(完整版)连铸电磁搅拌研究
- 格式:ppt
- 大小:12.90 MB
- 文档页数:79
1 连铸与电磁搅拌理论随着用户对钢材质量提出越来越高的要求,使得提高铸坯质量成为连铸生产中的首要问题。
铸坯内部质量在很大程度上取决于铸坯内部是否呈现均匀而致密的等轴晶凝固组织。
但是在连铸坯实际凝固过程中,由于钢水冷却速度很快,造成铸坯凝固时柱状晶的发展,往往产生“搭桥”现象,带来缩孔偏析、疏松、夹杂物聚集等缺陷。
由于电磁场的作用具有非接触的特点,特别适合于高温钢水这种特殊场合,连铸机的电磁搅拌(electromagnetic stirring:ems)技术随之应运而生,它可以显著改善铸坯质量,因此在国内外受到高度重视并得到快速发展与广泛应用。
目前,炼钢厂连铸机电磁搅拌装置已经成为冶炼高性能品种钢水必不可少的设备。
电磁搅拌的工作原理基于电磁感应定律,载流导体处于磁场中就要受到电磁力的作用而发生运动。
就此而言,电磁搅拌的工作原理和异步电机相同, 搅拌器相当于电机的定子,钢水相当于电机的转子。
由电磁搅拌器的线圈绕组产生旋转磁场,在导电的钢水中产生感应电流,感应电流与磁场作用产生电磁力,对钢水起到了搅拌作用。
连铸电磁搅拌的实质是借助在铸坯液相穴中感生的电磁力来强化钢水的运动。
带有电磁搅拌器的结晶器结构形式如图1所示。
2 电磁搅拌对电源的特殊要求电磁搅拌系统由两大部分组成:电磁搅拌器和变频电源。
钢水之所以能被搅拌,是由于搅拌器线圈激发的交变磁场穿透到铸坯的钢水内,在其中产生感应电流,感应电流与磁场相互作用产生电磁力,电磁力作用在钢水体积元上,从而推动钢水运动。
其中感生电磁力与电流强度的平方成正比。
电流越大,中心磁感应强度越高。
一般情况下,结晶区电磁搅拌器要求中心磁感应强度幅值>500gs;为保证达到磁感应强度要求,必须要有足够大的电流。
这就要求变频电源必须能够长时间提供大电流,通常要在达到400a以上。
电磁搅拌器作用在钢水中的电磁力和钢水搅拌的速度不仅与电流强度有关,而且受电源频率的影响很大。
频率的选择主要和结晶器铜管的导磁率、厚度、断面等因素密切相关,它们不仅影响最大电磁力的量值,选择不当还会弱化搅拌功率。
连铸电磁搅拌1.引言连铸技术是金属冶炼和加工过程中的重要环节,其目的是将高温熔融的金属连续不断地浇注成所需形状的固体金属件。
在连铸过程中,为了提高铸坯的质量和产量,人们引入了多种冶金技术和工艺,其中连铸电磁搅拌是近年来发展起来的一项重要技术。
2.电磁搅拌技术原理电磁搅拌技术是一种利用磁场力对金属熔体进行非接触式、低能耗的强化搅拌技术。
在连铸过程中,通过在钢水注入结晶器的过程中施加一个适当的磁场,使钢水在磁场的作用下产生旋转或流动,从而实现钢水的均匀混合和传热。
这种技术的应用可以显著提高铸坯的内部质量和表面质量,减少铸坯的缺陷和裂纹,从而提高了产品的成品率和力学性能。
3.连铸电磁搅拌的应用连铸电磁搅拌技术在多种金属材料的连铸过程中得到了广泛应用,如钢铁、铜、铝等。
在钢铁行业,连铸电磁搅拌技术主要用于提高方坯、板坯和圆坯的质量和产量。
通过对方坯进行电磁搅拌,可以显著减少中心疏松和偏析,提高其力学性能;对板坯进行电磁搅拌,可以提高其表面质量和尺寸精度;对圆坯进行电磁搅拌,可以提高其内部质量和生产效率。
在铜、铝行业,连铸电磁搅拌技术也得到了广泛应用。
例如,对铜合金进行电磁搅拌可以显著提高其成分均匀性和力学性能;对铝合金进行电磁搅拌可以改善其组织结构和力学性能,从而提高其抗拉强度和延伸率。
4.经济效益与社会效益连铸电磁搅拌技术的应用可以带来显著的经济效益和社会效益。
首先,通过提高铸坯的质量和产量,可以减少产品的废品率和生产成本,提高企业的经济效益。
其次,连铸电磁搅拌技术的应用可以显著降低能耗和减少环境污染,从而提高了企业的环保水平和社会形象。
此外,连铸电磁搅拌技术的应用还可以提高生产效率和生产能力,从而为企业创造更多的商业机会和竞争优势。
5.结论连铸电磁搅拌技术是一种重要的冶金技术,其在提高铸坯质量和产量、降低能耗和环境污染等方面具有显著的优势。
随着技术的不断发展和完善,连铸电磁搅拌技术的应用范围和效果将不断扩大和提高。
1.什么叫电磁搅拌(简称EMS)?大家知道,一个载流的导体处于磁场中,就受到电磁力的作用而发生运动。
同样。
载流钢水处于磁场中就会产生一个电磁力推动钢水运动,这就是电磁搅拌的原理。
电磁搅拌是改善金属凝固组织,提高产品质量的有效手段。
应用于连续铸钢,已显示改善铸坯质量的良好效果。
早在1922年就提出了电磁搅拌的专利。
论述了流动对金属结构、致密性、偏析和夹杂物等方面的影响。
1952年开始在钢厂连铸机二次冷却区装置电磁搅拌的试验。
随着连铸技术的发展,为改善连铸坯质量,人们对电磁搅拌结构、类型、搅拌方式和冶金效果进行广泛深入研究,使电磁搅拌技术日益成熟,得到了广泛的应用。
2.电磁搅拌器有哪几种类型?电磁搅拌器型式和结构是多种多样的。
根据铸机类型、铸坯断面和搅拌器安装位置的不同,目前处于实用阶段的有以下几种类型。
(1)按使用电源来分,有直流传导式和交流感应式。
(2)按激发的磁场形态来分,有:恒定磁场型,即磁场在空间恒定,不随时间变化;旋转磁场型,即磁场在空间绕轴以一定速度作旋转运动;行波磁场型,即磁场在空间以一定速度向一个方向作直线运动;螺旋磁场型,即磁场在空间以一定速度绕轴作螺旋运动。
目前,正在开发多功能组合式电磁搅拌器.即一台搅拌器具有旋转、行波或螺旋磁场等多种功能。
(3)按使用电源相数来分,有两相电磁搅拌器,三相电磁搅拌器。
(4)按搅拌器在连铸机安装位置来分,有结晶器电磁搅拌器、二次冷却区电磁搅拌器、凝固末端电磁搅拌器。
3.电磁搅拌技术有何特点?与其他搅拌钢水方法(如振动、吹气)相比,电磁搅拌技术有以下特点:(1)通过电磁感应实现能量无接触转换,不和钢水接触就可将电磁能转换成钢水的动能。
也有部分转变为热能。
(2)电磁搅拌器的磁场可以人为控制,因而电磁力也可人为控制,也就是钢水流动方向和形态也可以控制。
钢水可以是旋转运动、直线运动或螺旋运动。
可根据连铸钢钢种质量的要求,调节参数获得不同的搅拌效果。
(3)电磁搅拌是改善连铸坯质量、扩大连铸品种的一种有效手段。
连铸电磁搅拌器原理连铸电磁搅拌器是一种应用于连铸过程中的设备,通过电磁力的作用实现对铸坯温度和组织的控制。
它的原理是利用电磁感应和电磁力的相互作用,通过在连铸坯内部产生交变磁场,从而搅拌坯内的金属液,使其温度和组织均匀。
连铸电磁搅拌器主要由电磁线圈、电源和控制系统组成。
电磁线圈是通过电流产生磁场的装置,通常由多层螺线管组成。
电源主要用于提供电流,控制系统则用于控制电磁搅拌器的工作状态。
在连铸过程中,电磁线圈通过电流产生的磁场作用于铸坯内的金属液,从而达到搅拌的效果。
具体来说,连铸电磁搅拌器的工作原理如下:1. 电磁感应:当电流通过电磁线圈时,会在铸坯内产生交变磁场。
根据法拉第电磁感应定律,交变磁场会在金属液中产生涡流。
2. 涡流作用:涡流会在金属液中形成环流,这种环流会导致金属液受到电磁力的作用。
涡流的强度和方向与金属液的电导率、磁场强度和频率等因素有关。
3. 电磁力作用:涡流受到电磁力的作用,使金属液发生搅拌。
电磁力的大小和方向由涡流和磁场的相互作用决定。
通过调节电流和频率等参数,可以控制电磁力的大小和方向,从而实现对金属液的搅拌。
连铸电磁搅拌器的原理基于电磁感应和电磁力的相互作用,可以实现对连铸坯的温度和组织的控制。
通过搅拌坯内的金属液,连铸电磁搅拌器可以使铸坯的温度和组织更加均匀,提高产品的质量和性能。
此外,连铸电磁搅拌器还可以减少铸坯内部的气孔和夹杂物,提高产品的表面质量。
连铸电磁搅拌器是一种通过电磁力实现对连铸坯温度和组织控制的设备。
它的工作原理是利用电磁感应和电磁力的相互作用,通过在连铸坯内部产生交变磁场,对金属液进行搅拌。
连铸电磁搅拌器可以提高产品的质量和性能,使铸坯的温度和组织更加均匀。
它在连铸过程中具有重要的应用价值。
电磁搅拌技术在连铸中的应用近年来,连铸坯的质量越来越受到重视,因而围绕提高连铸坯质量的研究工作也取得了很大的进展。
电磁搅拌技术是电磁流体力学在钢铁工业中最成功的应用之一。
通过定量认识电磁场在多层介质中的传递,控制连铸过程中钢水的流动、传热和凝固,进而降低钢水的过热度、去除夹杂从而扩大等轴晶区,减少成分偏析,减轻中心疏松和中心缩孔。
几十年来,国内外学者对电磁搅拌技术进行了大量的理论及实验研究,并应用于工业生产。
电磁搅拌技术已经成为连铸过程中改善铸坯质量的最重要和最有效的手段之一。
1国内外电磁搅拌技术的发展概况磁流体力学是电磁学,流体力学以及热力学相互交叉的学科,简称MHD(magnetohydrodynamics),主要研究电磁场作用下,导电金属流体的运动规律。
在磁场里,导体的运动产生电动势,从而产生感应电流,导体本身也产生磁场。
液态金属作为载流导体,在外加磁场的作用下产生了电磁力,这种电磁力的作用促使载流液体流动,同时伴随着三种基本的物理现象——电磁热,电磁搅拌,电磁压力。
这三种现象在材料的冶炼、成形、凝固等工艺中已广泛应用。
连铸钢液电磁搅拌技术已经历几十年的试验研究和发展的过程。
早在上世纪50年代,就由在德国Schorndorf和Huckingen半工业连铸机上。
进行了首例连续铸钢电磁搅拌的试验。
60年代,在奥地利Kapfenberg厂的Boehler连铸机上用于浇铸合金钢。
60年代末一些工作者还进行了结晶器电磁搅拌和二冷区电磁搅拌的实验。
1973年法国的一家工厂率先在其连铸机上安装了电磁搅拌器并投入工业应用,从而奠定了连铸电磁搅拌技术工业应用的基础。
1977年,法国的Rotelec公司开发了小方坯和大方坯结晶器电磁搅拌器并以Magnetogyr-Process 注册商标,将其商品化。
1979年,法国钢研院又在德国Dunkirk厂板坯连铸机上采用了线性搅拌技术,取得良好效果。
进入80年代后,电磁搅拌技术发展更快,特别是日本,发展更为迅速。
板坯连铸机结晶器内电磁搅拌技术摘要:连铸电磁搅拌技术在冶金工业中的应用可以提高钢坯的质量,降低成本消耗,提高连铸钢的等级,降低了芯部收缩,避免了芯部偏聚,改善了铸锭内等轴晶粒。
因此,将电磁搅拌技术引入到炼钢生产中,将大大提升炼钢产品的品质,为炼钢工业带来新的生机。
今后,工业计算机控制技术将与连铸电磁搅拌技术、冶金技术、信息技术等相融合,开拓冶金产业发展新方向,逐渐实现了电磁搅拌的可视化和自动化。
同时,要充分利用新设备和新技术,大力研发新设备和新技术,以增加产品的技术含量和产品的使用效率;节能减排,节能增效,高质量钢铁产品的产量不断增加,为中国钢铁行业与国际接轨做出了重要贡献。
关键词:板坯连铸机;结晶器;电磁搅拌技术引言连铸坯的中心偏析、夹杂物和中心收缩是连铸坯的关键问题,严重影响连铸坯的内部质量。
电磁搅拌是最常用的连铸技术,它可以通过电磁力优化和消除模具中钢水的过热。
电磁搅拌后,坯料的等轴晶粒率显著提高,使坯料固化良好,提高了产品性能。
本发明可以有效地解决连铸坯的中心收缩和清洁度问题。
1结晶器电磁搅拌及连铸坯概述连铸坯是由钢水通过连铸机制成的坯段。
连铸技术可以简化从钢水到钢坯的整个生产过程,而无需连铸。
因此,连铸坯具有生产成本低、金属获取率高、劳动条件好等一系列优点。
目前,连铸坯已成为轧制生产的重要原料。
但是连铸坯也存在一些缺陷。
例如,一般孔隙率、中心孔隙率、一般点偏析、皮下气泡、铸锭偏析、边缘偏析、内部气泡、残余收缩、剥落、白点、轴向晶体裂纹、非金属夹杂物和芯部裂纹。
在低倍率检查中,可能会出现中心气孔、收缩、中心偏析、表面角裂纹和表面边缘裂纹等缺陷。
电磁搅拌是通过在铸坯液空腔中产生的电磁力来强化钢液在空腔中的移动,进而强化了钢液的传热、对流和传质,进而实现对铸坯的凝结进程的控制,这对改善铸坯的品质具有重要的意义。
目前,模具电磁搅拌是最常见的设备,适用于各种连铸机。
它可以改善钢坯的表面质量,细化晶粒尺寸,减少钢坯的夹杂物和中心孔隙率。
钢铁冶炼中电磁搅拌技术的优化研究钢铁冶炼是工业生产中重要的一个环节,而电磁搅拌技术则是现代钢铁冶炼中的重要工艺,这项技术的应用可改善钢材的质量与性能。
随着钢铁产业的不断发展与科技进步,钢铁冶炼中电磁搅拌技术的优化研究显得尤为重要。
一、电磁搅拌技术的原理及优势电磁搅拌技术是指通过产生磁场来控制钢液内的流动和混合,从而改善液态钢的质量,在铸造、浇铸过程中消除潜在的缺陷,提高钢铁冶炼的效率。
在此过程中,通过电磁场产生的磁力,使得钢液内的流动产生强制循环和涡流,实现钢液的混合。
电磁搅拌技术有许多优势,如:1.可缩短冶炼时间:电磁搅拌技术可使钢液更加均匀,温度更加稳定,从而减少冶炼时间。
2.提高钢液纯度:经过电磁搅拌技术处理的钢液,能够减少悬浮固体物和气体的产生,进而提高钢液的纯度和整体质量。
3.降低成本:由于经过电磁搅拌技术处理的钢液其均匀度、温度稳定度等表现更佳,能够降低废品率,从而减少生产成本。
二、电磁搅拌技术的应用电磁搅拌技术广泛应用于各种钢铁合金的生产过程,包括低合金钢、合金钢、不锈钢等。
不同类型的钢材生产中,电磁搅拌技术的应用方式会有所不同。
在低合金钢冶炼中,电磁搅拌技术能够帮助调节钢液中杂质的浓度和均匀度,并提高钢液的稳定性。
此外,电磁搅拌技术可以预测钢液结晶过程中的变化,从而更好地控制结晶过程,提高最终产品的质量。
在合金钢的生产过程中,电磁搅拌技术能够提高合金钢材在冶炼过程中的均匀度和物理性能。
电磁搅拌技术还可以缩短冶炼时间,减少废品率和杂质的投放量,并提高合金钢的铸造质量。
在不锈钢生产中,电磁搅拌技术被广泛应用。
不锈钢的成分中含有铬等难熔元素,这些元素会导致钢铁的沉淀与物理性能的降低,但通过电磁搅拌技术进行处理,这些问题得以解决。
利用电磁搅拌技术,可以降低不锈钢中的气泡和杂质,提高质量和性能。
三、电磁搅拌技术的优化研究尽管电磁搅拌技术在钢铁冶炼中得到了广泛的应用,但目前仍存在一些问题和难点。
连铸电磁搅拌是一种应用于连铸过程中的一种技术,它通过在铸模中加入电磁感应线圈,利用电磁场对流体金属进行搅拌和剪切,从而改善了铸坯的组织和性能。
连铸电磁搅拌的主要作用有以下几个方面:
1. 改善铸坯均匀性:在非均匀冷却和凝固条件下,熔体中的包含气泡、夹杂物和浮渣等杂质会聚集在坯内部的某些位置,导致铸坯不均匀。
电磁搅拌可以有效地打破熔体表面张力,促进熔体的混合和扩散,使得坯内的气泡、夹杂物和浮渣分布更均匀,从而改善铸坯的质量。
2. 促进晶粒细化:在铸造过程中,熔体的流动状态对晶粒的形成和生长具有重要影响。
电磁搅拌可以产生流体的强剪切力和涡流,使得熔体进行快速混合,从而促进晶粒的细化和均匀分布。
3. 改善铸坯中的偏析:熔体在凝固过程中往往存在着组分偏离的现象,这导致铸坯中某些部位组成不均匀。
电磁搅拌可以加快熔体的混合速度,减少组分的偏析,改善铸坯的组织和均匀性。
4. 提高产品质量:连铸电磁搅拌技术可以改善铸坯的组织和性能,使得产品的质量得到提高。
同时,它还可以降低生产成本,提高生产效率,是一种非常有价值的先进铸造技术。
电磁技术在连铸中的应用摘要:介绍了电磁技术的产生及发展,以及电磁技术在连铸过程中的应用,包括电磁搅拌、电磁制动、软接触电磁连铸技术,总结了前人的研究,分析了电磁连铸的优点与不足,以便连铸工作者们参考。
关键词:电磁搅拌连铸1 前言19世纪以来,钢铁工业出现了最重要的三大技术,连续铸钢就是其一。
连续铸钢工艺的出现带来了节能降耗,降低生产成本,减轻环境负荷,提高金属收得率,实现连铸连轧短流程生产工艺,还能净化钢液、改善铸坯的组织、细化晶粒、提高钢材成品的质量[1-2]。
目前世界上先进国家的钢铁连铸比几乎达到的100%,我国的钢铁企业总体连铸比也达到了95%以上[3]。
刚成形的连铸坯要喷水冷却,在运动过程中具有很长的液相穴凝固过程,受钢水运动和传热两个基本物理现象所控制。
液相穴钢水对流运动对减轻成分偏析、改善凝固组织和消除过热度有重大影响[4]。
对钢材质量要求日益严格的今天,炼钢技术也日益提高,作为提高钢材生产率的辅助手段,可以控制钢液流动状态的电磁力在冶金中得到越来越广泛的应用[5]。
电磁流体力学(MHD)是电磁冶金理论的基础,它的发展,带动了电磁连铸技术在冶金工业中的应用和发展。
电磁搅拌最早应用于钢铁的连铸工艺中[6],主要是由于熔融金属是电的良导体,在磁场和电流作用下,金属熔体产生电磁力,利用电磁力就可以对熔融金属进行非接触性搅拌、传输和形状控制。
电磁冶金技术具有能量的高密度性和清洁性、优越的响应性和可控性、易于自动化以及能量利用率高等特点,被广泛地应用于冶炼、精炼、铸造、连铸、钢水的检测等领域,并已在许多领域取得了重大进展[7]。
在冶金中应用电磁场力,一是应用电磁感应热,如熔炼金属;二是应用其搅拌力以改善材料的性能[8-9]。
2 电磁搅拌2.1 电磁搅拌简介电作用产生电磁力,该电磁力推动钢水运动,从而控制铸坯的凝固过程,达到增大等磁搅拌的实质是借助借助在铸坯液相穴中感生的电磁力,强化钢水的运动[10]。