eviews基本回归模型
- 格式:ppt
- 大小:627.50 KB
- 文档页数:78
计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。
2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。
EVIEWS回归结果的理解在经济学和统计学中,回归分析是一种常用的方法,用于研究变量之间的关系。
EVIEWS是一款常用的计量经济学软件,通过进行回归分析,可以得到一系列统计结果。
本文将介绍EVIEWS回归结果的理解,并解释这些结果对研究的意义和解释。
一、回归方程在进行回归分析后,EVIEWS将给出一个回归方程。
回归方程表示了自变量与因变量之间的关系。
通常,回归方程的形式为:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε其中,Y代表因变量,X1、X2、...、Xk代表自变量,β0、β1、β2、...、βk代表回归系数,ε代表误差项。
回归系数可以理解为自变量对因变量的影响程度,而误差项表示了模型无法解释的部分。
二、回归系数的解释EVIEWS给出的回归结果中,包含了回归方程中自变量的回归系数。
这些回归系数可以帮助我们理解自变量对因变量的影响。
回归系数的正负值表示变量间的正相关或负相关关系,绝对值大小表示相关关系的强弱程度。
需要注意的是,回归系数的统计显著性非常重要。
EVIEWS会给出回归系数的t值和p值,用于判断回归系数是否显著。
如果p值小于设定的显著性水平(通常为0.05),则认为回归系数是显著的,即表明自变量对因变量的影响是存在的。
三、决定系数(R-squared)在EVIEWS回归结果中,还会给出一个被称为决定系数的统计量,用于衡量回归模型对因变量的解释程度。
决定系数的取值范围在0到1之间,越接近1表示回归模型对因变量的解释能力越强。
需要注意的是,决定系数并不代表回归模型的好坏。
一个决定系数较高的回归模型并不一定是更好的模型,因为决定系数受到样本大小、变量选择等多个因素的影响。
因此,在解读决定系数时,需要结合实际问题和模型的适用性进行综合评估。
四、残差分析在EVIEWS回归结果中,还会给出一系列统计指标,用于评估回归模型的拟合优度和模型的合理性。
其中,残差是一项重要指标。
建模方法之回归分析简介数学模型一元线性回归分析模型:),,0(~,2σεεN bx a Y ++= 多元线性回归分析模型:ε+++++=p p x b x b x b a Y Λ2211设随机变量Y 与X 有相关关系,就是说当X 取一确定值时,随机变量Y 有一个确定的分布.这个分布大多数情况下不能具体知道,但在实践中只需要的观测值.而数学期望(假设存在)在一定程度上能反映出其观测值的大小,所以人们感兴趣的是当X 取确定值x 时, Y 的数学期望)(x μ是多少.称)(x μ为Y 对X 的回归函数.在实际问题中,回归函数是未知的,需要我们根据实测样本以及以往的经验来确定回归函数的类型及求出函数中的未知参数的估计,得到经验公式.例1 20℃时在铜线含碳量%x 对于电阻Y (为一正态变量,单位:微欧)变化的研究中,得到如下一测试结果表明,随着铜线含碳量的增加,其电阻有增大的趋势.为了确定回归函数)(x μ的类型, 我们将这9组数据作为坐标在平面直角坐标系中描出它们相应的点,这种图称为散点图。
变量X -Y 的散点图因此估计)(x μ大致具有线性函数bx a +的形式,即可认为X 与Y 具有如下关系:),,0(~,2σεεN bx a Y ++= (1)其中b a ,及2σ是常数.这就是X 、Y 之间的(一元正态线性)回归模型.对n 根铜线进行独立观测,能得到n 个含碳量n x x x ,,,21Λ及对应的n Y Y Y ,,,21Λ,把i Y 看成随即变量,则它们可以表示成⎭⎬⎫=++=.,,,),,0(~,,,2,1,212相互独立n i i i i N n i bx a Y εεεσεεΛΛ (2)记⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 11121M M ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y M 21,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n εεεεM 21, 则(2)式也可表示为ε+⎪⎪⎭⎫⎝⎛=b a X Y .在一元线性回归中主要解决下列问题: (I ) 对未知参数b a ,及2σ进行估计; (II ) 对线性模型的假设进行检验; (III ) 对Y 进行预测和控制.参数的估计:对未知参数b a ,的估计,一个直观的想法便是希望选取这样的a 与b ,使得他们在n x x x ,,,21Λ各处计算的理论值i bx a +与实测值i y 的偏离达到最小.为此人们常用最小二乘法:求b a ,使∑=−−=ni i ibx a yQ 12)(为最小.在几何上,即是在平面上选取一条直线,使直线在横坐标为n x x x ,,,21Λ处的纵坐标与相应的实测点的纵坐标之差的平方和为最小.利用求极值的方法求b a ,,令⎪⎪⎩⎪⎪⎨⎧=−−−=∂∂=−−−=∂∂∑∑==.0)(2,0)(211ni i i i ni i i x bx a y b Q bx a y a Q整理得⎪⎪⎩⎪⎪⎨⎧=+=+∑∑∑∑∑=====ni i i n i i n i i ni i n i i y x x b x a y x b na 112111解此方程组得到的不是b a ,的真值,而是b a ,的估计值,ˆ,ˆb a它们为 ,)())((ˆ1212121∑∑∑∑====−−−=−−=ni ini i ini ini ii x xy y x xx n xyx n yx b(3),ˆˆx b y a−= (4) 其中.,111∑∑====ni i ni i y y x n x 具体计算得Y 对X 的线性回归方程为.59.1297.13ˆx y+= 等价公式:Y X X X ba TT 1)(ˆˆ−=⎥⎦⎤⎢⎣⎡. (5)方差分析:总平方和:,)(12∑=−=ni iT Y YQ 自由度为1−n回归平方和:∑=−=ni iR Y Y Q 12)ˆ(,)(ˆ122∑=−=ni i x x b 自由度为1=p 残差平方和:,)ˆ(12∑=−=ni iiE Y YQ 自由度为1−−p n 关系式:.E R T Q Q Q += 性质:2)1(σ=−−p n Q E E 。
eviews做回归分析报告回归分析是一种常用的统计分析方法,通过建立一个数学模型来描述自变量和因变量之间的关系。
EViews是一种专业的统计软件,可以使用它来进行回归分析并生成相应的分析报告。
下面是使用EViews进行回归分析报告的详细步骤:1. 导入数据:使用EViews打开数据文件,确保数据文件包含自变量和因变量的数据。
2. 创建回归方程:选择菜单栏中的“Quick/Estimate Equation”或者在工具栏中点击“Estimate Equation”按钮来创建一个回归方程。
在弹出的对话框中选择自变量和因变量,可以选择更多的选项来调整回归模型的设定。
3. 进行回归分析:点击对话框中的“OK”按钮,EViews将会进行回归分析并显示回归模型的估计结果。
在结果窗口中,你可以查看模型的拟合统计量、系数估计值、标准误差等信息。
4. 诊断检验:在结果窗口中,EViews会给出一些诊断检验的结果,如残差的正态性检验、异方差性检验等。
你可以根据这些检验结果来进一步判断回归模型的合理性。
5. 绘制图表:EViews提供了丰富的绘图功能,你可以在结果窗口中选择需要的图表类型,如散点图、回归方程图等。
6. 生成报告:最后,你可以将回归分析的结果和图表导出为报告文件。
在EViews中,你可以选择“File/Export/Report…”选项来将分析结果导出为报告文件。
你可以选择不同的格式,如Word、Excel等。
以上是使用EViews进行回归分析报告的基本步骤。
当然,在具体的应用中,你可能需要根据具体的研究问题进行更加详细和复杂的分析。
EViews提供了丰富的功能和命令,可以帮助你进行更深入的回归分析。
eviews面板数据回归分析步骤EViews面板数据回归分析步骤面板数据回归分析是一种常用的经济学研究方法,可以帮助研究人员探究变量之间的关系。
EViews是一种统计软件,提供了丰富的功能来进行面板数据回归分析。
本文将介绍EViews中面板数据回归分析的基本步骤。
第一步:数据准备在进行面板数据回归分析之前,首先需要准备好需要分析的数据集。
在EViews中,可以使用多种方式导入数据,包括从Excel或其他文件格式导入,或者直接在EViews中创建数据。
第二步:设置数据类型在导入或创建数据后,需要将数据设置为面板数据类型。
面板数据包含了多个时间点和多个单位(个体)的变量观测值。
在EViews中,可以通过菜单栏中的"View" -> "Structure" -> "Autodetect"来自动检测数据类型并设置为面板数据。
第三步:查看数据面板在进行面板数据回归分析之前,可以先查看数据面板的基本信息。
在EViews的工作区中,选择要查看的数据,然后点击菜单栏中的"View" -> "Group Statistics" -> "Panel Data",即可显示出数据面板的基本统计信息。
第四步:设定回归模型在EViews中,可以通过命令或拖拽方式来设定回归模型。
首先需要确定因变量和自变量,然后选择回归模型。
EViews支持多种回归模型,例如普通最小二乘回归(OLS)、固定效应模型(Fixed Effects Model)和随机效应模型(Random Effects Model)等。
在设定回归模型时,可以考虑是否添加控制变量和截距项。
第五步:进行回归分析在设定回归模型后,可以进行回归分析。
在EViews中,可以通过点击工具栏上的"Estimate"按钮或通过菜单栏中的"Object" -> "Estimate Equation"来进行回归分析。
Eviews之系数回归模型EVIEWS 之变系数回归模型1 变系数回归模型前⾯讨论的是变截距模型,并假定不同个体的解释变量的系数是相同的,然⽽在现实中变化的经济结构或者不同的经济背景等不可观测的反映个体差异的因素会导致经济结构的参数随着横截⾯个体的变化⽽变化,即解释变量对被解释变量的影响要随着截⾯的变化⽽变化。
这时要考虑系数随着横截⾯个体的变化⽽变化的变系数模型。
1.变系数回归模型原理变系数模型⼀般形式如下:,1,2,,,1,2,,it i it i it y x u i N t T αβ=++==(1)其中:it y 为因变量,it x 为1k ?维解释变量向量,N 为截⾯成员个数,T 为每个截⾯成员的观测时期总数。
参数i α表⽰模型的常数项,i β为对应于解释变量的系数向量。
随机误差项it u 相互独⽴,且满⾜零均值、等⽅差的假设。
在式⼦(1)中所表⽰的变系数模型中,常数项和系数向量都是随着截⾯个体变化⽽变化,因此将该模型改写为:it it i it y x u λ=+ (2)其中:1(1)(1,)it it k x x ?+=,'(,)ii i λαβ= 模型的矩阵形式为:u X Y +?= (3)其中:11N NT y Y y =?;121i i i iT T y y y y =??????;=N X X X X 00000021;112111222212i i ki i i ki i iT iT kiT T k x x x x x x x x x x =??????,12(1)1N N k λλλ+=??????,11N NT u u u =?,121i i i iT T u u u u =??????类似于变截距模型,根据系数变化的不同形式,变系数模型中系数的变化,即解释变量对被解释变量的影响也分固定影响和随机影响两类,相应的变系数模型也分为固定影响变系数模型和随机影响变系数模型两类,前者也被称为似不相关回归模型,后者包括Swamy 随机系数模型和Hsiao 模型等,本章只介绍Swamy 随机系数模型。