大气的受热过程
- 格式:ppt
- 大小:588.50 KB
- 文档页数:15
考点5 大气的受热过程1.大气受热过程地面辐射是对流层大气热量的直接来源,太阳辐射是根本来源,大气的受热过程具体图解如下:由图可知大气受热的过程:“太阳暖大地”:太阳辐射能是地球上最主要的能量来源,虽然需要穿过厚厚的大气,但大气直接吸收的太阳辐射能量很少,只有臭氧和氧原子吸收一部分波长较短的紫外线,水汽和二氧化碳吸收波长较长的红外线,而能量最强的可见光被吸收的很少,绝大部分透过大气射到地面,地面因吸收太阳辐射能增温。
“大地暖大气”:地面增温的同时向外辐射热量。
相对于太阳短波辐射,地面辐射是长波辐射,除少数透过大气返回宇宙空间外,绝大部分被近地面大气中的水汽和二氧化碳吸收,使大气增温。
“大气返大地”:大气在增温的同时,也向外辐射热量,既向上辐射,也向下辐射,其中大部分朝向地面,称为大气逆辐射,大气逆辐射把热量还给地面,在一定程度上补偿了地面辐射损失的热量,对地面起到了保温作用. 1.大气保温作用的应用(1)解释温室气体大量排放对全球气候变暖的影响错误!→错误!→错误!→错误!(2)分析农业实践中的一些现象①我国北方地区利用温室大棚生产反季节蔬菜;②深秋利用烟雾防霜冻;③干旱半干旱地区果园中铺沙或鹅卵石不但能防止土壤水分蒸发,还能增加昼夜温差,有利于水果的糖分积累等。
(3)利用大气的削弱作用原理分析某一地区太阳能的多寡.如①高海拔地区:②内陆地区:③四川盆地:2.昼夜温差大小的分析分析昼夜温差的大小要结合大气受热过程原理,主要从地势高低、天气状况、下垫面性质几方面分析. (1)地势高低:地势高→大气稀薄→白天大气的削弱作用和夜晚大气的保温作用都弱→昼夜温差大。
(2)天气状况:晴朗的天气条件下,白天大气的削弱作用和夜晚大气的保温作用都弱→昼夜温差大。
(3)下垫面性质:下垫面的比热容大→增温和降温速度都慢→昼夜温差小,如海洋的昼夜温差一般小于陆地。
读下面大气受热过程图,回答(1)~(2)题.(1)使近地面大气温度升高的热量传递过程顺序是()A.①—②—③ B.①—④—②C.②—③—④ D.③—④—②(2)影响近地面大气温度随高度升高而递减的是箭头( )A.①B.②C.③D.④【答案】(1)B (2)B1.气象谚语有“露重见晴天"的说法。
运用大气受热过程原理解释
大气受热过程是指地球表面吸收太阳光照射地表面,并将其转换成地
表层的热量释放到大气层。
这是通过以下几个步骤实现的:
1、太阳与空气的相互作用:太阳辐射到地表面时,空气中的气体会吸
收其中的热量,而热量又会随着空气的移动转移到大气中的其他位置。
2、空气的膨胀和压缩:太阳辐射的热量会把空气加热,造成空气膨胀,于是热量就只能以更快的速度往上传递,导致空气压力不断下降。
3、水蒸气的扩散:随着空气压力的降低,水蒸气也会从表层向上扩散,同时也会携带着太阳辐射地表面所产生的热量。
4、热量波动:水蒸气扩散到大气层高处时,它会释放大量的热量,并
且因为它的波动性,这种热量最终到达表面的高处。
5、热量的释放:由于空气的压力升高,热量最终被释放到大气层中,
充当空气的保温层,使地表温度稳定不变。
以上就是大气受热过程的原理,经过这一过程,太阳辐射的热量最终
被转移到大气层中,保持了表面温度的稳定。
可以说,大气受热过程
对地表的热量转移具有重要作用。
一、大气的受热过程1.两个来源(1)大气最重要的能量来源:A太阳辐射。
(2)近地面大气热量的主要、直接来源:B地面辐射。
2.两大过程(1)地面增温:大部分太阳辐射透过大气射到地面,使地面增温。
(2)大气增温:地面以长波辐射的形式向大气传递热量。
3.两大作用(1)削弱作用:大气层中水汽、云层、尘埃等对太阳辐射的吸收和散射作用。
(2)保温作用:C大气逆辐射对近地面大气热量的补偿作用。
[点睛] 大气逆辐射最强时为大气温度最高时,即午后两小时左右,并不是在夜晚。
二、热力环流1.形成原因:高低纬度间的热量差异。
2.形成过程:地面间冷热不均→空气的上升或下沉→同一水平面上的气压差异→大气中的水平运动。
具体如下图所示:三、大气的水平运动1.形成的直接原因:水平气压梯度力。
2.风的受力状况与风向类型高空风近地面风图示(北半球) 受力F 向与等压线之间的夹角愈大;反之,则夹角愈小。
(2)风向与半球位置及气压分布有密切关系。
无论高空还是近地面,风的来向为高压一侧的方向;风向向右偏的处于北半球,向左偏的处于南半球。
大气的受热过程1.大气受热过程的三个环节理解大气的受热过程,需要把握图中的三个关键环节:受热过程具体说明地理意义环节1:“太阳暖大地”绝大部分太阳辐射透过大气射到地面,地面因吸收太阳辐射能而增温地面增温——太阳是地面的直接热源环节2:“大地暖大气”地面向外辐射红外线长波辐射,除少数透过大气射向宇宙空间外,绝大部分被近地面大气中的水汽和二氧化碳吸收大气增温——地面是大气的直接热源环节3:“大气还大地”大气在增温的同时也向外辐射热量,其中大部分射向地面,称为大气逆辐射。
大气逆辐射把部分热量还给地面热量返还地面——实现大气对地面的保温作用 2.大气保温作用的应用(1)解释温室气体大量排放对全球变暖的影响→→→(2)分析农业实践中的一些现象我国北方地区利用温室大棚生产反季节蔬菜;深秋利用烟雾防霜冻;干旱半干旱地区果园中铺沙或鹅卵石不但能防止土壤水分蒸发,还能增加昼夜温差,有利于水果的糖分积累等。
知识点06 大气的受热过程一、大气圈分层1.对流层:气温随高度增加而递减;对流运动显著;天气现象复杂多变。
平均厚度12km,低纬度为17 km~18 km;中纬度为10 km~12 km;高纬度为8 km~9 km。
2.平流层:存在臭氧层,吸收紫外线,气温随海拔升高而升高;大气以平流运动为主;天气晴朗,适合飞机飞行。
3.高层大气:存在若干电离层,能反射无线电短波,对无线电通信有重要作用。
二、大气受热过程1.能量来源(1)地球大气最重要的能量来源(根本来源):太阳辐射能。
(2)近地面大气主要、直接热源:地面(地面辐射)。
2.受热过程太阳短波辐射(大部分)透过大气射到地面⇒地面被加热,并以地面长波辐射的形式射向大气⇒大气增温。
3.大气的两个作用(1)对太阳辐射的削弱作用:大气层中水汽、CO2、云层、尘埃等对太阳辐射具有吸收、反射、散射作用。
(2)对地面的保温作用:大气逆辐射对近地面大气热量起补偿作用。
※一般,云层越厚,云雾水汽越多,烟雾、雾霾越多,大气的削弱作用越强,同时大气逆辐射越强,大气的保温作用越强。
※影响大气削弱作用、保温作用的因素:天气、大气洁净度、空气的湿度等。
4.大气受热过程原理的应用(1)解释温室气体大量排放对全球气候的影响(2)分析农业实践中的一些现象①采用塑料大棚发展农业、玻璃温室育苗等。
塑料薄膜、玻璃与二氧化碳具有相同的功能,能让太阳短波辐射透射进入,而地面长波辐射却不能穿透塑料薄膜或玻璃,从而将热量保留在塑料大棚或玻璃温室里。
②秋冬季节,北方农民常用人造烟幕来增强大气逆辐射,使地里的农作物免遭冻害。
③果园中铺沙或鹅卵石不但能防止土壤水分蒸发,还能增加昼夜温差,有利于水果的糖分积累等。
(3)利用大气的削弱作用原理分析某一地区太阳能的多寡。
(4)分析昼夜温差的大小要结合大气受热过程原理,主要从地势高低、天气状况和下垫面性质等方面来分析。
①地势高低:地势高→大气稀薄→白天大气的削弱作用和夜晚大气的保温作用都弱→昼夜温差大。
大气的受热过程原理
大气的受热过程如下:
大气受热过程是太阳暖大地、大地暖大气、大气还大地。
具体的过程为:
(1)太阳暖大地。
太阳射向地球的短波辐射,经过小部分被大气吸收和反射,大部分到达了地面,地面吸收后升温。
(2)大地暖大气。
地面吸收太阳辐射能增稳后,以长波辐射将能量传递给近地面大气,同时近地面大气以对流、传导的方式,逐层向上传播热量,温暖大气。
(3)大气还大地。
大气增稳后,小部分射向宇宙,即大气辐射。
另外大部分射回地面,为地面增温,即大气逆辐辐射。
大气的受热过程中大气对太阳辐射具有削弱作用,对地面具有保温作用。
大气的吸收具有选择性,臭氧和氧原子主要吸收紫外线;水汽和二氧化碳主要吸收红外线,而可见光的绝大部分可以到达地面。
大气的受热原理如下:
大气通过对太阳短波辐射和地面长波辐射的吸收,实现了受热过程,而大气对地面的保温作用是大气受热过程的延续。
大气受热过程原理1.平流传热:平流传热是指空气中能量的传递是通过气体的运动来实现的。
当被加热的物体散发热量时,加热物体表面的气体受热膨胀,密度降低,从而产生上升气流。
这些上升的气流会将热量带到高空,形成一个热力上升区。
相反,冷空气下沉,形成冷却区。
这种平流传热是一种重要的大气能量传递方式。
2.辐射传热:辐射传热是指热量通过电磁波辐射传递。
太阳是地球的主要热源,太阳辐射的能量包括可见光、紫外线和红外线等。
这些能量穿过大气层并被大气组分吸收、散射、反射等过程,其中一部分能量被地表吸收,使地表温度升高,进而加热空气。
3.对流传热:对流传热是指热量通过流体内部的对流形式传递。
当地表受到太阳辐射加热时,地表上的空气被加热,密度降低,形成上升气流。
这些上升气流会将热量从地表带到高空,同时使高空的冷空气下沉,形成对流运动。
这种对流运动是大气中能量传递的重要途径之一以上是大气受热过程的主要原理。
然而,大气受热过程并不是简单的以上几种传热方式的单一作用,而是同时存在和相互影响的综合结果。
在大气受热过程中,平流传热、辐射传热和对流传热三种方式共同作用,共同影响着大气的温度分布和变化。
在受热过程中,太阳辐射以及地表散发的热量加热了大气,而大气会通过对流运动和辐射传热将热量重新分布到不同的区域。
这种能量重新分配的过程是不断进行的,使得大气层中不同区域的温度差异逐渐减小,从而形成大气中的温度梯度。
总之,大气受热过程是地球大气层中重要的物理现象之一,其原理包括平流传热、辐射传热和对流传热三种方式的综合作用。
这种能量的传递和重新分布决定了大气温度的变化和分布,并对天气、气候以及全球环境产生重要影响。
大气的受热过程原理及应用1. 引言大气的受热过程是指大气中空气分子受到外界能量的传递和转化的过程。
受热过程在气象学中起着重要的作用,通过理解和研究受热过程,我们能够更好地了解天气变化、气候模式以及大气的动力过程。
本文将介绍大气受热的基本原理,并探讨其在科学研究和实际应用中的重要性。
2. 大气受热的基本原理大气受热的基本原理是通过辐射、传导和对流等方式实现的。
2.1 辐射大气受热的一种主要方式是辐射。
太阳辐射的能量穿过大气层,部分能量被大气吸收,而部分则直接到达地表。
地表受到的太阳辐射能量使其升温,然后地表再通过辐射传递热能到大气层。
2.2 传导传导是另一种大气受热的方式。
当地表升温后,与地表相接触的空气分子也会受到热能的传递。
这种传导过程是由于相邻分子之间的直接碰撞而实现的。
2.3 对流对流是大气受热的重要方式之一。
当地表升温后,空气被加热并膨胀,密度降低。
由于密度的差异,热空气会上升,冷空气则会下沉。
这种对流运动导致了空气的垂直运动,从而实现了热能的传递。
3. 大气受热过程的应用大气受热过程在科学研究和实际应用中有着广泛的应用。
以下是几个典型的应用领域:3.1 气候模式和天气预报通过研究大气受热过程,科学家们能够建立气候模式,模拟和预测未来的气候变化。
受热过程对天气预报也有着重要影响,理解和掌握大气受热过程能够提高天气预报的准确性。
3.2 空气质量检测大气受热过程对空气质量有着重要影响。
了解大气受热过程可以帮助我们更好地了解空气污染的形成原因和传播方式,从而采取相应的措施来改善空气质量。
3.3 温室效应研究大气受热过程与全球气候变化密切相关。
通过对大气受热过程的研究,我们能够更好地理解温室效应的原理和影响,为减缓全球气候变化提供科学依据。
3.4 天然气储量评估大气的热力学性质对于天然气储量评估有着重要意义。
通过了解大气受热过程,我们能够更准确地评估天然气的储量和分布,从而更好地进行勘探和开发工作。