第07章 MOS晶体管及其版图
- 格式:pdf
- 大小:2.19 MB
- 文档页数:20
MOS场效应管一、二极管三极管MOS器件基本原理P-N结及其电流电压特性晶体二极管为一个由p 型半导体和n 型半导体形成的p-n 结,在其界面处两侧形成空间电荷层,并建有自建电场。
当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。
当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流:。
当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0 。
当外加的反向电压高到一定程度时,p-n 结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。
双极结型三极管相当于两个背靠背的二极管PN 结。
正向偏置的EB 结有空穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的CB 结势垒电场的作用下到达集电区,形成集电极电流IC 。
在共发射极晶体管电路中, 发射结在基极电路中正向偏置, 其电压降很小。
绝大部分的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。
由于VBE 很小,所以基极电流约为IB= 5V/50 k Ω= 0.1mA 。
如果晶体管的共发射极电流放大系数β= IC / IB =100, 集电极电流IC= β*IB=10mA。
在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流ib,在集电极电路中将出现一个相应的交变电流ic,有c/ib=β,实现了双极晶体管的电流放大作用。
金属氧化物半导体场效应三极管的基本工作原理是靠半导体表面的电场效应,在半导体中感生出导电沟道来进行工作的。
当栅G 电压VG 增大时,p 型半导体表面的多数载流子棗空穴逐渐减少、耗尽,而电子逐渐积累到反型。
MOS管MOS管结构原理图解mos管是金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。
MOS管的source和drain是可以对调的,他们都是在P型backgate中形成的N型区。
在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。
这样的器件被认为是对称的。
双极型晶体管把输入端电流的微小变化放大后,在输出端输出一个大的电流变化。
双极型晶体管的增益就定义为输出输入电流之比(beta)。
另一种晶体管,叫做场效应管(FET),把输入电压的变化转化为输出电流的变化。
FET的增益等于它的transconductance,定义为输出电流的变化和输入电压变化之比。
市面上常有的一般为N 沟道和P沟道,详情参考右侧图片(N沟道耗尽型MOS管)。
而P沟道常见的为低压mos管。
场效应管通过投影一个电场在一个绝缘层上来影响流过晶体管的电流。
事实上没有电流流过这个绝缘体,所以FET管的GATE电流非常小。
最普通的FET用一薄层二氧化硅来作为GATE极下的绝缘体。
这种晶体管称为金属氧化物半导体(MOS)晶体管,或,金属氧化物半导体场效应管(MOSFET)。
因为MOS管更小更省电,所以他们已经在很多应用场合取代了双极型晶体管。
mos管优势1.可应用于放大。
由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
2.很高的输入阻抗非常适合作阻抗变换。
常用于多级放大器的输入级作阻抗变换。
3.可以用作可变电阻。
4.可以方便地用作恒流源。
5.可以用作电子开关。
6.在电路设计上的灵活性大。
栅偏压可正可负可零,三极管只能在正向偏置下工作,电子管只能在负偏压下工作。
另外输入阻抗高,可以减轻信号源负载,易于跟前级匹配。
MOS管结构原理图解1、结构和符号(以N沟道增强型为例)在一块浓度较低的P型硅上扩散两个浓度较高的N型区作为漏极和源极,半导体表面覆盖二氧化硅绝缘层并引出一个电极作为栅极。