iNVENTOR 运动仿真分析
- 格式:doc
- 大小:1.26 MB
- 文档页数:114
基于Autodesk Inventor的共轭凸轮设计与运动仿真笔者结合工作中的实际案例——一位使用Inventor产品多年的印刷机械设备用户,困惑于如何借助3D软件提升设计能力——分析其设计难题,例如比较普遍的凸轮设计问题,其中一个共轭凸轮的机构设计尤为难以实现。
本文就是基于解决用户共轭凸轮设计难题的真实案例,介绍了借助Autodesk Inventor设计共轭凸轮的方法及思路。
一、设计要求用户设计某胶订机,其中一台设备使用到一对共轭凸轮,其中一个凸轮是顶升凸轮,带动机构在垂直方向运动,另一个凸轮带动一个连杆机构,连杆机构的末端带动一个滑块做水平运动,机构简图如图1。
T形结构FF’E中,端点E与凸轮1的从动件连结,连杆AB的端点A 连接在滑块上,沿FF’平面做水平往复运动,连杆BCD绕C点转动,D点与凸轮2从动件连结,凸轮1和凸轮2绕同一根轴旋转。
1.凸轮1(垂直运动)盘式顶升凸轮(沟槽)做垂直方向往复运动。
凸轮基圆半径为50mm,凸轮升程为30mm,带动T形结构做垂直方向运动,其在一个周期内的运动规律如表所示。
2.凸轮2(水平运动)凸轮驱动连杆机构运动,连杆机构的末端连结到一个滑块,滑块的设计要求为一个往复行程为400mm,为配合机构的运动要求,其速度按照如图2所示规律运动。
本文重点在于说明设计的思路,对于机构的具体尺寸以及系统转速等不做说明,上述的设计参数也仅作示意,不代表实际设计数值。
二、设计分析常见的凸轮形式,包括线性凸轮、盘式凸轮及圆柱凸轮三大类,很多CAD软件没有直接提供凸轮设计工具,需要用户去创建凸轮的轮廓线(通过创建公式曲线,以数据点拟合样条曲线),而轮廓的几何外形仅仅表达了凸轮的位移变化,还无法满足对凸轮性能分析的需求(速度曲线、加速度曲线和压力角变化等)的分析,造成用户设计效率低下,凸轮优化困难。
Inventor凸轮设计模块集凸轮设计、计算校验于一身,支持上述三种凸轮,其自带了多达13种拟合函数,最高支持七阶多项式,无需用户推导解析函数,即能生成高质量的凸轮轮廓。
浅谈Inventor在机械制图教学中的应用Inventor是一种专业的三维机械设计软件,它对于机械制图教学中的应用非常广泛。
通过Inventor软件的教学,学生可以深入了解机械设计的基础知识,并且掌握三维设计技能。
本文将从Inventor在机械制图教学中的应用、教学案例以及未来发展趋势等方面进行浅谈。
1.提升学生的学习兴趣传统的机械制图教学通常是通过纸笔绘制二维图纸来进行的,这种方式往往难以激发学生的学习兴趣。
而Inventor软件可以将学生从纸上繁琐的绘图工作中解放出来,让他们直接通过计算机进行三维设计和模拟,从而更容易吸引学生的兴趣,激发他们对机械设计的热情。
2.提高学生的设计能力Inventor软件可以实现快速的三维设计和模拟,学生可以通过软件的操作来实现自己的设计想法,并且可以实时地查看设计效果。
这种实践性的学习方式可以帮助学生更好地理解机械设计的原理,并且提高他们的设计能力。
3.满足教学的需求Inventor软件作为专业的机械设计软件,其功能非常强大,可以满足机械制图教学的各种需求。
不论是从简单的零部件设计到复杂的装配体设计,Inventor都可以提供丰富的功能和工具,帮助教师完成教学任务。
1.零部件的三维设计与装配在机械制图教学中,通常会涉及到零部件的设计与装配。
通过Inventor软件,学生可以学习如何利用软件中的各种工具进行零部件的三维设计,并且将各个零部件进行装配,从而完成整体的设计。
通过实际操作,学生可以对零部件的设计原理和装配过程有更深入的了解。
2.运动仿真与分析Inventor软件还可以进行零部件的运动仿真与分析,这对于机械制图教学来说是非常有用的。
学生可以通过软件模拟零部件的运动过程,观察各个零部件之间的相互作用,从而更好地理解机械系统的工作原理。
3.绘制工程图纸除了三维设计和模拟外,Inventor软件还可以帮助学生进行工程图纸的绘制。
学生可以通过软件的功能完成各种视图的绘制,包括正视图、俯视图、侧视图等,并且可以添加尺寸标注和注释等,从而完成具有工程实践价值的图纸。
Inventor具有非常强大装配功能,它的零部件运动模拟通常也是基于装配约束的,这使得对于基于装配约束的运动模拟,无论结构多复杂实现起来都非常容易(如连杆机构、传动机构和摆轮机构等)。
但是在实际工作中,我们遇到的很多运动模式(如一个物体按确定的二维或三维的轨迹运动;在自动加工流水线上工件、夹具和加工设备的协调动作等等),我们仅仅只用基于装配约束的运动模拟就难以实现。
如何来实现这种复杂的运动模拟?我们知道Inventor的装配模型中每添加一个装配约束,系统内部就会自动赋予一个变量,而且这个变量可以用Inventor的内部函数与其它变量建立关系,并在驱动约束主变量时实现联动,这就为实现复杂的模拟运动带来了可能。
在Inventor的变量中除了用“加减乘除”运算进行关联外,还可以用SIN、COS等复杂函数建立相互间的关联关系,在Inventor的帮助中可以找到这些函数的详细说明。
下面我们就通过几个实例来探讨如何用Inventor的内部函数,来实现一些特殊而复杂的运动模拟问题。
1、二维正弦波型曲线运动A. 这里以小球为列,首先做一个直径为5mm的球型零件,存盘后将其装入一新建的部件文件(.iam)中。
B. 在部件浏览器中选中小球单击右键,选择取消固定。
C. 分别给小球中心和部件的基准坐标的xy、yz和zx平面之间添加配合约束,之后选择zx平面为观察方向。
D. 接下来要将装配约束变量进行关联,我们选择与yz平面的装配约束为主动变量,而与xy 平面的装配约束变量用y=a sin(x)公式与主动变量相关联。
图1E. 在装配工具面板中选择参数按钮“ ”,在参数设置对话框中进行设置,如图1所示。
如果与yz平面的装配约束变量名为d1,与xy平面的装配约束变量为d5,接着将d5的等式项中添加“100 mm * ( sin(d1 / 1 mm * 1 deg) )”的表达式,如图2所示。
注意:100为振幅,“d1 / 1 mm * 1 deg”是为了将量纲mm转换为deg,以确保量纲的正确性,否则就会出错。
运动仿真结果分析运动仿真结果分析文章标题:运动仿真结果分析——步骤思维分析导言:运动仿真在各个领域得到了广泛应用,如机器人、汽车和航空航天等。
本文通过步骤思维的方式,对运动仿真结果进行分析,以揭示其中的规律和优化方向。
第一步:收集数据在进行运动仿真之前,我们需要收集相关的数据,例如物体的质量、形状、运动轨迹等。
这些数据将作为仿真模型的输入,决定了仿真结果的准确性和可靠性。
第二步:建立模型基于收集到的数据,我们可以建立运动仿真模型。
模型的建立需要考虑运动物体的运动学和动力学特性,以及外部环境的影响因素。
通过建立准确的模型,我们可以更好地理解物体的运动规律。
第三步:仿真运行在模型建立完成后,我们可以进行仿真运行。
通过对模型进行计算和仿真,可以得到物体在不同时间点的运动状态。
仿真运行的结果将反映出物体的运动轨迹、速度、加速度等信息。
第四步:结果分析通过对仿真结果进行分析,我们可以得到以下几个方面的信息:1. 运动规律:通过观察物体的运动轨迹和速度变化,我们可以揭示物体的运动规律,例如匀速直线运动、抛体运动等。
这有助于我们对物体的运动特性进行深入理解。
2. 优化方向:通过对仿真结果进行比较和对比,我们可以找到物体运动中存在的问题和不足之处。
例如,如果物体的速度变化过大,可能需要优化其运动控制算法;如果物体的运动轨迹与预期不符,可能需要优化其外部环境的设置。
3. 参数调整:通过对仿真结果进行调整和分析,我们可以确定一些关键参数对于物体运动的影响程度。
这有助于我们对模型进行精确调整和优化,使仿真结果更加符合实际情况。
第五步:结论与展望通过对运动仿真结果的分析,我们可以得出一些结论和展望:1. 从仿真结果中我们可以得知物体的运动规律和特性,这有助于我们对物体的运动进行预测和控制。
2. 通过对仿真结果的优化,我们可以提高物体的运动效率和稳定性,从而提高系统的整体性能。
3. 运动仿真是一个不断发展的领域,未来我们可以进一步完善仿真模型和算法,使其更加准确和可靠。
第1章运动仿真本章重点应力分析的一般步骤边界条件的创建查看分析结果报告的生成和分析本章典型效果图1.1机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。
对于提高设计效率降低成本有很大的作用。
Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。
PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。
使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。
并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。
也可创建轨迹曲线和运动包络,用物理方法描述运动。
使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。
可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。
如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。
1.2总体界面及使用环境在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。
系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。
下拉菜单的每一个选项与工具栏每一个图标相对应。
用户既可以通过菜单选择进行相关操作。
也可以直接点击快捷工具栏图标进行操作。
Autodesk Inventor运动仿真模块基础作者:暂无来源:《智能制造》 2014年第11期撰文 / 欧特克软件(中国)有限公司丁旭东袁双喜仿真工具已经越来越广泛地集成到产品的设计阶段。
基于刚体动力学的Inventor运动仿真模块为广大产品设计人员所采用。
本文在对该模块的功能进行简单介绍的基础之上,采用一个凸轮顶杆机构作为案例,将基于动量守恒定律的理论值与软件模拟计算值进行对比,验证了该模块的可靠性和实用性。
Autodesk是世界领先的设计软件和数字内容创建公司,用于建筑设计、土地资源开发、生产、公用设施、通信、媒体和娱乐。
Autodesk于2005年收购了Solid Dynamics,并将其移植到Inventor 环境中,同时在Inventor环境中命名为Dynamic Simulation。
有了这样的仿真设计就不需要用在设计阶段去大量构建物理模型了。
接下来,我们向大家介绍Inventor Dynamic Simulation(运动仿真)的基本用法。
一、功能介绍运动仿真是基于运动学、动力学、固体力学和机械工程学等多门学科的综合应用。
1. 连接在运动仿真中,机构装置的运动是由零件和子装配通过连接来定义运动机理的。
连接是一个装配中构件(零件或子部件)之间的关系。
它确定在一个机理中构件相互之间如何运动或者相互作用。
在Inventor中,提供了非常丰富的连接库,除自动转换装配约束标准连接外,用户可以手动产生基于连接库中的类型连接。
具体的连接类型有:标准连接;滚动(传动)连接;滚动连接;二维接触连接和力连接。
2.驱动机理由连接建起来后,机理的运动方式也就定义好了。
接下来,我们开始定义驱动条件。
在实际工程机构中,机理的运动或者驱动因素可以有很多种,常见的有机械的电动的等等。
而机理是否运动,运动的快慢、运动的时间长短等,是由机理受到的外界作用和连接的物理性质等因素共同决定的。
我们可以通过下面两个方式来定义仿真环境的驱动力。
用函数实现Inventor中特殊运动的模拟Inventor具有非常强大装配功能,它的零部件运动模拟通常也是基于装配约束的,这使得对于基于装配约束的运动模拟,无论结构多复杂实现起来都非常容易(如连杆机构、传动机构和摆轮机构等)。
但是在实际工作中,我们遇到的很多运动模式(如一个物体按确定的二维或三维的轨迹运动;在自动加工流水线上工件、夹具和加工设备的协调动作等等),我们仅仅只用基于装配约束的运动模拟就难以实现。
如何来实现这种复杂的运动模拟?我们知道Inventor的装配模型中每添加一个装配约束,系统内部就会自动赋予一个变量,而且这个变量可以用Inventor的内部函数与其它变量建立关系,并在驱动约束主变量时实现联动,这就为实现复杂的模拟运动带来了可能。
在Inventor的变量中除了用“加减乘除”运算进行关联外,还可以用SIN、COS等复杂函数建立相互间的关联关系,在Inventor的帮助中可以找到这些函数的详细说明。
下面我们就通过几个实例来探讨如何用Inventor的内部函数,来实现一些特殊而复杂的运动模拟问题。
1、二维正弦波型曲线运动A. 这里以小球为列,首先做一个直径为5mm的球型零件,存盘后将其装入一新建的部件文件(.iam)中。
B. 在部件浏览器中选中小球单击右键,选择取消固定。
C. 分别给小球中心和部件的基准坐标的xy、yz和zx平面之间添加配合约束,之后选择zx平面为观察方向。
D. 接下来要将装配约束变量进行关联,我们选择与yz平面的装配约束为主动变量,而与xy平面的装配约束变量用y=a sin(x)公式与主动变量相关联。
图1E. 在装配工具面板中选择参数按钮“”,在参数设置对话框中进行设置,如图1所示。
如果与yz平面的装配约束变量名为d1,与xy平面的装配约束变量为d5,接着将d5的等式项中添加“100 mm * ( sin(d1 / 1 mm * 1 deg) )”的表达式,如图2所示。
用函数实现Inventor中特殊运动的模拟Inventor具有非常强大装配功能,它的零部件运动模拟通常也是基于装配约束的,这使得对于基于装配约束的运动模拟,无论结构多复杂实现起来都非常容易(如连杆机构、传动机构和摆轮机构等)。
但是在实际工作中,我们遇到的很多运动模式(如一个物体按确定的二维或三维的轨迹运动;在自动加工流水线上工件、夹具和加工设备的协调动作等等),我们仅仅只用基于装配约束的运动模拟就难以实现。
如何来实现这种复杂的运动模拟?我们知道Inventor的装配模型中每添加一个装配约束,系统内部就会自动赋予一个变量,而且这个变量可以用Inventor的内部函数与其它变量建立关系,并在驱动约束主变量时实现联动,这就为实现复杂的模拟运动带来了可能。
在Inventor的变量中除了用“加减乘除”运算进行关联外,还可以用SIN、COS等复杂函数建立相互间的关联关系,在Inventor的帮助中可以找到这些函数的详细说明。
下面我们就通过几个实例来探讨如何用Inventor的内部函数,来实现一些特殊而复杂的运动模拟问题。
1、二维正弦波型曲线运动A. 这里以小球为列,首先做一个直径为5mm的球型零件,存盘后将其装入一新建的部件文件(.iam)中。
B. 在部件浏览器中选中小球单击右键,选择取消固定。
C. 分别给小球中心和部件的基准坐标的xy、yz和zx平面之间添加配合约束,之后选择zx平面为观察方向。
D. 接下来要将装配约束变量进行关联,我们选择与yz平面的装配约束为主动变量,而与xy平面的装配约束变量用y=a sin(x)公式与主动变量相关联。
图1E. 在装配工具面板中选择参数按钮“ ”,在参数设置对话框中进行设置,如图1所示。
如果与yz平面的装配约束变量名为d1,与xy平面的装配约束变量为d5,接着将d5的等式项中添加“100 mm * ( sin(d1 / 1 mm * 1 deg) )”的表达式,如图2所示。
第1章疏通仿真之阳早格格创做本章沉面应力领会的普遍步调鸿沟条件的创修查看领会截止报告的死成战领会本章典型效验图正在举止板滞安排时,修坐模型后安排者往往需要通过假造的脚法,正在电脑上模拟所安排的机构,去达到正在假造的环境中模拟现真机构疏通的脚法.对付于普及安排效用落矮成本有很大的效用.Pro/ engineer中“机构”模块是博门用去举止疏通仿真战动背领会的模块.PROE的疏通仿真与动背领会功能集成正在“机构”模块中,包罗Mechanismdesign(板滞安排)战Mechanism dynamics(板滞动背)二个圆里的领会功能.使用“板滞安排”领会功能相称于举止板滞疏通仿真,使用“板滞安排”领会功能去创修某种机构,定义特定疏通副,创修能使其疏通起去的伺服电效果,去真止机构的疏通模拟.并不妨瞅察并记录领会,不妨丈量诸如位子、速度、加速度等疏通特性,不妨通过图形直瞅的隐现那些丈量量.也可创修轨迹直线战疏通包络,用物理要领形貌疏通.使用“板滞动背”领会功能可正在机构上定义沉力,力战力矩,弹簧,阻僧等等特性.不妨树坐机构的资料,稀度等特性,使其越收靠近现真中的结构,到达真正在的模拟现真的脚法.如果简单的钻研机构的疏通,而不波及品量,沉力等参数,只需要使用“板滞安排”领会功能即可,即举止疏通领会,如果还需要更进一步领会机构受沉力,中界输进的力战力矩,阻僧等等的效用,则必须使用“板滞安排”去举止固态领会,动背领会等等.正在拆置环境下定义机构的对接办法后,单打菜单栏菜单“应用步调”→“机构”,如图11所示.系统加进机构模块环境,浮现图12所示的机构模块主界里:菜单栏减少如图13所示的“机构”下推菜单,模型树减少了如图14所示“机构”一项真量,窗心左边出现如图15所示的工具栏图标.下推菜单的每一个选项与工具栏每一个图标相对付应.用户既不妨通过菜单采用举止相关收配.也不妨间接面打快速工具栏图标举止收配.图11 由拆置环境加进机构环境图图 12 机构模块下的主界里图图 13 机构菜单图 14模型树菜单图15 工具栏图标图15所示的“机构”工具栏图标战图13中下推菜单各选项功能阐明如下:对接轴树坐:挨开“对接轴树坐”对付话框,使用此对付话框可定义整参照、复活值以及对接轴的节造树坐.凸轮:挨开“凸轮从效果构对接”对付话框,使用此对付话框可创修新的凸轮从效果构,也可编写或者简略现有的凸轮从效果构.槽:挨开“槽从效果构对接”对付话框,使用此对付话框可创修新的槽从效果构,也可编写或者简略现有的槽从效果构.齿轮:挨开“齿轮副”对付话框,使用此对付话框可创修新的齿轮副,也可编写、移除复造现有的齿轮副.伺服电效果:挨开“伺服电效果”对付话框,使用此对付话框可定义伺服电效果,也可编写、移除或者复造现有的伺服电效果.真止电效果:挨开“真止电效果”对付话框,使用此对付话框可定义真止电效果,也可编写、移除或者复造现有的真止电效果.弹簧:挨开“弹簧” 对付话框,使用此对付话框可定义弹簧,也可编写、移除或者复造现有的弹簧.阻僧器:挨开“阻僧器”对付话框,使用此对付话框可定义阻僧器,也可编写、移除或者复造现有的阻僧器.力/扭矩:挨开“力/扭矩”(对付话框,使用此对付话框可定义力或者扭矩.也可编写、移除或者复造现有的力/扭矩背荷.沉力:挨开“沉力” 对付话框,可正在其中定义沉力.初初条件:挨开“初初条件”对付话框,使用此对付话框可指定初初位子快照,并可为面、对接轴、主体或者槽定义速度初初条件.品量属性:挨开“品量属性”对付话框,使用此对付话框可指定整件的品量属性,也可指定组件的稀度.拖动:挨开“拖动”对付话框,使用此对付话框可将机构拖动至所需的晃设并拍与快照.对接:挨开“对接组件”对付话框,使用此对付话框可根据需要锁定或者解锁任性主体或者对接,并运止组件领会.领会:挨开“领会”对付话框,使用此对付话框可增加、编写、移除、复造或者运止领会.回搁:挨开“回搁”对付话框,使用此对付话框可回搁领会运止的截止.也可将截止保存到一个文献中、回复先前保存的截止或者输出截止.丈量:挨开“丈量截止”对付话框,使用此对付话框可创修丈量,并可采用要隐现的丈量战截止集.也不妨对付截止出图或者将其保存到一个表中.轨迹直线:挨开“轨迹直线”对付话框,使用此对付话框死成轨迹直线或者凸轮合成直线.除了那些主要的菜单战工具中.另有几个整集的菜单需要注意.“编写”菜单正在“编写”菜单中与“机构”模块有关的菜单主假如:沉定义主体:挨开“沉定义主体”对付话框,使用此对付话框可移除组件中主体的组件拘束.通过单打箭头采用整件后,对付话框隐现已经定义佳的拘束,元件战组修参照,安排者不妨移除拘束,沉新指定元件或者组件参照,如图16所示.树坐:挨开“树坐”对付话框,使用此对付话框可指定"板滞安排"用去拆置机构的公好,也可指定正在领会运止波折时“板滞安排”将采与的收配.如是可收出告诫声,收配波折时是可久停运止或者是继启运止等等,该晃设有好处安排者下效用的完毕处事.如图17所示.图16 沉定义主体对付话框图17 树坐对付话框“视图”菜单正在“视图”菜单中与“机构”模块有关的菜单主假如:加明主体:以绿色隐现前提主体.隐现树坐:机构隐现,挨开“隐现图元”对付话框,使用此对付话框可挨开或者关关工具栏上某个图目标可睹性.去掉所有一个复选框前里的勾号,则该工具正在工具栏上不可睹.图18 隐现图元对付话框“疑息”菜单:单打“疑息”→“机构”下推菜单,或者正在模型树中左键单打“机构” 节面并采用“疑息”,系统挨开“疑息”菜单,如图19所示.使用“疑息”菜单上的下令以查看模型的疑息目要.利用那些目要不必挨开“机构”模型即不妨更佳天对付其举止相识,并可查看所有对付话框以获与所需疑息.正在二种情况下,皆市挨开一个戴有以下下令的子菜单.采用其中一个下令挨开戴有目要疑息的Pro/ENGINEER 欣赏器窗心.(1)目要:机构的下档目要,其中包罗机构图元的疑息战模型中所出现的名目数.如图110(2)仔细疑息:包罗所有图元及其相关属性.如图111所示.(3)品量属性:列出机构的品量、沉心及惯性分量.如图112所示.机构为“模型树”中每个“板滞安排”图元皆提供一个“疑息”选项.左键单打并为某个特定图元选中此选项后,会挨开一个戴有针对付该图元的仔细目要的欣赏器窗心.图19 疑息菜单中机构疑息图图110 目要疑息图图111 仔细疑息图图112 品量属性疑息图要举止机构疏通仿真安排,必须按照一定的步奏.Pro/Engineer“板滞安排”模块包罗“板滞安排疏通”(疏通仿真)战“板滞安排动背”(动背领会)二部分,使用“板滞安排”领会功能,可正在不思量效用于系统上的力的情况下领会机构疏通,并丈量主体位子、速度战加速度.战前者分歧的是“板滞动背”领会包罗多个修模图元,其中包罗弹簧、阻僧器、力/力矩背荷以及沉力.可根据电效果所施加的力及其位子、速度或者加速度去定义电效果.除沉复组件战疏通领会中,还可运止径背、固态战力仄稳领会.也可创修丈量,以监测对接上的力以及面、顶面或者对接轴的速度或者加速度.可决定正在领会功夫是可出现碰碰,并可使用脉冲丈量定量由于碰碰而引起的动量变更.由于动背领会必须估计效用于机构的力,所以它需要用到主体品量属性.二者举止领会时过程基础上普遍:运止沉复组件领会赢得截止回搁截止查看搞涉查看丈量创修轨迹直线创修疏通包络回搁截止查看搞涉查看定义的丈量战动背丈量创修轨迹直线战疏通包络创修要变化到 Mechanica 结构的背荷集1.4 板滞安排疏通领会详解相识了上头基础的领会历程后,底下通过简直的例子一步一步去举止简直的领会.(1)将光盘文献复造到硬盘上,开用pro/engineer.单打菜单“文献”→“树坐处事目录”.挨开“采用处事目录”对付话框处事,将目录树坐为X:/example_1.单打决定.则系统处事正在此目录下.如图113所示.(2)单打菜单“文献”→“新修”.挨开“新修”对付话框,采用“组件”选项,将组件名改为asm.去掉“使用缺省模版”复选框前里的勾号,单打“决定”按钮,系统挨开“新文献选项”对付话框,如图114所示.(3) 正在列表中采用mmns_asm_design为模板,单打决定.(4)单打图标,挨开“挨开”对付话框,如图115所示.采用a.prt,单打“挨开”按钮,系统弹出“元件搁置”对付话框.单打按钮担当缺省拘束搁置,单打决定按钮.那样系统自动定义此为前提主体.如图116所示.图113 采用处事目录对付话框图114 新文献选项对付话框图115 挨开对付话框图 116元件搁置对付话框图 116 元件搁置后图(5)单打图标,挨开“挨开”对付话框,采用b.prt,单打“挨开”按钮,系统弹出“元件搁置”对付话框.单打“对接”选项卡,对付话框形成如图117所示,担当默认对接的称呼为connnection_1,采用典型为销钉对接,依照图119采用a.prt的轴A1对付齐b.prt的轴A1,仄移选项采用轴端大端里战b.prt一个正里,单打决定,完毕后如图119所示.正在完毕对接的历程中,不妨通过如图120 所示的移动选项卡对付话框安排机构位子.不妨仄移,转化元件到一定的位子.便于瞅察战采用基准轴或者里.图117 对接中的轴对付齐图图118 对接中的仄移图图119对接匹配图图120 对接安排移动图对接的效用Pro/E提供了十种对接定义.主要有刚刚性对接,销钉对接,滑动杆对接,圆柱对接,仄里对接,球对接焊接,轴启,惯例,6DOF(自由度).终尾二种是家火2.0新减少的.对接与拆置中的拘束分歧,对接皆具备一定的自由度,不妨举止一定的疏通接洽对接有三个脚法:◊定义“板滞安排模块”将采与哪些搁置拘束,以便正在模型中搁置元件;◊节造主体之间的相对付疏通,缩小系统大概的总自由度(DOF);◊定义一个元件正在机构中大概具备的疏通典型;1.销钉对接此对接需要定义二个轴沉合,二个仄里对付齐,元件相对付于主体选转,具备一个转化自由度,不仄移自由度.如图示图 121 销钉对接示企图2.滑动杆对接滑动杆对接仅有一个沿轴背的仄移自由度,滑动杆对接需要一个轴对付齐拘束,一个仄里匹配或者对付齐拘束以节造对接元件的转化疏通,与销对接正佳好异,滑动杆提供了一个仄移自由度,不转化自由度.图 122 滑动杆对接示企图3.圆柱对接对接元件即不妨绕轴线相对付于附着元件转化,也不妨沿着轴线相对付于附着元件仄移,只需要一个轴对付齐拘束,圆柱对接提供了一个仄移自由度,一个转化自由度.图 123 圆柱对接示企图4.仄里对接仄里对接的元件即不妨正在一个仄里内相对付于附着元件移动,也不妨绕着笔直于该仄里的轴线相对付于附着元件转化,只需要一个仄里匹配拘束.图 124 仄里对接示企图5.球对接对接元件正在拘束面上不妨沿附着组件所有目标转化,只允许二面对付齐拘束,提供了一个仄移自由度,三个转化自由度.图 125球对接示企图5.轴启对接轴启对接是通过面与轴线拘束去真止的,不妨沿三个目标转化,而且能沿着轴线移动,需要一个面与一条轴拘束,具备一个仄移自由度,三个转化自由度.图126 轴启对接示企图6.刚刚性对接对接元件战附着元件之间不所有相对付疏通,六个自由度真足被拘束了.7.焊接焊接将二个元件对接正在所有,不所有相对付疏通,只可通过坐标系举止拘束.刚刚性对接战焊接对接的比较:(1)刚刚性接洽允许将所有灵验的组件拘束组散合到一个接洽典型.那些拘束不妨是使拆置元件得以牢固的真足拘束集或者部分拘束子集.(2)拆置整件、不包罗对接的子组件或者对接分歧主体的元件时,可使用刚刚性接洽.焊接接洽的效用办法与其余接洽典型类似.然而整件或者子组件的搁置是通过对付齐坐标系去牢固的.(3)当拆置包罗对接的元件且共一主体需要多个对接时,可使用焊接接洽.焊接对接允许根据开搁的自由度安排元件以与主组件匹配.(4)如果使用刚刚性接洽将戴有“板滞安排”对接的子组件拆置到主组件,子组件对接将不克不迭疏通.如果使用焊接对接将戴有“板滞安排”对接的子组件拆置到主组件,子组件将参照与主组件相共的坐标系,且其子组件的疏通将终究处于活动状态.对接历程中的安排办法正在对接机构时,时常会出现位子搁置分歧理局里,使得对接树坐无法赶快定位,可通过脚动的办法去间接移动或者转化元件到一个比较妥当的位子.该历程主假如通过“元件搁置”对付话框中的“移动”选项卡去完毕.如图127所示.图127 移动办法图图128 采用对付话框1.“疏通典型”推拢框:采用脚动调元件的办法.(1)“定背模式”:可相对付于特定几许沉定背视图,并可变动视图沉定背样式,不妨提供除尺度的转化、仄移、缩搁除中的更多查看功能.(2)“仄移”:单打机构上的一面,不妨仄止移动元件.(3)“转化”:单打机构上的一面,不妨转化元件.(4)“安排”:不妨根据后里的疏通参照典型,采用元件上的直里安排到参照里,边,坐标系等.采用安排,会弹出图128所示的采用对付话框.2.“疏通参照”推拢框:采用需要参照的典型(1)“视图仄里”:系统缺省采与此种参照,且不会弹出图128所示的对付话框.除了该项中,采用底下所有一项均会弹出128所示的对付话框.(2)“采用仄里”:不妨采用创修的基准里,或者是直里动做参照.(3)“图元/边”:不妨采用图元上的边动做参照.(4)“仄里法背”:不妨采用某个仄里,则系统自动采用该仄里的法背为参照.(5)“2面”:不妨采用二面定义矢量目标动做参照.(6)“坐标系”:采用坐标系动做参照.3.“疏通删量”推拢框:树坐疏通位子改变的大小,有二种办法(1)“仄移”下推框:有光润,1,5,10四个选项.采用光润,一次不妨移动任性少度的距离.其余是按所选的少度屡屡移动相映的距离.(2)“选转”下推框:有光润,5,10,30,45,90六个选项.其中光润为屡屡转化任性角度.其余是按所选的角度屡屡转化相映的角度.4.“位子”推拢框:当用鼠标移动元件时,正在“相对付”文本框中隐现移动的距离.对接轴树坐定义完对接后,元件便能相对付主体举止一定的疏通,不妨举止对接轴树坐,以进一步设定疏通的范畴,疏通的起面等.单打“机构”→“对接轴树坐”加进“对接轴树坐”对付话框,如图129所示.各选项介绍如下:1.“采用对接轴”选项组单打箭头用鼠标正在机构上采用对接轴2.“对接轴位子”选项组表示对接轴位子的度量,对付于对接轴使用角度表示的,是相对付于整面位子的角度值,介于180180度之间.3.“整参照”选项卡(1)“指定参照”复选框:勾选该复选框,绿色中心参照战橙色主体参照形成可选.(2)“绿色主体参照”选项组:采用一个面、顶面、直里或者仄里动做“绿色主体参照”.(3)“橙色主体参照”选项组:采用一个面、顶面、直里或者仄里动做“橙色主体参照”.定义转化轴的对接轴整面参照时应注意下列事项:(1)面面整面参照:“板滞安排模块”以笔直于转化轴的目标从每一面画造背量.那二个背量对付对接整面应沉合.那二个面不克不迭位于对接轴上.(2)面仄里整参照:包罗面战转化对接轴的仄里应仄止于为对接整面采用的仄里.该面不克不迭位于对接轴上.(3)仄里仄里整参照:那二个仄里正在对接整面处仄止.二个仄里皆必须仄止于转化轴.那里的主体主假如指如果通过 Pro/ENGINEER 中的对接办法将主体对接所有,则第一主体是组件,被增加的主体是元件.“整参照”选项卡上的绿色主体指元件搁置历程中的组件主体,而橙色主体则指元件.采用对接轴后,系统会将组件主体战元件主体分别以绿色战橙色隐现,共时“板滞安排”还隐现仄里或者背量,用去定义整面参照.对付于仄移对接轴,隐现一个绿色仄里战一个橙色仄里.对付于转化对接轴,隐现一个绿色箭头战一个橙色箭头.另一个绿色箭头用于指示正丈量的目标.那些参照会改变目标,以反映“对接轴位子”文本框中的值.4.“复活值”选项卡:勾选指定复活值复选框,正在“复活值”文本框中输进念要的位子,再按下Enter键,机构即可按指定的位子沉新死成.如图130所示.图129对接轴树坐对付话框图 130 复活值选项卡5.“属性”选项卡:不妨指定是可开用节造战摩揩.(1)开用节造:勾选此复选框,不妨为对接轴指定最小战最大位子,节造对接轴正在此范畴内疏通.回复系数用正在凸轮从动对接,槽对接等具备冲打的疏通中,回复系数定义为二个图元碰碰前后的速度比,数值范畴为01.真足弹性碰碰的回复系数为 1.真足非弹性碰碰的回复系数为 0.(2)开用摩揩:勾选此复选框,不妨为对接轴指定摩揩,为静摩揩系数,为动摩揩系数,R为交战半径(只限于转化轴).图131 属性选项卡对接轴树坐感受:接上头的例子example1(6)单打“应用步调”→“机构”,采用“对接轴树坐”.弹出“对接轴树坐”对付话框,单打“采用对接轴”,通过鼠标采用上头所定义的对接轴.正在“对接轴位子”文本框中输进角度为120度,单打“死成整面”.(7)单打“复活值”选项卡,勾选“开用复活值”复选框,正在“复活值”文本框中输进60,按下Enter键,机构坐时改变到图132所示的位子.沉新输进120度,按下Enter键,机构坐时改变到图133所示的位子,单打决定按钮.此二幅图依据读者的系统有所分歧.主假如感受一下对接轴的树坐功能.读者不妨自止输进自己所要的角度值举止比较.图132 60度位子图图133 120度位子图拖动功能定义完对接轴后,不妨使用拖动功能,去查看定义是可精确,对接轴是可不妨按设念的办法疏通.可使用快照创修领会的起初面,或者将组件搁置到特定的晃设中.不妨使用接洽禁用战主体锁定功能去钻研所有板滞或者部分板滞的疏通.单打“机构”→“拖动”或者间接单打工具栏图标不妨加进拖动对付话框.分别介绍一下各个菜单的功能.1.快照与拖动工具栏:给机构拍照.拖动到一个位子时单打此按钮不妨拍照.共时该照增加到快照列表中.拖动面.采用主体上某一面,该面会超过隐现,并随光标移动,共时脆持对接.该面不克不迭为前提主体上的面.拖动主体.该主体超过隐现,并随光标移动,共时脆持对接.不克不迭拖动前提主体.裁撤下令.沉搞下令.所谓的前提主体,便是正在拆置中增加元件或者新修组件时按担当缺省拘束定义为前提主体.2.快照选项卡:隐现选定快照.正在列表中选定快照后单打此按钮不妨隐现该快照中机构的简直位子.挨开“快照构修”对付话框,采用其余快照整件位子用于新快照.便是拷贝其余快照.将选定快照的名改为“目前快照”输进框中的称呼.相称于改变列表框中快照的称呼.使选定快照可用做 Pro/ENGINEER 领会状态.随后领会状态可用Pro/ENGINEER 画图视图中.单打此按钮时,“板滞安排”正在列表上的快照旁搁置一个图标.从列表中简略选定快照.图134拖动对付话框图135 拘束选项卡3.“拘束”选项卡:应用拘束后,“板滞安排”会将其称呼搁置于拘束列表中.通过选中或者扫除列表中所选拘束旁的复选框,可挨开战关关拘束.也可采用如下选项举止临时拘束:采用二个面、二条线或者二个仄里.那些图元将正在拖动收配功夫脆持对付齐.采用二个仄里.二仄里正在拖动收配功夫将脆持相互匹配.为二个仄里定背,使其互成一定角度.并采用对接轴以指定对接轴的位子.指定后主体将不克不迭拖动.并采用主体,不妨锁定主体.并采用对接.对接被禁用.从列表中简略选定临时拘束.使用所应用的临时拘束去拆置模型.4.“下档拖动选项”选项卡:挨开“移动”对付话框,它允许真止启拆移动.指定目前坐标系.通过采用主体去采用一个坐标系,所选主体的缺省坐标系是要使用的坐标系.X、Y 或者Z 仄移或者转化将正在该坐标系中举止.指定沿目前坐标系的 X 目标仄移.指定沿目前坐标系的 Y 目标仄移.指定沿目前坐标系的 Z 目标仄移.指定绕目前坐标系的 X 轴转化.指定绕目前坐标系的 Y 轴转化.指定绕目前坐标系的 Z 轴转化.参照坐标系:可使用采用器箭头正在模型中采用坐标系.拖动面位子:真时隐现拖动面相对付于选定坐标系的X、Y 战Z 坐标.图136 下档拖动选项卡拖动功能感受,接上一例子example1:(8)采用“应用步调”→“尺度”沉新加进拆置环境下.单打增加整件,挨开“挨开”对付话框,采用c.prt ,单打挨开,弹出“元件搁置”对付话框.单打“对接”选项卡,采用c.prt的轴战a.prt的轴对付齐如图139所示,采用轴的小端里战c.prt的一个正里对付齐如图140所示.完毕对接定义,单打决定.真体参照如图137所示.完毕后睹图138所示.图137 销钉对接真物图图138 对接完毕图图139 轴对付齐图图140 仄移图(9)单打弹出“拖动”对付话框,面打图标,而后选b.prt的一个面不妨拖动b.prt绕着轴转化.按下后给目前机构拍照,列表框中减少快照Snapshot1.拖动b.prt正在分歧的位子拍照,列表框中减少Snapshot2,Snapshot3,Snapshot4等快照列表.如图141所示.(10)任性采用其中某个快照,单打不妨使机构沉新定义到该快照中所记录的机构位子,采用快照Snapshot3,并正在文本框中将其改为snapshot4,再单打,则将快照Snapshot3改成快照snapshot4所记录的机构位子.(11)单打“拘束”选项卡→单打“”锁定主体图标,采用b.prt战c.prt,单打“决定”→“决定”如图142所示,则完毕主体锁定定义.列表框中出现“主体主体锁定”复选框,去掉前里的勾号不妨排除主体主体锁定.系统以青色隐现主动主体b.prt,以橙色隐现从动主体c.prt.单打拖动.可瞅睹c.prt随b.prt之所有转化.真体图参照如图143所示.图141 减少快照图图142 减少主体锁定图图143 主体锁定真例参照图定义启动定义完对接后便需要加饲服电机才搞鼓励机构疏通,单打“机构”→“伺服电效果”或者间接单打工具栏图标.弹出“伺服电效果”对付话框如图144所示.正在对付话框左边有新修,编写,复造,简略四个按钮,左边的列表框隐现定义的饲服电效果称呼战状态,正在Pro/E中那样的对付话框很多,不妨便当的举止管造.单打“新修”按钮弹出饲服电效果定义对付话框.图144 伺服电效果对付话框。
《基于Inventor的隔膜泵实体造型及运动仿真》工作环境。
在零件环境中可以创建单一零件、二维草图几何特征、钣金零件,其文件类型为零件文件(ipt);在装配部件环境中,可以调入已有的零件或创建新零件并添加装配约束,同时可以控制特征的自适应性,其文件类型为部件文件(iam);在表达视图环境中,可以定义部件的分解视图,并可进行装配过程的动态模拟,其文件类型为表达视图文件(ipn);在工程图环境中,可以由三维模型直接生成二维图形,创建零件、部件及表達视图的工程图,其文件类型为工程图文件(idw)。
Inventor采用参数化特征建模技术,具有灵活的设计理念,其主要特点是:基于特征、全尺寸约束、全数据相关、尺寸驱动设计修改,这样可以最大限度地确保同一产品所有文件的一致性和可靠性。
2 隔膜泵简介液力端上装有隔膜,把输送介质的过流部件和使隔膜产生弹性变形的部件或柱塞工作缸隔开的往复泵称为隔膜泵。
隔膜泵的隔膜类型有膜片、波纹管和筒形隔膜等,其中以膜片应用最多。
用柱塞工作缸中液体压力的周期变化来带动隔膜周期弹性变形的称为液压隔膜泵;用机件的往复运动直接带动隔膜弹性变形的称为机械隔膜泵。
隔膜真空泵是近年来国内外备受重视并得到迅速发展的一种真空泵。
由于隔膜真空泵具有抽气通道内没有油污染、结构简单紧凑、体积小、重量轻、移动方便、工作寿命长、无摩擦损耗、运行平稳、真空度高、噪音低等特点,得到了真空行业的欢迎与市场的青睐。
而其在设计、制造方面较高的技术含量,也受到国内外科技界的广泛重视。
隔膜真空泵的工作原理是:通过电机的旋转运动,带动机械装置使泵内部的隔膜做往复式运动,从而压缩、拉伸泵腔内的空气形成真空,在抽气口处与大气压产生压力差,在压力差的作用下,将气体吸入泵腔,再从排气口排出。
图1 隔膜泵3 隔膜泵各零件的三维实体造型在Inventor中,零件是特征的集合,设计零件的过程也就是依次设计零件的每一个特征的过程。
在Inventor中,主要有草图特征、放置特征、阵列特征和定位特征四种类型的特征。
第【1】1章运动仿真本章重点应力分析的一般步骤边界条件的创建查看分析结果报告的生成和分析本章典型效果图1.1机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。
对于提高设计效率降低成本有很大的作用。
Pro/engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。
PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanismdesign(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。
使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。
并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。
也可创建轨迹曲线和运动包络,用物理方法描述运动。
使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。
可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。
如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。
1.2总体界面及使用环境在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。
系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。
下拉菜单的每一个选项与工具栏每一个图标相对应。
用户既可以通过菜单选择进行相关操作。
也可以直接点击快捷工具栏图标进行操作。
第1章运动仿真本章重点应力分析的一般步骤边界条件的创建查看分析结果报告的生成和分析本章典型效果图1.1机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。
对于提高设计效率降低成本有很大的作用。
Pro/ engineer 中“机构”模块是专门用来进行运动仿真和动态分析的模块。
PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。
使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。
也可创建轨迹曲线和运动包络,用物理方法描述运动。
使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。
可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。
如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。
1.2总体界面及使用环境在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。
系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。
下拉菜单的每一个选项与工具栏每一个图标相对应。
用户既可以通过菜单选择进行相关操作。
也可以直接点击快捷工具栏图标进行操作。
图1-1 由装配环境进入机构环境图图1-2 机构模块下的主界面图图1-3 机构菜单图1-4 模型树菜单图1-5 工具栏图标图1-5所示的“机构”工具栏图标和图1-3中下拉菜单各选项功能解释如下:连接轴设置:打开“连接轴设置”对话框,使用此对话框可定义零参照、再生值以及连接轴的限制设置。
凸轮:打开“凸轮从动机构连接”对话框,使用此对话框可创建新的凸轮从动机构,也可编辑或删除现有的凸轮从动机构。
槽:打开“槽从动机构连接”对话框,使用此对话框可创建新的槽从动机构,也可编辑或删除现有的槽从动机构。
齿轮:打开“齿轮副”对话框,使用此对话框可创建新的齿轮副,也可编辑、移除复制现有的齿轮副。
伺服电动机:打开“伺服电动机”对话框,使用此对话框可定义伺服电动机,也可编辑、移除或复制现有的伺服电动机。
执行电动机:打开“执行电动机”对话框,使用此对话框可定义执行电动机,也可编辑、移除或复制现有的执行电动机。
弹簧:打开“弹簧”对话框,使用此对话框可定义弹簧,也可编辑、移除或复制现有的弹簧。
阻尼器:打开“阻尼器”对话框,使用此对话框可定义阻尼器,也可编辑、移除或复制现有的阻尼器。
力/扭矩:打开“力/扭矩”(对话框,使用此对话框可定义力或扭矩。
也可编辑、移除或复制现有的力/扭矩负荷。
重力:打开“重力”对话框,可在其中定义重力。
初始条件:打开“初始条件”对话框,使用此对话框可指定初始位置快照,并可为点、连接轴、主体或槽定义速度初始条件。
质量属性:打开“质量属性”对话框,使用此对话框可指定零件的质量属性,也可指定组件的密度。
拖动:打开“拖动”对话框,使用此对话框可将机构拖动至所需的配置并拍取快照。
连接:打开“连接组件”对话框,使用此对话框可根据需要锁定或解锁任意主体或连接,并运行组件分析。
分析:打开“分析”对话框,使用此对话框可添加、编辑、移除、复制或运行分析。
回放:打开“回放”对话框,使用此对话框可回放分析运行的结果。
也可将结果保存到一个文件中、恢复先前保存的结果或输出结果。
测量:打开“测量结果”对话框,使用此对话框可创建测量,并可选取要显示的测量和结果集。
也可以对结果出图或将其保存到一个表中。
轨迹曲线:打开“轨迹曲线”对话框,使用此对话框生成轨迹曲线或凸轮合成曲线。
除了这些主要的菜单和工具外。
还有几个零散的菜单需要注意。
1.2.1“编辑”菜单在“编辑”菜单中与“机构”模块有关的菜单主要是:重定义主体:打开“重定义主体”对话框,使用此对话框可移除组件中主体的组件约束。
通过单击箭头选择零件后,对话框显示已经定义好的约束,元件和组建参照,设计者可以移除约束,重新指定元件或组件参照,如图1-6所示。
设置:打开“设置”对话框,使用此对话框可指定"机械设计"用来装配机构的公差,也可指定在分析运行失败时“机械设计”将采取的操作。
如是否发出警告声,操作失败时是否暂停运行或是继续运行等等,该配置有利于设计者高效率的完成工作。
如图1-7所示。
图1-6 重定义主体对话框图1-7 设置对话框1.2.2“视图”菜单在“视图”菜单中与“机构”模块有关的菜单主要是:加亮主体:以绿色显示基础主体。
显示设置:机构显示,打开“显示图元”对话框,使用此对话框可打开或关闭工具栏上某个图标的可见性。
去掉任何一个复选框前面的勾号,则该工具在工具栏上不可见。
图1-8 显示图元对话框1.2.3“信息”菜单:单击“信息”→“机构”下拉菜单,或在模型树中右键单击“机构”节点并选取“信息”,系统打开“信息”菜单,如图1-9所示。
使用“信息”菜单上的命令以查看模型的信息摘要。
利用这些摘要不必打开“机构”模型便可以更好地对其进行了解,并可查看所有对话框以获取所需信息。
在两种情况下,都会打开一个带有以下命令的子菜单。
选取其中一个命令打开带有摘要信息的 Pro/ENGINEER 浏览器窗口。
(1)摘要:机构的高级摘要,其中包括机构图元的信息和模型中所出现的项目数。
如图1-10(2)详细信息:包括所有图元及其相关属性。
如图1-11所示。
(3)质量属性:列出机构的质量、重心及惯性分量。
如图1-12所示。
机构为“模型树”中每个“机械设计”图元都提供一个“信息”选项。
右键单击并为某个特定图元选中此选项后,会打开一个带有针对该图元的详细摘要的浏览器窗口。
图1-9 信息菜单中机构信息图图1-10 摘要信息图图1-11 详细信息图图1-12 质量属性信息图1.3机械设计模块的分析流程要进行机构运动仿真设计,必须遵循一定的步奏。
Pro/Engineer“机械设计”模块包括“机械设计运动”(运动仿真)和“机械设计动态”(动态分析)两部分,使用“机械设计”分析功能,可在不考虑作用于系统上的力的情况下分析机构运动,并测量主体位置、速度和加速度。
和前者不同的是“机械动态”分析包括多个建模图元,其中包括弹簧、阻尼器、力/力矩负荷以及重力。
可根据电动机所施加的力及其位置、速度或加速度来定义电动机。
除重复组件和运动分析外,还可运行动态、静态和力平衡分析。
也可创建测量,以监测连接上的力以及点、顶点或连接轴的速度或加速度。
可确定在分析期间是否出现碰撞,并可使用脉冲测量定量由于碰撞而引起的动量变化。
由于动态分析必须计算作用于机构的力,所以它需要用到主体质量属性。
两者进行分析时流程基本上一致:类型机械设计流程机械动态动流程创建模型定义主体生成连接定义连接轴置生成特殊连接定义主体指定质量属性生成连接定义连接轴设置生成特殊连接添加建模图元应用伺服电动机应用伺服电动机应用弹簧应用阻尼器应用执行电动机定义力/力矩负荷定义重力创建分析模型运行运动学分析运行重复组件分析运行运动学分析运行动态分析运行静态分析运行力平衡分析运行重复组件分析表1.1 分析流程表1.4 机械设计运动分析详解了解了上面基本的分析过程后,下面通过具体的例子一步一步来进行具体的分析。
(1)将光盘文件复制到硬盘上,启动pro/engineer。
单击菜单“文件”→“设置工作目录”。
打开“选取工作目录”对话框工作,将目录设置为X:/example_1。
单击确定。
则系统工作在此目录下。
如图1-13所示。
(2)单击菜单“文件”→“新建”。
打开“新建”对话框,选择“组件”选项,将组件名改为asm。
去掉“使用缺省模版”复选框前面的勾号,单击“确定”按钮,系统打开“新文件选项”对话框,如图1-14所示。
(3) 在列表中选择mmns_asm_design为模板,单击确定。
(4)单击图标,打开“打开”对话框,如图1-15所示。
选取a.prt,单击“打开”按钮,系统弹出“元件放置”对话框。
单击按钮接受缺省约束放置,单击确定按钮。
这样系统自动定义此为基础主体。
如图1-16所示。
图1-13 选取工作目录对话框图1-14 新文件选项对话框图1-15 打开对话框图1-16元件放置对话框图1-16 元件放置后图(5)单击图标,打开“打开”对话框,选取 b.prt,单击“打开”按钮,系统弹出“元件放置”对话框。
单击“连接”选项卡,对话框变成如图1-17所示,接受默认连接的名称为connnection_1,选择类型为销钉连接,按照图1-19选取a.prt的轴A1对齐b.prt的轴A1,平移选项选取轴端大端面和b.prt一个侧面,单击确定,完成后如图1-19所示。
在完成连接的过程中,可以通过如图1-20 所示的移动选项卡对话框调整机构位置。
可以平移,旋转元件到一定的位置。
便于观察和选取基准轴或面。
图1-17 连接中的轴对齐图图1-18 连接中的平移图图1-19 连接匹配图图1-20 连接调整移动图1.4.1连接的作用Pro/E提供了十种连接定义。
主要有刚性连接,销钉连接,滑动杆连接,圆柱连接,平面连接,球连接焊接,轴承,常规,6DOF(自由度)。
最后两种是野火2.0新增加的。
连接与装配中的约束不同,连接都具有一定的自由度,可以进行一定的运动接头连接有三个目的:◊定义“机械设计模块”将采用哪些放置约束,以便在模型中放置元件;◊限制主体之间的相对运动,减少系统可能的总自由度(DOF);◊定义一个元件在机构中可能具有的运动类型;1.销钉连接此连接需要定义两个轴重合,两个平面对齐,元件相对于主体选转,具有一个旋转自由度,没有平移自由度。
如图示图 1-21 销钉连接示意图2.滑动杆连接滑动杆连接仅有一个沿轴向的平移自由度,滑动杆连接需要一个轴对齐约束,一个平面匹配或对齐约束以限制连接元件的旋转运动,与销连接正好相反,滑动杆提供了一个平移自由度,没有旋转自由度。
图 1-22 滑动杆连接示意图3.圆柱连接连接元件即可以绕轴线相对于附着元件转动,也可以沿着轴线相对于附着元件平移,只需要一个轴对齐约束,圆柱连接提供了一个平移自由度,一个旋转自由度。
图1-23 圆柱连接示意图4.平面连接平面连接的元件即可以在一个平面内相对于附着元件移动,也可以绕着垂直于该平面的轴线相对于附着元件转动,只需要一个平面匹配约束。