机械工程控制基础----01绪论
- 格式:ppt
- 大小:3.63 MB
- 文档页数:44
机械工程控制基础教案第一章:绪论1.1 课程介绍1.2 控制理论的基本概念1.3 控制系统的基本类型1.4 控制系统的性能指标第二章:线性系统的时域分析法2.1 系统的数学模型2.2 系统的时域响应2.3 系统的稳定性分析2.4 系统的稳态误差分析2.5 系统的动态性能分析第三章:线性系统的频域分析法3.1 频率响应的基本概念3.2 频率响应的性质3.3 系统的频率响应分析3.4 系统的稳定性分析3.5 系统的稳态误差分析第四章:线性系统的校正方法4.1 系统的校正概述4.2 串联校正设计方法4.3 并联校正设计方法4.4 反馈校正设计方法4.5 系统的动态性能改善第五章:非线性控制系统分析5.1 非线性控制系统的基本概念5.2 非线性系统的数学模型5.3 非线性系统的稳定性分析5.4 非线性系统的稳态误差分析5.5 非线性系统的动态性能分析第六章:机电控制系统的设计与实现6.1 机电控制系统的基本组成6.2 控制系统的设计步骤6.3 控制器的设计方法6.4 控制系统的仿真与实验6.5 控制系统的设计案例分析第七章:PLC控制系统设计7.1 PLC控制系统的基本原理7.2 PLC的硬件组成与功能7.3 PLC控制程序的设计方法7.4 PLC控制系统的设计实例7.5 PLC控制系统的调试与维护第八章:控制系统8.1 控制系统的基本概念8.2 的运动学与动力学8.3 控制系统的组成与原理8.4 控制算法与应用8.5 控制系统的案例分析第九章:现代控制理论简介9.1 现代控制理论的发展概况9.2 状态空间分析法9.3 系统的能控性与能观性9.4 系统镇定与最优控制9.5 现代控制理论在工程中的应用第十章:控制系统在机械工程中的应用10.1 控制系统在机械工程中的重要性10.2 控制系统在自动化设备中的应用10.3 控制系统在中的应用10.4 控制系统在数控机床中的应用10.5 控制系统在其他机械工程领域的应用重点和难点解析一、系统的数学模型难点解析:对复杂机械系统的动态方程建立及求解,状态变量的选取原则,以及如何将实际系统抽象为数学模型。
(完整版)《机械工程控制基础》课程教学大纲-2012版《机械工程控制基础》课程教学大纲课程名称:机械工程控制基础英文名称:Control Fundamental of Mechanical Engineering课程编码:51510502学时/学分:36/2课程性质:必修课适用专业:机械类各专业先修课程:高等数学,理论力学,电工与电子技术,复变函数与积分变换(可选)一、课程的目的与任务《机械工程控制基础》是机械设计制造及其自动化专业的机械电子工程及相近专业方向的一门技术基础课。
本课程是在高等数学和工程数学(复变函数与积分变换)的知识基础上,结合力学、电学等相关知识,介绍机械工程类专业的重要理论基础之一——工程控制论。
这门学科既是一门广义的系统动力学,又是一种合乎唯物辩证法的思想论和方法论,对启迪与发展人们的思维与智力有很大的作用。
本课程的基本任务是将自动控制理论应用于机械工程实际,基本要求是在阐明机械工程控制论的基本概念、基本知识与基本方法的基础上,使学生学会建立和变换系统的数学模型,掌握控制系统的时间响应分析和频率特性分析方法,并在此基础上具备讨论控制系统的稳定性,以及系统分析和校正、系统辨识等问题的能力。
使学生以辩证方法冲破形而上学的思想方法,推动这一领域的生产与学科向前发展。
在学习本课程之前,学生应当从先修课程中获得动力学分析、电路分析的能力,了解微分方程求解知识和复变函数的概念,初步掌握积分变换及其逆变换的基本方法.学习本课程之后,学生还应当注意结合其它机械工程学的知识,将控制理论应用到工程实践中去。
二、教学内容及基本要求第一章绪论教学目的和要求:本章首先阐述了机械工程控制基础这门课程的重要意义,然后介绍控制工程的基本思想、基本概念、控制系统的分类和基本要求,使学生了解机械工程控制论的研究对象与任务和系统、模型等知识,深刻理解反馈和反馈控制,接下来对控制理论的发展进行简单介绍.教学重点和难点:1.系统及其模型2.反馈和反馈控制3.系统的基本要求教学方法与手段:以课堂讲授为主,注意举例和采用启发式教学,配合适当的课堂练习和课外作业。
第一章绪论1、控制论的中心思想、三要素和研究对象。
中心思想:通过信息的传递、加工处理和反馈来进行控制。
三要素:信息、反馈与控制。
研究对象:研究控制系统及其输入、输出三者之间的动态关系。
2、反馈、偏差及反馈控制原理。
反馈:系统的输出信号部分或全部地返回到输入端并共同作用于系统的过程称为反馈。
偏差:输出信号与反馈信号之差。
反馈控制原理:检测偏差,并纠正偏差的原理。
3、反馈控制系统的基本组成。
控制部分:给定环节、比较环节、放大运算环节、执行环节、反馈(测量)环节被控对象基本变量:被控制量、给定量(希望值)、控制量、扰动量(干扰)4、控制系统的分类1)按反馈的情况分类a、开环控制系统:当系统的输出量对系统没有控制作用,即系统没有反馈回路时,该系统称开环控制系统。
特点:结构简单,不存在稳定性问题,抗干扰性能差,控制精度低。
b、闭环控制系统:当系统的输出量对系统有控制作用时,即系统存在反馈回路时,该系统称闭环控制系统。
特点:抗干扰性能强,控制精度高,存在稳定性问题,设计和构建较困难,成本高。
2)按输出的变化规律分类自动调节系统随动系统程序控制系统3)其他分类线性控制系统连续控制系统非线性控制系统离散控制系统5、对控制系统的基本要求1)系统的稳定性:首要条件是指动态过程的振荡倾向和系统能够恢复平衡状态的能力。
2)系统响应的快速性是指当系统输出量与给定的输出量之间产生偏差时,消除这种偏差的能力。
3)系统响应的准确性(静态精度)是指在调整过程结束后输出量与给定的输入量之间的偏差大小。
第二章系统的数学模型1、系统的数学模型:描述系统、输入、输出三者之间动态关系的数学表达式。
时域的数学模型:微分方程;时域描述输入、输出之间的关系。
→单位脉冲响应函数复数域的数学模型:传递函数;复数域描述输入、输出之间的关系。
频域的数学模型:频率特性;频域描述输入、输出之间的关系。
2、线性系统与非线性系统线性系统:可以用线性方程描述的系统。