线性规划举例
- 格式:ppt
- 大小:1.12 MB
- 文档页数:12
线性规划经典例题一、问题描述我们考虑一个典型的线性规划问题,假设有一个工厂需要生产两种产品:产品A和产品B。
工厂有两个生产车间:车间1和车间2。
生产产品A需要在车间1和车间2进行加工,而生产产品B只需要在车间2进行加工。
每一个车间的加工时间和加工费用都是不同的。
我们的目标是找到最佳的生产计划,使得总的加工时间和加工费用最小。
二、问题分析1. 定义变量:- x1:在车间1生产产品A的数量- x2:在车间2生产产品A的数量- y:在车间2生产产品B的数量2. 定义目标函数:目标函数是最小化总的加工时间和加工费用。
假设车间1生产产品A的加工时间为t1,车间2生产产品A的加工时间为t2,车间2生产产品B的加工时间为t3,车间1生产产品A的加工费用为c1,车间2生产产品A的加工费用为c2,车间2生产产品B的加工费用为c3,则目标函数可以表示为:Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y3. 约束条件:- 车间1生产产品A的数量不能超过车间1的生产能力:x1 <= capacity1- 车间2生产产品A的数量不能超过车间2的生产能力:x2 <= capacity2- 车间2生产产品B的数量不能超过车间2的生产能力:y <= capacity2 - 产品A的总需求量必须满足:x1 + x2 >= demandA- 产品B的总需求量必须满足:y >= demandB4. 线性规划模型:综上所述,我们可以建立如下的线性规划模型:最小化 Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y满足约束条件:- x1 <= capacity1- x2 <= capacity2- y <= capacity2- x1 + x2 >= demandA- y >= demandB- x1, x2, y >= 0三、数据和解决方案为了展示如何求解该线性规划问题,我们假设以下数据:- 车间1的生产能力为100个产品A- 车间2的生产能力为150个产品A和100个产品B- 产品A的总需求量为200个- 产品B的总需求量为80个- 车间1生产产品A的加工时间为2小时,加工费用为10元/个- 车间2生产产品A的加工时间为1小时,加工费用为8元/个- 车间2生产产品B的加工时间为3小时,加工费用为15元/个根据以上数据,我们可以得到线性规划模型如下:最小化 Z = 2 * x1 + 1 * x2 + 3 * y + 10 * x1 + 8 * x2 + 15 * y满足约束条件:- x1 <= 100- x2 <= 150- y <= 100- x1 + x2 >= 200- y >= 80- x1, x2, y >= 0接下来,我们可以使用线性规划求解器来求解该问题。
线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
一、求线性目标函数的取值范围例1、若x、y满足约束条件,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,D、,解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于由右图可知,故0<m<3,选C七、比值问题当目标函数形如时,可把z看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。
线性规划经典例题一、问题描述某公司生产两种产品:产品A和产品B。
每个产品的生产需要消耗不同的资源,且每个产品的利润也不同。
公司希望通过线性规划来确定生产计划,以最大化利润。
产品A需要消耗3个单位的资源1和4个单位的资源2,每个单位的产品A的利润为5。
产品B需要消耗6个单位的资源1和2个单位的资源2,每个单位的产品B的利润为8。
公司拥有的资源1和资源2的总量分别为30和20。
二、数学模型设x为生产产品A的数量,y为生产产品B的数量。
目标是最大化利润,即最大化5x + 8y。
约束条件为:3x + 6y ≤ 30,4x + 2y ≤ 20,x ≥ 0,y ≥ 0。
三、线性规划求解使用线性规划求解器求解上述问题。
输入目标函数和约束条件后,求解器将自动计算出最优解。
给定目标函数为:5x + 8y约束条件为:3x + 6y ≤ 30,4x + 2y ≤ 20,x ≥ 0,y ≥ 0求解结果如下:最大利润为:120生产产品A的数量为:5生产产品B的数量为:3四、解释结果根据求解结果,最大利润为120,生产5个产品A和3个产品B可以实现最大利润。
同时,根据约束条件,生产数量不能为负数,因此生产数量均为非负数。
五、敏感性分析敏感性分析用于确定目标函数系数的变化对最优解的影响程度。
在本例中,我们将分别增加产品A和产品B的利润,观察最优解的变化情况。
1. 增加产品A的利润:假设每个单位的产品A的利润增加1,即每个单位的产品A的利润为6。
重新求解线性规划问题,得到最大利润为130,生产产品A的数量为6,生产产品B的数量为2。
可以看出,增加产品A的利润对最优解有正向影响,最大利润和产品A的数量均增加。
2. 增加产品B的利润:假设每个单位的产品B的利润增加1,即每个单位的产品B的利润为9。
重新求解线性规划问题,得到最大利润为135,生产产品A的数量为4,生产产品B的数量为4。
可以看出,增加产品B的利润对最优解有正向影响,最大利润和产品B的数量均增加。
第五节线性规划建模举例线性规划是一种操作研究的数学方法,广泛应用于商业、经济、工程领域中的优化问题。
线性规划建模是将实际问题描述为线性规划模型的过程。
本节将介绍几个线性规划建模的典型例子。
例1:混合饲料配方问题某饲料厂要生产一种混合饲料,需包括以下六种饲料成分:大豆粉、面粉、玉米、鱼粉、鸡粉、牛粉,并且要求这种混合饲料包含不少于25%的蛋白质和不多于15%的纤维素。
每吨饲料的生产成本和含量如下:| 饲料成分 | 成本(元/吨) | 蛋白质含量(%) | 纤维素含量(%) || -------- | ------------- | -------------- | -------------- || 大豆粉 | 200 | 45 | 10 || 面粉 | 100 | 10 | 2 || 玉米 | 150 | 8 | 5 || 鱼粉 | 300 | 60 | 0 || 鸡粉 | 280 | 50 | 2 || 牛粉 | 320 | 70 | 5 |问如何使得生产的混合饲料成本最小,同时满足蛋白质含量不少于25%和纤维素含量不超过15%的要求。
自变量:混合饲料中每种成分的含量。
目标函数:最小化混合饲料的成本。
约束条件:1. 蛋白质含量不少于25%:0.45×x1 + 0.1×x2 + 0.08×x3 + 0.6×x4 + 0.5×x5 + 0.7×x6 ≥ 0.25。
2. 纤维素含量不超过15%:0.1×x1 + 0.02×x2 + 0.05×x3 + 0×x4 + 0.02×x5 + 0.05×x6 ≤ 0.15。
3. 非负性:x1, x2, x3, x4, x5, x6 ≥ 0。
其中,x1,x2,x3,x4,x5,x6 分别表示大豆粉、面粉、玉米、鱼粉、鸡粉和牛粉的含量,单位为吨。
线性规划经典例题【问题描述】某工厂生产两种产品A和B,每天的生产时间为8小时。
产品A每件需要2小时的生产时间,产品B每件需要3小时的生产时间。
产品A的利润为200元/件,产品B的利润为300元/件。
每天的生产量不能超过100件。
工厂希翼最大化每天的利润。
【数学建模】设工厂每天生产的产品A的件数为x,产品B的件数为y。
根据题目条件,可以得到以下数学模型:目标函数:最大化利润Maximize Z = 200x + 300y约束条件:1. 生产时间限制:2x + 3y ≤ 82. 产量限制:x + y ≤ 1003. 非负性约束:x ≥ 0,y ≥ 0【求解过程】将目标函数和约束条件转化为标准形式,得到如下线性规划模型:Maximize Z = 200x + 300ysubject to2x + 3y ≤ 8x + y ≤ 100x ≥ 0,y ≥ 0使用线性规划求解器进行求解,得到最优解。
【求解结果】经过计算,得到最优解为:x = 50(产品A的件数)y = 16.67(产品B的件数,近似值)此时,工厂每天的最大利润为:Z = 200 * 50 + 300 * 16.67 = 33333.33 元(近似值)【结果分析】根据最优解,工厂每天应该生产50件产品A和16.67件产品B,以达到每天最大利润33333.33元。
由于生产时间和产量限制,工厂无法达到每天生产更多的产品。
【结论】根据线性规划模型的最优解,工厂每天生产50件产品A和16.67件产品B,可以获得每天最大利润33333.33元。
这个结果可以作为工厂生产计划的参考,以实现最大化利润的目标。
【备注】以上的数学模型和求解结果仅为示例,实际问题中的数值和约束条件可能有所不同。
为了得到准确的结果,需要根据具体情况进行调整和求解。
线性规划运用举例线性规划是一种经济学和数学领域中的数学优化技术,其主要目的是将某些目标函数在满足一定的约束条件下最大或最小化。
线性规划在现代经济学、决策科学、制造业和生产管理等领域都有广泛的应用。
下面将举例说明线性规划在实际生产和管理中的应用。
1. 生产计划方案优化生产计划方案优化是一个很复杂的问题。
企业的目标是尽可能地减少生产和仓储成本,同时保证所生产的产品能满足市场需求。
线性规划可以帮助企业找到一个最优的计划方案,使得成本最小化,并能够满足市场需求。
例如,生产一种食品有两个不同的发酵温度可以选择。
这个决策需要考虑到提高产量的同时也要保证产品质量。
通过将这个问题转化为线性规划问题,可以确定最佳的温度条件,以最小化生产成本并且保证产品质量。
2. 资源分配问题企业在日常运营中需要管理各种资源,如员工,机器等。
为了确保资源的有效利用,企业需要通过资源分配来确保生产能力最优化。
线性规划可以帮助企业分配资源,使得资源利用更加高效,成本更加低廉和运营更加有效。
例如,在生产线上,可以通过线性规划算法来优化设备的分配和维护计划,使得设备的维护和使用更加平滑,减少因设备故障造成的损失和停机时间。
3. 市场销售策略线性规划也可以帮助企业确定最优的市场营销策略。
在一个竞争激烈的市场中,企业需要考虑产品的定价,销售渠道和营销推广策略等因素。
通过将这些因素转化为线性规划问题,企业可以找到最优的市场营销策略。
例如,在销售一种产品时,企业可以通过确定最优价格来最大化销售收入。
总之,线性规划在生产和管理中的应用非常广泛。
通过线性规划算法可以解决非常复杂的问题,帮助企业做出最优的决策,从而实现成本最小化和收益最大化。
线性规划经典例题1. 问题描述假设我们有一个农场,种植两种作物:小麦和大豆。
农场有一定的土地和资源限制,我们需要确定如何分配这些资源,以最大化农场的利润。
我们知道每亩小麦的利润为1000元,每亩大豆的利润为2000元。
同时,我们还知道种植每亩小麦需要2个单位的肥料和3个单位的水,而种植每亩大豆需要4个单位的肥料和2个单位的水。
农场总共有100个单位的肥料和90个单位的水可用。
我们需要确定种植多少亩小麦和多少亩大豆,以最大化利润。
2. 数学建模为了解决这个问题,我们可以使用线性规划来建立数学模型。
假设我们种植x 亩小麦和y亩大豆,则我们的目标是最大化利润,即最大化目标函数Z = 1000x + 2000y。
同时,我们需要满足资源限制,即种植小麦和大豆所需的肥料和水不能超过总量。
因此,我们有以下约束条件:2x + 4y ≤ 100(肥料限制)3x + 2y ≤ 90(水限制)x ≥ 0,y ≥ 0(非负性约束)3. 求解方法我们可以使用线性规划的求解方法来找到最优解。
常见的方法有图形法、单纯形法和内点法等。
在这个例题中,我们使用单纯形法求解。
4. 求解过程首先,我们将约束条件转化为标准形式。
将不等式约束转化为等式,并引入松弛变量,得到以下等式约束:2x + 4y + s1 = 1003x + 2y + s2 = 90其中,s1和s2为松弛变量。
接下来,我们构建初始单纯形表格:基变量 | x | y | s1 | s2 | b |--------------------------------------s1 | 2 | 4 | 1 | 0 | 100 |s2 | 3 | 2 | 0 | 1 | 90 |--------------------------------------Z | -1000| -2000| 0 | 0 | 0 |其中,Z表示目标函数的系数,初始解为0。
我们选择最负的目标函数系数对应的列作为进入变量,即选择-2000对应的y列。
线性规划经典例题引言概述:线性规划是一种运筹学方法,用于解决线性约束条件下的最优化问题。
它在各个领域都有广泛的应用,包括生产计划、资源分配、运输问题等。
本文将介绍几个经典的线性规划例题,以帮助读者更好地理解和应用线性规划方法。
一、生产计划问题1.1 最大利润问题在生产计划中,一个常见的线性规划问题是最大利润问题。
假设一个公司有多个产品,每个产品的生产和销售都有一定的成本和利润。
我们需要确定每个产品的生产数量,以最大化整体利润。
1.2 生产能力限制另一个常见的问题是生产能力限制。
公司的生产能力可能受到设备、人力资源或原材料等方面的限制。
我们需要在这些限制下,确定每个产品的生产数量,以实现最大化的利润。
1.3 市场需求满足除了考虑利润和生产能力,还需要考虑市场需求。
公司需要根据市场需求确定每个产品的生产数量,以满足市场需求,并在此基础上最大化利润。
二、资源分配问题2.1 资金分配问题在资源分配中,一个常见的线性规划问题是资金分配问题。
假设一个公司有多个项目,每个项目需要一定的资金投入,并有相应的回报。
我们需要确定每个项目的资金分配比例,以最大化整体回报。
2.2 人力资源分配另一个常见的问题是人力资源分配。
公司的人力资源可能有限,而各个项目对人力资源的需求也不同。
我们需要在人力资源有限的情况下,确定每个项目的人力资源分配比例,以实现最大化的效益。
2.3 时间分配除了资金和人力资源,时间也是一种有限资源。
在资源分配中,我们需要合理安排时间,以满足各个项目的需求,并在此基础上实现最大化的效益。
三、运输问题3.1 最小成本运输问题在运输领域,线性规划可以用于解决最小成本运输问题。
假设有多个供应地和多个需求地,每个供应地和需求地之间的运输成本不同。
我们需要确定每个供应地和需求地之间的货物运输量,以实现最小化的总运输成本。
3.2 运输能力限制另一个常见的问题是运输能力限制。
运输公司的运输能力可能受到车辆数量、运输距离或运输时间等方面的限制。
市场营销应用案例一:媒体选择在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。
在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。
对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。
在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。
REL发展公司正在私人湖边开发一个环湖社区。
湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。
REL公司已经聘请BP&J 来设计宣传活动。
考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。
在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。
BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。
质量评定是通过宣传质量单位来衡量的。
宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。
表4-1列出了收集到的这些信息。
表4-1 REL发展公司可选的广告媒体REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。
而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。
应当推荐何种广告媒体选择计划呢?案例二:市场调查公司开展市场营销调查以了解消费者个性特点、态度以及偏好。
专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。
市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。
线性规划经典例题一、问题描述某公司生产两种产品A和B,每个产品的生产需要消耗不同的资源。
现在公司希望通过线性规划来确定每种产品的生产数量,以最大化利润。
已知产品A每个单位的利润为10元,产品B每个单位的利润为15元。
同时,产品A每个单位需要消耗2个资源X和3个资源Y,产品B每个单位需要消耗4个资源X和1个资源Y。
公司总共有40个资源X和30个资源Y可供使用。
二、数学建模1. 假设产品A的生产数量为x,产品B的生产数量为y。
2. 目标函数:最大化利润。
利润可以表示为10x + 15y。
3. 约束条件:a) 资源X的约束条件:2x + 4y ≤ 40b) 资源Y的约束条件:3x + y ≤ 30c) 非负约束条件:x ≥ 0,y ≥ 0三、求解过程1. 根据数学建模中的目标函数和约束条件,可以得到如下线性规划模型:最大化:10x + 15y约束条件:2x + 4y ≤ 403x + y ≤ 30x ≥ 0,y ≥ 02. 使用线性规划求解方法,可以得到最优解。
通过计算,得到最优解为x = 6,y = 6,利润最大化为180元。
四、结果分析根据最优解,可以得知最大利润为180元,其中产品A的生产数量为6个,产品B的生产数量为6个。
同时,资源X还剩余28个,资源Y还剩余24个。
五、灵敏度分析对于线性规划问题,灵敏度分析可以帮助我们了解目标函数系数和约束条件右端项的变化对最优解的影响。
1. 目标函数系数的变化:a) 如果产品A的利润提高到12元,产品B的利润保持不变,重新求解线性规划模型可以得到新的最优解。
新的最优解为x = 8,y = 4,利润最大化为168元。
b) 如果产品A的利润保持不变,产品B的利润提高到20元,重新求解线性规划模型可以得到新的最优解。
新的最优解为x = 4,y = 7,利润最大化为190元。
2. 约束条件右端项的变化:a) 如果资源X的数量增加到50个,资源Y的数量保持不变,重新求解线性规划模型可以得到新的最优解。
线性规划经典例题一、问题描述:某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每件需要1小时的加工时间,产品B每件需要2小时的加工时间。
公司每天的总加工时间不能超过8小时。
产品A的利润为100元/件,产品B的利润为200元/件。
公司希望最大化每天的利润。
二、数学建模:设公司每天生产的产品A的件数为x,产品B的件数为y。
则目标函数为最大化利润,即:Maximize Z = 100x + 200y约束条件:1. 生产时间约束:x + 2y ≤ 82. 非负约束:x ≥ 0, y ≥ 0三、线性规划模型:Maximize Z = 100x + 200ySubject to:x + 2y ≤ 8x ≥ 0y ≥ 0四、求解方法:可以使用线性规划求解器进行求解,例如使用单纯形法或内点法等。
以下是使用单纯形法求解的步骤:1. 将目标函数和约束条件转化为标准形式:目标函数:Maximize Z = 100x + 200y约束条件:x + 2y ≤ 8x ≥ 0y ≥ 02. 引入松弛变量将不等式约束转化为等式约束:x + 2y + s1 = 8x ≥ 0y ≥ 0s1 ≥ 03. 构建初始单纯形表:基变量 | x | y | s1 | 常数项-----------------------------Z | 0 | 0 | 0 | 0-----------------------------s1 | 1 | 2 | 1 | 84. 进行单纯形法迭代计算:a. 选择进入变量:选择目标函数系数最大的非基变量,即选择y进入基变量。
b. 选择离开变量:计算各个约束条件的最小比值,选择比值最小的非基变量对应的约束条件的基变量离开基变量。
在本例中,计算得到最小比值为4,对应的约束条件为x ≥ 0,所以x对应的基变量离开基变量。
c. 更新单纯形表:基变量 | x | y | s1 | 常数项-----------------------------Z | 0 | 0 | -2 | -400-----------------------------s1 | 1 | 2 | 1 | 8d. 继续迭代计算,直到目标函数系数均为负数或零,达到最优解。
线性规划经典例题引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
本文将介绍几个经典的线性规划例题,以匡助读者更好地理解和应用线性规划的原理和方法。
一、问题一:生产计划问题1.1 生产目标:某公司希翼最大化其利润。
1.2 生产约束:公司有两种产品A和B,每周生产时间有限,每一个产品的生产时间和利润有限制。
1.3 数学建模:设产品A和B的生产时间分别为x和y,利润分别为p和q,则目标函数为Maximize p*x + q*y,约束条件为x + y ≤ 40,3x + 2y ≤ 120,x ≥ 0,y ≥ 0。
二、问题二:资源分配问题2.1 目标:某公司希翼最大化其销售额。
2.2 约束:公司有三个部门,每一个部门需要的资源不同,且资源有限。
2.3 建模:设三个部门分别为A、B和C,资源分别为x、y和z,销售额为p、q和r,则目标函数为Maximize p*x + q*y + r*z,约束条件为x + y + z ≤ 100,2x + y + 3z ≤ 240,x ≥ 0,y ≥ 0,z ≥ 0。
三、问题三:投资组合问题3.1 目标:某投资者希翼最大化其投资组合的收益。
3.2 约束:投资者有多个可选的投资项目,每一个项目的收益和风险不同,且投资金额有限。
3.3 建模:设投资项目分别为A、B和C,收益分别为p、q和r,风险分别为a、b和c,投资金额为x、y和z,则目标函数为Maximize p*x + q*y + r*z,约束条件为x + y + z ≤ 100,a*x + b*y + c*z ≤ 50,x ≥ 0,y ≥ 0,z ≥ 0。
四、问题四:运输问题4.1 目标:某物流公司希翼最小化运输成本。
4.2 约束:公司有多个供应地和多个销售地,每一个供应地和销售地之间的运输成本和需求量不同,且供应量和销售量有限。
4.3 建模:设供应地和销售地分别为A、B和C,运输成本为p、q和r,需求量为x、y和z,供应量为a、b和c,则目标函数为Minimize p*x + q*y + r*z,约束条件为x + y + z ≤ a + b + c,x ≤ a,y ≤ b,z ≤ c,x ≥ 0,y ≥ 0,z ≥ 0。
线性规划的实际应用举例为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(即两个变量的线性规划)的实际应用举例加以说明。
1 物资调运中的线性规划问题例1 A,B两仓库各有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地。
已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个。
问如何调运,能使总运费最小?总运费的最小值是多少?解:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元。
那么需从B仓库调运40-x万个到甲地,调运20-y万个到乙地。
从而有z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000。
作出以上不等式组所表示的平面区域(图1),即可行域。
令z'=z-7000=20x+30y.作直线l:20x+30y=0,把直线l向右上方平移至l l的位置时,直线经过可行域上的点M(30,0),且与原点距离最小,即x=30,y=0时,z'=20x+30y取得最小值,从而z=z'+7000=20x+30y+7000亦取得最小值,z min=20×30+30×0+7000=7600(元)。
答:从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,20万个到乙地,可使总运费最小,且总运费的最小值为7600元。
2 产品安排中的线性规划问题例2某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料1吨需耗玉米0.4吨,麦麸0.2吨,其余添加剂O.4吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3吨,其余添加剂0.2吨。
每1吨甲种饲料的利润是400元,每1吨乙种饲料的利润是500元。
可供饲料厂生产的玉米供应量不超过600吨,麦麸供应量不超过500吨,添加剂供应量不超过300吨。
问甲、乙两种饲料应各生产多少吨(取整数),能使利润总额达到最大?最大利润是多少?分析:将已知数据列成下表1。
线性规划经典例题一、问题描述某公司生产两种产品A和B,每个单位产品A的利润为100元,每个单位产品B的利润为150元。
公司有两个车间可用于生产这两种产品,每个车间每天的工作时间为8小时。
产品A在车间1生产需要1小时,产品B在车间1生产需要2小时;产品A在车间2生产需要2小时,产品B在车间2生产需要1小时。
每天车间1的生产能力为400个单位产品A或200个单位产品B,车间2的生产能力为300个单位产品A或150个单位产品B。
公司的目标是在满足车间生产能力的前提下,最大化利润。
二、数学建模设x1为在车间1生产的产品A的数量,x2为在车间1生产的产品B的数量,x3为在车间2生产的产品A的数量,x4为在车间2生产的产品B的数量。
目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:车间1的生产能力:x1 + x2 ≤ 4002x1 + x2 ≤ 800车间2的生产能力:x3 + x4 ≤ 300x3 + 2x4 ≤ 300非负约束:x1, x2, x3, x4 ≥ 0三、求解过程使用线性规划的求解方法,可以得到最优解。
1. 将目标函数和约束条件转化为标准形式:目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:x1 + x2 + 0x3 + 0x4 ≤ 4002x1 + x2 + 0x3 + 0x4 ≤ 8000x1 + 0x2 + x3 + x4 ≤ 3000x1 + 0x2 + x3 + 2x4 ≤ 300x1, x2, x3, x4 ≥ 02. 使用线性规划求解器求解得到最优解:最优解为:x1 = 200, x2 = 200, x3 = 0, x4 = 100最大利润为:Z = 100(200) + 150(200) + 100(0) + 150(100) = 50000元四、结果分析根据求解结果,最优解是在车间1生产200个单位产品A,200个单位产品B,在车间2生产100个单位产品B,不需要在车间2生产产品A。
线性规划经典例题一、问题描述某工厂生产A、B两种产品,每天生产的产品数量不同,且每种产品的生产时间和利润也不同。
现在需要确定每种产品的生产数量,以使得总利润最大化。
已知每天可用的生产时间为8小时,A产品的生产时间为2小时/件,利润为200元/件;B产品的生产时间为3小时/件,利润为300元/件。
同时,还有以下限制条件:1. A、B产品的总生产数量不能超过100件;2. A产品的生产数量不能超过60件;3. B产品的生产数量不能超过80件。
二、问题分析这是一个典型的线性规划问题,需要确定A、B产品的生产数量,使得总利润最大化。
根据题目中的限制条件,可以得到以下数学模型:目标函数:max Z = 200A + 300B约束条件:1. A + B ≤ 1002. A ≤ 603. B ≤ 804. A, B ≥ 0三、数学模型目标函数:max Z = 200A + 300B约束条件:1. A + B ≤ 1002. A ≤ 603. B ≤ 804. A, B ≥ 0四、求解过程1. 根据数学模型,列出线性规划的标准形式:目标函数:max Z = 200A + 300B约束条件:A +B ≤ 100A ≤ 60B ≤ 80A, B ≥ 02. 根据标准形式,画出目标函数和约束条件的图形:在二维坐标系中,以A为横轴,B为纵轴,画出以下直线:A +B = 100A = 60B = 80并标明非负约束条件。
3. 确定可行解区域:根据约束条件,可得到可行解区域为一个三角形,顶点分别为(60, 40)、(60, 80)和(0, 80)。
4. 确定目标函数的最优解:由于目标函数是线性的,最优解一定在可行解区域的某个顶点上。
计算每一个顶点的目标函数值:(60, 40):Z = 200 * 60 + 300 * 40 = 28,000(60, 80):Z = 200 * 60 + 300 * 80 = 36,000(0, 80):Z = 200 * 0 + 300 * 80 = 24,000可知,目标函数的最优解为Z = 36,000,对应的生产数量为A = 60,B = 80。