数学史简介剖析
- 格式:pptx
- 大小:394.44 KB
- 文档页数:98
数学的发展历史概述数学史研究证明:数学的发源地除古代非洲的尼罗河,还有西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河、东亚的黄河和长江。
知识简介:尼罗河-世界上最长的大河尼罗河纵贯非洲大陆东北部,流经布隆迪、卢旺达、坦桑尼亚、乌干达、埃塞俄比亚、苏丹、埃及,跨越世界上面积最大的撒哈拉沙漠,最后注入地中海。
流域面积约335万平方公里,占非洲大陆面积的九分之一,全长6650公里,年平均流量每秒3100立方米,为世界最长的河流。
尼罗河——阿拉伯语意为“大河”。
“尼罗,尼罗,长比天河”,是苏丹人民赞美尼罗河的谚语。
古埃及人在这里创造出高度的文明。
世界三大河流:非洲尼罗河、南美洲亚马逊河、亚洲长江中国第一大河——长江长江的上源沱沱河出自青海省西南边境唐古拉山脉各拉丹冬雪山,干流全长6300公里。
以干流长度和入海水量论,长江均居世界第三位。
长江流经青海、西藏、四川、重庆、云南、湖北、湖南、江西、安徽、江苏、上海,注入东海。
长江在湖北省宜昌市以上为上游,宜昌至江西省湖口间为中游,湖口以下为下游长江流域是中国人口密集经济繁荣的地区,沿江重要城市有重庆、武汉、南京、上海。
长江在四川奉节以下至湖北宜昌为雄伟险峻的三峡江段(瞿塘峡、巫峡、西陵峡)世界最大的水利枢纽工程三峡工程位于西陵峡中段的三斗坪(1994年12月14日开工,总工期17年)中华民族的母亲河—黄河黄河,发源于青海省巴颜喀拉山脉的约古宗列渠,流经青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东9个省区,最后于山东省东营垦利县注入渤海。
干流河道全长5464千米,仅次于长江,为中国第二长河,世界第五长河黄河从源头到内蒙古自治区托克托县河口镇为上游,河口镇至河南郑州桃花峪间为中游,桃花峪以下为下游.数学的发展史一般分为四个时期(有很多分法),即数学的萌芽时期,古代数学时期,近代数学时期和现代数学时期。
一、数学萌芽时期(公元前6世纪以前)1.“数”概念的产生早在远古时代,人类就已具备了识别事物多少的能力。
数学史相关介绍姓名:王超学院:数科院班级:09(1)班学号:09211153数学史的教育功能数学是一门重要的科学,是学校里的重要课程。
数学这门科学有悠久的历史,发展过程充满了人类的创造和理性智慧,积累了这门学科富有魅力的题材。
数学史研究数学概念,数学方法数学思想的起源与发展,及其与社会政治,经济和一般文化的联系。
英国科学史家丹皮尔曾经说过:“再没有什么故事能比科学思想发展的故事更有魅力了。
”1.贯通数学历史,把握数学发展的脉络,加深对数学概念、方法、思想的理解。
2.数学是一门历史性或者说累积性很强的学科.天文学的“地心说”,物理学的“以太说”,化学的“燃素说”.数学包含并且正在继续生长出越来越多的分支.数学史可以看到数学的发展和数学家创造的艰难和喜悦.所以,不了解数学史就不可能全面了解数学科学.3.数学是文化.其文化特点是:数学以抽象的形式,追求高度精确,可靠的知识.数学追求一般性模式特别是一般性算法.数学的创造具有美的特征.在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。
数学史的分期1.数学的起源与早期发展(公元6世纪前)2.初等数学时期(公元前6世纪-16世纪)(1)古希腊数学(公元6世纪-6世纪)(2)中世纪东方数学(3世纪-15世纪)(3)欧洲文艺复兴时期(15世纪-16世纪)3.近代数学时期(17-18世纪)4.现代数学时期(1820-现在)数学的起源与早期发展(1)数的形成在原始人在采集、狩猎等生活中首先注意到一头羊与许多羊的关系,当对数的认识变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数,而记数是伴随着计数的发展而发展的。
最早可能是手指计数,一只手上的五个手指可以被现成地用来表示五个以内事物的集合。
1、数学起源手指计数(伊朗,1966)结绳计数(秘鲁,1972)数学起源与早期发展数的概念的形成大约是在30万年以前,记数是伴随着计数的发展而发展的,手指记数,亚里士多德:采用十进制是因为多数人生来具有十个手指。
石子记数,结绳记数,刻痕记数《周易·系辞下》:上古结绳而治,后世圣人,易之以书契。
•《易·系辞》中载:“上古结绳而治,后世圣人易之以书契”。
结绳记数,是指在绳子上打一个结表示一个数或一件事,绳结的多少,根据事物多少而定。
而所谓的“书契”,就是刻划,“书”是划痕,“契”是刻痕。
古人常常在各种动物骨头、金属、泥版上刻痕记数。
如中国殷商时期常将文字刻划在牛的肩胛骨或龟甲上,故称甲骨文。
纸草书是研究古埃及数学的主要来源•莱因德纸草书:最初发现于埃及底比斯古都废墟,1858年为苏格兰收藏家莱因德购得,现藏于伦敦大英博物馆.又称阿姆士纸草书,阿姆士在公元前1650年左右用僧侣文抄录了这部纸草书,据他加的前言知,所抄录的是一部已经流传了两个世纪的著作.含84个数学问题.•莱茵德纸草书第79题:•7座房,49只猫,343只老鼠,2401颗麦穗,16807赫卡特。
•有人认为这是一个数谜:7座房子,每座房里养7只猫,每只猫抓7只老鼠,每只老鼠吃7颗麦穗,每颗麦穗可产7赫卡特粮食,问房子、猫、老鼠、麦穗和粮食各数值总和。
•莫斯科纸草书:又称戈列尼雪夫纸草书,1893年由俄国贵族戈列尼雪夫在埃及购得,现存于莫斯科博物馆.产生于公元前1850年前后,含有25个数学问题.埃及纸草书,(民主德国, 1981)古代巴比伦的数学▪两河流域(美索不达米亚)文明上溯到距今6000年之前,几乎和埃及人同时发明了文字-“楔形文字”。
▪古巴比伦王国:前1894-前729年。
汉穆拉比(在位前1792-前1750)统一了两河流域,建成了一个强盛的中央集权帝国,颁布了著名的《汉穆拉比法典》。
▪亚述帝国:前8世纪-前612年,建都尼尼微(今伊拉克的摩苏尔市)。
1.数学史简介第一部分数学史简介0.引言01什么是数学史?研究数学这门学科产生、发展的历史的一门独立的学叫做数学史。
它是数学的一个分支,也是科学史的一个分支。
它分为数学内史和数学外史。
数学内史——着眼与数学学科内部矛盾运动。
数学外史——着眼与数学学科外部环境变迁。
02数学史与数学教育1理性观念的自然选择环境适度。
变迁2数学自身发展过程~学生认识过程快速,集中的再现。
例1. 56只羊问船长有几岁?48头牛成绩好的学生答道:52岁。
成绩差的学生答道:狗屁不通。
例2.一元二次方程)0(02≠=++a c bx ax 的求根公式aacb b x 242-±-=.从应用的角度讲述:'=?'=+b x x a x x 2121b z a z a '=-'+')2)(2(习题1.11.什么是数学史?它与数学、科学史的关系是什么?2.什么数学内史与数学外史?3.简述数学史与数学教育的关系。
1.外国数学史概览.1.1.数学史研究对象一、“数学产生、发展的历史”—————数学史1数学史是研究数学的历史,它的对象遍及数学的每一分支,包括数学史本身。
它的任务并非单纯地追逐数学内容形成的过程,它的对象必然扩展到数学以外而与数学发展相关的诸多方面。
2科学史、科学哲学和科学社会学三个新分支密切交织在一起。
数学史作为科学史的构成部分,同样与数学哲学、数学社会学彼此相关、相互渗透。
当然,它以研究数学本身的发展史为主。
3数学史按时间、地域、专业三大类可分为:断代史、世纪史、分期史、国别史、地区史、交流史、概念史、专题史、学科史等。
4数学家数学发展过程中起着特别重要的作用,没有他们,就没有现代的数学。
数学家传记便成为数学史中不可分割的组成部分。
他们的手稿、日记、信件以及在数学以外的创作,均属研究之列。
5数学的产生除了生产、生活的需要之外,同时受到当时社会哲学、宗教思想的影响。
另外,数学内容放映出的哲理和数学发展表现出的规律性也需要用自然哲学、科学哲学予以总结。
新课标数学史一、古代数学1.1 简介古代数学起源于人类文明早期,包括古埃及、古希腊、古印度等文明。
在这个时期,数学主要是为了解决实际问题,如建筑、农业、商业等。
1.2 古埃及数学古埃及数学主要表现在建筑和纸草书上。
例如,金字塔的建设涉及到大量的数学知识和技能,而纸草书则记录了大量的数学题和算法。
1.3 古希腊数学古希腊数学注重逻辑推理和理论探究。
欧几里得是古希腊数学的代表人物,他的《几何原本》奠定了数学的基础,提出了许多重要的数学概念和定理。
1.4 古印度数学古印度数学主要表现在对算术和代数的研究上。
印度数学家发明了许多重要的数学符号和算法,如阿拉伯数字、十进位制算法等。
二、中世纪数学2.1 简介中世纪数学主要包括阿拉伯数学和欧洲中世纪数学。
在这个时期,数学主要是为了解决学术问题,如哲学、天文学等。
2.2 阿拉伯数学阿拉伯数学在代数和几何方面取得了重要成就。
花剌子米是阿拉伯数学的代表人物,他的《代数学》和《算术》等著作对后世数学的发展产生了重要影响。
2.3 欧洲中世纪数学欧洲中世纪数学主要表现在对天文学和宇宙的研究上。
例如,托勒密的地心说涉及到大量的数学知识和技能,而哥白尼的日心说则对后世天文学的发展产生了重要影响。
三、文艺复兴与启蒙时期3.1 简介文艺复兴与启蒙时期是欧洲历史上一个思想和文化大解放的时期。
在这个时期,数学得到了极大的发展,许多重要的数学思想和成果都是在这个时期产生的。
3.2 文艺复兴时期的数学文艺复兴时期的数学主要表现在建筑、绘画和音乐等方面。
例如,达芬奇通过对透视学的研究,提出了许多重要的美术理论;而巴赫则通过对音乐理论的研究,发展出了古典音乐的基本理论。
3.3 启蒙时期的数学启蒙时期的数学主要表现在对科学和哲学的探究上。
例如,牛顿和莱布尼茨分别发明了微积分学,为物理学的发展奠定了基础;而康德则通过对哲学的研究,提出了许多重要的哲学思想和理论。
数学史简介数学,作为人类智慧的结晶,自古以来就与人类文明的发展紧密相连。
从最初的计数和测量,到抽象的代数和几何,再到现代的计算机科学和量子力学,数学始终在各个领域发挥着重要作用。
本文将简要介绍数学的发展历程,以展示这一学科的无穷魅力。
一、古代数学数学的起源可以追溯到史前时期,当时的人们为了解决实际问题,如土地测量、天文观测等,开始研究数学。
古埃及和巴比伦是数学发展最早的地区之一,他们研究了几何学和算术,并制定了一些数学规则。
约公元前300年,古希腊数学家欧几里得发表了《几何原本》,这是一部系统地阐述了平面几何知识的著作,对后世产生了深远影响。
二、中世纪数学在中世纪,阿拉伯世界成为了数学研究的中心。
阿拉伯数学家对古希腊数学进行了翻译和传承,并在此基础上进行创新。
他们引入了印度数学中的数字系统,即阿拉伯数字,这一系统在当时比罗马数字更为先进。
阿拉伯数学家还研究了代数学,提出了方程的解法和代数符号。
三、文艺复兴时期数学文艺复兴时期,欧洲数学迅速发展。
这一时期的数学家开始研究更为复杂的数学问题,如三次方程的解法、无穷级数等。
意大利数学家伽利略和德国数学家开普勒在天文学领域取得了重要成果,为后来牛顿和莱布尼茨创立微积分奠定了基础。
四、现代数学17世纪,英国数学家牛顿和德国数学家莱布尼茨几乎同时发明了微积分。
这一学科的出现标志着现代数学的诞生。
此后,数学家们开始研究更为抽象的数学问题,如拓扑学、群论等。
19世纪,法国数学家庞加莱提出了拓扑学的基本概念,为现代几何学的发展奠定了基础。
20世纪,数学家们继续深入研究各个领域,如概率论、数论、计算机科学等,使数学得到了空前的发展。
五、数学在中国中国古代数学也有着悠久的历史。
早在商周时期,我国就有了甲骨文中的数学记载。
汉代,数学家赵爽提出了勾股定理的证明,被称为“赵爽定理”。
唐代,数学家李冶、秦九韶等人研究了高次方程的解法。
宋代,数学家贾宪、杨辉等人研究了几何学和算术。
数学史概述【来源:中国数学与系统科学信息网】数学史是研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。
和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。
数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。
它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同。
具体地说,它所研究的内容是:①数学史研究方法论问题;②总的学科发展史──数学史通史;③数学各分支的分科史(包括细小分支的历史);④不同国家、民族、地区的数学史及其比较;⑤不同时期的断代数学史;⑥数学家传记;⑦数学思想、数学概念、数学方法发展的历史;⑧数学发展与其他科学、社会现象之间的关系;⑨数学教育史;⑩数学史文献学;等等。
按其研究的范围又可分为内史和外史。
内史:从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;外史:从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。
数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。
人们研究数学史的历史,由来甚早。
古希腊时就曾有人写过一部《几何学史》,可惜未能流传下来,但在5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。
中世纪阿拉伯国家的一些传记作品和数学著作中,曾讲述到一些数学家的生平以及其他有关数学史的材料。
12世纪时,大量的古希腊和中世纪阿拉伯数学书籍传入西欧。
这些著作的翻译既是当时的数学研究,也是对古典数学著作的整理和保存。
近代西欧各国的数学史研究,是从18世纪,由j.é.蒙蒂克拉、c.博絮埃、a.c.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经j.de拉朗德增补)为代表。
从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。
《数学史概论》读书笔记王振红数学源自于人类早期的生产活动,早期古希腊、古巴比伦、古埃及、古印度及中国古代都对数学有所研究。
数学是研究数量、结构、变化以及空间模型等概念的一门学科。
通过抽象化和逻辑推理的运用,由计数、计算、量度和对物体形状及运动的观察中产生。
数学的基本要素是:逻辑和直观、分析和推理、共性和个性。
以下对李文林著《数学史概论》作一个读后的总结。
一、《数学史概论》简介及其特点《数学史概论(第2版)》以重大数学思想的发展为主线,阐述了从远古到现代数学的历史。
书中对古代希腊和东方数学有精炼的介绍和恰当的分析;同时充分论述了文艺复兴以来近现代数学的演进与变革,尤其是20世纪数学的概观,内容新颖。
《数学史概论(第2版)》中西合炉,将中国数学放在世界数学的背景中述说,更具客观性与启发性。
《数学史概论(第2版)》脉络分明,重点突出,并注意引用生动的史实和丰富的图片。
本书共分十五章,其中第一章“数学的起源与早期发展”介绍了人类在蒙昧时期由于生产生活的需要,逐渐形成了数与形的概念,从最早的手指计数到石头计数,再到结绳计数直到距今大约五千多年前,出现了书写计数以及相应的计数系统。
在灿烂的“河谷文明”中,重点介绍了埃及数学和美索不达米亚数学。
第二章“古代希腊数学”,介绍了雅典时期和亚历山大时期的数学,其中重点对数学家泰勒斯、毕达哥拉斯、欧几里得、阿基米德及阿波罗尼奥斯及其成就作了详尽的介绍。
第三章“中世纪的中国数学”,从古代著作《世本》中提到的黄帝使“隶首作算数”,殷商甲骨文中使用的完整的十进制计数,到两汉时期、魏晋南北朝时期以及宋元时期达到了发展的高潮。
介绍的著作主要有《周髀算经》,《九章算术》,《算经十书》,介绍了刘徽的“割圆术”和他在面积、体积公式推证的成就,祖冲之父子推算“圆周率”,在推导几何图形体积公式时提出了“出入相补”及“祖氏原理”;第四章“印度与阿拉伯的数学”;第五章“近代数学的兴起”,讲述了中世纪的欧洲,从代数学、三角学、透视学、射影几何等方面的发展向近代数学的过渡,以至解析几何的诞生;第六章“微积分的创立”,分别介绍了牛顿和莱布尼茨从不同的角度提出的微积分原理;第七章“分析时代”;第八章至第十章,分别以代数、几何、分析这三大领域的变革为主要线索,介绍了19世纪数学的发展;第十一章至十三章是“20世纪数学概观”,分别介绍了纯粹数学的主要趋势、空前发展的应用数学、现代数学成果十例;第十四章“数学与社会”,第十五章“中国现代数学的开拓”。
数学史简介数学史简介我对数学的一些认识——句容市崇明小学葛挺明数学是一门最古老的学科,它的起源能够上溯到一万多年以前,即新石器时代初期。
但公元前1000年以前的远古文字资料留下来的极少。
迄今所知,只要在古代埃及和巴比伦发现了比拟系统的数字文献。
形和数的概念和起源〔究竟先有图形还是先有数〕人类社会在新石器时代逐步出现原始的农牧生产。
简单的工具制作、手工品制作,正是在这种生产实践的漫长经过中,人们逐步萌发了图形意识、计数意识和度量意识。
图形意识的渐进人类远在1万5千年前〔法国南部和西班牙〕已能相当逼真地描绘出人和动物的形象。
这是萌发图形意识的最早证据。
后来就逐步开场了对圆形和直线的追求,并产生了对于图形的和谐与对称的偏爱。
如我国西安半坡开掘的一座约六、七千年前的村落遗址,在出土的大量文物中,就含有圆柱体、圆台体的物体及三角形、四边形、平行四边形等直线型图案。
这些文物显示出人们对图形意识有了很大的进步,并出现了几何化的趋势,成为数学图形中最早的原型。
计数意识和计数系统的产生计数意识起源于人类对于逐一对应关系的直觉。
一个原始人发现有几只野兽时,他在惊呼的同时可能不自觉地伸出相应个数的手指,将这一消息传达给他的同伴。
一只手的手指能够表达1到5个数,两只手就可表达10个数。
公元前四世纪的亚里士多德就曾经指出“十进制的广泛应用,是由于绝大多数人生有10个手指和10个脚趾这一生理特征决定的〞。
在相当漫长的经过中,手指计数只能辨别和表达数目的多寡,却不能将数目保存下来。
为了将重要的数目保存下来,人类探索出多种计数方法,如石子或小树枝计数、刻痕计数、结绳计数等实物计数。
当发展出一种实用的语言时,人们逐步学会用语言来区别不同的数目,进而近入语言点数的阶段。
人们在发展文字的经过中,也创造出一套符号〔或文字〕来计数,用于计数的符号叫数码,用以记写任意大的数目的数码系统叫做计数系统,历史上出现过的多种不同的数制,一般分为两类:迭加数制〔数码代表的值与位置无关〕和位值数制。
数学史简介数学是什么?如果:你想当经济学家,药学家,化学家,数学是统计分析工具你想当物理学家,数学是微积分你想当计算机专家,数学是算法语言你想当建筑学家,数学是几何三视图你想当数学家,数学就是你的世界若果你不幸什么都当不了,小心数学就是你的克星!(二) 什么是数学•公元前4世纪:亚里士多德定义为“数学是量的科学”;•16世纪,培根将数学分为:纯粹数学与混合数学;•17世纪,笛卡尔认为:“凡是以研究顺序和度量为目的的科学都与数学有关”。
•17、18世纪,数学家们关注的焦点是运动和变化.牛顿和莱布尼茨之后,数学成为研究数、形以及运动与变化的学问;•19世纪,恩格斯:数学是研究现实世界的空间形式与数量关系的科学;•19世纪后期,数学成为研究数与形、运动与变化,以及研究数学自身的学问;•20世纪50年代,前苏联:现代数学就是各种量之间的可能的,一般说是各种变化着的量的关系和相互联系的数学。
•20世纪80年代,美国学者为主,将数学定义为“模式”的科学:[数学]这个领域已被称作模式的科学(Science of pattern),其目的是要解释人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。
《墨经》:点、线、面、方、圆等几何概念《考工记》:分数比例、角度大小的区分、标准容器的计算等《荀子》《管子》:“九九”乘法口诀。
《春秋》:“初税亩”,测量田亩面积和计算的方法。
《庄子·天下篇》:“一尺之棰,日取其半,万世不竭”,朴素的极限观念。
《墨经》:点:端,体之无厚而最前者也;直线:直, 参也;圆:圆, 一中同长也.《史记》:齐威王与田忌赛马,对策论的最早例证。
《九章算术》《九章算术》共收有246个数学问题,分为九章。
分别是:方田、栗米、衰分、少广、商功、均输、盈不足、方程、勾股。
《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。