公司的C a r y E c l i p s e 型荧光光谱仪对悬浮液样品进行荧光测试㊂1.2 F N @U i O -66的制备F N@U i O -66的合成方法参照文献[9]㊂首先准确称取0.4514g Z r C l 4,0.3289g H 2B D C ,0.0338g F N ,34.0m LD M F 和0.34m LH C l 于250m L 烧杯中,混合搅拌1h 后使全部反应物完全溶解在D M F 中,得到均匀的反应液㊂随后将反应液转移至装有50m L 聚四氟乙烯内衬的不锈钢反应釜中,在120ħ烘箱中连续加热24h ,待其自然冷却后,将得到的黄色粉末用D M F 和甲醇溶液洗涤4次并抽滤,得到粗产物㊂将粗产物在80ħ下烘干12h 后,自然冷却并研磨,得到黄色固体粉末,即为F N@U i O -66㊂1.3 荧光实验将F N@U i O -66粉末(30m g)加入30m L 超纯水中,室温下静置24h ,然后将此样品进行30m i n 超声处理后得到稳定的悬浮液㊂分别准确移取多份2.5m L 的悬浮液,加入不同体积的5ˑ10-4m o l ㊃L -1T B 水溶液,并测试其光致发光(ph o t o l u m i n e s c e n c e ,P L )谱图㊂进行重复性实验时,将F N@U i O -66粉末从悬浮液中高速离心出,经无水乙醇充分洗涤后晾干即可重复使用㊂2 结果与讨论2.1 F N @U i O -66的表征图1分别给出了文献[10]报道的U i O -66单晶数据模拟㊁本文合成的F N@U i O -66及在T B 溶液984第6期 刘丽艳,等:荧光素@U i O -66金属有机框架材料荧光检测曲利苯蓝图1 U i O -66单晶模拟㊁F N @U i O -66及在T B 溶液中浸泡24h 后的F N @U i O -66的X R D 图F i g .1 S i m u l a t e da n de x pe r i m e n t a l (b ef o r ea n da f t e r s o a k i ng i n t r y pa nb l u es o l u t i o n f o r 24h )X R D pa t t e r n s o f F N @U i O -66中浸泡24h 后的F N@U i O -66的X R D 谱图㊂由图1可以看出,U i O -66在2θ为7.36ʎ和8.50ʎ处有明显的特征衍射峰,在14.76ʎ,17.06ʎ,25.72ʎ,30.72ʎ等处也有相对较强的衍射峰㊂本文合成的F N@U i O -66材料衍射峰与单晶数据模拟的U i O -66特征峰峰位相同且强度较高,未出现其他杂峰,这表明已经成功获得F N@U i O -66材料,并且其纯度和结晶度良好㊂当F N@U i O -66在T B 溶液中浸泡24h 后,其峰位和峰强并没有发生变化,也没有出现明显的杂峰,表明在荧光检测T B过程中,F N@U i O -66材料结构稳固,没有发生变化㊂图2给出30000倍和60000倍放大倍率下的F N@U i O -66样品的S E M 照片㊂可以看出,F N@U i O -66样品晶化程度良好,晶体颗粒大小均匀,晶粒呈正四面体,粒径范围约为150~300n m ,与文献[10]报道相一致,表明成功地合成出F N@U i O -66样品,样品纯度比较高,并且F N 的引入并不会导致U i O -66的结构发生变化㊂(a )放大倍率30000倍(b )放大倍率60000倍图2 F N @U i O -66的S E M 照片F i g .2 S E Mi m a ge s of F N @U i O -66图3为纯水介质中U i O -66与F N@U i O -66的水合粒径分布图㊂由图3可见,U i O -66与F N@U i O -66的粒径分布较为均匀,平均粒径分别为334.5n m 和380.4n m ,尤其是当F N 与U i O -66形成F N@U i O -66复合材料后,复合材料的平均粒径稍稍增大,证明了F N@U i O -66复合材料的成功合成㊂图3 (a )U i O -66与(b )F N @U i O -66的粒径分布图F i g .3 A v e r a ge p a r t i c l es i z ed i s t r i b u t i o n p l o t of (a )U i O -66a n d (b )F N @U i O -66图4为U i O -66,F N 与F N@U i O -66的红外光谱图㊂如图4(a )所示,3430c m -1处的宽峰可归属为O H 键伸缩振动,1398c m -1处强吸收峰可归属为配体中羧基伸缩振动,1505c m -1和1583c m -1094沈阳师范大学学报(自然科学版) 第41卷图4 (a )U i O -66,(b )F N ,(c )F N @U i O -66的红外光谱图F i g .4 I Rs pe c t r aof (a )U i O -66,(b )F Na n d (c )F N @U i O -66处的特征峰是配体分子中苯环的骨架振动引起的,550c m -1处的吸收峰对应Z r O C 键,这个吸收峰的存在证明了金属有机框架结构的建立,表明成功地合成了U i O -66㊂图4(c )给出F N@U i O -66材料的红外光谱图,由图4(c )可见,复合F N 后U i O -66的红外谱图变化不明显,一些强吸收峰出现几个波数的红移,例如,1398c m -1处吸收峰红移至1401c m -1处,1583c m -1处吸收峰红移至1584c m -1处,但并未出现F N 如1598c m -1,1112c m -1处的特征吸收峰,推测其原因可能是U i O -66中复合的F N 量较少㊂由图5(a )可以看出,U i O -66及F N@U i O -66的氮气吸附脱附等温曲线均呈现典型的Ⅰ类吸附等温线特点,即在P /P 0比较低时吸附量快速上升,随着P /P 0的增加,吸附量达到一个饱和值,当接近饱和压力(P /P 0接近1.0)时,曲线上扬㊂这表明U i O -66及F N@U i O -66都是典型的微孔结构㊂复合F N 后,U i O -66的氮气吸附量明显下降,比表面积由1005.3452m 2㊃g -1下降至873.5886m 2㊃g -1,这也从另一方面证明了F N@U i O -66的成功合成㊂图5(b )给出U i O -66及F N@U i O -66的孔分布情况,复合F N 后U i O -66的孔体积显著减小,只有0.86n m 大小的孔体积变大,本文推测这可能是复合F N后,U i O -66表面部分孔的孔径发生改变所致㊂(a )(b)图5 U i O -66与F N @U i O -66的(a )氮气吸附脱附等温曲线和(b)孔分布曲线F i g .5 (a )N 2a d s o r p t i o n /d e s o r p t i o na n d (b )po r es i z ed i s t r i b u t i o no f U i O -66a n dF N @U i O -66图6 F N @U i O -66的荧光发射光谱(λe x =320n m )F i g .6 F l u o r e s c e n c es pe c t r aof U i O -66a n d F N @U i O -66(λe x=320n m )图6为U i O -66及F N@U i O -66悬浊液的荧光光谱图㊂由图6可见,U i O -66在369n m 处有发射峰,对应B D C 配体的π-π*跃迁[11]㊂而与之相比,F N@U i O -66复合材料除了369n m 处峰外,在523n m 处存在强度更大的发射峰,此峰对应于F N 分子的特征发射㊂2.2 F N @U i O -66对T B 的荧光检测图7(a )为不同浓度T B 存在下F N@U i O -66悬浊液的发光情况㊂可以看出,随着T B 浓度的增加,体系的发光强度逐渐降低,发生荧光猝灭现象,并且主发射峰发生蓝移,由523n m 变为520n m ,表明T B 的194第6期 刘丽艳,等:荧光素@U i O -66金属有机框架材料荧光检测曲利苯蓝引入降低了体系F N 分子周围的极性,增加了环境的疏水性㊂一般来说,荧光猝灭包括静态猝灭和动态猝灭,可使用S t e r n -V o l m e r 方程(式(1))分析㊂F 0F=1+K S V [Q ](1)其中:F 与F 0分别为有无猝灭剂时体系的荧光发射强度;[Q ]是猝灭剂浓度;K S V 是S t e r n -V o l m e r 常数㊂利用式(1)对图7(a )中荧光发射数据进行计算[1213],可以看出,T B 浓度在0~3.0ˑ10-4m o l㊃L -1时F 0/F 与T B 浓度呈现良好的线性关系,线性方程为y =1.02+3593x ,R 2为0.9973㊂根据3δ/S(δ为空白样品标准偏差,S 为线性方程斜率)计算可知,T B 检出限为0.06μm o l ㊃L -1,表明F N@U i O -66能够较灵敏地检测T B㊂(a )(b)(从1到8,T B 浓度分别为0.0,0.25ˑ10-4,0.5ˑ10-4,1.0ˑ10-4,1.5ˑ10-4,2.0ˑ10-4,2.5ˑ10-4和3.0ˑ10-4m o l㊃L -1)图7 (a )不同浓度T B 存在条件下F N @U i O -66荧光发射光谱(λe x =320n m )和(b )S t e r n -V o l m e r 图F i g .7 (a )F l u o r e s c e n c ee m i s s i o n s p e c t r ao f U i O -66@F l u o r e s c ew i t hd i f f e r e n t c o n c e n t r a t i o n s o f T B (λe x =320n m )a n d (b )S t e r n -V o l m e r p l o t (a 归一化的T B 可见吸收光谱;b 归一化的F N@U i O -66荧光发射光谱)图8 光谱重叠谱图F i g .8 Sc h e m a t i z ed s pe c t r a l o v e r l a ps 根据F ör s t e r 共振能量传递理论[14],当荧光体与物质距离较近时,如果荧光体的发射光谱与物质的吸收光谱之间存在重叠,二者之间会发生能量传递,这是引起荧光猝灭的原因之一㊂图8给出了室温下F N@U i O -66荧光发射光谱与T B 紫外可见光谱的重叠谱图㊂由图8可见,二者之间存在较大程度的重叠,导致F N@U i O -66荧光发射能量向T B 转移,F N@U i O -66则出现明显的猝灭现象㊂本文还考察了F N@U i O -66识别T B 的重复性㊂设第1次实验中F N@U i O -66的发光强度为100%,则第2次至第5次实验中F N @U i O -66的发光强度分别为98.83%,94.12%,90.86%和90.82%㊂可以看出,经过5次循环,F N@U i O -66的荧光强度仍旧维持在较高水平,F N@U i O -66的使用重复性较好㊂3 结 论本文采用水热法成功制备了金属有机框架材料F N@U i O -66,并通过X 射线衍射㊁红外光谱等手段表征了材料的结构㊂同时,将F N@U i O -66用作传感器,使用荧光猝灭方法识别检测T B ㊂实验结果显示,T B 可以有效地猝灭F N@U i O -66发光,并且随着T B 加入量的增加,F N@U i O -66的猝灭越来越显294沈阳师范大学学报(自然科学版) 第41卷著,F N@U i O -66对T B 的检出限为0.06μm o l ㊃L -1㊂因此,F N@U i O -66对T B 具有良好的选择性和灵敏度,可实现T B 的快速发光检测㊂参考文献:[1]F R E U N DR ,Z A R E M B A O ,A R N A U T S G ,e ta l .T h ec u r r e n ts t a t u so f MO Fa n dC O Fa p p l i c a t i o n s [J ].A n g e w C h e mI n tE d ,2021,60(45):2397524001.[2]WA N G G D ,L IY Z ,S H I W J ,e t a l .Ar o b u s t c l u s t e r -b a s e dE u -MO Fa s m u l t i -f u n c t i o n a l f l u o r e s c e n c es e n s o r f o r d e t e c t i o no f a n t i b i o t i c s a n d p e s t i c i d e s i nw a t e r [J ].S e n sA c t u a t o r sBC h e m ,2021,331:129377.[3]C A V K A J ,J A K O B S E N S ,O L S B Y E U ,e ta l .A n e w z i r c o n i u m i n o r g a n i cb u i l d i n g b r i c kf o r m i n g m e t a lo r g a n i c f r a m e w o r k sw i t he x c e p t i o n a l s t a b i l i t y [J ].JA m C h e mS o c ,2008,130(42):1385013851.[4]K A N D I A H M ,N I L S E N M H ,U S S E G L I O S ,e t a l .S y n t h e s i sa n ds t a b i l i t y o f t a g g e d U i O -66Z r -MO F s [J ].C h e m M a t e r ,2010,22(24):66326640.[5]P I S C O P O CG ,P O L Y Z O I D I SA ,S C HWA R Z E R M ,e t a l .S t a b i l i t y o fU i O -66u n d e r a c i d i c t r e a t m e n t :O p p o r t u n i t i e s a n d l i m i t a t i o n s f o r p o s t -s y n t h e t i cm o d i f i c a t i o n s [J ].M i c r o p o rM e s o p o rM a t ,2015,208:3035.[6]R A V I S HA N K A R T N ,MA N J U N A T HA K ,R AMA K R I S HN A P P A T ,e ta l .C o m p a r i s o no ft h e p h o t o c a t a l yt i c d e g r a d a t i o n o f t r y p a n b l u e b y u n d o p e d a n d s i l v e r -d o pe d z i n c o x i d e n a n o p a r t i c l e s [J ].M a t S c i S e m i c o nP r o c ,2014,26:717.[7]T S A O U S I S K T ,K O P S A C H I L I S N ,T S I N O P O U L O SIT ,e ta l .T i m e -d e p e n d e n t m o r p h o l o g i c a la l t e r a t i o n sa n d v i a b i l i t y o f c u l t u r e dh u m a n t r a b e c u l a r c e l l s a f t e r e x p o s u r e t o t r y p a nb l u e [J ].C l i nE x p O p h t h a l m o l ,2013,41(5):484490.[8]KWO K A K H ,Y E U N GCK ,L A I TYY ,e t a l .E f f e c t s o f t r y p a n b l u e o n c e l l v i a b i l i t y a n d g e n e e x p r e s s i o n i n h u m a n r e t i n a l p i g m e n t e p i t h e l i a l c e l l s [J ].B r i t JO ph t h a l m o l ,2004,88(12):15901594.[9]S HA N A HA NJ ,K I S S E L D S ,S U L L I V A N E .P A N I @U i O -66a n d P A N I @U i O -66-N H 2p o l y m e r -MO F h y b r i d c o m p o s i t e s a s t u n a b l e s e m i c o n d u c t i n g m a t e r i a l s [J ].A C SO m e g a ,2020,5(12):63956404.[10]L IJ ,D A IY ,C U IJ ,e ta l .D y e -e n c a p s u l a t e dZ r -b a s e d MO F sc o m p o s i t e sa sas e n s i t i v e p l a t f o r m f o rr a t i o m e t r i c l u m i n e s c e n t s e n s i n g of a n t i b i o t i c s i nw a t e r [J ].T a l a n t a ,2023,251:123817.[11]S U N Z ,L IJ ,WA N G X ,e ta l .R h B -e n c a p s u l a t e d MO F -b a s e dc o m p o s i t ea ss e l f -c a l i b r a t i ng s e n s o rf o rs e l e c t i v e d e t e c t i o no f 4-n i t r o a n i l i n e [J ].JL u m i n ,2022,241:118480.[12]Z HA OD ,L I U X H ,Z HA O Y ,e t a l .L u m i n e s c e n t C d (Ⅱ)-o r g a n i c f r a m e w o r k sw i t h c h e l a t i n g N H 2s i t e s f o r s e l e c t i v e d e t e c t i o no fF e (Ⅲ)a n da n t i b i o t i c s [J ].JM a t e rC h e m A ,2017,5(30):1579715807.[13]L I UZQ ,Z HA O Y ,Z HA N GXD ,e t a l .M e t a l -o r g a n i c f r a m e w o r k sw i t h 1,4-d i (1H -i m i d a z o l -4-y l )b e n z e n e a n d v a r i e d c a r b o x y l a t e l i g a n d sf o rs e l e c t i v e l y s e n s i n g Fe (Ⅲ)i o n sa n dk e t o n e m o l e c u l e s [J ].D a l t o n T r a n s ,2017,46(40):1394313951.[14]R OW L A N DC E ,B R OWN C W ,M E D I N T ZIL ,e t a l .I n t r a c e l l u l a rF R E T -b a s e d p r o b e s :Ar e v i e w [J ].M e t h o d sA p pl F l u o r e s c ,2015,3(4):042006.394第6期 刘丽艳,等:荧光素@U i O -66金属有机框架材料荧光检测曲利苯蓝。
Advanced Test Equipment Rentals 800-404-ATEC (2832)®E s t a b l i s h e d 1981The Agilent AdvantageGlobal Application SupportExpertise When & Where You Need It• Thousands of portable SIPD sniffing heliumdetectors are in daily use worldwide • Helium leak testing is the preferred solution in a broad range of applications and industries • Native language application specialistsavailable locallyHigh Performance InstrumentsWide Range, PHD-4 Portable Helium Detector• High Sensitivity to Helium • Easy to Use • Truly Portable • Versatile • DependableIndustry Leading Service & SupportGet The Most From Your Investment• The system is designed to allow easy replacement ofsampling line components in the field• Exchange units are available for rapid field replacement•Support programs can be tailored to meet your most demanding needsMaximizing Productivity and UptimeFeatures and BenefitsVersatile - Suitable for many different applications• Wide range of uses: replaces or can be used with existing methods such as bubble test or pressure decay• Able to detect both very small and large leaks• Can operate either on battery power or connected to a mains power supply• Displayed messages can be viewed in several languages (English, French, German, Italian) •Standard Analog and RS232 Serial I/ODependable - Long term operation• Automatic backflow valve helps prevent helium saturation, ensuring fast recovery time aswell as long life of sensing element.•CE, CSA/US approved for global standardizationHigh Sensitivity to Helium - Can detect very small leaks• High Sensitivity (2 ppm) to helium, three orders of magnitude better than industry standard, due to SIPD (proprietary and patented Selective Ion Pump Detection)• Excellent selectivity for helium allows you to read helium leaks and ignore all other gases • Two levels of sensitivity are available for application dependent use•Autozero function allows leak detection even in unstable helium background environmentsEasy to Use - No training required• State-of-the-art microprocessor control allows great simplicity of operation • Fully automatic start-up with auto-diagnostics • Ready for test in less than 3 minutes • Intuitive display screen• Visual and audio indicators (standard headphone connection)• No tuning requiredTruly Portable - Compact and light• The PHD-4 weighs only 2,6 Kg (5.7 lbs) including the battery • Its compact size allows it to be easily carried anywhere• Its ergonomic design allows comfortable use for extended periodsThe New PHD-4 Portable Helium Detector 2133Large Vessels and BioreactorsThe PHD-4 offers unmatched accuracy and repeatability, presenting a unique solution that it is cost effective and very well suited for the leak range specifications of this application.Biotech and pharmaceutical industries used to rely on pressure decay and bubble test methods for finding leaks in their large bioreactors. The PHD-4 has established a new standard of quality, significantly increasing production yields.• Fermenters • Sterilizers •Freeze DryersUnderground Pipes and Storage TanksThe portability and light weight of the PHD-4 plays a major role in this application. Underground pipes and storage tanks (UST) are slightly pressurized with helium which, due to its high mobility, can escape through small leaks and migrate to the surface, where it can be easily detected by the PHD-4.The accuracy, portability and light weight of this unit greatly simplifies this process, particularly in difficult construction sites or rough terrain.• Gas distribution lines •Under and above ground containers and storage tanks •Telecommunication and high voltage underground cablesWater Heating and Cooling PipesThe PHD-4 allows leak location without interruption of the normal operation, by mixing helium with the water in the circuit. Until recently, the precise and rapid location of leaks in buried pipes has been very difficult.In the event of a leak, helium desorbs from the fluid and diffuses to the surface, where it is easily detected. Leaks in pipeline systems such as district heating systems, drinking or chilled water systems and steam pipe networks incur high costs due to losses and corrosion damage.• Heater exchangers and steam condensation lines •Water pipes •Radiant heating systemsAirplane Fuel Tanks and LinesPHD-4 technology is approved worldwide by airplane manufacturers and operators as the standard for the location of leaks in aircraft fuel tanks and in oxygen distribution lines. Agilent works with an exclusive distributor for aircraft applications. Please contact your local Agilent office for more information.•Fuel tanks •Oxygen distribution linesOther ApplicationsThe PHD-4 is in daily use in many other applications. Its portability makes it ideal for factory and field maintenance. Here is a partial list of other applications:• Components and systems for the Chemical and Petrochemical Industries • Compressed air components and delivery systems•Process gas delivery lines in Semiconductor fabrication industryCourtesy of Fraunhofer UMSICHT, GermanyApplicationThis information is subject to change without notice © Agilent Technologies, Inc. 2012Published February 29, 2012VPD-0112ENAgilent TechnologiesUSAAgilent Technologies 121 Hartwell Avenue,Lexington MA 02421, USA Tel: +1 781 861 7200Fax: +178****5437Toll free: +1 800 882 7426 ITALYAgilent Technologies Italia SpA via F.lli Varian 5410040 Leini, (Torino), Italy Tel: +39 011 9979 111Fax: +39 011 9979 350Toll free: 00 800 234 234 00BENELUXAgilent Technologies Netherlands B.V.Groenelaan 51186 AA Amstelveen Tel. +31 23 5377033Fax. +31 23 5382400Toll free: 00 800 234 234 00Agilent Technologies Belgium SA/NVPegasus Park, De Kleetlaan 5 bus 91831 Diegem - Belgium Tel. +31 23 5377033Fax +31 23 5382400Toll free: 00 800 234 234 00FRANCEAgilent Technologies France 7 avenue des TropiquesZ.A. de Courtaboeuf - B.P. 1291941 Les Ulis cedex, France Tel: +33 (0) 1 69 86 38 84Fax: +33 (0) 1 69 86 29 88Toll free: 00 800 234 234 00GERMANY and AUSTRIA Agilent TechnologiesSales & Services GmbH& Co. KG Lyoner Str. 2060 528 Frankfurt am Main, GERMANY Tel: +49 69 6773 43 2230Fax: +49 69 6773 43 2250Toll free: 00 800 234 234 00UK and IRELANDAgilent Technologies UK Ltd.6 Mead Road, Oxford Industrial Park Yarnton, Oxford OX5 1QU, UK Tel: +44 (0) 1865 291570Fax: +44 (0) 1865 291571Toll free: 00 800 234 234 00INDIAAgilent Technologies India Pvt. Ltd.G01. Prime corporate Park, 230/231,Sahar Rd., Opp. Blue Dart Centre,Andheri (East), Mumbai, 400 099 India Tel: +91 22 30648287/8200Fax: +91 22 30648250Toll free: 1800 113037CHINAAgilent Technologies (China) Co. LtdNo.3, Wang Jing Bei Lu,Chao Yang District,Beijing, 100102, China Tel: +86 (0)10 64397888Fax: +86 (0)10 64391318Toll free: 800 820 3278TAIWANAgilent Technologies Taiwan Limited20 Kao-Shuang Road Ping-Chen City, 32450Taiwan, R.O.C.Tel: +88 6 34959281Toll free: 0800 051 342JAPANAgilent Technologies Japan, Ltd.8th Floor Sumitomo Shibaura Building 4-16-36 Shibaura Minato-ku Tokyo 108-0023, Japan Tel: +81 3 5232 1253Fax: +81 3 5232 1710Toll free: 0120 655 040KOREAAgilent Technologies Korea Ltd.Shinsa 2nd Bldg. 1F 966-5 Daechi-dongKangnam-gu, Seoul, Korea 135-280Tel: +82 (0)2 2194 9449Fax: +82 (0)2 3452 3947Toll free: 080 222 2452SINGAPOREAgilent Technologies Singapore (Sales) Pte Ltd 1 Yishun Avenue 7Singapore 768923Tel : (65) 6377 1688DID: (65) 6215 8045Fax: (65) 6754 0574TollFree:180****2622SEAAgilent Technologies Sales (Malaysia) Sdn Bhd Unit 201 Level 2 Uptown 2,2 Jalan SS 21/37 Damansara Uptown 47400 Petaling Jaya, Selangor Malaysia.Tel: (60) 3 7727 8808Fax: (60) 3 7727 1209TollFree:180****2622The PHD-4 Portable Helium DetectorThe PHD-4 is a portable compact leak detector which includes a battery for autonomous use in the field and uses helium as a tracer gas. It allows detection of very small leaks in objects where a slight helium pressure has been introduced.Principle of operationThe PHD-4 principle of operation is based on a Varian patented technology, Selective Ion Pump Detection (SIPD).The sensor incorporates a quartz capillary tube maintained under high vacuum by an ion pump. The quartz tube is heated with a platinum filament and becomes permeable to helium. As the partial pressure of helium in the ion pump increases, so does the current drawn by the ion pump, proportional to the pressure, indicating the helium concentration present in the test probe of the PHD-4.WHY USE HELIUM AS A TRACER GAS?Helium is a superior choice as tracer gas for a number of reasons: • It is inert, non-toxic and non-flammable• It can pass easily through leaks due to its small atomic size, allowing the detection of very small leaks • It is present in the atmosphere at only 5 ppm, thus reducing the possibility of false readings • It is highly mobile, allowing rapid desorption and short measurement times•When used properly, it is the most economical and allows the highest sensitivity, of all trace gases。
尿酸分子印迹电化学传感器的研制及其应用殷静芬;连惠婷;孙向英;刘斌【摘要】以壳聚糖为功能基体,尿酸为模板分子,利用恒电位沉积法制备对血清中尿酸具有高度选择性的分子印迹电化学传感器.以衰减全反射红外光谱(FTIR-ATR)和电化学交流阻抗法(EIS)等方法表征印迹膜的形成,并应用伏安技术研究该传感器的电化学行为.研究结果表明:在0.1 mol·L-1(pH=5.0)的磷酸盐(PBS)缓冲溶液中,尿酸在该印迹传感器上具有良好的电化学响应,氧化峰电流与尿酸的浓度在0.1~80.0 μmol·L-1之间呈良好的线性关系,相关系数为0.999 1.所制备的传感器具有良好的选择性,稳定性和重现性,将该传感器应用于实际样品中尿酸的分析检测,方法回收率在97.41%~102.8%之间.%A highly selective molecularly imprinted electrochemical sensor of uric acid (UA) was prepared with chitosan (CS) as functional matrix and uric acid as template molecule via constant potential electrochemical deposition. The imprinted membrane was characterized by Attenuated total reflection infrared spectroscopy (ATR-FTIR) and Electrochemical impedance spectroscopy (EIS); the performances of the sensor were studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The UA had good electrochemical response in 0. 1 mol · L-1 phosphate buffer solution (PBS) (pH=5. 0). The oxidation peak current of DPV was well-proportional to the concentration of UA in the range from 0. 1 μmol · L-1 to 80. 0 μmol · L-1 with a correlation coefficient of 0. 999 1. The developed sensor exhibited specific recognition for UA against the competitors which consisted of similar structure and coexisting interference in human serum. Moreover, the sensor also shows exellentreproducibility and was successfully employed to the determination of UA in human serum with the recovery of 97. 41%~102.8%.【期刊名称】《华侨大学学报(自然科学版)》【年(卷),期】2012(033)001【总页数】6页(P33-38)【关键词】尿酸;电化学传感器;壳聚糖;分子印迹【作者】殷静芬;连惠婷;孙向英;刘斌【作者单位】华侨大学材料科学与工程学院,福建厦门361021;华侨大学材料科学与工程学院,福建厦门361021;华侨大学材料科学与工程学院,福建厦门361021;华侨大学材料科学与工程学院,福建厦门361021【正文语种】中文【中图分类】O657.1尿酸(UA)是人体内嘌呤代谢的终产物,人体血液中尿酸含量过高是许多疾病的征兆,如心血管疾病、痛风、肥胖、糖尿病、高胆固醇、高血压、肾病、心脏病等[1].因此,研究尿酸的检测方法在药物控制、临床医学诊断,以及实现对生物分子的在线测定等方面具有重大意义.目前,检测尿酸的方法主要有荧光法、色谱法、酶方法、电化学、同位素稀释质谱法(ID/MS)和毛细管电泳法等[2-7].在上述各种方法中,电化学法由于具有即时检测和在线分析的优点,且检测前不用对样品进行前处理,在尿酸检测中被广泛应用.检测尿酸最好的电化学方法是酶法,但是应用该方法成本较高,而且酶的稳定性较低.因此,发展一种不需要酶催化而又有较好选择性的电化学传感器来检测尿酸成为研究热点.分子印迹传感器技术是高选择性的分子印迹技术与高灵敏度的传感器技术的有机结合,且检测过程中不需要酶的加入,制备简单、造价低廉,具有较好的稳定性.分子结构中具有许多活性基团,如氨基和羟基可以在不同的介质中与目标分子通过静电或氢键相互作用[8],而且在负电位下可以被电沉积至基体表面[9-10].基于此,本文制备了尿酸分子印迹电化学传感器来实现对尿酸的高选择性检测.CHI440A电化学工作站(上海辰华仪器公司),采用三电极系统:玻碳电极(直径为3mm)为工作电极、饱和甘汞电极(SCE)为参比电极、自制铂丝电极为对电极;NIGOLET-Nexus470傅里叶变换红外光谱仪(美国Thermo Nicolet公司);PARSTAT2273型高级电化学工作站(美国Princeton Applied Research公司).壳聚糖(CTS,美国Sigma公司,脱乙酰度≥90%);尿酸,咖啡因,抗坏血酸(分析纯,国药集团化学试剂有限公司);尿素(分析纯,浙江宁波市化学试剂厂);多巴胺(Acros Organics,纯度为99%).实验中其他所用试剂均为分析纯.CTS储备液:准确称取0.25g的CTS,用0.1mol·L-1 HCl溶解,然后用0.1mol·L-1 NaOH溶液调至pH=5.0,配制成5.0g·L-1的CTS储备液.沉积液:含有1.0mmol·L-1尿酸分子的CTS储备液.将玻碳电极(GCE)分别在5#,6#金相砂纸上抛光成镜面,用二次水冲洗干净;然后,依次在体积比为1∶1的HNO3,二次水中各超声清洗5min.将处理好的电极作为工作电极,置于沉积液中,在-1.1 V(Vs.SCE,下同)下恒电位沉积3min,使模板分子与壳聚糖同时沉积至玻碳电极表面.取出,用水淋洗后,晾干,则制得CTS/UA聚合膜修饰电极.将膜电极在0.01mol·L-1的KCl和乙醇溶液中恒电位处理20min,以洗脱模板分子,再用水淋洗、晾干,则制成保留有尿酸分子空穴的印迹传感器.非印迹电极的制备.除不含模板分子外,其他条件同印迹电极的制备过程.室温下,在0~0.70V之间用循环伏安(CV)法、微分脉冲伏安(DPV)法优化实验条件和检测传感器的性能.循环伏安法的扫描速率为0.1V·s-1;微分脉冲伏安法的脉冲幅度为0.05V,脉冲周期为0.02s,脉冲宽度为0.05s.用0.1mol·L-1 PBS(pH=5.0)缓冲溶液为底液检测尿酸,在优化实验数据之前,把尿酸分子印迹电极浸于2.0×10-5 mol·L-1 UA溶液中10min以使其重新结合尿酸分子.电化学阻抗谱(EIS)实验在含有0.01mol·L-1[Fe(CN)6]3-/4-电化学探针的电解质溶液(0.1 mol·L-1的KCl)中,使用Zview软件拟合所采集的数据,并模拟出实验制备的传感器的等效电路图.在电位为0~0.70V内,UA/CTS膜(曲线1)和CTS膜(曲线2)修饰电极在PBS溶液中的循环伏安(CV)图,如图1所示.图1中的插图是修饰电极在PBS溶液中的微分脉冲伏安(DPV)扫描曲线.由图1的曲线1可知,循环伏安扫描过程中,仅在0.36V附近有一个明显的氧化峰;与曲线2相比较,可知该电位为尿酸在电极上的氧化峰电位,且其电化学过程为不可逆.UA在裸玻碳上的氧化峰电位在0.54V,在壳聚糖多壁碳纳米修饰电极上的则为0.44V[5].从图1的插图可以明显看出,印迹膜电极在此电位范围内有尿酸的氧化峰存在,而非印迹的则没有,说明尿酸和壳聚糖在恒电位条件下已经共沉积至玻碳电极表面.同时,对于印迹传感器的制备过程和性能表征等可通过模板分子的特征峰峰电流来反映.2.2.1 沉积时间的选择印迹膜的厚度影响着模板分子结合位点的数量,进而影响到印迹传感器的灵敏度,而电沉积方法所形成的膜厚度是由沉积时间控制的.改变电沉积的时间(tE),观察尿酸在印迹电极上的氧化峰电流变化趋势,结果如图2所示.从图2中可以看出,在1~3min内,氧化峰电流随沉积时间的增长而增大,超过3min后,氧化峰电流有略微的降低.这是因为电沉积时间较短时,沉积膜薄,与CTS形成复合物并沉积至电极表面的尿酸较少,峰电流较低;随着电沉积时间的增长,沉积膜加厚,膜内结合的尿酸分子数量也增多,形成的尿酸结合位点也相应增加,因而氧化峰电流增大.但电沉积时间太长时,虽然印迹膜内的尿酸分子含量相对较多,但是膜太厚会阻碍尿酸分子进出膜中心的结合位点,影响尿酸的完全洗脱和充分的再结合.同时,尿酸在膜中的传质过程也受到阻碍,降低了尿酸的电化学响应速率,从而降低尿酸在印迹膜传感器上响应的灵敏度.因此,选择电沉积时间为3min.2.2.2 洗脱时间及洗脱电位的选择沉积膜中模板分子是否洗脱完全将影响印迹传感器的灵敏度和选择性,对于具有电活性的物质来说,洗脱程度可通过其峰电流的降低程度来反映.以0.01mol·L-1的 KCl和无水乙醇作为洗脱剂,采用恒电位洗脱法,分别于0.1,0.2,0.3,0.4,0.5和0.6V 下洗脱一定时间,发现当洗脱电位为0.4V时,洗脱效果最好.固定洗脱电位为0.4V,考察不同洗脱时间(tW)对尿酸氧化峰电流的影响,如图3所示.从图3可以发现,当洗脱时间为5min时,尿酸的氧化峰电流有明显降低,继续洗脱至20min时已检测不到尿酸的氧化峰电流,所以选择洗脱时间为20min.2.3.1 电化学交流阻抗谱表征电化学交流阻抗谱(EIS)可以反映电极的界面动力学过程.在频率为0.1~100kHz范围内,膜电极的交流阻抗谱如图4所示.图4中:内插图为拟合所用的等效电路图.从图4可知,曲线1几乎为一条直线,说明这一过程电子转移较快,电化学过程主要受扩散控制;而曲线2,3,4在高频区为半圆部分,低频区为直线部分,这可归因于电极表面的修饰膜阻碍界面电子的传递. 从图4还可知,印迹电极的阻抗(303.6Ω)要明显小于非印迹电极(477.3Ω)和聚合物修饰膜电极的阻抗(436.8Ω).这可能是因为印迹电极膜内存在大量的UA印迹空穴,使Fe(CN)3-6/Fe(CN)4-6探针分子扩散速率提高而有利于电解质和电极界面的电子转移.各电极的EIS变化表明了UA/CTS聚合物可以很好地沉积至GCE表面,并进一步形成具有一定印迹空穴的分子印迹膜.2.3.2 衰减全反射红外表征为了更进一步的证实UA/CTS聚合物膜已经电沉积至玻碳电极表面,用衰减全反射红外表征(ATR-FITR)对其进行表征,如图5所示.图5中:T为透射率.从图5可看出,在两条曲线的800~900cm-1处均有一强而宽的吸收谱带,这是β-糖苷键的特征峰.在两条曲线中分别位于1 079,1 160和1 500cm-1处的吸收谱带可以归为壳聚糖的下列振动:C6-OH不对称振动,C3-OH拉伸振动和-NH2的弯曲振动.UA/CTS膜的曲线在1 600cm-1有一个新的谱带出现,这是尿酸中CO基的吸收谱带,而另一个新的,出现在3 000cm-1的宽谱带是由尿酸中的OH,NH,C-NH 和CH一般振动引起的[11].从ATR-FITR中的光谱数据可以看出,尿酸和壳聚糖已经共沉积至玻碳电极的表面.2.3.3 印迹传感器的选择性通过计算尿酸氧化峰电流的比率(I/I0)来反映印迹电极对尿酸的选择性,其中I和I0分别表示有干扰物和没有干扰物存在时印迹电极所检测到的尿酸氧化峰电流值.为了考察分子印迹传感器对结构相似物的选择性,研究与尿酸结构相似的物质——咖啡因存在下,印迹电极对尿酸的选择性检测情况.实验发现,当加入咖啡因的浓度是尿酸浓度的10倍时,I/I0的值仅降低了1.38%,但是当加入咖啡因的浓度增加到100倍时,I/I0有明显的降低.这可能是因为咖啡因与尿酸的结构比较相似,在浓度过高的情况下与尿酸发生了竞争吸附,占据了尿酸的印迹位点,导致印迹膜对尿酸的吸附量减少.以20.0μmol·L-1的UA的氧化峰电流值为对照值,考察抗坏血酸、尿素、肌氨酸酐和多巴胺等在人体血清中与尿酸共存的物质对尿酸检测的干扰情况,如图6所示.图6中:数字标注分别表示加入干扰物质的浓度是UA的多少倍.从图6可知,当抗坏血酸、尿酸、肌氨酸酐和多巴胺的浓度分别是尿酸浓度的100倍,100倍,50倍和1倍时,I/I0的值基本上没有变化,直到加入量分别是尿酸的200倍,500倍,100倍和10倍时I/I0才会有一点降低.实验结果表明,印迹传感器这些干扰物质存在下,对尿酸具有良好的选择性.2.3.4 尿酸分子印迹传感器的吸附动力学对模板分子的富集通常是增强印迹传感器选择性的简单而有效的方式[12].尿酸分子印迹传感器的吸附动力学曲线,如图7所示.从图7可知,尿酸的氧化峰电流随着吸附时间的增长,ipa迅速增大,当吸附时间为10 min时达到吸附平衡.这是因为在开始吸附时,UA分子很容易到达印迹膜上的位点,结合速率很快;但是,随着吸附时间的增长,印迹膜上的位点逐渐被UA分子占据,吸附10min时,印迹膜上的UA位点已基本结合完全,10min 后吸附量不再增加,吸附到达平衡.印迹电极洗脱前和吸附后与尿酸的结合量可以根据下式计算,即上式中:n为得失电子数;F为法拉第常数;Γ为吸附量;A为电极面积;v为扫描速率;R为气体常数;T为绝对温度.根据上式可求出在pH=5.0时,印迹电极洗脱前的Γ值为111.9μnmol·m-2,吸附10 min后的Γ值为104.4μmol·m-2.印迹电极洗脱前和吸附后的吸附量基本相同,说明UA分子可以很好地地占据印迹膜的空穴,从而实现对UA的选择性检测.2.3.5 分子印迹和非印迹传感器的吸附热力学壳聚糖是甲壳素脱乙酰化的衍生物,有许多活性基团如羟基和氨基,这些基团与一些官能团能进行很好的反应[13-14].当用壳聚糖作为功能基体时,尿酸所具有的氨基和羟基与壳聚糖的氨基和羟基间会形成强的氢键[5],从而更有利于印迹聚合物的形成.吸附曲线能够用Langmuir模型进行拟合,如图8所示.其平衡数据可用Langmuir等温线进行分析,计算式为上式中:qm为饱和吸附量;Kb为结合常数.从图8中可看出,分子印迹传感器的吸附容量明显高于非印迹传感器,印迹传感器和非印迹传感器的最大氧化峰电流分别是222.7,25.02μA,分子印迹效率为8.90,以此作为判断印迹传感器和非印迹传感器对尿酸最大吸附容量比率的依据[15].这一数据表明,印迹传感器具有更好的识别尿酸的能力.2.3.6 线性范围和检出限在最佳条件下,对不同浓度的UA进行微分脉冲伏安法测定,结果如图9所示.图9中的插图是线性曲线图.从图9可知,UA的氧化峰电流与其浓度在0.1~80.0μmol·L-1范围内呈良好的线性关系,线性回归方程Ip=1.099 1c-0.259 6,R2=0.999 0,定量检出下限为0.1 μmol·L-1.2.3.7 印迹传感器的重现性和稳定性为了考察印迹传感器的重现性,将印迹电极在20.0μmol·L-1的UA溶液中吸附10min后测定其氧化峰电流值;然后,在体积比为1∶9的0.01mol·L-1的KCl/乙醇混合溶液中用0.4V电位进行洗脱,重复测定10次,相对标准偏差为1.91%.同时,印迹电极在连续使用一周后对尿酸的电化学响应降为原来的89%.以上实验结果表明,所制备的印迹传感器具有良好的重现性和稳定性,可以满足实际样品测定的需要.取人体血清样品3份,所有用于检测的样品均是原始血清(来自于华侨大学校医院),用0.1mol·L-1的PBS稀释10倍.每个样品用微分脉冲伏安法平行测定3次,利用标准加入法测定方法的回收率,结果如表1所示.表1中:CD,CA,CR 分别为尿酸的检测值、加入值和回收值;η为回收率.从表1可以看出,该印迹传感器对血清样品中尿酸检测的结果令人满意.基于壳聚糖的电沉积,制备了以壳聚糖为功能基体的尿酸分子印迹电化学传感器.所制备的分子印迹传感器对尿酸具有特异性识别能力,相对于非印迹传感器的印迹效率达8.9,且对常见共存物质具有较好的抗干扰性.尿酸在传感器上的氧化峰电流与尿酸浓度在一定范围内成良好的线性关系,定量检测下限为0.1μmol·L-1.将该传感器应用与于人体血清中尿酸的检测,获得了满意的结果,可为检测生物样品中的尿酸提供了一个快速和可靠的方式.【相关文献】[1]王长芹,徐海红,韩晓刚,等.活化玻碳电极直接测定全血中的尿酸[J].分析试验室,2007,26(1):27-31.[2]HAN Su-qin,ZHAO Shou-miao.A novel method for uric acid determination using CdS quantum dots as fluorescence probes[J].J Chin Chem Soc,2009,56(6):1156-1162.[3]KIM K M,HENDERSON G N,OUYANG X,et al.A sensitive and specific liquid chromatography-tandem mass spectrometry method for the determination of intracellular and extracellular uric acid[J].J Chromatogr:B,2009,877(22):2032-2038.[4]ZHAO Chang-zhi,WAN Li,WANG Qin,et al.Highly sensitive and selective uric acid biosensor based on direct electron transfer of hemoglobin-encapsulated chitosan-modified glassy carbon electrode[J].Anal Sci,2009,25(8):1013-1017.[5]LU Guang-han,JIANG Ling-yan,SONG Feng,et al.Determination of uric acid and norepinephrine by chitosan-multiwall carbon nanotube modified electrode[J].Electroanal,2005,17(10):901-905.[6]XU Dan-ke,HUA Lin,LI Zi-man,et al.Identification and quantitative determination of uric acid in human urine and Plasma by capillary electrophoresis with amperometric detection[J].J Chromatogr:B,1997,694(2):461-466.[7]SIEKMANN L.Determination of uric acid in human serum by isotope dilution mass spectrometry[J].J Clin Chem Clin Biochem,1985,23(3):129-135.[8]蒋挺大.壳聚糖[M].北京:化学工业出版社,2001.[9]REBECCA A Z,JUNG J P,GARY W R,et al.Electrochemical study of chiosan films deposited from solution at reducing potentials[J].Electrochim Acta,2006,51(25):5324-5333.[10]连惠婷,陈娟娟,薛艳,等.久效磷分子印迹传感器的的电化学响应特性[J].华侨大学学报:自然科学版,2011,32(2):182-187.[11]孙卫东,王金勇,叶承荣,等.傅立叶变换红外光谱对动物尿结石成分的分析研究[J].扬州大学学报:农业与生命科学版,2006,27(2):57-58.[12]LIU Guo-dong,LIN Yue-he.Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents[J].Anal Chem,2005,77(18):5894-5901.[13]MARUCA R,SUDER B J,WIGHTMAN J P.Interaction of heavy metals with chitin and chitosan(Ⅲ):Chromium[J].J Appl Polym Sci,1982,27(12):4827-4837. [14]MCKAY G,BLAIR H S,FINDON A.Equilibrium studies for the sorption of metalions onto chitosan[J].Ind J Chem:A,1989,28:356-360.[15]CHEN P Y,NIEN P C,HU C W,et al.Detection of uric acid based on multi-walled carbon nanotubes polymerized with a layer of molecularly imprinted PMAA[J].Sens Actuators:B,2010,146(2):455-471.。
第53卷第4期2024年4月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.53㊀No.4April,2024YbʒCa 3(NbGa )5O 12晶体的坩埚下降法生长及光学性能研究赵㊀涛,艾㊀蕾,梁团结,钱慧宇,孙志刚,潘建国(宁波大学材料科学与化学工程学院,浙江省光电探测材料及器件重点实验室,宁波㊀315211)摘要:使用坩埚下降法成功生长出了镱离子掺杂钙铌镓石榴石晶体(YbʒCa 3(NbGa)5O 12)㊂通过XRD 测试分析了晶体的结构,该晶体为立方晶系,晶胞参数a =b =c =12.471Å㊂对该晶体进行了拉曼光谱㊁透过光谱㊁吸收和发射光谱㊁荧光寿命等测试,计算了该晶体的吸收截面㊁发射截面㊁增益截面等㊂研究了在空气中退火对该晶体吸收光谱㊁发射光谱㊁荧光寿命的影响,退火前在935nm 处吸收截面为1.82ˑ10-20cm 2,退火后降低为1.40ˑ10-20cm 2,退火前在1031nm 处的发射截面为0.56ˑ10-20cm 2,退火后降低为0.40ˑ10-20cm 2,退火前荧光衰减时间为1.42ms,退火后为1.32ms㊂结果表明,YbʒCa 3(NbGa)5O 12单晶在空气中退火会对晶体的激光性能造成不利影响㊂关键词:YbʒCa 3(NbGa)5O 12晶体;坩埚下降法;吸收光谱;发射光谱;荧光衰减;退火中图分类号:O782㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2024)04-0620-07Growth and Optical Properties of YbʒCa 3(NbGa )5O 12Crystals by Bridgman MethodZHAO Tao ,AI Lei ,LIANG Tuanjie ,QIAN Huiyu ,SUN Zhigang ,PAN Jianguo(Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province,School of Materials Science and Chemical Engineering,Ningbo University,Ningbo 315211,China)Abstract :Ytterbium ion doped calcium niobium gallium garnet crystal (Yb ʒCa 3(NbGa)5O 12)was successfully grown by Bridgman method.The structure of the crystal was analyzed by XRD.The crystal is cubic crystal system,and the unit cell parameter a =b =c =12.471Å.The crystal was tested by Raman spectroscopy,transmission spectroscopy,absorption and emission spectroscopy,and fluorescence lifetime.The absorption cross section,emission cross section,and gain cross section of the crystal were calculated.The effects of annealing in air on the absorption spectrum,emission spectrum and fluorescence lifetime of the crystal were studied.The absorption cross section at 935nm before annealing is 1.82ˑ10-20cm 2,and it decreases to 1.40ˑ10-20cm 2after annealing.The emission cross section at 1031nm before annealing is 0.56ˑ10-20cm 2,and it decreases to 0.40ˑ10-20cm 2after annealing.The fluorescence decay time before annealing is 1.42ms,and it is 1.32ms after annealing.The results demonstrate that the annealing of YbʒCa 3(NbGa)5O 12single crystal in air will adversely affect the laser performance of the crystal.Key words :YbʒCa 3(NbGa)5O 12crystal;Bridgman method;absorption spectrum;emission spectrum;fluorescence decay;annealing㊀㊀㊀收稿日期:2023-12-08㊀㊀基金项目:国家自然科学基金(51832009,512302300)㊀㊀作者简介:赵㊀涛(1997 ),男,山西省人,硕士研究生㊂E-mail:1254983331@ ㊀㊀通信作者:孙志刚,博士,助理研究员㊂E-mail:sunzhigang@0㊀引㊀㊀言钙铌镓石榴石(CNGG)晶体是一类无序激光晶体,结构介于激光玻璃的无序结构和激光晶体的有序结构之间㊂无序结构的激光玻璃,是一类典型的非均匀加宽的激光增益介质,但玻璃具有长程无序结构,限制㊀第4期赵㊀涛等:YbʒCa3(NbGa)5O12晶体的坩埚下降法生长及光学性能研究621㊀了声子的平均自由程,导致其热学性能相对较差,限制了高效㊁高功率密度激光的获得[1]㊂而传统的激光晶体如钇铝石榴石(YAG)晶体,具有很好的热学性质,但长程有序的特点使其具有相对单一的激活离子取代位置,导致其配位单一,激活离子的光谱较窄[2]㊂无序的钙铌镓石榴石晶体兼具两者的优点,具有光谱的非均匀加宽特性和较高的热导率,使得其在激光领域中具有潜在的应用价值㊂NdʒCNGG晶体的具有较宽的吸收与发射光谱,Pan等[3]采用直拉法生长了无序的NdʒCNGG晶体,InGaAs LD泵浦的峰值吸收截面约为4.1ˑ10-20cm2,在808nm LD激发的发射荧光谱中,4F3/2ң4I11/2的半峰全宽(full width at half maximum, FWHM)为15nm,4F3/2ң4I13/2半峰全宽为27nm,在超快激光脉冲产生方面展示出巨大的潜力㊂目前,研究人员对NdʒCNGG晶体的连续波㊁调Q及锁模超短脉冲激光特性已做了大量㊁系统的研究[4-6]㊂20世纪90年代初,随着体积小㊁效率高㊁寿命长的LD泵浦源的出现,Yb3+作为激光基质激活离子的研究迅猛发展㊂Yb3+具有最简单的能级结构,与Nd3+相比,具有本征量子缺陷低,辐射量子效率高,能级寿命长,吸收和发射光谱宽等特点㊂特别是Yb3+的吸收峰位于900~1000nm,能与目前商用的InGaAs半导体激光二极管泵浦源有效耦合,并且不需要严格控制温度㊂YbʒCa3(NbGa)5O12晶体(YbʒCNGG)已有相关报道,可获得连续激光输出,并通过锁模和调Q获得脉冲激光输出[7-9],证明了YbʒCNGG在激光领域的潜在价值㊂目前报道的YbʒCNGG晶体都是使用提拉法生长,该晶体的坩埚下降法生长还没有报道㊂坩埚下降法生长晶体是在密闭环境中进行,能有效防止原料Ga2O3的挥发;此外,与提拉炉相比较,坩埚下降炉价格低廉,设备维护简单,使用坩埚下降法生长晶体能够极大地降低生产成本,因此YbʒCNGG晶体可能更适合使用坩埚下降法生长㊂本文成功使用坩埚下降法生长出较大尺寸的YbʒCNGG晶体,并开展了其光学性能研究㊂1㊀实㊀㊀验1.1㊀原料制备和晶体生长YbʒCNGG晶体在1450ħ左右一致熔融,但在高温下Ga2O3原料会挥发,因此本实验采用坩埚下降法,在密闭环境中生长该晶体㊂使用的原料为Yb2O3(纯99.99%),CaCO3(纯99.99%),Nb2O5(纯99.99%), Ga2O3(纯99.999%),采用Ca3Nb1.6875Ga3.1875O12成分配比,按照以下的化学反应式进行多晶料的合成㊂2.892CaCO3+0.813375Nb2O5+1.626375Ga2O3+0.054Yb2O3=0.964Ca3Nb1.6875Ga3.1875O12㊃0.036Yb3Ga5O12+2.892CO2(1)按上述配比称量原料,进行充分研磨,放入混料机中混合24h,再进行液压机压块,随后放入马弗炉进行第一次烧结,烧结温度1000ħ,保温10h;取出后再次研磨㊁压块,进行第二次烧结,烧结温度1250ħ,保温时间30h,得到YbʒCNGG的多晶料㊂将多晶料放进装有YAG[111]籽晶的铂金坩埚,放入坩埚下降炉中进行晶体生长㊂接种温度为1450ħ,下降速度8mm/d㊂晶体生长结束后,以20ħ/h左右的速率使炉温降至室温,以消除晶体生长过程中所产生的热应力㊂众所周知,激光晶体在高温环境中工作一段时间后,性能会有所降低㊂在高温㊁富氧或贫氧环境中工作一段时间后某些单晶会改变颜色,导致其光学吸收带发生变化,这种现象已经在硅酸铋[10]㊁铌酸盐[11-12]㊁磷酸盐[13]和碱金属钼酸盐[14-16]等氧化物中发现㊂因此,本文在空气中对YbʒCNGG晶体进行了热退火,以此来探究高温环境工作后晶体的光学性能变化㊂将加工好的一块晶片切成两块,其中一块放进马弗炉中,在空气氛围下进行退火,退火温度为1000ħ,保温时间10h㊂1.2㊀性能测试使用德国Bruker XRD D8Advance型X射线粉末衍射仪对YbʒCNGG晶体的粉末样品进行XRD测试,辐射源为Cu靶X射线管,工作电压和电流分别为40kV和40mA,扫描范围10ʎ~70ʎ,步幅为0.02ʎ㊂使用DXR3Raman Microscope光谱仪记录了晶体在295K下的拉曼光谱,激发源为532nm波长的激光㊂使用美国Lambda950型紫外可见近红外分光光度计测量了晶体的吸收和透过光谱㊂使用法国FL3-111型荧光光谱仪测试了晶体的发射光谱,激发源为980nm激光㊂采用英国FLS980荧光光谱仪测试了晶体的荧光衰减曲线,激发波长980nm,监测波长1031nm㊂622㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷2㊀结果与讨论2.1㊀晶体生长图1(a)为采用坩埚下降法生长得到的YbʒCNGG晶体,晶体直径为25mm,接种后生长部分长度约为80mm,其中偏析层部分约为25mm㊂晶体呈现咖啡色,透明,内部有少量裂纹,晶体开裂与晶体自身性质以及生长工艺有关㊂图1(b)为加工后的YbʒCNGG晶片,晶片直径25mm,厚度为1mm,属于(111)晶面,晶片中横向裂纹是加工所致㊂图1㊀坩埚下降法生长的YbʒCNGG晶体Fig.1㊀YbʒCNGG crystals grown by Bridgman method2.2㊀XRD分析图2为YbʒCNGG晶体单晶部分和顶部偏析层部分的粉末XRD图谱,将单晶部分的XRD数据导入Jade 中,通过拟合得出该晶体是Ia3d空间群,属于立方晶系,晶胞参数a=b=c=12.471Å,α=β=γ=90ʎ,比已报道的CNGG晶体晶胞参数(12.51Å)略小[17],原因是掺杂的Yb3+半径小于被取代的Ca2+半径,导致晶体晶格收缩㊂通过Jade分析,顶部偏析层的杂质成分大部分是立方焦火成岩(Ca2Nb2O7),这与文献[18]中得出结论一致,原因是掺入Yb3+后,生成了镱镓石榴石(Yb3Ga5O12),导致Ca2+与Nb5+的过量,从而生成了不属于石榴石相的Ca2Nb2O7㊂2.3㊀拉曼光谱图3是室温下YbʒCNGG退火前后晶体样品的拉曼图谱对比,孤立金属氧四面体基团[MO4](M代表Ga 和Nb)在700~900cm-1存在对称伸缩振动,这些[MO4]基团是石榴石晶格的结构单元,M阳离子进入到石榴石结构的d位[19]㊂在700~900cm-1看到两个密集的振动峰C1和C3,分别是[GaO4]和[NbO4]基团群的对称伸缩振动造成的,C1和C2峰下降明显,C3和C4变化较小的可能原因是晶体中部分Ga3+挥发,改变了晶体的结构和振动特性,影响了振动模式的活性㊂Ga3+挥发会对晶体中[GaO4]基团的对称伸缩振动产生影响㊂通常情况下,Ga O键连接可能会中断或减弱,这种情况可能导致对称伸缩振动变弱,在拉曼光谱中可能会表现为C1和C2峰强度下降㊂C2和C4分别是C1和C3的伴峰,此处出现峰,则代表[GaO4]和[NbO4]附近出现阳离子空位,峰强度越高,则代表阳离子空位浓度越高㊂从图中可以看出,退火后C2和C4处都出现了微弱的伴峰,表明在退火后的晶体中,阳离子空位浓度增加了,主要原因是高温退火后晶体表面的Ga3+浓度降低,但是幅度较小[20]㊂2.4㊀透过和吸收光谱退火前后晶体样品的透过图谱如图4(a)所示,600~2500nm的整体透过率接近80%,说明晶体质量较高,退火后晶体颜色变化不明显㊂图4(b)是YbʒCNGG晶体的吸收截面图,吸收峰对应Yb3+的2F7/2(基态)ң2F5/2(激发态)跃迁㊂基态2F7/2和激发态2F5/2分别被晶体场劈裂为4个和3个Stark能级,从基态多重态的几个Stark能级到激发态多重态2F7/2(0㊁1㊁2㊁3)ң2F5/2(0ᶄ㊁1ᶄ㊁2ᶄ)的电子跃迁大多数是声子辅助的,从而产生了相当宽的谱带㊂晶体退火前在935nm处吸收截面为1.82ˑ10-20cm2,退火后为1.40ˑ10-20cm2;退火前在971nm处吸收截面为1.22ˑ10-20cm2,退火后为1.03ˑ10-20cm2,退火后吸收截面明显降低㊂此外,㊀第4期赵㊀涛等:YbʒCa 3(NbGa)5O 12晶体的坩埚下降法生长及光学性能研究623㊀从图4(c)和4(d)可以计算得出,晶体退火前在935nm 处FWHM 为47.46nm,退火后为44.60nm;退火前在971nm 处FWHM 为23.47nm,退火后为23.86nm㊂退火后在935nm 处的FWHM 比退火前小了2.86nm㊂图2㊀YbʒCNGG 晶体中部单晶部分及顶部偏析层部分的粉末XRD 图谱Fig.2㊀Powder XRD patterns of the middle single crystal part and the top segregation layer of YbʒCNGGcrystal 图3㊀室温下退火前后YbʒCNGG 晶体样品的拉曼图谱Fig.3㊀Raman spectra of YbʒCNGG crystal samples before and post annealing at roomtemperature图4㊀室温下退火前后YbʒCNGG 晶体样品的性能测试㊂(a)透过光谱;(b)吸收光谱;(c)退火前晶体样品吸收光谱的高斯拟合图;(d)退火后晶体样品吸收光谱的高斯拟合图Fig.4㊀Performance testing of YbʒCNGG crystal samples before and post annealing at room temperature.(a)Transmission spectra;(b)absorption spectra;(c)Gaussian fitting of absorption spectra of crystal sample before annealing;(d)Gaussian fitting of the absorption spectrum of crystal sample post annealing 2.5㊀发射光谱关于YbʒCNGG 晶体的发射截面σem (λ)计算,本文使用互易法(reciprocity method),用下列公式进行计算㊂624㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷σem (λ)=σαbsZ l Z u exp E zl -hc λkT ()(2)式中:σabs 为吸收截面,h 为普朗克常数,k 为玻耳兹曼常数,c 为光速,λ为波长,T 为实验温度,Z l /Z u 为下㊁上能级的配分函数比,E zl 为零声子线㊂如图5(a)所示,计算得出退火前975nm 处的发射截面为1.28ˑ10-20cm 2,退火后为1.11ˑ10-20cm 2,退火前1031nm 处的发射截面为0.56ˑ10-20cm 2,退火后为0.40ˑ10-20cm 2㊂退火后975㊁1031nm 处的发射截面均低于退火前㊂图5(b)是在980nm 激光激发下得到的发射光谱,发射峰位于1031nm 处,在相同测试条件下,退火后该晶体的发射强度明显低于退火前,这与计算得出的结果相一致,表明YbʒCNGG 晶体在空气中退火后,对其激光性能有不利影响㊂原因是空气中的高温退火可能会对材料的物理和化学性质产生影响,包括晶格结构的变化和缺陷的生成㊂退火过程中晶格结构的变化和缺陷的形成可能对透过谱和发射谱性能产生影响㊂晶格结构变化:高温退火可能引起晶格结构的重新排列㊂在退火过程中,原子或分子在晶体中重新定位以达到更低的能量状态㊂这可能导致晶格略微变化,晶格参数可能发生微小的变化,如晶胞参数㊁晶体取向等㊂这种微小的结构变化可能会影响透过谱和发射谱的特性㊂缺陷的生成:高温退火也可能导致缺陷的生成㊂例如,点缺陷(Ga 3+的挥发)㊁位错或晶界等缺陷的产生㊂这些缺陷可能导致电子状态的变化㊁局部晶格畸变或者在晶体中引入能级㊂这些缺陷可能会影响材料的光学性质,包括透过谱和发射谱㊂图5㊀室温下退火前后YbʒCNGG 晶体样品的发射截面曲线(a)和980nm 激光激发下得到的发射光谱(b)Fig.5㊀Emission cross-section curves (a)and emission spectra at 980nm excitation (b)of YbʒCNGG crystal samples before and post annealing at room temperature2.6㊀增益截面根据上述吸收和发射截面光谱,增益截面σg (λ)可由下式计算:σg (λ)=βσem (λ)-(1-β)σabs (λ)(3)式中:β为激发态离子反转分数㊂图6所示为退火前后的YbʒCNGG 晶体样品在不同β值(0,0.25,0.50,0.75,1.00)下的增益截面曲线㊂如图6(a)所示,在1010~1040nm 处,当布居反转分数达到25%时,增益截面变为正值㊂如此低的反转比例意味着1031nm 波长的YbʒCNGG 激光器将具有较低的泵浦阈值,这表明YbʒCNGG 晶体是1031nm 激光器的理想候选材料㊂在高抽运情况下,增益截面谱也较宽,表现出良好的可协调性㊂而退火后该晶体增益截面曲线如图6(b)所示,并且在布居反转比例达到50%时,在1031nm 附近的增益带宽明显低于退火前,因此理论上通过被动锁模达到最小脉冲也将会受到影响[21],也就是说,在高温下工作会对该晶体超快激光的产生造成不利影响㊂2.7㊀荧光衰减室温下对退火前后的YbʒCNGG 晶体样品进行荧光衰减测试㊂如图7所示,激发波长980nm,监测波长1031nm,采用单指数函数拟合,如公式(4)所示㊂y =A 1e -x t +y 0(4)㊀第4期赵㊀涛等:YbʒCa3(NbGa)5O12晶体的坩埚下降法生长及光学性能研究625㊀式中:A1为前因子,y0为初始强度,t为时间,x㊁y为测试的横纵坐标,对应波长㊁强度㊂通过拟合得到退火前的荧光衰减时间为1.42ms,退火后的荧光衰减时间为1.32ms,观察到退火后Yb3+的寿命减少,表明这种退火在晶体中引入了进一步的缺陷,很可能是由表面Ga3+的挥发造成的,与文献中采用提拉法生长的YbʒCNGG晶体τ=816μs相比较,结果相差很大,可能是该晶体有很强的重吸收,造成直接测量荧光寿命不准确,但是与文献中退火后Yb3+的寿命会减少的结论是一致的[20]㊂图6㊀室温下退火前后YbʒCNGG晶体样品增益截面曲线Fig.6㊀YbʒCNGG crystal samples gain cross-section curves before and post annealing at room temperature图7㊀室温下退火前后YbʒCNGG晶体样品荧光衰减曲线Fig.7㊀YbʒCNGG crystal samples fluorescence decay curves before and post annealing at room temperature3㊀结㊀㊀论采用坩埚下降法,生长出尺寸为ϕ25mmˑ80mm的YbʒCNGG透明单晶,通过XRD粉末衍射,得出了偏析层的主要杂质成分为Ca2Nb2O7㊂通过透过和吸收光谱得出该晶体退火前在935和971nm处有很宽的吸收带宽,分别为47.46和23.47nm,退火后935nm处吸收带宽变窄㊂尽管常规情况下退火有助于提高晶体的均匀性和激光性能,但在本文中通过对YbʒCNGG晶体退火前后晶体发射截面和增益截面的计算,以及发射光谱和荧光衰减的测量,发现采用高温退火可能会引入缺陷并导致激光性能下降㊂这可能暗示着退火温度需要重新评估或者退火周期需要调整以更好地维持晶体性能,后续本团队会继续研究不同退火条件对YbʒCNGG晶体激光性能的影响㊂参考文献[1]㊀于浩海,潘忠奔,张怀金,等.无序激光晶体及其超快激光研究进展[J].人工晶体学报,2021,50(4):648-668+583.YU H H,PAN Z B,ZHANG H J,et al.Development of disordered laser crystals and their ultrafast lasers[J].Journal of Synthetic Crystals, 2021,50(4):648-668+583(in Chinese).[2]㊀KANCHANAVALEERAT E,COCHET-MUCHY D,KOKTA M,et al.Crystal growth of high doped NdʒYAG[J].Optical Materials,2004,26626㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷(4):337-341.[3]㊀PAN H,PAN Z B,CHU H W,et al.GaAs Q-switched NdʒCNGG lasers:operating at4F3/2ң2I11/2and4F3/2ң2I13/2transitions[J].OpticsExpress,2019,27(11):15426-15432.[4]㊀SHI Z B,FANG X,ZHANG H J,et al.Continuous-wave laser operation at1.33μm of NdʒCNGG and NdʒCLNGG crystals[J].Laser PhysicsLetters,2008,5(3):177-180.[5]㊀LI Q N,FENG B H,ZHANG D X,et al.Q-switched935nm NdʒCNGG laser[J].Applied Optics,2009,48(10):1898-1903.[6]㊀XIE G Q,TANG D Y,LUO H,et al.Dual-wavelength synchronously mode-locked NdʒCNGG laser[J].Optics Letters,2008,33(16):1872.[7]㊀SCHMIDT A,GRIEBNER U,ZHANG H J,et al.Passive mode-locking of the YbʒCNGG laser[J].Optics Communications,2010,283(4):567-569.[8]㊀LIU J H,WAN Y,ZHOU Z C,et parative study on the laser performance of two Yb-doped disordered garnet crystals:YbʒCNGG andYbʒCLNGG[J].Applied Physics B,2012,109(2):183-188.[9]㊀SI W,MA Y J,WANG L S,et al.Acousto-optically Q-switched operation of YbʒCNGG disordered crystal laser[J].Chinese Physics Letters,2017,34(12):124201.[10]㊀COYA C,FIERRO J L G,ZALDO C.Thermal reduction of sillenite and eulite single crystals[J].Journal of Physics and Chemistry of Solids,1997,58(9):1461-1467.[11]㊀ZALDO C,MARTIN M J,COYA C,et al.Optical properties of MgNb2O6single crystals:a comparison with LiNbO3[J].Journal of Physics:Condensed Matter,1995,7(11):2249-2257.[12]㊀GARCÍA-CABAES A,SANZ-GARCÍA J A,CABRERA J M,et al.Influence of stoichiometry on defect-related phenomena in LiNbO3[J].Physical Review B,Condensed Matter,1988,37(11):6085-6091.[13]㊀MARTÍN M J,BRAVO D,SOLÉR,et al.Thermal reduction of KTiOPO4single crystals[J].Journal of Applied Physics,1994,76(11):7510-7518.[14]㊀SCHMIDT A,RIVIER S,PETROV V,et al.Continuous-wave tunable and femtosecond mode-locked laser operation of YbʒNaY(MoO4)2[J].JOSA B,2008,25(8):1341-1349.[15]㊀MÉNDEZ-BLAS A,RICO M,VOLKOV V,et al.Optical spectroscopy of Pr3+in M+Bi(XO4)2,M+=Li or Na and X=W or Mo,locallydisordered single crystals[J].Journal of Physics:Condensed Matter,2004,16(12):2139-2160.[16]㊀VOLKOV V,RICO M,MÉNDEZ-BLAS A,et al.Preparation and properties of disordered NaBi(X O4)2,X=W or Mo,crystals doped with rareearths[J].Journal of Physics and Chemistry of Solids,2002,63(1):95-105.[17]㊀SHIMAMURA K,TIMOSHECHKIN M,SASAKI T,et al.Growth and characterization of calcium niobium gallium garnet(CNGG)singlecrystals for laser applications[J].Journal of Crystal Growth,1993,128(1/2/3/4):1021-1024.[18]㊀CASTELLANO-HERNÁNDEZ E,SERRANO M D,JIMÉNEZ RIOBÓO R J,et al.Na modification of lanthanide doped Ca3Nb1.5Ga3.5O12-typelaser garnets:Czochralski crystal growth and characterization[J].Crystal Growth&Design,2016,16(3):1480-1491.[19]㊀VORONKO Y K,SOBOL A A,KARASIK A Y,et al.Calcium niobium gallium and calcium lithium niobium gallium garnets doped with rareearth ions-effective laser media[J].Optical Materials,2002,20(3):197-209.[20]㊀ÁLVAREZ-PÉREZ J O,CANO-TORRES J M,RUIZ A,et al.A roadmap for laser optimization of YbʒCa3(NbGa)5O12-CNGG-type singlecrystal garnets[J].Journal of Materials Chemistry C,2021,9(13):4628-4642.[21]㊀SU L B,XU J,XUE Y H,et al.Low-threshold diode-pumped Yb3+,Na+ʒCaF2self-Q-switched laser[J].Optics Express,2005,13(15):5635-5640.。
钴酸锂拉曼光谱
钴酸锂(LiCoO2)是一种重要的材料,广泛应用于锂离子电池中作为正极材料。
拉曼光谱是一种非常有用的表征钴酸锂的工具,可以用于研究其结构、晶格振动和材料性质等。
钴酸锂的拉曼光谱通常包括以下峰:
1. 270 cm-1峰:这是钴酸锂的最强拉曼峰,代表着晶格振动模式。
这个峰的位置和强度可以提供关于晶格结构和晶格畸变的信息。
2. 590 cm-1峰:这个峰代表着晶体中的氧振动模式,通过这个峰可以研究钴酸锂材料的氧离子运动和材料质量等。
3. 658 cm-1峰:这个峰通常被认为是钴酸锂中Li的振动模式,因此其位置和强度可以提供有关锂离子在晶体中的位置和移动性的信息。
通过对钴酸锂的拉曼光谱进行系统研究,可以了解其材料结构和性质,并为制备高性能锂离子电池提供重要参考。
基于HITEMP数据库的分子吸收光谱高精度快速建模方法钱宝健,蔡静*,常海涛,高一凡(航空工业北京长城计量测试技术研究所,北京 100095)摘要:为解决高温环境下分子吸收光谱精确计算的时间复杂性,满足宽光谱测量领域对理论吸收光谱计算的需求,本研究利用Python语言以逐线计算为基础,结合线型函数的简化、线翼截止准则和谱线数据库的优化,建立了基于高温分子吸收参数数据库(High⁃Temperature molecular spectroscopic absorption parameters data⁃base,HITEMP)的分子吸收光谱精确快速计算模型。
以Hartmann⁃Tran线型函数作为吸收光谱标准线型编写部分相关二次速度依赖硬碰撞函数(partially⁃Correlated quadratic⁃Speed⁃Dependent Hard⁃Collision Profile,pCqSDHC),结合复概率函数(Complex Probability Function,CPF)简化模型实现了线型函数的精确快速计算,相较于理论计算模型计算速度提高了20倍。
按照光谱计算残差在10-5量级确定了固定波数截断结合谱线半宽等倍数截断的线翼截止准则。
以阈值线强度10-25 cm-1/(mol∙cm-2)为标准筛选了每100 K温度梯度时的光谱数据,整合得到优化数据库。
在6 500 ~ 8 000 cm-1范围内对水分子的吸收光谱进行计算,并与“”分子气体集成光谱建模网站仿真结果对比,逐线模型的计算误差在10-7量级,优化模型的计算误差在10-5量级,计算速度平均提升25倍。
该模型满足吸收光谱测量中对于理论吸收光谱的高效准确计算,为复杂环境中基于宽调谐、超连续激光吸收光谱的测量研究提供了理论模型基础。
关键词:吸收光谱;HITEMP数据库;线型函数;线翼截止中图分类号:TB9;O433 文献标志码:A 文章编号:1674-5795(2023)05-0039-10Modeling molecular absorption spectra based on the HITEMP databaseQIAN Baojian, CAI Jing*, CHANG Haitao, GAO Yifan(Changcheng Institute of Metrology & Measurement, Beijing 100095, China)Abstract: To address the computational complexity of accurately calculating molecular absorption spectra in high⁃temperature environments and meet the demand for theoretical absorption spectrum calculations in broad⁃spectrum mea⁃surement fields, this study developed a precise and fast calculation model for molecular absorption spectra based on the High⁃Temperature molecular spectroscopic absorption parameters database (HITEMP). The model was implemented us⁃ing Python language, employing a line⁃by⁃line calculation approach combined with simplification of line shape functions, line wing truncation criteria, and optimization of spectral line databases. The Hartmann⁃Tran line shape function was used as the standard absorption spectrum line shape, and partially⁃Correlated quadratic⁃Speed⁃Dependent Hard⁃Collision Pro⁃file (pCqSDHC) was developed for relevant second⁃order velocity⁃dependent hard⁃collision functions. By incorporating the doi:10.11823/j.issn.1674-5795.2023.05.06收稿日期:2023-09-26;修回日期:2023-10-08基金项目:国家“十三五”计量技术基础科研项目(JSJL2020205A003)引用格式:钱宝健,蔡静,常海涛,等.基于HITEMP数据库的分子吸收光谱高精度快速建模方法[J].计测技术,2023,43(5):39-48.Citation:QIAN B J,CAI J,CHANG H T,et al.Modeling molecular absorption spectra based on the HITEMP database[J].Metrology & Measurement Technology,2023,43(5):39-48.Complex Probability Function (CPF) and simplifying the model, the line shape functions were calculated accurately and rapidly, resulting in a 20⁃fold increase in computational speed compared to theoretical models. The line wing truncation criteria were determined based on the spectral calculation residual at the level of 10-5 and involved the truncation of fixed wavenumbers combined with equal multiple truncations of spectral line half widths. Spectral data for each temperature gradient of 100 K were selected using a threshold line intensity of 10-25 cm-1/(mol∙cm-2) and integrated to create an opti⁃mized database. The absorption spectra of water molecules were calculated within the range of 6 500 ~ 8 000 cm-1 and compared with the simulation results from "", a molecular gas integrated spectral modeling website. The calculation error of the line⁃by⁃line model was at the level of 10-7, while the optimized model achieved a calculation error at the level of 10-5, with an average speed improvement of 25 times. This model enables efficient and accurate calculation of theoretical absorption spectra for absorption spectral measurements and provides a theoretical foundation for measuring studies based on wide⁃tunable and supercontinuum laser absorption spectra in complex environments.Key words: absorption spectrum; HITEMP database; line shape functions; line wing cutoff0 引言分子吸收光谱是一种描述物质分子对特定波长光的吸收能力的图谱,通过测量物质对不同波长光的吸收程度,可以推断物质的组成、浓度、结构和化学性质等重要信息,从而在燃烧诊断[1-2]、温度测量[3-4]、污染物监测[5]等领域中进行定性和定量分析。
岛津labsolution报告模板1.背景岛津labsolution是一家专注于实验室仪器销售和技术支持的企业,该企业为客户提供仪器的销售、售后服务和维修等一站式服务。
对于岛津labsolution的客户来说,及时且详细的报告是评估实验结果的重要因素。
本文旨在介绍岛津labsolution报告模板的使用方法,以帮助客户快速准确地生成报告。
2.模板说明岛津labsolution报告模板是由专业的化学分析师、工程师和客户服务代表组成的团队共同开发设计的。
该模板基于国际标准及使用经验制定,通过对客户的真实需求和岛津labsolution的实际情况进行分析,将常用的报告要素整理成了易于理解且操作简便的形式。
该模板可适用于多种实验仪器和实验场景,并具有以下特点:•格式清晰,简洁明了。
•报告内容涵盖全面,包括实验方法、实验结果和实验结论。
•报告中可以插入自定义的分析结果和图表(非必要因素)。
•模板支持Markdown文本输入格式,方便客户编辑。
•该模板可免费下载使用。
3.模板使用方法3.1 下载模板客户可以通过以下步骤下载岛津labsolution报告模板:1.打开岛津labsolution官网。
2.导航至“下载中心”页面。
3.在该页面中找到“报告模板”选项,并点击下载链接。
3.2 填写报告安装模板后,客户可以按照以下步骤完成报告:1.打开模板并输入实验名称和实验人员信息。
2.编写实验方法,输入实验步骤和实验条件等信息。
该部分需要客户根据实验实际情况进行填写。
3.输入实验结果,包括实验数据和实验图表等信息(非必要因素)。
客户可以根据自己实验的特点自定义需要包含在报告中的结果内容。
4.撰写实验结论,总结实验结果和结论。
该部分需要客户进行仔细思考和分析,以给出准确有效的评价。
3.3 导出报告完成报告后,客户可以通过以下步骤导出报告:1.点击“导出”按钮。
2.选择报告的导出格式,包括PDF、HTML和Word等。
囊泡乙酰胆碱转运蛋白显像剂123I-IBVM的制备及SPECT脑显像作者:宋普姣, GUILLOTEAU Denis, SONG Pujiao, GUILLOTEAU Denis作者单位:宋普姣,SONG Pujiao(贵阳医学院附院核医学科,贵州贵阳,550004), GUILLOTEAU Denis,GUILLOTEAU Denis(法国国家医学与健康研究院930所,法国图尔37000)刊名:贵阳医学院学报英文刊名:Journal of Guiyang Medical College年,卷(期):2014,39(3)Ferla FM;Oddo S Alzheimer' s disease:Abeta,tau and synaptic dysfunction 2005(11)2.Gilmor ML;Erickson JD;Varoqui H Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease 1999(411)3.Perry EK;Perry RH Neurochemistry of consciousness:cholinergic pathologies in the human brain 2004(145)4.Jung YW;Frey KA;Mulholland GK Vesamicol receptor mapping of brain cholinergic neurons with radioiodine-labeled positional isomers of benzovesamicol 1996(39)5.Kuhl DE;Koeppe RA;Minoshima S In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease 1999(52)6.Kuhl DE;Minoshima S;Fessler JA In vivo mapping of cholinergic terminals in normal aging,Alzheimer' s disease,and Parkinson' s disease 1996(40)7.蒲亚岚;王永红阿尔茨海默病中枢胆碱能系统的损伤及主要机制 2010(12)8.Perry E;Walker M;Grace J Acetylcholine in mind:a neurotransmitter correlate of consciousness 1999(22)9.Mazere J;Prunier C;Barret O In vivo SPECT imaging of vesicular acetylcholine transporter using[,(123) I]-IBVM in early Alzheimer's disease 2008(40)引用本文格式:宋普姣.GUILLOTEAU Denis.SONG Pujiao.GUILLOTEAU Denis囊泡乙酰胆碱转运蛋白显像剂123I-IBVM的制备及SPECT脑显像[期刊论文]-贵阳医学院学报 2014(3)。
Product Information Presentation, Storage and StabilityThe Incucyte® Fabfluor-pH Antibody Labeling Reagents for antibody internalization are supplied as lyophilized solids in sufficient quantity to label 50 μg of test antibody, when used at the suggested molar ratio (1:3 of test antibody to labeling Fab). The lyophilized solid can be stored at 2-8° C for one year. Once re-hydrated, any unused reagent should be aliquoted and stored at -80° C for up to one year. Avoid repeated freeze-thaw cycles.Incucyte® Fabfluor-pH Antibody Labeling ReagentsFor Antibody Internalization AssaysAntibody Labeling Reagent Rehydrated: -80° C *Excitation and Emission maxima were determined at a pH of 4.5.Fabfluor_quick_guideBackgroundIncucyte ® Fabfluor-pH Antibody Labeling Reagents are designed for quick, easy labeling of Fc-containing test antibodies with a Fab fragment-conjugated pH-sensitive fluorophore. The pH-sensitive dye based system exploits the acidic environment of the lysosomes to quantify in-ternalization of the labeled antibody. As Fabfluor labeled antibodies reside in the neutral extracellular solution (pH 7.4), they interact with cell surface specific antigens and are internalized. Once in the lysosomes, they enter an acidic environment (pH 4.5–5.5) and a substantial in-crease in fluorescence is observed. In the absence of ex-pression of the specific antigen, no internalization occurs and the fluorescence intensity of the labeled antibodies remains low. With the Incucyte ® integrated analysis soft-ware, background fluorescence is minimized. These reagents have been validated for use with a number of different antibodies in a range of cell types. The Incucyte ® Live-Cell Analysis System enables real-time, kinetic eval -uation of antibody internalization.Recommended UseWe recommend that the Incucyte ® Fabfluor-pH Antibody Labeling Reagents are prepared at a stock concentration of 0.5 mg/mL by the addition of 100 μL of sterile water and triturated (centrifuge if solution not clear). The reagent may then be diluted directly into the labeling mixture with test antibody. Do NOT sonicate the solution.Additional InformationThe Fab antibody was purified from antisera by a combination of papain digestion and immunoaffinity chromatography using antigens coupled to agarose beads. Fc fragments and whole IgG molecules have been removed.Human Red (Cat. No. 4722) or Human Orange (Cat. No. 4812)—Based on immunoelectrophoresis and/ or ELISA, the antibody reacts with the Fc portion of human IgG heavy chain but not the Fab portion of human IgG. No antibody was detected against human IgM, IgA or against non-immunoglobulin serum proteins. The anti-body may cross-react with other immunoglobulins from other species.Mouse IgG1 (Cat. No. 4723), IgG2a (Cat. No. 4750) or IgG2b (Cat. No. 4751)—Based on antigen-binding assay and/or ELISA, the antibody reacts with the Fc portion of mouse IgG, IgG2a or IgG2b, respectively, but not the Fab portion of mouse immunoglobulins. No antibody was detected against mouse IgM or against non–immunoglobulin serum proteins. The antibody may cross-react with other mouse IgG subclasses or with immunoglobulins from other species.Rat (Cat. No. 4737)—Based on immunoelectrophoresis and/or ELISA, the antibody reacts with the Fc portion of rat IgG heavy chain but not the Fab portion of rat IgG. No antibody was detected against rat IgM, IgA or against non-immunoglobulin serum proteins. The antibody may cross-react with other immunoglobulins from other species.A.B.C.D.R e d O b j e c t A r e a (x 105 μm 2 p e r w e l l )Time (hours)A U C x 106 (0–12 h )log [α–CD71] (g/mL)Example DataFigure 1: Concentration-dependent increase in antibody internalization of Incucyte ® Fabfluor labeled-α-CD71 in HT1080 cells. α-CD71 and mouse IgG1 isotype control were labeled with Incucyte ® Mouse IgG1 Fabfluor-pH Red Antibody Labeling Reagent. HT1080 cells were treated with either Fabfluor-α-CD71 or Fabfluor-IgG1 (4 μg/mL); HD phase and red fluorescence images were captured every 30 minutes over 12 hours using a 10X magnification. (A) Images of cells treated with Fabfluor-α-CD71 display red fluorescence in the cytoplasm (images shown at 6 h). (B) Cells treated with labeled isotype control display no cellular fluorescence. (C) Time-course of Fabfluor-α-CD71 internalization with increasing concentrations of Fabfluor-α-CD71 (progressively darker symbols). Internalization has been quantified as the red object area for each time-point. (D) Concentration response curve to Fabfluor-α-CD71. Area under the curve (AUC) values have been determined from the time-course shown in panel C (0-12 hours) and are presented as the mean ± SEM, n=3 wells.CD71-FabfluorIgG-FabfluorProtocols and ProceduresMaterialsIncucyte® Fabfluor-pH Antibody Labeling ReagentTest antibody of interest containing human, mouse, or rat IgG Fc region (at known concentration)Target cells of interestTarget cell growth mediaSterile distilled water96-well flat bottom microplate (e.g. Corning Cat. No. 3595) for imaging96-well round black round bottom ULA plate (e.g. Corning Cat. No. 45913799) or amber microtube (e.g. Cole Parmer Cat. No. MCT-150-X, autoclaved) for conjugation step0.01% Poly-L-Ornithine (PLO) solution (e.g. Sigma Cat. No. P4957), optional for non-adherent cells Recommended control antibodiesIt is strongly recommended that a positive and negative control is run alongside test antibodies and cell lines. For example, CD71, which is a mouse anti-human antibody, is recommended as a positive control for the mouse Fab.Anti-CD71, clone MEM-189, IgG1 e.g. Sigma Cat. No. SAB4700520-100UGAnti-CD71, clone CYG4, IgG2a e.g. BioLegend Cat. No. 334102Isotype controls, depending on isotype being studied—Mouse IgG1, e.g. BioLegend Cat. No. 400124, Mouse IgG2a e.g. BioLegend Cat. No. 401501Preparation of Incucyte® Antibody Internalization Assay 1. Seed target cells of interest1.1 Harvest cells of interest and determine cell concentra-tion (e.g. trypan blue + hemocytometer).1.2 Prepare cell seeding stock in target cell growth mediawith a cell density to achieve 40–50% confluence be-fore the addition of labeled antibodies. The suggested starting range is 5,000–30,000 cells/well, although the seeding density will need to be optimized for each cell type.Note: For non-adherent cell types, a well coating may be required to maintain even cell distribution in the well. For a 96-well flat bottom plate, we recommend coating with 50 μL of either 0.01% Poly-L-Or-nithine (PLO) solution or 5 μg/mL fibronectin diluted in 0.1% BSA.Coat plates for 1 hour at ambient temperature, remove solution from wells and then allow the plates to dry for 30-60 minutes prior to cell addition.1.3 Using a multi-channel pipette, seed cells (50 µL perwell) into a 96-well flat bottom microplate. Lightly tapplate side to ensure even liquid distribution in well. Toensure uniform distribution of cells in each well, allowthe covered plate sit on a level surface undisturbed at room temperature in the tissue culture hood for 30minutes. After cells are settled, place the plate insidethe Incucyte® Live-Cell Analysis System to monitor cell confluence.Note: Depending on cell type, plates can be used in assay once cells have adhered to plastic and achieved normal cell morphology e.g.2-3 hours for HT1080 or 1-2 hours for non-adherent cell types. Some cell types may require overnight incubation.2. Label Test Antibody2.1 Rehydrate the Incucyte® Fabfluor-pH Antibody Label-ing Reagent with 100 µL sterile water to result in a final concentration of 0.5 mg/mL. Triturate to mix (centrifuge if solution is not clear).Note: The reagent is light sensitive and should be protected fromlight. Rehydrated reagent can be aliquoted into amber or foilwrapped tubes and stored at -80° C for up to 1 year (avoid freezing and thawing).2.2 Mix test antibody with rehydrated Incucyte® Fabfluor–pH Antibody Labeling Reagent and target cell growth media in a black round bottom microplate or ambertube to protect from light (50 µL/well).a. Add test antibody and Incucyte® Fabfluor–pH Anti-body Labeling Reagent at 2X the final concentration.We suggest optimizing the assay by starting with afinal concentration of 4 µg/mL of test antibody or theFabfluor-pH Antibody Labeling Reagent (i.e. 2Xworking concentration = 8 µg/mL).Note: A 1:3 molar ratio of test antibody to Incucyte® Fabfluor-pHAntibody Labeling Reagent is recommended. The labeling re-agent is a third of the size of a standard antibody (50 and 150KDa, respectively). Therefore, labeling equal quantities will pro-duce a 1:3 molar ratio of test antibody to labeling Fab.b. Make sufficient volume of 2X labeling solution for50 µL/well for each sample. Triturate to mix.c. Incubate at 37° C for 15 minutes protected from light.Note: If performing a range of concentrations of test antibody,e.g. concentration response-curve, it is recommended to createthe dilution series post the conjugation step to ensure consistentmolar ratio. We strongly recommend the use of both a negativeand positive control antibody in the same plate.3. Add labeled antibody to cells3.1 Remove cell plate from incubator.3.2 Using a multi-channel pipette, add 50 µL of 2X labeledantibody and control solutions to designated wells.Remove any bubbles and immediately place plate in the Incucyte® Live-Cell Analysis System and start scanning.Note: To reduce the risk of condensation formation on the lid priorto first image acquisition, maintain all reagents at 37° C prior toplate addition.4. Acquire images and analyze4.1 In the Incucyte® Software, schedule to image every15-30 minutes, depending on the speed of the specific antibody internalization.a Scan on schedule, standard. If the Incucyte® Cell-by-Cell Analysis Software Module (Cat. No. 9600-0031)is available, adherent cell-by-cell or non-adherentcell-by-cell scan types can be selected.b Channel selection: select “phase” and “red” or“phase” and "orange” (depending on reagent used).c Objective: 10X or 20X depending on cell types used,generally 10X is recommended for adherent cells,and 20X for non-adherent or smaller cells.NOTE: The optional Incucyte® Cell-by-Cell Analysis SoftwareModule enables the classification of cells into sub-populationsbased on properties including fluorescence intensity, size andshape. For further details on this analysis module and its appli-cation, please see: /cell-by-cell.4.2 To generate the metrics, user must create an AnalysisDefinition suited to the cell type, assay conditions andmagnification selected.4.3 Select images from a well containing a positiveinternalization signal and an isotype control well(negative signal) at a time point where internalizationis visible.4.4 In the Analysis Definition:Basic Analyzer:a. Set up the mask for the phase confluence measurewith fluorescence channel turned off.b. Once the phase mask is determined, turn the fluores-cence channel on: Exclude background fluorescencefrom the mask using the background subtractionfeature. The feature “Top-Hat” will subtract localbackground from brightly fluorescent objects withina given radius; this is a useful tool for analyzing ob-jects which change in fluorescence intensity overtime.i The radius chosen should reflect the size of thefluorescent object but contain enough backgroundto reliably estimate background fluorescence inthe image; 20-30 μm is often a useful startingpoint.ii The threshold chosen will ensure that objectsbelow a fluorescence threshold will not bemasked.iii Choose a threshold in which red or orange objectsare masked in the positive response image but lownumbers in the isotype control, negative responsewell. For a very sensitive measurement, for example,if interested in early responses, we suggest athreshold of 0.2.NOTE: The Adaptive feature can be used for analysis but maynot be as sensitive and may miss early responses. If interestedin rate of response, Top-Hat may be preferable.Cell-by-Cell (if available):a. Create a Cell-by-Cell mask following the softwaremanual.b. There is no need to separate phase and fluorescencemasks. The default setting of Top-Hat No Mask forthe fluorescence channel will enable backgroundsubtraction without generation of a mask. Ensurethat the Top-Hat radius is set to a value higher thanthe radius of the larger clusters to avoid excess back-ground subtraction.c. The threshold of fluorescence can be determined inCell-by-Cell Classification.Specifications subject to change without notice.© 2020. All rights reserved. Incucyte, Essen BioScience, and all names of Essen BioScience prod -ucts are registered trademarks and the property of Essen BioScience unless otherwise specified. Essen BioScience is a Sartorius Company. Publication No.: 8000-0728-A00Version 1 | 2020 | 04Sales and Service ContactsFor further contacts, visit Essen BioScience, A Sartorius Company /incucyte Sartorius Lab Instruments GmbH & Co. KGOtto-Brenner-Strasse 20 37079 Goettingen, Germany Phone +49 551 308 0North AmericaEssen BioScience Inc. 300 West Morgan Road Ann Arbor, Michigan, 48108USATelephone +1 734 769 1600E-Mail:***************************EuropeEssen BioScience Ltd.Units 2 & 3 The Quadrant Newark CloseRoyston Hertfordshire SG8 5HLUnited KingdomTelephone +44 (0) 1763 227400E-Mail:***************************APACEssen BioScience K.K.4th floor Daiwa Shinagawa North Bldg.1-8-11 Kita-Shinagawa Shinagawa-ku, Tokyo 140-0001 JapanTelephone: +81 3 6478 5202E-Mail:*************************5. Analysis GuidelinesAs the labeled antibody is internalized into the acidic environment of the lysosome, the area of fluorescence intensity inside the cells increases.This can be reported in two ways:Ways to Report Basic AnalyzerCell-by-Cell Analysis* To correct for cell proliferation, it is advisable to normalize the fluorescence area to the total cell area using User Defined Metrics.For Research Use Only. Not For Therapeutic or Diagnostic Use.LicensesFor non-commercial research use only. Not for therapeutic or in vivo applications. Other license needs contact Essen BioS cience.Fabfluor-pH Red Antibody Labeling Reagent: This product or portions thereof is manufactured under license from Carnegie Mellon University and U.S. patent numbers 7615646 and 8044203 and related patents. This product is licensed for sale only for research. It is not licensed for any other use. There is no implied license hereunder for any commercial use.Fabfluor-pH Orange Antibody Labeling Reagent: This product or portions thereof is manufactured under a license from Tokyo University and is covered by issued patents EP2098529B1, JP5636080B2, US8258171, and US9784732 and related patent applications. This product and related products are trademarks of Goryo Chemical. Any application of above mentioned technology for commercial purpose requires a separate li -cense from: Goryo Chemical, EAREE Bldg., SF Kita 8 Nishi 18-35-100, Chuo-Ku, Sapporo, 060-0008 Japan.SupportA complete suite of cell health applications is available to fit your experimental needs. Find more information at /incucyte Foradditionalproductortechnicalinformation,************************************************************/incucyte。
收稿日期:2020-03-07 修回日期:2020-05-12基金项目:国家自然科学基金(N o .21575002);安徽工业大学大学生创新创业训练计划(N o .201910360031) *通讯作者:董永平,男,教授,研究方向:化学发光分析及电化学分析.E -m a i l :d o n g y p524@163.c o m 第37卷第1期V o l .37 N o .1分析科学学报J O U R N A LO FA N A L Y T I C A LS C I E N C E2021年2月F e b .2021D O I :10.13526/j.i s s n .1006-6144.2021.01.019硅量子点为共反应剂的联吡啶钌电致化学发光研究及对多巴胺的检测刘 惠,殷 浩,杨世龙,董永平*,储向峰(安徽工业大学化学与化工学院,安徽马鞍山243002)摘 要:利用水热法合成了水溶性硅量子点(S i Q D s ),并探究了联呲啶钌(R u (b p y )2+3)在硅量子点修饰玻碳电极(S i Q D s /G C E )上的电致化学发光(E C L )行为㊂结果表明,在中性条件下,S i Q D s 能够作为共反应剂明显增强R u (b p y )2+3的阳极E C L 信号㊂研究了S i Q D s 修饰量㊁缓冲溶液p H 等因素对该体系E C L 信号的影响规律,并对E C L 机理进行了探讨㊂多巴胺对E C L 信号具有明显的抑制作用,据此可以实现对多巴胺的灵敏检测㊂在1.0ˑ10-8~1.0ˑ10-4m o l ㊃L -1范围内,多巴胺浓度与E C L 信号的减少值呈线性变化关系,相关系数达0.993㊂关键词:硅量子点;联吡啶钌;电致化学发光;多巴胺中图分类号:O 657.39 文献标识码:A 文章编号:1006-6144(2021)01-108-05硅量子点(S i Q D s)具有低毒性以及良好的生物相容性,吸引了众多科研工作者的研究兴趣[1,2]㊂自从2002年非水溶性的S i Q D s 的电致化学发光(E C L )行为被报道之后,许多研究人员开始研究其在生物传感领域中的应用[3]㊂然而由于S i Q D s 的表面有大量疏水基团,使得水溶性S i Q D s 在生物传感方面的应用鲜有报道㊂何耀等利用微波法成功合成了亲水性S i Q D s ,这使得S i Q D s 可能进一步应用于生物传感领域[4]㊂虽然水溶性S i Q D s 的光学性质已经得到了较多的研究,但是基于S i Q D s 的E C L 生物传感器的研究工作开展得较少㊂在前期的工作中,我们发现S i Q D s 可以与鲁米诺发生共振能量转移现象,从而产生了强的阳极E C L ,并可用于构建E C L 生物传感器[5]㊂但S i Q D s 作为共反应剂与联吡啶钌(R u (b p y )2+3)发生相互作用,以产生新颖E C L 信号的相关工作尚未开展㊂多巴胺(D A )是调节人体情绪和认知的重要神经递质,是中枢神经系统中重要的儿茶酚胺类物质之一[6]㊂如果人体内D A 的含量发生了异常变化,往往会引起各类相关疾病,如帕金森症[7]㊂因此,开发具有操作简单㊁灵敏度高㊁成本低廉等优点的D A 分析方法是当前研究的热点㊂目前已经有多种基于不同纳米材料的电化学方法实现了对D A 的灵敏检测,如Z n O [8]㊁A l 2O 3[9]等㊂但是以S i Q D s 作为共反应剂的R u (b p y )2+3的E C L 体系用于D A 的检测尚未见报道㊂本文将水溶性的S i Q D s 作为R u (b p y )2+3的共反应剂,获得了强的阳极E C L 信号,并基于D A 对E C L 信号的抑制作用,实现了对D A 的定量检测㊂1 实验部分1.1 主要仪器与试剂M P I -B 型多参数化学发光分析测试系统(西安瑞迈分析仪器有限公司);C H I 760D 型电化学工作站(上海辰华仪器有限公司),三电极体系:S i Q D s 修饰玻碳电极(S i Q D s /G C E )为工作电极,饱和甘汞电极801第1期分析科学学报第37卷(S C E)为参比电极,铂片电极为辅助电极㊂R u(b p y)2+3㊁柠檬酸三钠㊁3-氨丙基-三甲氧基硅烷㊁K3[F e(C N)6]㊁K C l㊁N a2H P O4㊁N a H2P O4㊁无水乙醇㊁盐酸多巴胺(D A)等试剂均为分析纯(国药集团化学试剂有限公司)㊂实验所用水均为去离子水㊂1.2电极的预处理及修饰电极的制备先后使用0.3μm和0.05μm A l2O3抛光粉处理G C E,直至电极表面呈镜面㊂然后分别放在无水乙醇和去离子水中进行超声清洗,得到洁净的电极㊂再将G C E放在K3[F e(C N)6]中性溶液中进行循环伏安扫描,直至得到可逆的循环伏安曲线,表明电极表面被处理干净㊂将电极吹干后备用㊂S i Q D s采用水热法制备[4]㊂称量0.93g柠檬酸三钠,放置在三口烧瓶中,加入20m L的去离子水,搅拌15m i n溶解,加入5m L的3-氨丙基三甲氧基硅烷,搅拌15m i n,升温到100ħ,恒温1h,生成S i Q D s㊂冷却至室温,再用1k D a的透析袋进行透析提纯㊂用微量移液器移取5μLS i Q D s滴到电极表面,在室温下烘干,得到S i Q D s/G C E㊂放置待用㊂1.3测定方法电化学发光分析测试在M P I-B型多参数化学发光系统上进行,光电倍增管高压设定为800V,电位窗口为-1.5~1.5V,扫描速度为0.1V㊃s-1,根据不同发光强度对D A的含量进行定量测定㊂2结果与讨论2.1S i Q D s的表征用透射电镜(T E M)和高分辨透射电镜(H R T E M)对S i Q D s的分散情况以及晶格进行了表征,如图1所示㊂由图1A可见,所合成的S i Q D s表现为球形颗粒,具有良好的单分散性㊂图1B显示其晶格间距为0.19n m,对应着S i Q D s的(220)晶面,说明合成的S i Q D s具有良好的结晶度[4]㊂图1S i Q D s的透射电镜(T E M)(A)和高分辨透射电镜(H R T E M)(B)图F i g.1T E M(A)a n dH R T E M(B)i m a g e s o f S i Q D s2.2修饰电极的E C L和电化学行为以R u(b p y)2+3作为发光试剂,比较研究了1.0ˑ10-4m o l㊃L-1的R u(b p y)2+3在裸G C E和S i Q D s/G C E 修饰电极上的E C L行为,结果如图2A所示㊂可以发现,在没有共反应剂存在的条件下,R u(b p y)2+3在裸G C E上的E C L信号较弱,但在S i Q D s/G C E上的E C L信号很强㊂与裸G C E相比,R u(b p y)2+3在S i Q D s/ G C E上E C L强度增加了近50倍㊂表明S i Q D s能够作为共反应剂,促进R u(b p y)2+3的E C L过程㊂由图2A 内插图可以看出,最大发射波长位于600n m,与R u(b p y)2+3的荧光峰一致,说明该E C L体系的发光体为激发态R u(b p y)2+*3㊂利用循环伏安法(C V)考察了R u(b p y)2+3在裸G C E和S i Q D s/G C E上的电化学行为,如图2B所示,检测底液为p H=7.4的0.1m o l㊃L-1磷酸盐缓冲溶液(P B S)㊂由图中可见,R u(b p y)2+3在裸电极上于1.1V左右出现一对明显的氧化还原峰,对应R u(b p y)3+/2+3电对的氧化还原过程㊂在S i Q D s/G C E上,氧化峰电流基本不变,而还原峰电流明显减弱㊂这一方面是由于S i Q D s的弱导电性所致;另一方面是由于S i Q D s被氧化生成自由基[5],然后与R u(b p y)3+3发生E C L反应,降低了直接参与电化学还原R u(b p y)3+3的量,使得还原电流减弱㊂2.3条件优化实验探索了修饰电极在p H=6.0~8.0的0.1m o l㊃L-1P B S中的E C L信号变化情况,如图3A所示㊂随着缓冲溶液p H值的增加,R u(b p y)2+3在S i Q D s/G C E修饰电极上的E C L强度随之增强,并在p H=7.4901第1期刘惠等:硅量子点为共反应剂的联吡啶钌电致化学发光研究及对多巴胺的检测第37卷图2(A)R u(b p y)2+3在空白G C E以及S i Q D s/G C E上的E C L曲线(内插图为E C L光谱);(B)R u(b p y)2+3在裸G C E 以及S i Q D s/G C E上的循环伏安曲线F i g.2(A)E C Lc u r v e s o fR u(b p y)2+3a t b a r eG C Ea n d S i Q D s/G C E(T h e i n s e t i s E C L s p e c t r u m);(B)C y c l i c v o l t a m m e-t r y c u r v e s o fR u(b p y)2+3a t b a r eG C Ea n dS i Q D s/G C E时出现最大值㊂继续增加p H值,E C L强度开始下降㊂为了确保实验能够获得最佳的E C L信号,选择p H=7.4的P B S作为研究介质㊂用电化学阻抗谱(E I S)研究了S i Q D s在电极表面的修饰情况,如图3B所示㊂S i Q D s修饰电极在高频区表现出的N y q u i s t圆的半径较大,对应着较大的电荷传递阻力(R c t)㊂随着修饰剂的用量增加,R c t不断增大,说明电子的迁移阻力越来越大㊂这种情况一方面是由于S i Q D s自身的导电性较低造成的;另一方面是由于表面带负电的S i Q D s与探针分子[F e(C N)]3-/4-6产生静电排斥所致㊂E I S结果表明S i Q D s被修饰在电极表面㊂本实验进一步研究了S i Q D s的用量对E C L强度的影响㊂从图3B的内插图中可看出,随着修饰的S i Q D s量不断增加,E C L强度随之增强;当修饰的S i Q D s溶液的体积超过5μL时,随着修饰剂用量的增加,E C L强度反而下降㊂这是由于修饰剂用量过大,导致电阻增大,阻碍了R u(b p y)2+3的电化学反应所致㊂因此,S i Q D s溶液的修饰量选择为5μL㊂图3(A)不同p H值对E C L强度的影响;(B)不同S i Q D s修饰量的修饰电极的电化学阻抗谱(插图为S i Q D s修饰量对E C L强度的影响)F i g.3(A)E f f e c t o f t h e p Hv a l u eo nE C Li n t e n s i t y;(B)E l e c t r o c h e m i c a l i m p e d a n c e s p e c t r o s c o p y o fS i Q D sm o d i f i e d e l e c t r o d e sw i t hd i f f e r e n tm o d i f i c a t i o na m o u n t s(T h e i n s e t i s e f f e c t o f S i Q D sm o d i f i c a t i o no nE C L i n t e n s i t y)2.4E C L机理通常R u(b p y)2+3通过电化学氧化生成R u(b p y)3+3,在共反应剂作用情况下,反应生成激发态R u(b p y)2+*3,该激发态回到基态时产生发光现象,最大发射波长约为610n m[10]㊂本文实验发现当没有共反应剂存在时,R u(b p y)2+3在裸G C E上的发光信号非常弱㊂在S i Q D s的参与下,R u(b p y)2+3的E C L被大大的增强(图2A)㊂E C L光谱实验证明发光峰值位于600n m左右,可以判定发光体为R u(b p y)2+3的激发态㊂电化学结果显示R u(b p y)3+3的还原电流在S i Q D s存在下降低(图2B),表明S i Q D s可能与R u(b p y)3+3发生了化学反应导致电流降低㊂B a r d等报道了S i Q D s可以通过空穴注射氧化成阳离子自由基[11]㊂因此,我们推测在正电位条件下S i Q D s可以被氧化成自由基阳离子(S i Q D s+•),该自由基可以与R u(b p y)2+3的氧化产物R u(b p y)3+3发生反应生成激发态R u(b p y)2+*3,获得增强的阳极E C L信号㊂结合之前的文献报道[12-14],可能的E C L机理如下所示:011第1期分析科学学报第37卷R u (b p y )2+3-e ңR u (b p y )3+3(1)S i Q D s -e ңS i Q D s+•(2)R u (b p y )3+3+Si Q D s +•ңR u (b p y )2+*3+S i Q D s (3)R u (b p y )2+*3ңR u (b p y )2+3+hν(4) 在体系中加入D A 后,D A 可以在正电位下被氧化,其氧化产物D A +•能够与R u (b p y )3+3发生反应,从而与E C L 反应发生竞争,导致了E C L 信号的降低㊂2.5 传感器的性能分析优化各项实验条件之后,研究了不同浓度的D A 对R u (b p y )2+3在Si Q D s /G C E 修饰电极上的E C L 抑制作用,如图4A 所示㊂结果表明,随着D A 浓度的不断增加,对发光强度的抑制作用不断增强㊂从D A 浓度与发光信号抑制值的关系曲线(图4A 内插图)中可看到,在1.0ˑ10-8m o l ㊃L -1至1.0ˑ10-4m o l㊃L -1范围内,E C L 的强度与D A 浓度的对数呈良好的线性关系,线性回归方程为:ΔI =1032.8l o g c D A +9560.2,相关系数为0.993,检出限(3σ)为5.5ˑ10-9m o l ㊃L -1㊂研究了相同浓度下,不同分析物如半胱氨酸(C y s t e i n e )㊁葡萄糖(G l u c o s e )㊁细胞色素C (C ytC )和抗坏血酸(A A )对E C L 强度的影响,如图4B 所示㊂由图可知,D A 对E C L 强度表现出明显的抑制作用,表明本体系可用于D A 的灵敏检测㊂对1.0ˑ10-6m o l ㊃L -1的D A 溶液平行测定9次,得到的相对标准偏差为1.5%㊂将该方法应用到盐酸多巴胺注射液中D A 含量的测定,结果如表1所示㊂三种浓度样品的加标回收率范围为93.2%~102.8%,说明此传感器可用于实际样品的检测㊂图4 (A )S i QD s /G CE 修饰电极测定不同浓度D A 的E C L 强度(插图为E C L 强度抑制与D A 浓度的对数校准曲线);(B )不同干扰物质的影响F i g .4 (A )E C L i n t e n s i t y o fD Aa t d i f f e r e n t c o n c e n t r a t i o n sw i t hS i Q D s /G C E m o d i f i e d e l e c t r o d e (T h e i n s e t i s l o ga r i t h -m i c c a l ib r a t i o nc u r v e b e t w e e nE C L i n t e n s i t y a t t e n u a t i o na n dD Ac o n c e n t r a t i o n );(B )T h e e f f e c t o fd i f fe r e n t i n t e rf e r i n gs u b s t a n c e s表1 加标回收实验结果(n =9)T a b l e 1 R e s u l t s o f r e c o v e r yt e s t s (n =9)S a m pl e N o .K n o w n(10-6m o l ㊃L -1)A d d e d(10-6m o l ㊃L -1)F o u n d(10-6m o l ㊃L -1)R e c o v e r y(%)1105.0014.9398.62205.0025.14102.83405.0044.6693.23 结论水溶性S i Q D s 可作为共反应剂与联吡啶钌在中性条件下产生强的阳极E C L 信号㊂据此,建立了检测D A 浓度的新方法㊂D A 对E C L 信号具有明显的抑制作用,在最佳实验条件下,在1.0ˑ10-8~1.0ˑ10-4m o l ㊃L -1的浓度范围内,D A 的浓度与E C L 信号的减少值呈现良好线性关系,相关系数为0.993,检出限(3σ)为5.5ˑ10-9m o l ㊃L -1㊂111第1期刘惠等:硅量子点为共反应剂的联吡啶钌电致化学发光研究及对多巴胺的检测第37卷参考文献:[1] L i Z,R e nXL,H a oCX,M e n g X W,L i Z H.S e n s o r s a n dA c t u a t o r sB:C h e m i c a l,2018,260:426.[2] H eY,S uS,X uT T,Z h o n g YL,A n t o n i oZ a p i e n J,L i J,F a nC H,L e eST.N a n oT o d a y,2011,6(2):122.[3] S h i o h a r aA,H a n a d a S,P r a b a k a r S,F u j i o k aK,L i mT H,Y a m a m o t oK,N o r t h c o t e PT,T i l l e y RD.J o u r n a l o f t h eA m e r-i c a nC h e m i c a l S o c i e t y,2010,132:248.[4] Z h o n g YL,P e n g F,B a oF,W a n g SY,J i XY,Y a n g L,S uYY,L e e ST,H eY.J o u r n a l o f t h eA m e r i c a nC h e m i c a l S o c i e-t y,2013,135(22):8350.[5] D o n g YP,W a n g J,P e n g Y,Z h u J J.B i o s e n s o r a n dB i o e l e c t r o n i c s,2017,94:530.[6] S a j i d M,B a i g N,A l h o o s h a n iK.T r e n d s i nA n a l y t i c a l C h e m i s t r y,2019,118:368.[7] R o b i n s o nDL,H e r m a n sA,S e i p e lA T,W i g h t m a nR M.C h e m i c a lR e v i e w s,2008,108:2554.[8] Y a n g C,G uBX,Z h a n g D,G eC W,T a oH M.A n a l y t i c a lM e t h o d s,2016,8(3):650.[9] B a b a e iA,S o h r a b iM.A n a l y t i c a lM e t h o d s,2016,8:6949.[10]R u b i n s t e i n I,B a r dAJ.J o u r n a l o f t h eA m e r i c a nC h e m i c a l S o c i e t y,1981,103(3):512.[11]D i n g ZF,Q u i n nB M,H a r a mSK,P e l l LE,K o r g e l BA,B a r dAJ.S c i e n c e,2002,296:1293.[12]D o n g YP,G a oT T,Z h o uY,J i a n g LP,Z h u J J.S c i e n t i f i cR e p o r t s,2015,5:15392.[13]C u iR,G uYP,B a oL,Z h a o JY,Q i BP,Z h a n g ZL,X i eZX,P a n g D W.A n a l y t i c a l C h e m i s t r y,2012,84(21):8932.[14]L i uX,J i a n g H,L e i JP,J uH X.A n a l y t i c a l C h e m i s t r y,2007,79(21):8055.E l e c t r o c h e m i l u m i n e s c e n c e o fR u(b p y)2+3w i t hS i l i c o n Q u a n t u m D o t s a sC o r e a c t a n t s a n dA p p l i c a t i o n i nD e t e c t i o no fD o p a m i n eL I U H u i,Y I N H a o,Y A N GS h i l o n g,D O N G Y o n g p i n g*,C HU X i a n g f e n g(S c h o o l o f C h e m i s t r y a n dC h e m i c a lE n g i n e e r i n g,A n h u i U n i v e r s i t y o f T e c h n o l o g y,M a a n s h a n243002)A b s t r a c t:S i l i c o n q u a n t u m d o t s(S i Q D s)w e r es y n t h e s i z e db y h y d r o t h e r m a lm e t h o d.E l e c t r o c h e m i l u m i n e s c e n c e (E C L)b e h a v i o ro f t r i s(2,2'-b i p y r i d i n e)r u t h e n i u m(Ⅱ)(R u(b p y)2+3)w a s i n v e s t i g a t e da t t h eS i Q D sm o d i f i e d g l a s s y c a r b o n e l e c t r o d e.T h e r e s u l t s r e v e a l e dt h a tS i Q D s c o u l db eu s e da sc o r e a c t a n t s t o g e n e r a t es t r o n g a n o d i cE C Ls i g n a lw i t hR u(b p y)2+3u n d e rn e u t r a l c o n d i t i o n s.T h ee f f e c t so fm o d i f i e da m o u n to fS i Q D s a n dt h e p H v a l u eo fb u f f e rs o l u t i o n o n E C L r e s p o n s e w e r es t u d i e d,a n dt h e E C L m e c h a n i s m w a s p r o p o s e d.D o p a m i n e e x h i b i t e d s t r o n g i n h i b i t i n g e f f e c t o nE C Ls i g n a l,a n dc o u l db e s e n s i t i v e l y d e t e c t e d. T h e d e c r e a s e o fE C L i n t e n s i t y v a r i e d l i n e a r l y w i t h t h e l o g t h i u mo f d o p a m i n e c o n c e n t r a t i o n i n t h e r a n g e o f1.0ˑ10-8-1.0ˑ10-4m o l㊃L-1w i t h t h e c o r r e l a t i o n c o e f f i c i e n t o f0.993.K e y w o r d s:S i l i c o n q u a n t u md o t s;R u(b p y)2+3;E l e c t r o c h e m i l u m i n e s c e n c e;D o p a m i n e211。
Lab Report
Electrochemistry: Voltaic and Electrolytic
cells
by Josiah Richardson
Lab Partners: Kenny Nguyen
Professor David Haas
Lab Day and Start Time: Tuesdays 1:40pm
Date Experiment Performed: April 23rd, 2013
Date Lab Report Submitted: May 2nd, 2013
Introduction
In this lab, we created an electrochemical cell using a 9-volt battery to cause the electrolysis of a sodium iodide solution. Using the nernst equation, we will determine the cell potential for various concentrations and determine whether our experimental results coincide with the actual experiment. The nernst equation is as follows:
E = E o– RT ln Q where E is the potential of the cell.
nF E o is the potential of the cell at standard conditions
R is the gas constant 8.314 J/mol-K
T is the temperature in Kelvin
n are the moles of electrons transNirred
F is
Faraday’s constant (96500 Coulombs/mole)
and Q is the reaction quotient (products/reactants)
At standard condtions (25 C, 1 ATM, 1 Mol) we will use the nearst equation which is as follows:
E cell = E˚cell - 0.05916 log [products]p
n [reactants]r
We will use these aforementioned equations and the forthcoming materials to accomplish our goal of creating and analyzing our electrochemical cell.
Materials
black and red coated wire with alligator clips copper strip, nickel strip
pipet DC voltmeter
zinc strip, lead strip Phenolphthalein
0.50 M KNO3, 0.10 M ZnSO4, 0.10M NiSO4, 0.10 M
9-Volt battery with terminal Pb(NO3)2, 0.0020 M ZnSO4, and 0.10 M CuSO4
plastic cups Safety glasses
Procedure“Electrochemistry: Voltaic and Electrolytic cells”, CHEM 102 General Chemistry Lab Experiment April 2013. The laboratory procedure in the worksheet was followed without modification.
Data
PART 1:
1. Zn / Zn+2(0.10M) // Cu+2(0.10M) / Cu without the salt bridge 0.00 V
2. Zn /Zn+2(0.10M) // Cu+2(0.10M) / Cu with the salt bridge
1.07 V
3. Pb / Pb+2(0.10M) // Cu+2(0.10M) / Cu with the salt bridge
0.85mV
4. Ni / Ni+2(0.10M) // Cu+2(0.10M) / Cu with the salt bridge
0.02 V
5.Zn / Zn+2(0.0020M) // Cu+2(0.10M) / Cu with the salt bridge 1.07 V
Table 1. Voltage of compounds data
Figure 2. An Electrolytic Electrochemical Cell
Results and Discussion
We observed many amazing chemical reactions in this laboratory experiment. We watched as one of the metal alligator clips fizzed when we hooked it up to the 9-volt battery and the other corroded as if it was rusting at an exponential rate. When we added the phenolphthalein to the solution it changed the solution to a pink color coming from one of the alligator clips, telling us that the clip that was corroding was being reduced and the other clip that fizzed was being oxidized.
Conclusion
In this lab, we learned how to draw an electrolytic cells and determine what is being oxidized and what is being reduced. We also learned how to write the shorthand notation for the
electrochemical cells. We used various solutions with their compounds and hooked them up to
a 9 volt battery and recorded our observations. To solve equations where we needed to find the standard potentials of the cells, we used the nearst equation and the nearnst equation, respectively. Out of all the laboratory experiements that we have been a part of, this one was the most pre-knowledge based. My overall experience was an enjoyable one and I look forward to future labs of the same magnitude.。