PSpice教程3----旁路电容对低频特性的影响(交流扫描+参数扫描)
- 格式:doc
- 大小:433.50 KB
- 文档页数:8
题目:旁路电容对共射极放大电路低频特性的影响电路如图所示,BJT为NPN型硅管,型号为2N3904,放大倍数为50,电路其他元件参数如图所示。
分析旁路电容Ce对共射极放大电路低频特性的影响。
步骤如下:1、绘制原理图如上图所示。
2、修改三极管的放大倍数Bf=50;双击交流源v1设置其属性为:ACMAG=15mv,ACPHASE=0。
3、修改c3的大小,双击c3的大小,设置value={cval}。
如图所示:4、Get New Part Param,从元件库中找到符号Param。
双击Param并设置其属性Name1=cval, Value1=50uf。
如图所示:5、设置分析类型(根据题意,需设置交流扫描分析和参数扫描分析):①交流扫描分析:选择Analysis→set up→AC Sweep,参数设置如下:②参数扫描分析:选择Analysis→set up→Parametric,参数设置如下:6、Analysis Simulate,调用Pspice A/D对电路进行仿真计算。
计算完毕后,弹出如下对话框,表明有三项模拟结果的波形资料,点击All三个波形全显示在probe下,或只点击其中一条,在probe下只显示其中一条曲线。
点击All。
得到如下结果:v(out)/v(in)单击ok按钮,仿真结果如下:波形显示了电压增益的幅值随频率变化的关系,即幅频特性。
同时还反映了旁路电容对电压增益的影响。
最左边的是ce为200uf时的幅频特性曲线,中间的那条是ce为50uf时的幅频特性曲线,最右边的那条是ce为0.1uf时的幅频特性曲线。
问题:从仿真结果中可以看出,旁路电容越大,下限截止频率f L(越低还是越高)?下面测量c3=50uf时的放大电路的低频截止频率。
步骤如下:1、取消参数扫描分析。
2、Analysis→Simulate,调用Pspice A/D对电路进行仿真计算。
3、在probe下,选择Trace→ Add(添加输出波形),,弹出Add Trace对话框,在Trace Expression中编辑v(out)/v(in)单击ok按钮,仿真结果如下:4、在probe下,选择Tools→Cursor→Display ,出现游标,然后再选择选择Tools→Cursor→Max ,通过游标读出最高点的电压增益为130.603,将该数值乘以0.707得到92.336.在曲线上找到v(out)/v(in)为92.336的点,读出此时的横坐标值即为下限截止频率。
射极旁路电容对低频特性的影响的Multisim仿真及分析小川今天给大家介绍的是射极旁路电容对低频特性的影响的Multisim仿真及分析。
希望大家能够多多支持。
前两篇文章讲的是输入电容和输出电容对低频特性的影响的Multisim仿真及分析,今天我们讲的是射极旁路电容对低频特性的影响。
说到电容很多人应该都知道,但是说到射极旁路电容可能有些人就不太清楚,那接下来我们先大概介绍一下射极旁路电容,再开始我们的仿真,这样更有利于大家看懂。
•旁路电容旁路电容可将混有高频电流和低频电流的交流电中的高频成分旁路滤掉的电容,称做'旁路电容'。
对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,在这里顺便提一下去耦(decoupling,也称退耦)电容,去耦电容是把输出信号的干扰作为滤除对象。
•射极旁路电容三极管的发射极旁边的旁路电容是用来将射极电阻旁路掉的,交流信号走电容这条路就可以走了。
直流走不通,所以要走射极电阻,射极电阻是用来稳定静态工作点的。
但是如果交流信号也走的话会减小输入电阻,所以要消除射极电阻的影响,加一个旁路电容。
仿真前仿真中波特图保持其他元件参数不变,仅射极傍路电容由100µF减为10µF。
双击波特图仪图标,按下述要求调节:Mode区,选择Magnitude;Horizontal区,选择Log,F值为100MHz,I值为1Hz;Vertical区,选择Log,F值为40dB,I值为-20dB。
打开电源开关,就观察到完整的幅频特性曲线。
拖动读数指针在曲线中间部位,测量出中频时的增益,再分别求出高、低端的-3db频率点,测得f(L)=220Hz。
可见影响低频特性的最主要原因是发射极傍路电容。
Pspice教程1 PSPICE软件的简介与使⽤1.1 PSPICE的发展与现状根据实际电路(或系统)建⽴模型,通过对模型的计算机分析、研究和试验以达到研制和开发实际电路(或系统)的⽬的,这⼀过程,称为计算机仿真(Simulation)的⾼效、⾼精度、⾼经济性和⾼可靠性,因此倍受业界喜爱。
在设计或分析各类开关电源时,计算机仿真起了重要的作⽤。
数字仿真⼿段可⽤以检验设计的系统是否满⾜性能要求。
应⽤数字仿真可以减少电路实验的⼯作,与电路实验相⽐,计算机仿真所需时间要少得多,并可以更全⾯、更完整地进⾏,以期改进设计质量。
⽬前流⾏的许多著名软件如PSpice、Icape等,它们各⾃都有其本⾝的特点。
⽽随着Windows的全⾯普及,PSpice推出了Windows版本,⽤户不⽤象DOS版那样输⼊数据⽹表⽂件,⽽是图形化,只需选择相应的元器件的图标代号,然后使⽤线连接就可以⾃动⽣成数据⽹表⽂件,整个过程变得直观简单。
因此它已⼴泛应⽤于电⼒电⼦电路(或系统)的分析中。
⽤于模拟电路仿真的SPICE(Simulation Program with Integrated Circuit Emphasis)软件于1972年由美国加州⼤学伯克利分校的计算机辅助设计⼩组利⽤FORTRAN语⾔开发⽽成,主要⽤于⼤规模集成电路的计算机辅助设计。
SPICE 的正式实⽤版SPICE 2G在1975年正式推出,但是该程序的运⾏环境⾄少为⼩型机。
1985年,加州⼤学伯克利分校⽤C语⾔对SPICE软件进⾏了改写,1988年SPICE被定为美国国家⼯业标准。
与此同时,各种以SPICE为核⼼的商⽤模拟电路仿真软件,在SPICE的基础上做了⼤量实⽤化⼯作,从⽽使SPICE成为最为流⾏的电⼦电路仿真软件。
PSPICE则是由美国Microsim公司在SPICE 2G版本的基础上升级并⽤于PC 机上的SPICE版本,其中采⽤⾃由格式语⾔的5.0版本⾃80年代以来在我国得到⼴泛应⽤,并且从6.0版本开始引⼊图形界⾯。
PSpice基础仿真分析与电路控制描述简介本文档将介绍PSpice基础仿真分析和电路控制的相关概念和使用方法。
PSpice是一款电路仿真软件,可帮助电路设计师评估和优化电路性能。
PSpice的基本功能- 电路仿真:通过输入电路原理图和元件参数,PSpice可以对电路进行仿真分析,以评估电路的性能和行为。
- 波形分析:PSpice可以生成电路中各个节点电压和电流的波形图,以帮助理解电路运行情况。
- 参数扫描:PSpice可以对电路中的元件参数进行扫描,以评估元件参数对电路性能的影响。
- 优化分析:PSpice可以通过自动化搜索算法优化电路参数,以达到用户定义的目标。
仿真步骤1. 绘制电路原理图:使用PSpice提供的元件库绘制电路原理图,设置元件参数和连接关系。
2. 设置仿真选项:设置仿真类型和仿真参数,如直流分析、交流分析、变化频率分析等。
3. 运行仿真:通过点击仿真按钮或执行仿真命令,PSpice开始进行仿真计算。
4. 分析仿真结果:根据仿真结果生成的波形图和数据表格,分析电路的性能和行为。
电路控制描述- 电源控制:通过设置电源的电压或电流源来控制电路中的电压和电流。
- 开关控制:通过激活或关闭开关元件, 来控制电路中的电压或电流流动。
- 反馈控制:通过将电路输出信号与输入信号进行比较,并根据差异调整电路参数,实现对电路的控制。
示例下面是一个简单的PSpice仿真和电路控制的示例:* 这是一个简单的RC电路R1 N1 N2 1kC1 N2 N3 1uV1 N1 0 DC 10R2 N3 0 10k.tran 0.1ms 10ms.end通过上述示例,我们可以:1. 进行直流分析,评估电路的直流稳态行为。
2. 进行时间域分析,查看电路中各个节点的电压随时间的变化。
3. 通过改变元件参数、调整输入电压或通过反馈控制等方式,控制电路的行为和性能。
希望本文档能够帮助您了解PSpice的基础仿真分析和电路控制的相关内容。
PSpice A/D数模混合仿真孙海峰Cadence的PSpice A/D可以对电路进行各种数模混合仿真,以验证电路的各个性能指标是否符合设计要求。
PSpice A/D主要功能是将Capture CIS产生的电路或文本文件(*.cir)进行处理和仿真,同时附属波形观察程序Probe对仿真结果进行观察和分析。
PSpice A/D数模仿真技术主要包括以下几类仿真:1、直流扫描分析(DC Sweep):电路的某一个参数在一定范围内变化时,电路直流输出特性的分析和计算。
2、交流扫描分析(AC Sweep):计算电路的交流小信号线性频率响应特性,包括幅频特性和相频特性,以及输入输出阻抗。
3、噪声分析(Noise):在设定频率上,计算电路指定输出端的等效输出噪声和指定输入端的等效输入噪声电平。
4、直流偏置点分析(Bias Point):当电路中电感短路,电容断路时,电路静态工作点的计算。
进行交流小信号和瞬态分析之前,系统会自动计算直流偏置点,以确定瞬态分析的初始条件和交流小信号条件下的非线性器件的线性化模型参数。
5、时域/瞬态分析(Transient):在给定激励下,电路输出的瞬态时域响应的计算,其初始状态可由用户自定义,也可是直流偏置点。
6、蒙特卡洛分析(Monte-Carlo):根据实际情况确定元件参数分布规律,然后多次重复进行指定电路特性的分析,每次分析时的元件参数都采用随机抽样方式,完成多次分析后进行统计分析,就可以得到电路特性的分散变化规律。
7、最坏情况分析(Worst):电路中元件处于极限情况时,电路输入输出特性分析,是蒙特卡洛的极限情况。
8、参数扫描分析(Parametric Sweep )电路中指定元件参数暗规律变化时,电路特性的分析计算。
9、温度分析(Temperature ):在指定温度条件下,分析电路特性。
10灵敏度分析(Sensitivity ):计算电路中元件参数变化对电路性能的影响。
【教程】PSpice的4种基本仿真分析详解PSpice A/D将直流工作点分析、直流扫描分析、交流扫描分析和瞬态TRAN分析作为4种基本分析类型,每一种电路的模拟分析只能包括上述4种基本分析类型中的一种,但可以同时包括参数分析、蒙特卡罗分析、及温度特性分析等其他类型的分析,现对4种基本分析类型简介如下。
1. 直流扫描分析(DC Sweep)直流扫描分析的适用范围:当电路中某一参数(可定义为自变量)在一定范围内变化时,对应自变量的每一个取值,计算出电路中的各直流偏压值(可定义为输出变量),并可以应用Probe功能观察输出变量的特性曲线。
例对图1所示电路作直流扫描分析图1(1)绘图应用OrCAD/Capture软件绘制好的电路图如图2所示。
图2(2)确定分析类型及设置分析参数a) Simulation Setting(分析类型及参数设置对话框)的进入•执行菜单命令PSpice/New Simulation Profile,或点击工具按钮,屏幕上弹出New Simulation(新的仿真项目设置对话框)。
如图3所示。
图3•在Name文本框中键入该仿真项目的名字,点击Create按钮,即可进入Simulation Settings (分析类型及参数设置对话框),如图4所示。
图4b)仿真分析类型分析参数的设置图2所示直流分压电路的仿真类型及参数设置如下(见图4):•Analysis type下拉菜单选中“DC Sweep”;•Options下拉菜单选中“Primary Sweep”;•Sweep variable项选中“Voltage source”,并在Name栏键入“V1”;•Sweep type项选中“Linear”,并在Start栏键入“0”、End栏键入“10”及Increment栏键入“1”。
以上各项填完之后,按确定按钮,即可完成仿真分析类型及分析参数的设置。
另外,如果要修改电路的分析类型或分析参数,可执行菜单命令PSpice/Edit Simulation Profile,或点击工具按钮,在弹出的对话框中作相应修改。
电路的暂态分析(TRAN分析)一、暂态分析语句暂态分析也称瞬态分析,是PSpice仿真分析中运用最多、最复杂、最耗时的分析。
暂态分析是一种非线性时域分析,它可以在暂态分析电源被设置后(或没有暂态分析电源,只是利用储能元件的初值),计算出电路的各输出变量(节点电压、支路电流等)随时间变化的规律。
在暂态分析中,需要计算暂态偏置点。
计算暂态偏置点的方法与计算直流偏置点的方法不同,直流偏置点被看作固定偏置点。
对于固定偏置点(无交流信号)的分析计算,电路电压的初值对于偏置点和线性参数没有影响,而且电路中的电容被看成开路,电感被看成短路。
但对于暂态偏置点(有交流小信号),在计算偏置点和非线性元件的小信号参数时,节点电压和支路电流的初值也考虑在内。
因此有初值的电容和电感也被看作是电路的一部分而保留下来。
暂态分析语句格式:输出偏置点数据(</OP>):.TRAN语句中带有可选项“/OP”后缀时,输出有关暂态偏置点的详细数据,这是因为在暂态分析时计算的偏置点数据和直流的数据是不同的,暂态分析的数据包含电路的初始条件。
输出分析数据的间隔(print-step value):打印或绘图输出的时间增量。
由于暂态分析是变步长计算,故输出的数据量是很大的,合理地选择输出分析数据的间隔能够使合适的数据输出到输出文件。
暂态分析终止时间(final-time-value):该时间即为暂态分析终止时间。
输出数据开始时间(<no-print value>):该项是输出数据(打印或绘图)的开始时间,即从此时间到“暂态分析终止时间”这段时间内输出数据。
若缺省该项,则程序默认开始时间为0.0。
注意,无论“输出数据开始时间”为多少,暂态分析都从时间为零开始,只不过在时间为零到输出数据开始时间这段时间间隔里没有数据输出而已,而且这段时间间隔内的暂态分析数据也没被存储起来。
分析步长上限(<step ceiling value>):该项是分析计算时的最大步长,该项缺省时其默认值为(final-time-value —no-print value)/50.0和print-step-value值中的较小值。
研究生仿真课之Pspice的使用研究生阶段,仿真技术作为电子工程领域的重要工具之一,对于学术研究和工程实践都具有重要意义。
其中,Pspice作为一种常用的电路仿真工具,被广泛应用于电路设计、分析和优化。
本文将介绍Pspice的基本使用方法及其在电子工程中的应用。
Pspice是由电子设计自动化公司(Electronic Design Automation Corporation)推出的一款电路仿真软件,它具有用户友好的操作界面和强大的仿真功能,可以对各种类型的电路进行精确的建模和仿真。
Pspice可以模拟分析直流、交流和混合信号电路,并提供电流、电压、功率以及频率等各种电路参数的波形图和数据。
使用Pspice进行电路仿真需要首先创建电路图。
在Pspice中,电路图是通过画图工具来完成的。
用户可以从元件库中选择各种电子元件,如电容、电感、二极管和晶体管等,然后将它们拖拽到电路图中。
通过将元件连接起来,并设置元件的参数,就可以构建出所需的电路。
在电路图完成后,需要设置仿真参数。
Pspice允许用户设置各种仿真参数,例如直流电压源电压值、交流信号频率以及仿真时间等。
这些参数的设置直接影响到仿真结果,需要根据具体的电路要求进行合理调整。
完成电路图和仿真参数的设置后,即可进行电路仿真。
Pspice提供了多种仿真类型,包括直流分析、交流分析、变动分析和蒙特卡洛分析等。
根据具体仿真的目的,选择相应的仿真类型,并点击仿真按钮即可开始仿真过程。
仿真完成后,Pspice会生成仿真结果。
用户可以通过查看波形图来分析电路的性能参数,如电流、电压和功率等。
此外,Pspice还可以生成仿真数据,用户可以对数据进行进一步处理和分析,以得到更多的信息。
除了基本的电路仿真功能,Pspice还提供了其他高级功能,如参数扫描、优化设计和传递函数分析等。
通过这些功能,用户可以更加深入地研究电路性能和特性,并进行相关的优化和改进。
在电子工程中,Pspice的应用非常广泛。
P S P I C E仿真目录介绍: (3)新建PSpice仿真 (4)新建项目 (4)放置元器件并连接 (4)生成网表 (6)指定分析和仿真类型 (7)Simulation Profile设置: (8)开始仿真 (8)参量扫描 (11)Pspice模型相关 (13)PSpice模型选择 (13)查看PSpice模型 (13)PSpice模型的建立 (14)介绍:PSpice是一种强大的通用模拟混合模式电路仿真器,可以用于验证电路设计并且预知电路行为,这对于集成电路特别重要。
PSpice可以进行各种类型的电路分析。
最重要的有:●非线性直流分析:计算直流传递曲线。
●非线性瞬态和傅里叶分析:在打信号时计算作为时间函数的电压和电流;傅里叶分析给出频谱。
●线性交流分析:计算作为频率函数的输出,并产生波特图。
●噪声分析●参量分析●蒙特卡洛分析PSpice有标准元件的模拟和数字电路库(例如:NAND,NOR,触发器,多选器,FPGA,PLDs和许多数字元件)分析都可以在不同温度下进行。
默认温度为300K电路可以包含下面的元件:●Independent and dependent voltage and current sources 独立和非独立的电压、电流源●Resistors 电阻●Capacitors 电容●Inductors 电感●Mutual inductors 互感器●Transmission lines 传输线●Operational amplifiers 运算放大器●Switches 开关●Diodes 二极管●Bipolar transistors 双极型晶体管●MOS transistors 金属氧化物场效应晶体管●JFET 结型场效应晶体管●MESFET 金属半导体场效应晶体管●Digital gates 数字门●其他元件 (见用户手册)。
新建PSpice仿真新建项目如图 1所示,打开OrCAD Capture CIS Lite Edition,创建新项目:File > New > project。
【教程】PSpice的4种基本仿真分析详解PSpice A/D将直流工作点分析、直流扫描分析、交流扫描分析和瞬态TRAN分析作为4种基本分析类型,每一种电路的模拟分析只能包括上述4种基本分析类型中的一种,但可以同时包括参数分析、蒙特卡罗分析、及温度特性分析等其他类型的分析,现对4种基本分析类型简介如下。
1. 直流扫描分析(DC Sweep)直流扫描分析的适用范围:当电路中某一参数(可定义为自变量)在一定范围内变化时,对应自变量的每一个取值,计算出电路中的各直流偏压值(可定义为输出变量),并可以应用Probe功能观察输出变量的特性曲线。
例对图1所示电路作直流扫描分析图1(1)绘图应用OrCAD/Capture软件绘制好的电路图如图2所示。
图2(2)确定分析类型及设置分析参数a) Simulation Setting(分析类型及参数设置对话框)的进入•执行菜单命令PSpice/New Simulation Profile,或点击工具按钮,屏幕上弹出New Simulation(新的仿真项目设置对话框)。
如图3所示。
图3•在Name文本框中键入该仿真项目的名字,点击Create按钮,即可进入Simulation Settings (分析类型及参数设置对话框),如图4所示。
图4b)仿真分析类型分析参数的设置图2所示直流分压电路的仿真类型及参数设置如下(见图4):•Analysis type下拉菜单选中“DC Sweep”;•Options下拉菜单选中“Primary Sweep”;•Sweep variable项选中“Voltage source”,并在Name栏键入“V1”;•Sweep type项选中“Linear”,并在Start栏键入“0”、End栏键入“10”及Increment栏键入“1”。
以上各项填完之后,按确定按钮,即可完成仿真分析类型及分析参数的设置。
另外,如果要修改电路的分析类型或分析参数,可执行菜单命令PSpice/Edit Simulation Profile,或点击工具按钮,在弹出的对话框中作相应修改。
PSPICE简介与教程随着电子计算机技术的发展,计算机辅助设计已经逐渐进入电子设计的领域。
模拟电路中的电路分析、数字电路中的逻辑模拟,甚至是印制电路板、集成电路版图等等都开始采用计算机辅助工具来加快设计效率,提高设计成功率。
而大规模集成电路的发展,使得原始的设计方法无论是从效率上还是从设计精度上已经无法适应当前电子工业的要求,所以采用计算机辅助设计来完成电路的设计已经势在必行。
同时,微机以及适合于微机系统的电子设计自动化软件的迅速发展使得计算机辅助设计技术逐渐成为提高电子线路设计的速度和质量的不可缺少的重要工具。
在电路设计工作方面,最初使用的是Protel公司DOS版本的Tango软件,在当时这一软件被看作是多么的先进,因为在这以前没有人能像电脑那样快速、准确的画出电路图,制出电路板。
如今,随着Windows95/98及NT操作系统的出现,一些更方便、快捷的电路设计软件应运而生。
如:Tango、Protel、OrCAD、PSpice、Electronics Workbench、VeriBest、PAD2000等。
PSpice是较早出现的EDA(Electronic Design Automatic,电路设计自动化)软件之一,也是当今世界上著名的电路仿真标准工具之一,1984年1月由美国Microsim公司首次推出。
它是由Spice发展而来的面向PC机的通用电路模拟分析软件。
Spice(Simulation Program with Integrated Circuit Emphasis)是由美国加州大学伯克利分校开发的电路仿真程序,它在众多的计算机辅助设计工具软件中,是精度最高、最受欢迎的软件工具。
随后,版本不断更新,功能不断完善。
基于DOS操作系统的PSpice5.0以下版本自80年代以来在我国得到广泛应用。
目前广泛使用的PSpice5.1以后版本是Microsim公司于1996年开发的基于Windows环境的仿真程序,并且从6.0版本开始引入图形界面。
实验四参数扫描分析和统计分析实验目的:1、学习一些特定参数分析的方法,使之能够在今后的场合适用;2、学会做蒙托卡诺这种随机抽样、统计分析的分析方法;3、学会观测输出文件中的数据以及如何用图形表示出相应数据。
实验步骤:1、首先确定好研究对象,即下面的差分电路:2、进行参数扫描分析:1)首先在原图的基础上选定一个参数扫描分析的对象,如选定R1。
要先加入参数符号,可从元器件图开符号库中调出名称为PAPAM的符号,如下图:2)加入元件后,双击它则需要给它加入一个属性,点击new:3)在上面Property中填入R1,然后,在R1中输入1K的阻值,然后,右击该值,选择Display,在出现的Display Properties中选择“Name And Value”4)设定好之后,把图中R1的值改为{R1},则完成的图形如下:5)现在设置仿真参数,在时域分析的同时做参数分析,参数设置如下:一般设置:参数设置:“Sweep variable”中选择“Global parameter”,注意parameter中的R1不用加{}6)点击运行之后在probe中出现:点击OK 以后出现的图形如下:(图中out1、out2都加了电压针)Time0s0.2us0.4us0.6us0.8us 1.0usV(OUT2)V(OUT1)2.0V4.0V6.0V8.0V该波形是呈对称的波形,随着电阻从1K 至10K 的变化,电压变化的越来越平缓且电压平均在逐渐减小。
3、蒙托卡诺分析1)在上图的基础上,首先把全局参数设置的删除,把R1改成Rbreak 中电阻元件:2)对刚替换的R1符号后要设置电阻的模型参数变化,则,首先选中该元件,再执行Capture中的Edit/PSpice Model子命令,则出现下图,并设置相应的DEV、LOT参数变化模式:3)设置相应的仿真参数如下图所示:(选择蒙态卡诺分析)运行仿真后出现的结果如下图:(它有20条,只对out2处的电压进行分析)Time0s0.2us 0.4us0.6us 0.8us 1.0usV(OUT2)5.0V5.5V6.0V6.5V4、最坏情况分析:保持MC 分析中的设置等,只是在做MC 分析时,选择最坏情况分析设置参数如下:最坏情况分析的结果如下:Time0s0.2us 0.4us0.6us 0.8us 1.0usV(OUT2)5.2V5.6V6.0V6.4V它是截取了最高点与最低点的波形。
题目:旁路电容对共射极放大电路低频特性的影响
电路如图所示,BJT为NPN型硅管,型号为2N3904,放大倍数为50,电路其他元件参数如图所示。
分析旁路电容Ce对共射极放大电路低频特性的影响。
步骤如下:
1、绘制原理图如上图所示。
2、修改三极管的放大倍数Bf=50;
双击交流源v1设置其属性为:ACMAG=15mv,ACPHASE=0。
3、修改c3的大小,双击c3的大小,设置value={cval}。
如图所示:
4、Get New Part→Param,从元件库中找到符号Param。
双击Param并设置其属性Name1=cval, Value1=50uf。
如图所示:
5、设置分析类型(根据题意,需设置交流扫描分析和参数扫描分析):
①交流扫描分析:
选择Analysis→set up→AC Sweep,参数设置如下:
②参数扫描分析:
选择Analysis→set up→Parametric,参数设置如下:
6、Analysis→Simulate,调用Pspice A/D对电路进行仿真计算。
计算完毕后,弹出如下对话框,表明有三项模拟结果的波形资料,点击All三个波形全显示在probe下,或只点击其中一条,在probe下只显示其中一条曲线。
点击All。
得到如下结果:
选择Trace→ Add(添加输出波形),,弹出Add Trace对话框,在Trace Expression中编辑
v(out)/v(in)
单击ok按钮,仿真结果如下:
波形显示了电压增益的幅值随频率变化的关系,即幅频特性。
同时还反映了旁路电容对电压
增益的影响。
最左边的是ce为200uf时的幅频特性曲线,中间的那条是ce为50uf时的幅频特性曲线,最右边的那条是ce为0.1uf时的幅频特性曲线。
问题:从仿真结果中可以看出,旁路电容越大,下限截止频率f L(越低还是越高)?
下面测量c3=50uf时的放大电路的低频截止频率。
步骤如下:
1、取消参数扫描分析。
2、Analysis→Simulate,调用Pspice A/D对电路进行仿真计算。
3、在probe下,选择Trace→ Add(添加输出波形),,弹出Add Trace对话框,在Trace Expression中编辑v(out)/v(in)
单击ok按钮,仿真结果如下:
4、在probe下,选择Tools→Cursor→Display ,出现游标,
然后再选择选择Tools→Cursor→Max ,通过游标读出最高点的电压增益为130.603,将该数值乘以0.707得到92.336.
在曲线上找到v(out)/v(in)为92.336的点,读出此时的横坐标值即为下限截止频率。
选择View→Area,准确找到该点。
找到该点后,点击Tools→Label→Mark,在曲线上的该点标注该点的数值。
问题:当c3=50uf时,下限截止频率是多少?
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。