MINITAB能力分析
- 格式:doc
- 大小:142.00 KB
- 文档页数:4
MINITAB下数据的过程能力分析:1.正态数据:a.检验数据的正态性:统计》基本统计量》正态性检验》确定(MINITAB示例)P>0.05,则数据服从正态分布,因此可进行连续数据中正态数据的过程能力分析及其指数的计算,但在进行分析和计算之前还需判定过程是否受控,可使用控制图;b.控制图监控:统计》控制图》子组的变量控制图》X-R图》确定;可见无异常发生,过程受控;c.过程能力分析与计算:统计》质量工具》能力分析》正态》确定2.非正态数据:a.数据的正态性检验:同上P<0.05,所以数据为非正态数据,需进行转换后方可进行过程能力分析,但这并不妨碍用原始数据进行控制图的绘制。
b.数据的转换:统计》控制图》BOX-COX变换》填入数据“扭曲”,子组大小填“10》选项》将变换后的数据存入“C2”中》确定;得到如下图,可知转换的λ=0.5,即对原始数据求平方根;c.控制图的绘制:步骤同上d. 过程能力分析:统计》质量工具》能力分析》正态》单列为“C2”,子组大小为“10”,规格上限为“2.82”,2.82=81/2,确定3. 离散数据: a . 计算DPMO ,公式参见SRINNI 培训:b .将DPMO 暂时理解为不合格品率,如果DPMO=66807.2,则不合格品率P=0.00668072;c . 计算》概率分布》正态分布》逆累计概率》输入常量“0.0668072”,,确定:d .根据正态分布的对称性:Z =︳-1.5︳+1.5=3,即相应的SIGMA 水平为3, 公式为: Z=︳x︳+1.5如果DPMO=1350,则P=0.00135,按照如上步骤,则有:逆累积分布函数正态分布,平均值 = 0 和标准差 = 1P( X <= x ) x0.00135 -2.99998,所以Z=2.99+1.5=4.5。
第二章MINITAB之制程能力分析制程能力分析是通过对生产过程进行统计分析,识别和评估生产过程偏离目标值的能力。
MINITAB是一种常用的统计分析软件,可以帮助我们进行制程能力分析。
本文将介绍MINITAB在制程能力分析中的应用,包括测量系统分析、过程稳定性分析和过程能力指数计算等。
首先,我们需要进行测量系统的分析,以确保测量系统具有良好的稳定性和准确性。
MINITAB提供了一系列测量系统分析工具,包括平均值图、范围图、方差分析等。
通过这些工具,我们可以评估测量系统的可靠性,进而确定测量系统是否适合用于制程能力分析。
接下来是过程稳定性分析,主要应用MINITAB中的控制图工具。
控制图可以帮助我们监控过程的稳定性,及时发现和纠正过程中的异常情况。
MINITAB提供了许多不同类型的控制图,例如X-控制图、R-控制图、P-控制图等。
我们可以根据数据类型和分布情况选择合适的控制图,分析过程是否稳定,并识别特殊原因的存在。
最后是过程能力指数的计算。
过程能力指数是衡量过程能力的一个重要指标。
MINITAB提供了能力分析工具,可以帮助我们计算过程的CP、CPK、Pp和Ppk等指数。
通过这些指标,我们可以评估过程是否能够满足要求,并进行相应的改进。
在使用MINITAB进行制程能力分析时,有一些注意事项需要注意。
首先,要选择合适的样本大小和采样方案,以确保分析结果具有一定的可信度。
其次,要确保数据的质量,包括数据的准确性和完整性。
如果数据存在异常值或缺失值,应进行相应的处理。
最后,要结合实际情况对分析结果进行解释和应用,提出相应的改进措施。
综上所述,MINITAB是一种功能强大的统计分析软件,在制程能力分析中有着广泛的应用。
通过MINITAB的测量系统分析、过程稳定性分析和过程能力指数计算等功能,我们可以全面评估和改进生产过程,提高产品质量和生产效率。
过程能力概述一旦过程处于统计控制状态,并且是连续生产,那么你可能想知道这个过程是否有能力满足规范的限制,生产出好的零件(产品),通过比较过程变差的宽度和规范界限的宽度可以确定过程能力。
在评估过程能力之前,过程必须受控。
如果过程不受控,你将得到不正确的过程能力值。
.你能通过画能力柱状图和能力图来评估过程能力。
这些图形能够帮助你评估数据的分布和检验过程是否受控。
你也可以估计包括规范公差与正常过程变差之间比率的能力指数。
能力指数或统计指数都是评估过程能力的一种方法,因为它们都没有单位,所以,可以用能力统计表来比较不同过程的能力。
选择能力命令MINITAB提供了一组不同的能力分析命令,你可以根据数据的性质和分布从中选择命令,你可以对以下情况进行能力分析:——正态或Weibull概率模式(对于测量数据)——不同子组之间可能有很强变差的正态数据——二项式或Poisson概率模式(对于计数数据或属性数据)当进行能力分析时,选择正确的公式是基本要求,例如,MINITAB提供基于正态或Weibull分布模型上的能力分析工具,使用正态概率模型的命令提供了更完全的统计设置,但是,适用的数据必须近似于正态分布.例如,利用正态概率模型,能力分析(正态)可以估计预期零件的缺陷PPM 数。
这些统计分析建立在两个假设的基础上,1、数据来自于一个稳定的过程,2、数据服从近似的正态分布,类似地,能力分析(Weibull)计算零件的缺陷的PPM 值利用的是Weibull分布。
在这两个例子中,统计分析正确性依赖于假设分布模型的正确性。
如果数据是歪斜非常严重,那么用正态分布分析将得出与实际的缺陷率相差很大的结果。
在这种情况下,把这个数据转化比正态分布更适当的模型,或为数据选择不同的概率模式.用M INITAB,你可以使用Box-Cox能力转化或Weibull概率模型,非正态数据比较了这两种方法.如果怀疑过程中子组之间有很强的变差来源,可以使用能力分析(组间/组内)或SIXpack能力分析(组间/组内)。
过程能力概述一旦过程处于统计操纵状态,同时是连续生产,那么你可能想明白那个过程是否有能力满足规范的限制,生产出好的零件(产品),通过比较过程变差的宽度和规范界限的宽度能够确定过程能力。
在评估过程能力之前,过程必须受控。
假如过程不受控,你将得到不正确的过程能力值。
.你能通过画能力柱状图和能力图来评估过程能力。
这些图形能够关心你评估数据的分布和检验过程是否受控。
你也能够可能包括规范公差与正常过程变差之间比率的能力指数。
能力指数或统计指数差不多上评估过程能力的一种方法,因为它们都没有单位,因此,能够用能力统计表来比较不同过程的能力。
选择能力命令MINITAB提供了一组不同的能力分析命令,你能够依照数据的性质和分布从中选择命令,你能够对以下情况进行能力分析:——正态或Weibull概率模式(关于测量数据)——不同子组之间可能有专门强变差的正态数据——二项式或Poisson概率模式(关于计数数据或属性数据)当进行能力分析时,选择正确的公式是差不多要求,例如,MINITAB提供基于正态或Weibull分布模型上的能力分析工具,使用正态概率模型的命令提供了更完全的统计设置,然而,适用的数据必须近似于正态分布.例如,利用正态概率模型,能力分析(正态)能够可能预期零件的缺陷PPM数。
这些统计分析建立在两个假设的基础上,1、数据来自于一个稳定的过程,2、数据服从近似的正态分布,类似地,能力分析(Weibull)计算零件的缺陷的PPM值利用的是Weibull分布。
在这两个例子中,统计分析正确性依靠于假设分布模型的正确性。
假如数据是歪斜特不严峻,那么用正态分布分析将得出与实际的缺陷率相差专门大的结果。
在这种情况下,把那个数据转化比正态分布更适当的模型,或为数据选择不同的概率模式.用MINITAB,你能够使用Box-Cox能力转化或Weibull概率模型,非正态数据比较了这两种方法.假如怀疑过程中子组之间有专门强的变差来源,能够使用能力分析(组间/组内)或SIXpack能力分析(组间/组内)。
CAPA [C...C E] Performs capability analysis on data in columns
C...C with subgroups in E执行能力分析,数据在列里,
以E区分组别
RSUBS C...C Specifies that subgroup data are in rows of C...C.
数据在列里,以行分组
USPEC C Specifies the upper specification limit for each
data set in C为每个数据集指定规格上限值在列中USPEC K...K Specifies the upper specification limit for each
data set as K...K为每个数据集指定上限值为K...KUBOUND C Specifies the upper specification limit as the
boundary for each data set in C. Values in C are 0
and/or 1.指定规格限为数据的边界,值为1(不是)或
0(是)
UBOUND K...K Specifies the upper specification limit as the
boundary for each data set in C. K takes values 0 or
1. 指定规格限为数据的边界,值为1(不是)或0(是)LSPEC C Specifies the lower specification limit for each
data set in C规格下限
LSPEC K...K Specifies the lower specification limit for each
data set as K...K规格下限
LBOUND C Specifies the lower specification limit as the
boundary for each data set in C. Values in C are 0
and/or 1. 指定规格限为数据的边界,值为1(不是)或
0(是)
LBOUND K...K Specifies the lower specification limit as the
boundary for each data set in C. K takes values 0 or
1. 指定规格限为数据的边界,值为1(不是)或0(是)Historical Estimates历史估计值
MU C
MU K...K
SIGMA C
SIGMA K...K
Options选项
TARGET C Specifies the target values for each data set in C
目标值
TARGET K...K Specifies the target values for each data set as
K...K目标值
TOLER K Replaces the default 6 sigma tolerence level by K
指定K倍的sigma限
WITHIN
Performs a within subgroup capability analysis 执行组内能力分析 OVERALL
Performs an overall capability analysis 执行整体能力分析 PERCENT Replace the default parts per million (PPM)
calculations with percentages 显示分比,默认是百万
分之比 ZBENCH Displays benchmark Z statistics rather than the
default capability statistics 显示benchmark Z 统计
量,默认是传统的能力统计量
Box-Cox Transformation 转换
BOXCOX [C]
BOXCOX [K...K]
Standard Deviation Estimates 标准差的估计方法 POOLED
Estimates within standard deviation using the pooled standard deviation 合并标准差 RBAR
Estimates within standard deviation using the average of subgroup range method 子组移动极差平均 SBAR
averages of the subgroup standard deviation method 子组方差平均 AMR RSPAN K
Estimates within standard deviation using the average moving range method using the length specified with RSPAN as K 平均移动极差,移动范围K MMR RSPAN K
Estimates within standard deviation using the median of the moving ranges method using length specified with RSPAN as K 移动极差的中位数,范围为K SRMSSD Estimates within standard deviation using the square
root of half of the mean of the squared successive
differences 均方差的平方根 BIASED Specifies to not use unbiasing constants when
calculating the standard deviation 有偏、无偏常量
Graphs 图形显示
NOCHART
Suppresses the display of graphs 不显示 TITLE K
Specifies a title for the graphs 起名 GSAVE K
Saves the graph in a file in the Minitab Graphic Format (MGF)保存图形名 WTITLE K Specifies a window title of the resulting Graph
window 保存文件名
Storage存储项NAME
USL
STARGET
LSL
MEAN
N
SDT
SDO
CP
CPUC
CPLC
CPU
CPL
CPK
CPKU
CPKL
CCPK
PP
PPUC
PPLC
PPU
PPL
PPK
PPKU
PPKL
CPM
LCPM
PPML
PPMU
PPMT
EPLO
EPUO
EPTO
EPLW
EPUW
EPTW
SLAMBDA TUSL TTARGET TLSL TMEA TSDT TSDO。