2.2谓词公式与解释
- 格式:ppt
- 大小:189.00 KB
- 文档页数:19
第二节 谓词公式的分类与解释为了给出谓词公式的定义,先给出项和原子公式的定义。
定义2.1 项:(1) 个体常项和个体变项是项;(2) 设),...,,(21n x x x ϕ是任意的n 元函数,n t t t ,...,,21是项,则),...,,(21n t t t ϕ是项;(3) 有限地使用(1),(2)形成的符号串是项。
定义2.2 设),...,,(21n x x x R 是任意的n 元谓词,n t t t ,...,,21是项,则称),...,,(21n t t t R 是原子公式。
定义2.3合式公式:(1) 原子公式是合式公式;(2) 若A 是合式公式,则)(A ¬也是合式公式;(3) 若B A ,是合式公式,则)(),(),(),(B A B A B A B A ↔→∨∧也是合式公式;(4) 若A 是合式公式,则(),()xA xA ∀∃也是合式公式。
其中x 为任意的个体变项;(5) 有限次地应用(1)~(4)形成的字符串是合式公式。
这样定义的合式公式又称作谓词公式,简称公式。
合式公式的最外层括号可以省去。
定义2.4(1) 在公式xA ∀和xA ∃中,A 是相应量词的辖域,x 称为指导变量。
(2) 在公式xA ∀和xA ∃中,x 的所有出现都是约束出现的,不是约束出现的变项称为自由出现的。
例如:在公式))),,()((),((z y x L y G y y x F x ∧∃→∀中,∀的辖域为))),,()((),((z y x L y G y y x F ∧∃→∃的辖域为)),,()((z y x L y G ∧x ∀中的x 和y ∃中的y 都是指导变量。
x 的出现都是约束的,),(y x F 中的y 是自由出现的,)(y G 与),,(z y x L 中的y 是约束出现的,z 的出现是自由的。
一般情况下,在一个谓词公式A 中,除了可能含若干个个体常项,函数常项,谓词常 项外,还可能含个体变项,函数变项,谓词变项等。
§2.2 谓词公式及其解释习题2.21. 指出下列谓词公式的指导变元、量词辖域、约束变元和自由变元。
(1)))()((y x Q x P x ,→∀ (2))()(y x yQ y x xP ,,∃→∀(3))())()((z y x xR z y Q y x P y x ,,,,∃∨∧∃∀解 (1)x ∀中的x 是指导变元;量词x ∀的辖域是),()(y x Q x P →;x 是约束变元,y 是自由变元。
(2)x ∀中的x ,y ∃中的y 都是指导变元;x ∀的辖域是)(y x P ,,y ∃的辖域是)(y x Q ,;)(y x P ,中的x 是x ∀的约束变元,y 是自由变元;)(y x Q ,中的x 是自由变元,y 是y ∃的约束变元。
(3)x ∀中的x ,y ∃中的y 以及x ∃中的x 都是指导变元;x ∀的辖域是))()((z y Q y x P y ,,∧∃,y ∃的辖域是)()(z y Q y x P ,,∧,x ∃的辖域是)(z y x R ,,;)(y x P ,中的x ,y 都是约束变元;)(z y Q ,中的y 是约束变元;z 是自由变元,)(z y x R ,,中的x 为约束变元,y ,z 是自由变元。
2. 设个体域}21{,=D ,请给出两种不同的解释1I 和2I ,使得下面谓词公式在1I 下都是真命题,而在2I 下都是假命题。
(1)))()((x Q x P x →∀(2)))()((x Q x P x ∧∃解(1)解释1I :个体域}21{,=D ,0:)(,0:)(>>x x Q x x P 。
(2)解释2I :个体域}21{,=D ,2:)(,0:)(>>x x Q x x P 。
3. 对下面的谓词公式,分别给出一个使其为真和为假的解释。
(1))))()(()((y x R y Q y x P x ,∧∃→∀ (2))),()()((y x R y Q x P y x →∧∀∀解 (1)成真解释:个体域D ={1,2,3},0:)(<x x P ,2:)(>y y Q ,3:),(>+y x y x R 。
§2.2 谓词公式及其解释习题2.21. 指出下列谓词公式的指导变元、量词辖域、约束变元和自由变元。
(1)))()((y x Q x P x ,→∀ (2))()(y x yQ y x xP ,,∃→∀(3))())()((z y x xR z y Q y x P y x ,,,,∃∨∧∃∀解 (1)x ∀中的x 是指导变元;量词x ∀的辖域是),()(y x Q x P →;x 是约束变元,y 是自由变元。
(2)x ∀中的x ,y ∃中的y 都是指导变元;x ∀的辖域是)(y x P ,,y ∃的辖域是)(y x Q ,;)(y x P ,中的x 是x ∀的约束变元,y 是自由变元;)(y x Q ,中的x 是自由变元,y 是y ∃的约束变元。
(3)x ∀中的x ,y ∃中的y 以及x ∃中的x 都是指导变元;x ∀的辖域是))()((z y Q y x P y ,,∧∃,y ∃的辖域是)()(z y Q y x P ,,∧,x ∃的辖域是)(z y x R ,,;)(y x P ,中的x ,y 都是约束变元;)(z y Q ,中的y 是约束变元;z 是自由变元,)(z y x R ,,中的x 为约束变元,y ,z 是自由变元。
2. 设个体域}21{,=D ,请给出两种不同的解释1I 和2I ,使得下面谓词公式在1I 下都是真命题,而在2I 下都是假命题。
(1)))()((x Q x P x →∀(2)))()((x Q x P x ∧∃解(1)解释1I :个体域}21{,=D ,0:)(,0:)(>>x x Q x x P 。
(2)解释2I :个体域}21{,=D ,2:)(,0:)(>>x x Q x x P 。
3. 对下面的谓词公式,分别给出一个使其为真和为假的解释。
(1))))()(()((y x R y Q y x P x ,∧∃→∀ (2))),()()((y x R y Q x P y x →∧∀∀解 (1)成真解释:个体域D ={1,2,3},0:)(<x x P ,2:)(>y y Q ,3:),(>+y x y x R 。