2019年人教新课标版八年级数学下册_15.2.2.1乘法公式-平方差公式课件精品教育.ppt
- 格式:ppt
- 大小:790.01 KB
- 文档页数:27
《平方差公式》教学设计一、内容和内容解析内容:人教版《义务教育课程标准实验教科书•数学》八年级上册“15.2乘法公式” (第一课时)内容解析:《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研允,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法•因此,平方差公式在初中阶段的教学中也具有很重耍地位,是初中阶段的第一个公式.本节课的教学重点是:经历探索平方差公式的全过程,并能运用公式进行简单的运算.二、目标和目标解析目标1、经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力;2、掌握平方差公式的结构特征,能运用公式进行简单的运算;3、会用几何图形说明公式的意义,体会数形结合的思想方法.目标解析:1、让学生经历“特例——归纳——猜想——验证——用数学符号表示”这一数学活动过程,积累数学活动的经验,进一步发展学生的符号感、推理能力、归纳能力,同时体会数学的简洁美、培养他们的合情推理和归纳的能力以及在解决问题过程中与他人合作交流的重要性.2、让学生了解平方差公式产生的背景,理解平方差公式的意义,系握平方差公式的结构特征,并能灵活运用平方差公式解决问题•在数学活动中,引导学生观察、分析公式的结构特征以及公式中字母的广泛含义,并在练习中,对发生的错误做具体分析,加深学生对公式的理解.3、通过自主探究与合作交流的学习方式,让学生经历探索新知、巩固新知和拓展新知这一过程,发挥学生的主体作用,增强学生学数学、用数学的兴趣.同时,让学生在公式的运用中积累解题的经验,体会成功的喜悦.2:依照以上四道题的计算回答下列问题:三、教学问题诊断分析学生己熟练掌握了幕的运算和整式乘法,但在进行多项式乘法运算时常常会确定错某 些项符号及漏项等问题.学生学习平方差公式的困难在于对公式的结构特征以及公式中字母 的广泛含义学生的理解.因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示 公式的本质特征,以加深学生对公式的理解.本节课的教学难点:利用数形结合的数学思想方法解释平方差公式,灵活运用平方差 公式进行计算.四、教学过程设计(一)创设情境,引出课题(多媒体展示)问题1:计算下列多项式的积,你能发现什么规律?(1 )(兀+1) (X-1 ) = ____ ;(2) (m+2) (m-2) = ____(二)探索新知,尝试发现%1 式子的左边具有什么共同特征?%1 它们的结果有什么特征?%1 能不能用字母表示你的发现?师生活动:教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和 与这两个数的差的积,右边是这两个数的平方差,并猜想出:b 2(三)数形结合,几何说理(多媒体展示)(4) (2%+1) (2r1)=问题3:活动探究:将长为(°+方),宽为(6Z-/7)的长方形,剪下宽为b的长方形条, 拼成有空缺的正方形,并请用等式表示你剪拼前后的图形的面积关系a2-b2\a—b I(a> b> 0)(四)总结归纳,发现新知问题4:你能用文字语言表示所发现的规律吗?两个数的和与这两个数的差的积,等于这两个数的平方差.(五)剖析公式,发现本质在平方差公式・b)= a2 -,中,其结构特征为:①左边是两个二项式相乘,其中与是相同项,‘7与"”是相反项;右边是二项式,相同项与相反项的平方差,即b2;②让学生说明以上四个算式中,哪些式子相当于公式中的。
§平方差公式一、内容及分析1、内容:课本P151——P153内容平方差公式2、分析:本节课是继多项式乘以多项式的内容的一种升华,起着承上启下的作用。
在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。
通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。
二、目标及分析1、目标:1).经历探索平方差公式的过程。
2).会推导平方差公式,并能运用公式进行简单运算2、分析课程标准明确指出“会推导乘法公式(a+b)(a-b)=a2-b2,了解公式的几何背景,并能进行简单计算”。
把某些具有特殊形式的多项式相乘的式子及其结果写成公式形式,就是乘法公式。
从多项式乘法到乘法公式是从一般到特殊认识过程的X例,对它的学习和研究,丰富了教学内容,也开阔了学生的视野。
三、教学问题诊断分析:本节课是在学生学习了整式乘法后,对整式乘法已经很熟悉的基础上来进行学习的。
是从一般到特殊认识过程,经过本节课的学习,要引导学生进行观察、分析,使他们掌握平方差公式的结构特征,理解公式的意义,并能够正确地运用平方差公式。
四、教学过程设计(一)教学基本流程:课前回顾——导入——学习新知识——巩固练习——目标检测——小结(二)教学情境1、课前回顾请说出(m+a)(m+b)的结果.板书(m+a)(n+b)=mn+mb+an+nb2、导入如果m=n,且都用x表示,那么上式就成为(x+a)(x+b)你能说出它的结果吗?(x+a)(x+b)=x2+(a+b)x+ab这就是上节课学习的一种特殊多项式乘法。
如果(x+a)(x+b)中的a,b再有某种特殊关系,又将得到什么特殊结果呢?这就是从本节课起要学习的内容3、问题与例题问题1 (x+a)(x+b)中,a与b可以有什么特殊关系呢?设计意图:以开放题的形式提出问题,激发学生的学习兴趣。
师生活动:(这个问题较“开放”,学生可能会说出a=b,a= -b,甚至说出a=0或b=0…,应该肯定学生的想象力,然后告诉学生)教师:问题要一个一个地研究,比如a=0或b=0时,多项式乘法就转化为多项式与多项式,单项式与单项式的乘法,不必再加以研究。
人教版八年级数学乘法公式同底数幂的乘法:1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n = am﹒an。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
同底数幂的除法:1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。
2、此法则也可以逆用,即:am-n = am÷an(a≠0)。
负指数幂:1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数。
注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
整式的乘法:(一)单项式与单项式相乘1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
(二)单项式与多项式相乘1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。
即:m(a+b+c)=ma+mb+mc。
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
(三)多项式与多项式相乘1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必须做到不重不漏。
2019-2020年八年级数学上册《乘法公式-平方差公式》教案人教新课标版
教学设计说明:
本章的学习目标主要是熟练掌握整式的运算,且这些知识是以后学习分
式、根式运算以及函数等知识的基础,而本节是整式乘法中乘法公式的首要
内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过
程,才能实现本节乃至本章作为数学工具的重要作用。
因此,在教学安排上
,选择从学生遇到的数学计算问题提出问题,从特殊多项式乘法,使学生经
历观察思考的过程,遵循从感性认识上升为理性思维的认知规律,得出抽象的概念,并在多项式乘法基础上,推导公式,使原本枯燥的数学概念,具有
一定实际意义和说理性。
运用平方差公式表示图形面积,体现了数形结合的
思想方法,之后安排一系列例题和练习题,把新知运用到实战中去,既调动
学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识,解决问题的能力,从而达到较好的授课效果。
本节公式中字母的含义对学生来讲很抽象,是本节难点,通过巩固练习,
让学生逐步体会,乘法公式逆用是因式分解的重要方法,因此,练习中,渗透了这部分知识,为后面学习因式分解做好铺垫。
-----如有帮助请下载使用,万分感谢。
平方差公式教案教案标题:平方差公式教案一、教学目标:1. 理解平方差公式的定义和意义。
2. 能够灵活运用平方差公式求解简单的数学问题。
3. 培养学生的逻辑思维和推理能力。
二、教学重难点:1. 平方差公式的理解和运用。
2. 针对不同难度的问题选择合适的解题方法。
三、教学准备:1. 教师准备:教案、黑板、白板笔。
2. 学生准备:纸和铅笔。
四、教学过程:步骤一:引入教师通过简单的例子引入平方差公式的概念,如:计算(7+3)²和(7-3)²的值,并帮助学生发现其中的规律。
步骤二:介绍平方差公式1. 教师向学生介绍平方差公式的定义和意义:“平方差公式是指一个二次式乘积的展开式,其中含有两个数的平方和两倍乘积的差。
”2. 教师在黑板上展示平方差公式的一般形式:(a + b)² = a² + 2ab + b² 和 (a - b)² = a² - 2ab + b²。
3. 通过实际例子帮助学生理解平方差公式的应用,如:计算(5 +2)²和(5 - 2)²的值。
步骤三:解题方法与例题1. 教师向学生介绍两种常用的解题方法:a. 直接利用平方差公式展开计算。
b. 先计算平方和,在减去两倍乘积。
2. 通过具体的例题,引导学生贯通两种解题方法的思路,并帮助学生掌握正确的运算步骤。
例题1:计算(9 + 4)²的值。
解法1:直接利用平方差公式展开计算。
(9 + 4)² = 9² + 2 * 9 * 4 + 4² = 81 + 72 + 16 = 169。
解法2:先计算平方和,再减去两倍乘积。
(9 + 4)² = (9² + 4²) - 2 * 9 * 4 = 81 + 16 - 72 = 169。
例题2:计算(7 - 2)²的值。
解法1:直接利用平方差公式展开计算。
《平方差公式》说课稿公安县东港初级中学刘小平一、说教材1、说课内容人教版《义务教育课程标准实验教科书〃数学》八年级上册“15.2乘法公式”(第一课时).2、本课在教材中的地位、作用和意义《平方差公式》是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式的学习提供了方法.因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位.所以,我将教学重点定为:平方差公式的推导和应用.3、本节课的教学目标基于对教材的理解和分析,我在教学中以学生为主体,以学生的学为根本,我把本课的目标定位为:(一)知识目标了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题.(二)能力目标经历平方差公式产生的探究过程,培养观察、猜想、归纳、概括、推理的能力和符号感,感受利用转化、数形结合等数学思想方法解决实际问题的策略.(三)情感目标通过探究平方差公式,形成学习数学公式的一般套路,体会成功的喜悦,培养团结协助的意识,增强学生学数学、用数学的兴趣.二、说学生学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性,鉴于八年级学生的认知水平,理解上有困难.因此,我们把教学难点定为:理解平方差公式的结构特征,灵活应用平方差公式.三、说教法、学法课堂是学生学习的主阵地,真正做到把课堂还给学生,因而我采取的的教学模式定为:三先两主动,即让学生先说话、先动手、先总结,让学生主动提问、主动探索。
学习方法:学生积极参与、大胆猜想、合作交流和自主探索.四、说教学过程本节课教学按以下五个流程展开(一)创设情景,引入新课数学课标强调:“数学来源于实际生活”,为了体现这一思想,我设计了一个实际问题.这里只提供情境,刺激学生主动提出问题,因为“提出问题”比“解决问题”更重要。