25史密斯圆图分析
- 格式:ppt
- 大小:1.41 MB
- 文档页数:43
《射频电路》课程设计题目:SMITH圆图分析与归纳系部电子信息工程学院学科门类工学专业电子信息工程学号姓名2012年6月25日SMITH 圆图分析与归纳摘 要Smith 圆图在计算机时代就开发了,至今仍被普遍使用,几乎所有的计算机辅助设计程序都应用Smith 圆图进行电路阻抗的分析、匹配网路的设计及噪声系数、增益和环路稳定性的计算。
在Smith 圆图中能简单直观地显示传输线阻抗以及反射系数。
Smith 圆图是在反射系数复平面上,以反射系数圆为低圆,将归一化阻抗圆或归一化导纳圆盖在底图上而形成的。
因而Smith 圆图又分为阻抗圆图和导纳圆图。
关键字:Smith 圆图 阻抗圆图 导纳圆图 归一化阻抗圆 归一化导纳圆一 引言通过对射频电路的学习,使我对射频电路的视野得到了拓宽,以前自己的视野只局限于低频电路的设计,从来没考虑过波长和传输线之间的关系,而且从来没想过,一段短路线就可以等效为一个电感,一段开路线可以等效为一个电容,一条略带厚度的微带竟然可以传输电波,然而在低频电路我们只把它当做一条阻值可以忽略的导线,同时在低频电路设计时好多原件,都要自己手动计算,然而在学习射频电路时,我发现我们不仅要考虑波长和传输线之间的关系,同时还要考虑每一条微带的长度和宽度,当然我感到最重要的是,通过Smith 圆图可以大大的简化了,我对电阻和电容的计算,二 史密斯圆图功能分析2.1 史密斯圆图的基本基本知识史密斯圆图的基本在于以下的算式: )0/()0(Z ZL Z ZL +-=ΓΓ代表其线路的反射系数,即散射矩阵里的S11,Z 是归一负载值,即0/Z ZL 。
当中,ZL 是线路的负载值,Z0是传输线的特征阻抗值,通常会使用50Ω。
圆图中的横坐标代表反射系数的实部,纵坐标代表虚部。
圆形线代表等电阻圆,每个圆的圆心为()1/(+R R ,0),半径为)1/(1+R 。
R 为该圆上的点的电阻值。
中间的横线与向上和向下散出的线则代表阻抗的虚数值,即等电抗圆,圆心为(1,X /1),半径为X /1。
Smith 圆图—原理与分析
Smith 圆图是一种用于分析电路中的匹配网络的工具。
它由美国电气工程师Phillip H. Smith于1950年提出,并被广泛应用于射频电路设计和天线设计领域。
Smith 圆图的原理基于复阻抗的概念。
在Smith 圆图中,电路中的每个点都可
以表示为一个复阻抗,即由实部和虚部组成的复数。
这样,整个电路可以表示为一个复阻抗的集合。
Smith 圆图将复阻抗表示为一个圆形图形,其中圆心表示纯电阻,圆的边界表
示纯电抗。
圆的半径表示电阻的大小,而圆的位置表示电抗的大小和相位。
通过在Smith 圆图上绘制电路中的复阻抗,可以直观地分析电路的匹配情况。
当电路的复阻抗位于Smith 圆图的边界上时,表示电路是纯电抗的,即无功。
当电路的复阻抗位于Smith 圆图的圆心时,表示电路是纯电阻的,即有功。
通过分析Smith 圆图上的复阻抗,可以确定电路的匹配情况。
匹配是指电路中
的负载阻抗与发射源或传输线的特性阻抗相匹配。
在Smith 圆图中,当负载阻抗与特性阻抗相匹配时,负载阻抗位于Smith 圆图的边界上,此时电路的反射系数为零,表示无反射。
Smith 圆图还可以用于计算电路中的反射系数、驻波比、传输线的特性阻抗等
参数。
通过在Smith 圆图上测量复阻抗的位置,可以直接读取这些参数的数值。
总之,Smith 圆图是一种简单直观的工具,可以帮助工程师分析电路中的匹配
情况,并优化电路设计。
它在射频电路设计和天线设计中具有重要的应用价值。
Smith圆图—原理与分析2-5 Smith 圆图微波工程,即传输线工程问题,主要讨论(最基本的运算是)工作参数ρΓ, Z, 之间的数量关系和传输匹配问题――怎样传输得好,没有反射,而没有反射传输就是匹配。
一般是在已知特征参数βZ和长度l 的基础上进行。
、Smith圆图正是把特征参数和工作参数形成一体,用图论的方法解决工程问题。
它是一种专用Chart,自三十年代出现以来,已历经六十年而不衰,可见其简单,方便和直观.一、Smith图圆的基本思想Smith圆图,亦称阻抗圆图。
其基本思想有三条:1. 归一化思想――特征参数归一化特征参数归一思想,是形成统一Smith圆图的最关键点,它包含了阻抗归一和电长度归一。
阻抗千变万化,极难统一表述。
现在用Z0归一,统一起来作为一种情况加以研究。
在应用中可以简单地认为Z0=1。
电长度归一不仅包含了特征参数β,而且隐含了角频率ω。
由于上述两种归一使特征参数Z0不见了;而另一特征参数β连同长度均转化为反射系数Γ的转角。
――什么阻抗都通用,什么波长都能用。
2. 反射系数Γ作基底①以系统不变量|Γ|作为Smith圆图的基底――它是一个有限量,②在无耗λ为一个周期。
所传输线中,|Γ|是系统的不变量,③Γ是频率的周期量,以2以由|Γ|从0到1的同心圆作为Smith圆图的基底,使我们可能在一有限空间表示全部工作参数Γ、Z(Y)和ρ。
βj l j l z j l e e e z l ||||) ()2( 2Γ=Γ=Γ=Γ--θ的周期是1/2λg 。
这种以|Γ|圆为基底的图形称为Smith 圆图。
3. 套覆上jx r Z +=――――把阻抗(或导纳),驻波比关系套覆在|Γ|圆上。
这样,Smith 圆图的基本思想可描述为:消去特征参数Z 0,把β归于Γ相位;工作参数Γ为基底,套覆Z(Y)和ρ。
二、Smith 圆图的基本构成1. 反射系数Γ图为基底图 7-1 反射系统Γ图反射系数图最重要的概念是相角走向。
smith chart史密斯圆图总结史密斯圆图(Smith chart)是一款用于电机与电子工程学的圆图,是最著名和最广泛的用于求解传输线问题的图解技术。
主要用于传输线的阻抗匹配上。
一条传输线(transmission line)的电阻抗力(impedance)会随其长度而改变,要设计一套匹配(matching)的线路,需要通过不少繁复的计算程序,史密斯圆图的特点便是省却一些计算程序。
Smith圆图的构成:等反射系数圆、阻抗圆图、导纳圆图。
史密斯圆图的基础在于以下的算式Γ= (Z - 1)/(Z+ 1)Γ代表其线路的反射系数(reflection coefficient),即S-parameter里的S11,Z是归一负载值,即ZL / Z0。
当中,ZL是线路的负载值Z0是传输线的特征阻抗值,通常会使用50Ω。
圆图中的横坐标代表反射系数的实部,纵坐标代表虚部。
圆形线代表等电阻圆,每个圆的圆心为1/(R+1),半径为R/(R+1).R为该圆上的点的电阻值。
中间的横线与向上和向下散出的线则代表阻抗的虚数值,即等电抗圆,圆心为1/X,半径为1/X.由于反射系数是小于等于1的,所以在等电抗圆落在单位圆以外的部分没有意义。
当中向上发散的是正数,向下发散的是负数。
圆图最中间的点(Z=1+j0, Γ=0)代表一个已匹配(matched)的电阻数值(此ZL=Z0,即Z=1),同时其反射系数的值会是零。
圆图的边缘代表其反射系数的幅度是1,即100%反射。
在图边的数字代表反射系数的角度(0-180度)。
有一些圆图是以导纳值(admittance)来表示,把上述的阻抗值版本旋转180度即可。
圆图中的每一点代表在该点阻抗下的反射系数。
该电的阻抗实部可以从该电所在的等电阻圆读出,虚部可以从该点所在的等电抗圆读出。
同时,该点到原点的距离为反射系数的绝对值,到原点的角度为反射系数的相位。
由反射系数可以得到电压驻波比和回波损耗。
Smith 圆图—原理与分析一、引言Smith 圆图是一种用于分析和解释市场经济中的价格和数量关系的工具。
它由经济学家Adam Smith提出,被广泛应用于经济学和市场研究领域。
本文将介绍Smith 圆图的原理和分析方法,并通过实例进行说明。
二、Smith 圆图的原理Smith 圆图的核心原理是供给和需求的交互作用决定了市场价格和数量的均衡。
供给曲线表示生产者愿意以不同价格提供的商品数量,需求曲线表示消费者愿意以不同价格购买的商品数量。
当供给和需求曲线相交时,市场达到均衡状态,即供给量等于需求量,价格也达到了均衡价格。
三、Smith 圆图的分析步骤1. 收集数据:首先,需要收集相关商品的供给和需求数据。
可以通过市场调研、统计数据等方式获取。
2. 绘制供给曲线:根据收集到的供给数据,绘制供给曲线。
横轴表示商品的价格,纵轴表示供给的数量。
通常情况下,供给曲线是向上倾斜的,即价格上升时,供给数量也会增加。
3. 绘制需求曲线:根据收集到的需求数据,绘制需求曲线。
横轴表示商品的价格,纵轴表示需求的数量。
需求曲线通常是向下倾斜的,即价格上升时,需求数量会减少。
4. 确定均衡点:通过观察供给曲线和需求曲线的交点,确定市场的均衡点。
交点的横坐标即为均衡价格,纵坐标即为均衡数量。
5. 分析结果:根据均衡点的位置,可以分析市场的供需关系。
如果均衡点位于供给曲线和需求曲线的中间位置,说明市场供需相对平衡;如果均衡点偏向供给曲线一侧,说明供给过剩;如果均衡点偏向需求曲线一侧,说明需求不足。
四、实例分析假设我们研究某个市场中的苹果价格和数量关系。
根据收集到的数据,我们绘制了供给曲线和需求曲线,并找到了均衡点。
根据我们的数据和绘制的曲线,我们观察到均衡点位于供给曲线和需求曲线的中间位置。
这意味着市场供需相对平衡,供给量等于需求量,价格也达到了均衡价格。
进一步分析发现,如果苹果价格上升,供给量会增加,而需求量会减少。
如果苹果价格下降,供给量会减少,而需求量会增加。
史密斯圆图(Smith chart )分析长线的工作状态离不开计算阻抗、反射系数等参数,会遇到大量繁琐的复数运算,在计算机技术还未广泛应用的过去,图解法就是常用的手段之一。
在天线和微波工程设计中,经常会用到各种图形曲线,它们既简便直观,又具有足够的准确度,即使计算机技术广泛应用的今天,它们仍然对天线和微波工程设计有着重要的影响作用。
Smith chart 就是其中最常用一种。
1、Smith chart 的构成在Smith chart 中反射系数和阻抗一一对应;Smith chart 包含两部分,一部分是阻抗Smith 圆图(Z-Smith chart ),它由等反射系数圆和阻抗圆图构成;另外一部分是导纳Smith 圆图(Y-Smith chart ),它由等反射系数圆和导纳圆图构成;它们共同构成YZ-Smith chart 。
阻抗圆图又由电阻和电抗两部分构成,导纳圆图由电导和电纳构成。
1.1 等反射系数圆在如图1所示的带负载的传输线电路图中,由长线理论的知识我们可以得到负载处的反射系数0Γ为:000000Lj L u v L Z Z j eZ Z θ-Γ==Γ+Γ=Γ+ 其中00arctan(/)Lv u θ=ΓΓ。
图1 带负载的传输线电路图在离负载距离为z 处的反射系数Γ为:2000L j j z in u v in Z Z j e eZ Z θβ--Γ==Γ+Γ=Γ+ 其中220u v Γ=Γ+Γ,arctan(/)L v u θ=ΓΓ。
椐此我们用极坐标当负载和传输线的特征阻抗确定下来之后,传输线上不同位置处的反射系数辐值(1Γ≤)将不再改变,而变得只是反射系数的辐角;辐角的变化为2z β-∆,传输线上的位置向负载方向移动时,辐角逆时针转动,向波源方向移动时,辐角向顺时针方向转动,如图2所示。
图2 等反射系数圆传输线上不同位置处的反射系数的辐角变化只与2z β-,其中传波常数2/p βπλ=,所以Γ是一个周期为0.5p λ的周期性函数。
不管这是今天1、是2、为3、干1、是该图“在我史密当中管多么经典的射是什么东东?天解答三个问题是什么? 为什么? 干什么?是什么?表是由菲利普我能够使用计算密斯图表的基本的Γ代表其线射频教程,为什题: 普·史密斯(Phillip 算尺的时候,我本在于以下的算线路的反射系数从容面对“史什么都做成黑白p Smith)于193我对以图表方式算式。
数(reflection coe 史密斯圆图白的呢?让想理39年发明的,当式来表达数学上efficient)”,不再懵逼理解史密斯原图当时他在美国的上的关联很有兴图的同学一脸懵的RCA 公司工作兴趣”。
懵逼。
作。
史密斯曾说说过,即S参数(S-parameter)里的S11,ZL是归一负载值,即ZL / Z0。
当中,ZL是线路本身的负载值,Z0是传输线的特征阻抗(本征阻抗)值,通常会使用50Ω。
简单的说:就是类似于数学用表一样,通过查找,知道反射系数的数值。
2、为什么?我们现在也不知道,史密斯先生是怎么想到“史密斯圆图”表示方法的灵感,是怎么来的。
很多同学看史密斯原图,屎记硬背,不得要领,其实没有揣摩,史密斯老先生的创作意图。
我个人揣测:是不是受到黎曼几何的启发,把一个平面的坐标系,给“掰弯”了。
我在表述这个“掰弯”的过程,你就理解,这个图的含义了。
(坐标系可以掰弯、人尽量不要“弯”;如果已经弯了,本人表示祝福)现在,我就掰弯给你看。
世界地图,其实是一个用平面表示球体的过程,这个过程是一个“掰直”。
史密斯原图,巧妙之处,在于用一个圆形表示一个无穷大的平面。
2.1、首先,我们先理解“无穷大”的平面。
首先的首先,我们复习一下理想的电阻、电容、电感的阻抗。
在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。
阻抗常用Z表示,是一个复数,实际称为电阻,虚称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。
数学之美:谈Smith圆图Smith Chart对于一个射频工程师而言是一个非常重要的辅助工具。
笔者N年前学习圆图的时候,对于圆图仅仅是一种感性和浅显的认识,纯粹为了考试而去学习圆图。
比如圆图上某个点为开路点,某个点为短路点,某个点反射系数最大,某个点反射系数为0等等。
圆图丢了N年,此次重新捡起来,重新学习,又感觉对圆图的理解还是不够深入,而且感觉圆图背后还有许多没有被自己所理解的信息,因此,目前还是处于一知半解的程度。
在网上搜罗关于圆图的相关知识,重新学习,将自己目前对圆图的理解在此作为一个总结。
1、Smith Chart是用来协助解决传输线问题和匹配问题的一个工具。
日常大家所见到的二维圆图仅仅可以用来解决常规射频电路的匹配问题,亦即阻抗实部为正的问题。
近日在IEEE MTT论坛中,一个老外又提出了广义Smith Chart的概念,可以用来解决阻抗实部为负的的匹配问题,比如射频振荡器。
2、Smith Chart上可以反映出如下信息:阻抗参数Z,导纳参数Y,品质因子Q,反射系数,驻波系数,Snn散射参数,噪声系数,增益,稳定因子,功率,效率,频率信息等。
相对应上述参数信息,Smith Chart上面分别对应着一系列circle 或者contour 。
3、Smith Chart上面的圆周刻度波长刻度:用来表示传输线和负载之间的传输线的长度信息,通常用来解决分布参数问题。
角度数:用来表示以极坐标形式表示的反射系数的角度信息。
4、通常我们的求解过程都是通过Smith Chart上面一系列点来完成的,每一个点对应一个频点和该频点下的阻抗或者导纳。
匹配的过程最终都是将起点通过旋转和单位电抗圆或者单位电纳圆相交,然后回到圆心,完成匹配过程。
5、窄带匹配和宽带匹配通常在圆图上面单点完成匹配,对于窄带应用而言已经够用。
但是对于宽带而言,需要将这些匹配点最终连接起来,确保这些点的轨迹在宽带频段覆盖范围之内,或者在某一个参数指标圆内,比如VSWR=1.3的驻波圆。