1《电路的基本概念及基本定律》指导与解答.
- 格式:pdf
- 大小:250.29 KB
- 文档页数:27
电路基本概念与基本定律电路是电子学的基础,它包括了各种电子元件的连接和组合,是电子设备运作的核心。
了解电路的基本概念和基本定律对于学习电子学至关重要。
本文将从电路的基本概念、基本元件和基本定律三个方面来介绍电路。
一、电路的基本概念电路是由导体、电源、电子元件等组成的,用于传送电能或控制信号的路径。
电路分为开放电路和闭合电路两种形式。
开放电路指的是电流不能流通的电路,而闭合电路则是指电流可以从电源出发并返回电源的电路。
电路的基本概念还包括电流、电压和电阻。
二、电路的基本元件电路中的元件有两类:被动元件和主动元件。
被动元件是指不具备电源供电和信号放大功能的元件,如电阻、电容和电感。
主动元件是指具备放大信号功能的元件,主要包括二极管、晶体管和集成电路等。
1. 电阻电阻是电路中最常见的被动元件之一,它的作用是限制电流的流动。
电阻的单位是欧姆(Ω),常用的电阻有固定电阻和可变电阻两种。
2. 电容电容也是一种常见的被动元件,用于储存电荷,并能在电路中存储和释放电能。
电容的单位是法拉(F),常用的电容有固定电容和可变电容两种。
3. 电感电感是由线圈等导体制成,具有储存磁能的作用。
当电流变化时,电感会产生感应电动势,用于稳定电路中的电流。
电感的单位是亨利(H)。
4. 二极管二极管是一种半导体器件,具有电流只能单向流动的特性。
它常用于电路中的整流和开关功能。
5. 晶体管晶体管是一种半导体放大器件,可以放大电流和控制电流。
晶体管在电子设备中得到广泛应用,如放大器、开关等。
6. 集成电路集成电路是将多个晶体管、二极管等元件集成在一个芯片上的器件。
它具有功能强大、占用空间小的特点,被广泛应用于各类电子设备中。
三、电路的基本定律电路的运行是遵循一些基本定律的。
下面介绍三个最基础的电路定律:1. 基尔霍夫定律基尔霍夫定律是电路分析中最重要的定律之一。
它分为基尔霍夫电流定律和基尔霍夫电压定律两个方面。
基尔霍夫电流定律指出,在一个节点上,进入该节点的电流等于离开该节点的电流之和。
电路的基本概念和基本定律一、电路基本概述1.电流流经的路径叫电路,它是为了某种需要由某些电工设备或元件按一定方式组合起来的,它的作用是A:实现电能的传输和转换;B:传递和处理信号(如扩音机、收音机、电视机)。
一般电路由电源、负载和连接导线(中间环节)组成。
(1)电源是一种将其它形式的能量转换成电能或电信号的装置,如:发电机、电池和各种信号源。
(2)负载是将电能或电信号转换成其它形式的能量或信号的用电装置。
如电灯、电动机、电炉等都是负载,是取用电能的设备,它们分别将电能转换为光能、机械能、热能。
(3)变压器和输电线是中间环节,是连接电源和负载的部分,它起传输和分配电能的作用。
2. 电路分为外电路和内电路。
从电源一端经过负载再回到电源另一端的电路,称为外电路;电源内部的通路称为内电路。
3.电路有三种状态:通路、开路和短路。
(1)通路是连接负载的正常状态;(2)开路是R→∝或电路中某处的连接导线断线,电路中的电流I=0,电源的开路电压等于电源电动势,电源不输出电能。
例如生产现场的电流互感器二次侧开路,开路电压很高,将对工作人员和设备造成很大威胁;(3)短路是相线与相线之间或相线与大地之间的非正常连接,短路时,外电路的电阻可视为零,电流有捷径可通,不再流过负载。
因为在电流的回路中仅有很小的电源内阻,所以这时的电流很大,此电流称为短路电流。
短路也可发生在负载端或线路的任何处。
产生短路的原因往往是由于绝缘损坏或接线不慎,因此经常检查电气设备和线路的绝缘情况是一项很重要的安全措施。
为了防止短路事故所引起的后果,通常在电路中接入熔断器或自动断路器,以便发生短路时,能迅速将故障电路自动切除。
4、电路中产生电流的条件:(1)电路中有电源供电;(2)电路必须是闭合回路;5、电路的功能:(1)传递和分配电能。
如电力系统,它是由发电机,升压变压器,输电线、降压变压器、供配电线路和各种高、低压电器组成。
(2)传递和处理信号。
取夺市安慰阳光实验学校电路的基本概念和规律一、电流1.电流(1)定义:电荷的定向移动形成电流。
(2)条件:①有自由移动的电荷;②导体两端存在电压。
注意:形成电流的微粒有三种:自由电子、正离子和负离子。
其中金属导体导电时定向移动的电荷是自由电子,液体导电时定向移动的电荷是正离子和负离子,气体导电时定向移动的电荷是电子、正离子和负离子。
(3)公式①定义式:qIt=,q为在时间t内穿过导体横截面的电荷量。
注意:如果是正、负离子同时定向移动形成电流,那么q是两种离子电荷量的绝对值之和。
②微观表达式:I=nSve,其中n为导体中单位体积内自由电子的个数,q 为每个自由电荷的电荷量,S为导体的横截面积,v为自由电荷定向移动的速度。
(4)方向:规定正电荷定向移动的方向为电流的方向,与负电荷定向移动的方向相反。
注意:电流既有大小又有方向,但它的运算遵循算术运算法则,是标量。
(5)单位:国际单位制中,电流的单位是安培(A),常用单位还有毫安(mA)、微安(μA),1 mA=10–3 A,1 μA=10–6 A。
2.电流的分类方向不改变的电流叫直流电流;方向和大小都不改变的电流叫恒定电流;方向周期性改变的电流叫交变电流。
3.三种电流表达式的比较分析1.电源:通过非静电力做功使导体两端存在持续电压,将其他形式的能转化为电能的装置。
2.电动势(1)定义:电动势在数值上等于非静电力把1 C的正电荷在电源内从负极移送到正极所做的功。
(2)表达式:qW E =。
(3)物理意义:反映电源把其他形式的能转化成电能的本领大小的物理量。
注意:电动势由电源中非静电力的特性决定,跟电源的体积无关,跟外电路无关。
(4)方向:电动势虽然是标量,但为了研究电路中电势分布的需要,规定由负极经电源内部指向正极的方向(即电势升高的方向)为电动势的方向。
(5)电动势与电势差的比较电动势电势差物理意义反应电源内部非静电力做功把其他形式的能转化为电能的情况反应电路中电场力做功把电能转化为其他形式的能的情况定义式E =W /qW 为电源的非静电力把正电荷从电源内部由负极移到正极所做的功U =W /qW 为电场力把电荷从电源外部由正极移到负极所做的功量度式 E =IR +Ir =U 外+U 内U =IR测量 利用欧姆定律间接测量 利用电压表测量决定因素 与电源的性质有关与电源、电路中的用电器有关特殊情况当电源断开时,路段电压值=电源的电动势三、电阻、电阻定律 1.电阻(1)定义式:IUR =。
第一章 电路的基本概念和基本定律本章是学习电工技术的理论基础,介绍了电路的基本概念和基本定律:主要包括电压、电流的参考方向、电路元件、电路模型、基尔霍夫定律和欧姆定律、功率和电位的计算等。
主要内容: 1.电路的基本概念(1)电路:电流流通的路径,是为了某种需要由电工设备或电路元件按一定方式组合而成的系统。
(2)电路的组成:电源、中间环节、负载。
(3)电路的作用:①电能的传输及转换;②信号的传递及处理。
2.电路元件及电路模型(1)电路元件:分为独立电源和受控电源两类。
①无源元件:电阻、电感、电容元件。
②有源元件:分为独立电源和受控电源两类。
(2)电路模型:由理想电路元件所组成反映实际电路主要特性的电路。
它是对实际电路电磁性质的科学抽象和概括。
采用电路模型来分析电路,不仅使计算过程大为简化,而且能更清晰地反映该电路的物理本质。
(3)电源模型的等效变换①电压源及电阻串联的电路在一定条件下可以转化为电流源及电阻并联的电路,两种电源之间的等效变换条件为:0R I U S S =或0R U I SS =②当两种电源互相变换之后,除电源本身之外的其它外电路,其电压和电流均保持及变换前完全相同,功率也保持不变。
3.电路的基本物理量、电流和电压的参考方向以及参考电位 (1)电路的基本物理量包括:电流、电压、电位以及电功率等。
(2)电流和电压的参考方向:为了进行电路分析和计算,引入参考方向的概念。
电流和电压的参考方向是人为任意规定的电流、电压的正方向。
当按参考方向来分析电路时,得出的电流、电压值可能为正,也可能为负。
正值表示所设电流、电压的参考方向及实际方向一致,负值则表示两者相反。
当一个元件或一段电路上的电流、电压参考方向一致时,称它们为关联参考方向。
一般来说,参考方向的假设完全可以是任意的。
但应注意:一个电路一旦假设了参考方向,在电路的整个分析过程中就不允许再作改动。
(3)参考电位:人为规定的电路种的零电位点。
电路的基本概念、定律和分析方法1.1 电路的基本概念1.1.1 电路、理想元件和电路模型1.1.1.1 电路为了完成某种功能,将实际的电气设备与元件按照一定的方式组合连接而成的整体称为电路。
通常组成一个简单电路,至少要有电源、连接导线、开关和负载。
负载、连接导线和开关称为外电路,电源内部的电路称为内电路。
电路的基本组成包括以下四部分:(1)电源(供能元件):为电路提供电能的设备和器件,如电池、发电机等。
电源就是把非电能转换为电能的一种能量转换装置。
例如:干电池是把化学能转换为电能的装置;发电机是把机械能转换为电能的装置。
直流电还可以通过交流电得到,其整个过程包括变压、整流、滤波、稳压。
(2)负载(耗能元件):电路中吸收电能或输出信号的元件,如灯泡等用电器。
(3)控制器件:控制电路工作状态的器件或设备,如开关等。
(4)连接导线:将电气设备和元器件按一定方式连接起来的导线,如各种铜、铝电缆线等。
由于电路中的电压、电流是在电源的作用下产生的,因此电源又称为激励;由激励在电路中产生的电压、电流称为响应。
有时,根据激励与响应之间的因果关系,把激励称为输入,响应称为输出。
如图1-1-1(a)中,干电池为电源,小灯泡为负载,导线和开关为传输控制元件。
图1-1-1 手电筒实际电路与电路模型1.1.1.2 电路理想元件为了便于对复杂的实际电路进行分析和综合,我们有必要在满足实际工程需要和假设的条件下,抓住实际电路中发生的主要现象和表现出来的主要矛盾,将实际电路中发生的物理过程或物理现象理想化,这就得到了理想电路元件,简称理想元件。
理想元件是电路元件理想化的模型,简称为电路元件。
电阻元件是表示只消耗电能的元件,简称电阻。
电感元件是表示其周围空间存在着磁场而可以储存磁场能量的元件,简称电感。
电容元件是表示其周围空间存在着电场而可以储存电场能量的元件,简称电容。
具有两个引出端的元件,称为二端元件;具有两个以上引出端的元件,称为多端元件。
第一章电路的基本概念与基本定律知识要点一、内容提要直流电路的基本概念和基本定理是分析和计算电路的基础和基本方法。
这些基础和方法虽然在直流电路中提出,但原则上也适用于正弦交流电路及其它各种线性电路。
并且,这些方法也是以后分析电子线路的基础。
本章重点讲述电路中几个基本物理量、参考方向、电路的工作状态及基本定律。
二、基本要求1.了解电路模型及理想电路元件的意义;2.能正确应用电路的基本定侓;3.正确理解电压、电流正方向的意义;4.了解电路的有载工作、开路与短路状态,并能理解电功率和额定值的意义;5.熟练掌握分析与计算简单直流电路和电路中各点电位的方法。
三、学习指导本章重点讲述了三个问题:电压、电流和参考方向。
同时,对克希荷夫定律和电路中电位的概念及计算进行了详细的分析推导和计算。
虽然这些问题都比较简单,但由于它们贯穿电工学课程始终,所以读者应通过较多的例题和习题逐步建立并加深这些概念,使之达到概念清晰,运用自如灵活,能解决实际问题的目的。
1.1 电路的组成及作用在学习本课程中,首先应掌握电路的两大作用(即强电电路电的传输、分配和转换;弱电电路中是否准确地传递和处理信息),及其三大组成部分(即电源、中间环节、负载)。
要特别注意信号源与一般电源的概念与区别:信号源输出的电压与电流的变化规律取决于所加的信息;电源输出的功率和电流决定于负载的大小。
1.2 电路模型由理想电路元件组成的电路;其中理想电路元件包括电阻元件、电感元件、电容元件和电源元件等。
电源的电压或电流称为激励;激励在各部分产生的电压和电流称为响应。
1.3 电路的几个基本物理量若要正确地分析电路,必须先弄清楚电路中的几个基本物理量。
因为电流、电压和电动势这些物理量已在物理课中讲过,但是本章主要讨论它们的参考方向(正方向)和参考极性。
在本章学习的过程中应注意两点:第一,在分析任何一个电路中列关系式时,必须首先在电路图上标明电压、电动势和电流的参考方向和参考极性;第二,考虑电压和电流本身给定的正负,即要注意两套正负符号。
第1章 电路的基本概念和基本定律 ·1·第1章 电路的基本概念和基本定律知识要点1.了解电路和电路模型的概念;2.了解电路的各种工作状态、额定值及功率平衡的意义;3.理解电流源和电压源模型及其等效变换;4.理解电流、电压和电功率,理解和掌握电路基本元件的特性;5.能熟练分析与计算电路中各点的电位,会应用基尓霍夫定律分析电路;6.初步学会利用Multisim10验证欧姆定律、基尔霍夫定律等,并进行简单的电路计算。
随着科学技术的飞速发展,现代电子设备的种类日益繁多,规模和结构更是日新月异,但无论怎样设计和制造,其几乎都是由各种基本电路组成的。
所以,学习电路的基础知识,掌握、分析电路的规律与方法,是学习电路学的重要内容,也是进一步学习电机、电器和电子技术的基础。
本章将重点阐明有关电路的基本概念、基本元件特性和基尓霍夫定律。
1.1 电路和电路模型1.1.1 电路的概念从日常生活和生产实践可以体会到,用导线、开关等将电源和用电设备或用电器连接起来,就构成一个电流流通的闭合路径。
这就是电路。
电路的形式是多种多样的,但从电路的本质来说,其组成都有电源、负载、中间环节三个最基本的部分。
例如图1-1所示的手电筒电路中,电池把化学能转换成电能供给灯泡,灯泡却把电能转换成光能做照明用。
凡是将化学能、机械能等非电能转换成电能的供电设备,称为电源,如干电池、蓄电池和发电机等;白炽灯的主要电磁性能是消耗电能,可用一个电阻元件表示。
诸如此类,各种电气设备和电器件及实际电路均有各自的模型。
电路理论基础中所研究的对象就是这种电路模型,习惯上称为电路,如图1-2所示。
大规模的电路又称为电网络,简称为网络。
图1-1 手电筒电路 图1-2 手电筒电路模型电路的种类繁多,但从电路的功能来说,其作用分为两个方面:其一实现电能的传输和转换(如电力工程,它包括发电、输电、配电、电力拖动、电热、电气照明,以及交直流电之间的整流和逆变等);其二进行信号的传递与处理(如信息工程,它包括语言、文字、音乐、图像的广播和接收,生产过程中的自动调节,各种输入数据的数值处理,信号的存储等)。