第十四章 空间插值
- 格式:ppt
- 大小:9.40 MB
- 文档页数:95
空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。
克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。
克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。
3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。
用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。
最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。
使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。
4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。
克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X与偏离空间距离为h的点X+h 处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性特征。
二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y 的协方差被定义为:区域化变量在空间点x和x+h处的两个随机变量Z(x)和Z(x+h)的二阶混合中心矩定义为Z(x)的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。
一般来说,它是一个依赖于空间点x 和向量h 的函数。
空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。
克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。
克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。
3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。
用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。
最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。
使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。
4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。
克里金插值方法-Kriging 插值-空间统计-空间分析1.1 Kriging 插值克里金插值(Kriging 插值)又称为地统计学,是以空间自相关为前提,以区域化变量理论为基础,以变异函数为主要工具的一种空间插值方法。
克里金插值的实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏、最优估计。
克里金插值包括普通克里金插值、泛克里金插值、指示克里金插值、简单克里金插值、协同克里金插值等,其中普通克里金插值是最为常用的克里金插值方法。
以下介绍普通克里金插值的原理。
包括普通克里金方法在内的各种克里金插值方法的使用前提是空间数据存在着显著的空间相关性。
判断数据空间相关性是否显著的工具是半变异函数(semi-variogram ),该函数以任意两个样本点之间的距离h 为自变量,在h 给定的条件下,其函数值估计方法如下:2||||1()[()()]2()i j i j s s h h z s z s N h γ-==-∑其中()N h 是距离为h 的样本点对的个数。
()h γ最大值与最小值的差m a x m i n γγ-可以度量空间相关性的强度。
max min γγ-越大,空间相关性越强。
如果()h γ是常数,即max min 0γγ-=,则说明无论样本点之间的距离是多少,样本点之间的差异不变,也就是说样本点上的值与其周围样本点的值无关。
在实际操作中,会取一些离散的h 值,当||s s ||i j -接近某个h 时,即视为||||i j s s h -=。
然后会通过这些离散点拟合成连续的半变异函数。
拟合函数的形式有球状、指数、高斯等。
在数据存在显著的空间相关性的前提下,可以采用普通克里金方法估计未知点上的值。
普通克里金方法的基本公式如下:01ˆ()()()n i ii Z s w s Z s ==∑普通克里金方法的基本思想是:通过调整i s 的权重()i w s ,使未知点的估计值0ˆ()Z s 满足两个要求:1.0ˆ()Z s 是无偏估计,即估计误差的期望值为0,2.估计误差的方差达到最小。
空间插值方法一、空间插值方法概述空间插值方法是指在给定的有限点数据集合上,通过某种数学模型,对未知位置的数值进行估计或预测的方法。
它广泛应用于地理信息系统、遥感、气象、环境监测等领域中,是一种重要的数据处理和分析手段。
常见的空间插值方法包括:反距离权重法、克里金法、径向基函数插值法等。
二、反距离权重法1. 原理反距离权重法是一种基于距离加权平均的插值方法。
其基本思想是:对于未知点,用已知点到未知点之间的距离作为权重系数,将已知点的观测值按照这些系数进行加权平均,得到未知点的估计值。
该方法假设空间变量在空间上具有连续性,并且与其邻近区域内观测值相关。
2. 步骤(1)确定待插值点和邻近观测点(2)计算待插值点与邻近观测点之间的欧式距离或曼哈顿距离等(3)根据距离计算每个邻近点的权重系数(4)将邻近点的观测值按照权重系数进行加权平均,得到待插值点的估计值3. 优缺点反距离权重法简单易懂,计算速度快,适用于数据密度较小、空间变异性较大的情况。
但其估计结果容易受到邻近点数量和距离的影响,可能出现插值误差较大的情况。
三、克里金法1. 原理克里金法是一种基于统计学原理的空间插值方法。
其基本思想是:通过对已知点之间的空间关系进行建模,利用半方差函数来描述变量在空间上的相关性,并通过最小二乘法求解出半方差函数中未知参数,从而得到未知位置处的预测值。
该方法假设空间变量在空间上具有稳定性,并且与其邻近区域内观测值相关。
2. 步骤(1)确定待插值点和邻近观测点(2)计算待插值点与邻近观测点之间的欧式距离或曼哈顿距离等(3)根据距离和半方差函数计算每个邻近点的权重系数(4)利用最小二乘法求解半方差函数中的未知参数(5)将邻近点的观测值按照权重系数进行加权平均,得到待插值点的估计值3. 优缺点克里金法能够考虑空间变异性和空间相关性,插值结果较为准确,但需要对半方差函数进行拟合,模型复杂度较高,计算量大。
四、径向基函数插值法1. 原理径向基函数插值法是一种基于核函数的空间插值方法。
空间插值方法1.反距离权重插值:通过与样本点距离大小赋予权重,距离近的样本点被赋予较大的权重,受该样本点的影响越大,同时可以限制插值点的个数、范围,通过幂值来决定样本点对插值点的影响程度,灵活性大,准确性高,但不太适用规则排列的插值点2.克里金插值:克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。
它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。
使用克里金插值需确定半变异函数的类型、步长、步数。
对于这种方法,原始的输入点可能会发生变化。
在数据点多时,结果更加可靠。
该插值方法对规则排列、较密集的点插值较适用,而离散的插值点则需进行多次调试才可达到较为理想的效果3.自然邻域插值:原理是构建voronoi多边形,也就是泰森多边形。
首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。
该方法不是通过数据模型来进行插值,不需要设置多于的参数,简便但不灵活,不适合离散点进行插值,因为会形成不规则插值边界,但插值结果相对符合实际数值、准确,适合规则排列、较密集的点插值。
4.样条函数插值:这种方法使用样条函数来对空间点进行插值,它有两个基本条件:1.表面必须完全通过样本点2.表面的二阶曲率是最小的。
插值主要受插值类型(Regularized 或Tension)和weight值的影响,一般Regularize 插值结果比Tension插值结果光滑,在Regularized Spline 插值中,weight 值越高生成的表面越光滑,Tension Spline 插值则相反;适合那些空间连续变化且光滑的表面的生成。
该方法虽可生成平滑的插值结果,但其结果会在原有样点值进行数值延伸,产生于实际不符的结果,不建议一般插值使用。
§1 插值概论1 插值用已知点来估算其他未知点的过程。
在GIS中,空间插值主要用于栅格数据,估算出栅格中每个单元的值。
空间插值是将点数据转换为面数据的一种方法。
2 需要插值的原因:现有数据不能完全覆盖所要求的区域;现有离散曲面的分辨率、像元大小、方向与要求不符;现有连续曲面的数据模型与要求不一致;3 内插和外推内插:在已观测点的区域内估算未观测点的数据的过程。
外推:在已观测点的区域外估算未观测点的数据的过程.——预测。
4 空间插值基础:控制点控制点分布;控制点密度;控制点的自相关程度§2 内插方法1 全局内插在整个区域用一个数学函数来表达地形曲面。
采用全部控制点计算未知点的数据。
2 局部内插将复杂的地形地貌分解成一系列的局部单元,在这些局部单元内部地形曲面具有单一的结构,由于范围的缩小和曲面形态的简化,用简单曲面就可较好的描述地形曲面。
采用样本控制点计算未知点的数据。
3 内插方法整体内插:趋势面分析;回归模型局部方法:泰森多边形(V oronoi边形,边界内插);反距离权内插;样条函数内插技术;克里金内插方法;密度估算4 趋势面分析的步骤数学曲面函数确定; 内插曲面的复杂程度;计算量;系数求解;最小二乘法;拟合精度分析5 整体内插缺点由于以下缺点,在空间内插中整体内插并不常用:整体内插函数保凸性较差:采样点的增减或移动都需要对多项式的系数作全面调整,从而采样点之间会出现难以控制的振荡现象,致使函数极不稳定,从而导致保凸性较差;多项式系数物理意义不明显解算速度慢且对计算机容量要求较高。
不能提供内插区域的局部地形特征;整体内插函数保凸性较差采样点之间会出现难以控制的振荡现象,致使函数极不稳定6 整体内插优点优点:整个区域上函数的唯一性、能得到全局光滑连续的空间曲面、充分反映宏观地形特征等。
在空间内插中,一般是与局部内插方法配合使用,例如在使用局部内插方法前,利用整体内插去掉不符合总体趋势的宏观地物特征。
7.空间插值7.1空间插值的概念和理论空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便与其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。
空间内插算法是一种通过已知点的数据推求同一区域其它未知点数据的计算方法;空间外推算法则是通过已知区域的数据,推求其它区域数据的方法。
在以下几种情况下必须作空间插值:1)现有的离散曲面的分辨率,象元大小或方向与所要求的不符,需要重新插值。
例如将一个扫描影象(航空像片、遥感影象)从一种分辨率或方向转换到另一种分辨率或方向的影象。
2)现有的连续曲面的数据模型与所需的数据模型不符,需要重新插值。
如将一个连续的曲面从一种空间切分方式变为另一种空间切分方式,从TIN到栅格、栅格到TIN或矢量多边形到栅格。
3)现有的数据不能完全覆盖所要求的区域范围,需要插值。
如将离散的采样点数据内插为连续的数据表面。
空间插值的理论假设是空间位置上越靠近的点,越可能具有相似的特征值;而距离越远的点,其特征值相似的可能性越小。
然而,还有另外一种特殊的插值方法——分类,它不考虑不同类别测量值之间的空间联系,只考虑分类意义上的平均值或中值,为同类地物赋属性值。
它主要用于地质、土壤、植被或土地利用的等值区域图或专题地图的处理,在“景观单元”或图斑内部是均匀和同质的,通常被赋给一个均一的属性值,变化发生在边界上。
7.2空间插值的数据源连续表面空间插值的数据源包括:●摄影测量得到的正射航片或卫星影象;●卫星或航天飞机的扫描影象;●野外测量采样数据,采样点随机分布或有规律的线性分布(沿剖面线或沿等高线);●数字化的多边形图、等值线图;空间插值的数据通常是复杂空间变化有限的采样点的测量数据,这些已知的测量数据称为“硬数据”。
如果采样点数据比较少的情况下,可以根据已知的导致某种空间变化的自然过程或现象的信息机理,辅助进行空间插值,这种已知的信息机理,称为“软信息”。
但通常情况下,由于不清楚这种自然过程机理,往往不得不对该问题的属性在空间的变化作一些假设,例如假设采样点之间的数据变化是平滑变化,并假设服从某种分布概率和统计稳定性关系。
前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。
即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。
(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。
即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。
从而空间统计学应用而生。
➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。
常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。
严格来说趋势面分析并不是在一种空间数据插值法。
它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。
⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。
精度以最小二乘法进行验证。
空间插值原理空间插值是一种通过已知点的值来推测未知点的值的方法,常用于地理信息系统、遥感、气象学等领域。
在这些领域中,往往需要利用有限的观测数据来推测整个区域的数据分布情况。
空间插值原理通过分析已知点的分布规律,利用数学和统计方法来估算未知点的值,从而实现对整个区域的数据插值。
空间插值原理的基本思想是通过已知点之间的关系来推测未知点的值。
在实际应用中,常用的空间插值方法包括反距离加权法、克里金插值法、三角网插值法等。
反距离加权法是一种简单而常用的空间插值方法。
该方法假设未知点的值与已知点之间的距离成反比关系,距离越近的已知点对未知点的影响越大。
根据已知点的值和距离的关系,通过对已知点进行加权平均,可以计算出未知点的值。
反距离加权法的优点是简单易懂,计算速度快,但其结果受到离散点分布和参数设置的影响。
克里金插值法是一种基于统计学原理的空间插值方法。
该方法假设未知点的值是由已知点的值通过某种空间相关性函数来插值得到的。
通过对已知点进行拟合,可以得到空间相关性函数的参数,进而计算出未知点的值。
克里金插值法的优点是可以利用已知点之间的空间相关性来提高插值精度,但其计算量较大,对参数设置要求较高。
三角网插值法是一种基于三角网格的空间插值方法。
该方法将已知点之间的连线构成三角形,通过对三角形内部的点进行插值,可以计算出未知点的值。
三角网插值法的优点是可以利用已知点之间的拓扑关系来提高插值精度,但其结果受到三角网格的划分和拓扑结构的影响。
除了上述常用的空间插值方法外,还有一些其他的方法,如最近邻插值法、样条插值法等。
这些方法各有优缺点,适用于不同的数据分布和插值需求。
在实际应用中,空间插值原理可以帮助我们更好地理解和分析地理信息、遥感数据等的空间分布规律。
通过对已知点的插值,可以得到整个区域的数据分布情况,从而为决策和规划提供科学依据。
同时,空间插值原理也可以用于数据的校正和修复,提高数据的准确性和完整性。
空间插值原理是一种通过已知点的值来推测未知点的值的方法。
空间内插方法比较一、本文概述空间内插方法是一种在地理信息系统(GIS)和遥感技术中广泛使用的技术,用于根据已知的数据点推测未知区域的值。
这种方法在环境科学、气象学、城市规划、资源管理等众多领域都有着重要的应用。
本文旨在探讨和比较几种常见的空间内插方法,包括反距离权重法(IDW)、克里金插值法(Kriging)、自然邻点插值法(Natural Neighbors)以及多项式插值法等。
我们将首先简要介绍这些空间内插方法的基本原理和实施步骤,然后通过一个具体的案例或数据集来比较它们的性能。
我们将评估插值结果的精度、平滑度以及在不同应用场景下的适用性。
我们还将讨论这些方法的优缺点,以便读者能够根据自己的需求选择合适的空间内插方法。
通过本文的阅读,读者将对空间内插方法有更加深入的理解,能够掌握其基本原理和实施步骤,了解不同方法之间的差异和优缺点,并能够在实践中选择合适的空间内插方法。
二、空间内插方法概述空间内插是一种重要的地理信息系统(GIS)技术,用于估算在已知数据点之间或之外的未知地理位置的值。
它是通过分析和理解空间数据的分布模式,使用数学算法来预测和模拟这些模式在空间上的变化。
这种技术广泛应用于各种领域,包括环境科学、气象学、地质学、城市规划等。
空间内插方法大致可以分为两类:确定性方法和统计性方法。
确定性方法,如反距离权重法(IDW)、样条函数法(Spline)等,主要基于空间数据的物理特性和已知点之间的空间关系进行插值。
这类方法通常假设空间数据具有某种连续性和平滑性,通过最小化插值误差或最大化平滑度来得到预测值。
统计性方法,如克里金插值(Kriging)、协方差法等,则更多地依赖于对空间数据分布模式的统计分析和理解。
这类方法认为空间数据不仅具有空间相关性,而且可能存在某种潜在的随机性。
因此,它们通过构建和拟合空间统计模型,如变异函数或协方差函数,来估算未知位置的值。
每种空间内插方法都有其独特的优缺点和适用范围。