在本例中,根据上面的公式,可以得到 ˆ = 0.849,a ˆ = -85.712. b ˆ = 0.849 x - 85.712. 于是得到线性回归方程y
n
n
ˆ = 0.849是回归直线的斜率的估计值,说明身高x b 每增加1个单位,体重y就增加0.849个单位,这表明体重 与身高具有正的线性相关关系.
图1.1 1
ˆ 和a ˆ, 未知参数 b 和 a 的最小二乘估计分别为 b 其计算公式如下:
ˆ b
x
i 1 n
n
i
x yi y
i
x
i 1
x
,
2
ˆ x, ˆ = y-b a
1 1 其中 x = xi ,y = yi . x,y 称为样本点 的 中心 . n i=1 n i=1
思考:如何发现数据中的错误?如何衡量模型的拟 合效果? 可以通过残差发现原始数据中的可疑数据,判 断所建立模型的拟合效果.下表列出了女大学生身 高和体重的原始数据以及相应的残差数据.
编号 1 2 3 4 170 5 6 7 155 8 170
身 高 / cm 165
165 157
175 165
体 重 / kg 48 57Fra bibliotek50 54 64 61 43 59 ˆ 6 .373 2 .627 2 .419 4 .618 1 .137 6 .627 2 .883 0 .382 残 差e
我们可以利用图形来分析残差特性.作图时纵 坐标为残差, 横坐标可以选为样本编号, 或身高数据, 或 体重估计值等, 这样作出的图形为残差图.下图 是以 样本编号为横坐标的残差图.
所以 ,对身高为 172 cm的女大学生 , 由回归方程可以 预报其体重为 ˆ = 0.849 172 - 85.712 = 60.316 ( kg) . y