例
i(t)
+ u(t) -
R
已知: u( t ) U m sin(wt y u ) 解: L
求:稳态解 i(t)
1. 经典法: 一阶常系数 di(t ) Ri (t ) L U m sin(wt y u ) 线性微分方程 dt 自由分量(齐次方程通解): A e-(R/L) t
全解:
第8章 相量及相量分析法 8.1-8.3 重点:
复数及其运算 相位差
相量和相量图 正弦量的相量表示
电路元件VCR 的相量形式
电路定律的相量形式
8 .1 .1 正弦量的基本概念 正弦交流电路
如果在电路中电动势的大小与方向均随时间按 正弦规律变化,由此产生的电流、电压大小和方向 也是正弦的,这样的电路称为正弦交流电路。
u (t ) 2U cos(wt y ) U Uy
例1. 已知
解: I 10030o A
o
i 141.4 cos(314t 30 ) A u 311.1cos(3 14t 60o )V
试用相量表示 i, u 。
U 220 60o V
14
例2. 已知 I 5015o A, f 50Hz . 试写出电流的瞬时值表达式。
y
Re
a
Re
A a jb
A A e jy | A | y
11
2. 复数运算
(1)加减运算——直角坐标
(2) 乘除运算——极坐标 3. 旋转因子
A1±A2=(a1±a2)+j(b1±b2)
A1 A2 A1 A2 y 1 y 2
复数 e jy = cos y + jsin y = 1∠y A e jy A逆时针旋转一个角度y ,模不变