储 罐 设 计 计 算 书
- 格式:xls
- 大小:153.00 KB
- 文档页数:9
安徽工程大学课程设计说明书题目名称:卧式储罐设计专业班级:食品122班学生姓名:***指导教师:***完成日期: 2015-09-24目录摘要 (3)第一章绪论 (4)1.1设计任务: (4)1.2设计思想: (4)1.3设计特点: (4)第二章材料及结构的选择与论证 (5)2.1材料选择 (5)2.2结构选择与论证 (5)2.2.1 封头的选择 (5)2.2.2容器支座的选择 (5)2.3法兰型式 (6)2.4液面计的选择 (6)第三章结构设计 (7)3.1壁厚的确定 (7)3.2封头厚度设计 (7)3.2.1计算封头厚度 (7)3.2.2水压试验及强度校核 (8)3.3储罐零部件的选取 (8)3.3.1储罐支座 (8)3.3.2 罐体质量 (8)3.3.3封头质量 (9)3.3.4液氨质量 (9)3.3.5附件质量 (9)第四章接管的选取 (10)4.1液氨进料管 (10)4.2平衡口管 (10)4.3液位指示口管 (10)4.4放空口管 (10)4.5液体进口管 (11)4.6液体出口管 (11)第五章压力计选择 (12)符号说明 (13)总结 (14)摘要本说明书为《1.2m3液氨储罐设计说明书》。
扼要介绍了卧式储罐的特点及在工业中的广泛应用,详细的阐述了卧式储罐的结构及强度设计计算及制造、检修和维护。
本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。
设计结果满足用户要求,安全性与经济性及环保要求均合格。
关键词:压力容器、卧式储罐、结构设计、强度校核、开孔补强第一章绪论1.1 设计任务:针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图,并便携设计说明书。
1.2设计思想:综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。
1003m液化石油气储罐设计绪论m或随着我国化学工业的蓬勃发展,各地建立了大量的液化气储配站。
对于储存量小于5003 m时.一般选用卧式圆筒形储罐。
液化气储罐是储存易燃易爆介质.直接关系到单罐容积小于1503人民生命财产安全的重要设备。
因此属于设计、制造要求高、检验要求严的三类压力容器。
本次设m液化石油气储罐设计即为此种情况。
计的为1003液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其要注意安全, 还要注意在制造、安装等方面的特点。
目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。
球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂,m或单罐容积大于2003m时选用球形贮焊接工作量大, 故安装费用较高。
一般贮存总量大于5003罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, m, 单罐容积小于1003m时选用卧式贮罐比较经济。
圆筒形贮罐按安装方所以在总贮量小于5003式可分为卧式和立式两种。
在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。
本文主要讨论卧式圆筒形液化石油气贮罐的设计。
卧式液化石油气贮罐设计的特点。
卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。
液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。
贮罐主要有筒体、封头、人孔、支座以及各种接管组成。
贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等。
第一章 设计参数的选择1、设计题目:853m 液化石油气储罐的设计2、设计数据:如下表1:表1:设计数据3、设计压力:设计压力取最大工作压力的倍,即 1.10.790.869P MPa =⨯=4、设计温度:工作温度为50C 。
注:此处的设计压力应为设计内压,不可等同于按液柱所确定的设计压力。
463.1cm 30.745KPa 0.540KPa1.001.001.38500.00cm 3罐壁筒体的临界压力:5.611KPat min =7.2mm H E =∑H ei=3.48mH ei ——罐壁各段当量高度,m ;H ei =H i (t min /t i )2.5罐壁各段当量高度如下:罐壁段号实际高度Hi (m )有效壁厚ti (mm )当量高度Hei(m )1223.20.112221.20.133219.20.174215.20.315213.20.446 1.59.20.8171.57.21.50罐壁设计外压: 2.2767KPa 0.60KPa如果:按6.4.9的规定选用。
P 0/3>[P Cr ]≥P 0/4应设置2个中间抗风圈于H E /3,2HE/3处。
6.1.2.中间抗风圈计算顶部抗风圈的实际截面模数 W=按图实际尺寸计算(近似为T 型钢计算)∵ W>Wz故满足要求应设置3个中间抗风圈于HE/4,2HE/4,3HE/4处。
风载荷标准值P 0=2.25ωk +q=q---罐顶呼吸阀负压设定值的1.2倍∵[Pcr]>P0,故不需要设置中间抗风圈。
W z =0.083D 2H 1ωkP 0/2>[P Cr ]≥P 0/3ω0—基本风压值(<300时取300Pa)βz—高度Z处的风振系数,油罐取μs —风荷载体型系数,取驻点值μz—风压高度变化系数,ωk =βz μs μs ω0P 0>[P Cr ]≥P 0/2应设置1个中间抗风圈于H E /2处。
以此类推=⎪⎪⎭⎫⎝⎛=5.2m in 48.16][Dt E H D cr P8.771392MPa1罐底部垂直载荷 1.8009613MN A1=πDt 1.7492388m 2翘离影响系数取C L 1.4底部罐壁断面系数10.495433m 358.038423MN.m 9.921098MN.m 综合影响系数C z一般取0.4α=0.450.1404s R=D/212mKc 0.000432δ30.0192m αmax=0.45罐体影响系数Y 1一般取1.1m=m 1Fr5107701.9kg 罐内储液总质量8821592.2kg Fr 0.579其中:D/H1.846153828.98188MPa 199875MPa t------罐底圈壁板有效厚度0.0232mσ1<[σcr]合格0.472794m 0.026266Tg 0.35s储液晃动基本周期5.3643825sKs=1.095晃动周期系数(据D/H 按表D.3.3选取)m 1=0.25ρπD 2H动液系数(由D/H ,查D.3.4确定)6.2.2.罐壁许用临界应力[σcr ]=0.15Et/D储罐内半径储液耦连振动基本周期Q 0=10-6C z αY 1mg 地震影响系数(据Tc ,Tg ,αmax 按图D.3.1选取)地震影响系数(据Tw ,αmax 按图D.3.1选取)Tw=KsD 0.5α最大地震影响系数E-----设计温度下材料的弹性模量6.2.3.应力校核条件反应谱特征周期(按表D.3.1-1)耦连振动周期系数(据D/H 按表D.3.2选取)距底板1/3高度处罐壁有效厚度6.2.4.罐内液面晃动高度计算:罐内液面晃动高度h v =1.5αR竖向地震影响系数C v (7,8度地震区取1;9度地震区取1.45) N1=(m d +m t )gZ1=πD 2t/4总水平地震力在罐底部产生的地震弯矩M L =0.45Q 0H 罐壁横截面积(其中t 为底部罐壁有效厚度)总水平地震力在罐底部产生的水平剪力6.2.地震载荷计算:6.2.1.地震作用下罐壁底产生的最大轴向应力T c =K c H (R/δ3)0.5=产生地震作用力的等效储液质量M 56mm 地脚螺栓根径:d 150.67mm D b 24.256m n 48个σs235MPa1920647N16248039N 563479N 3416935N.m 15343260N迎风面积389.70m 2罐体总高16.24m 拱顶高度3.24m1130973N 2500.00Pa 7.2.3.储液在最高液位时,1.5倍计算破坏压力产生的升举力:2171239N16248039N 1800961N300981N A=2016.47mm 2单个地脚螺栓应力:σ=N b /A=149.26MPa每个地脚螺栓的承压面积:σ<2/3σs,合格7.4.地脚螺栓(锚栓)校核条件:N b =N/n d -W/n dN=Max[N 1,N 2,N 3,N 4]7.2.1.空罐时,1.5倍设计压力与设计风压产生的升举力之和:7.2.2.空罐时,1.25倍试验压力产生的升举力之和:设计风压产生的升举力N w =4M w /D b 设计风压产生的风弯矩M w =ω0A H H’N 2=PπD 2/4+Ne7.3地脚螺栓计算:N 3=P t πD 2/47.2罐体抗提升力计算:地脚螺栓圆直径:地脚螺栓个数:N 1=1.5PπD 2/4+N w 空罐时,设计压力与地震载荷产生的升举力之和地脚螺栓许用应力:地震载荷产生的升举力N e =Aσ7.3.2.单个地脚螺栓所承受的载荷:A H =H'D H'=H 1+H g Hg=Rs(1-COSθ)7.3.1.罐体总的锚固力为7.2.1,7.2.2.,7.2.3所计算升举力中的最大值W <N ,由于罐体自重不能抗倾覆力,故需要设置地脚螺栓W=(m t +m d )g罐体试验压力P t =1.25PN 4=1.5P Q πD 2/47. 地脚螺栓(锚栓)计算地脚螺栓直径:7.1地脚螺栓参数:罐体总重量。
荆楚理工学院课程设计成果学院:_____化工与药学院____________ 班级: 12级过程装备与控制工程2班学生姓名: 吴小天学号: 2012402020207设计地点(单位)___荆楚理工学院___________ ____________设计题目:__________15m³乙醇储罐设计_____________________________ 完成日期:2015 年12 月25 日指导教师评语: ______________ _____________________________________________________________________________________________________ ____________________________________________________________________________ _________________________________________________ __________ _成绩(五级记分制):_____ _ __________教师签名:__________ _______________目录一、设计任务书二、总体结构设计三、机械强度设计3.1筒体的强度计算3.2 封头的强度计算3.3 开孔补强验算3.4 法兰的选型或设计3.5 鞍座的设计3.6 水压试验校核计算四、设备装配图五、参考文献六、设计心得体会七、附录1.荆楚理工学院课程设计任务书设计题目:m3液氨储罐设计教研室主任:指导教师:张伟军2014年 11 月 2日2.总体结构设计2.1介质说明化学名称:乙醇,别名:乙基醇、酒精乙醇的分子式为C2H6O (结构简式为CH3CH2OH 或C2H5OH ),俗称酒精,在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有特殊的、令人愉快的香味,并略带刺激性,沸点:78.4 °C。
柴油储罐设计说明书精
选文档
TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-
钢制焊接常压容器
设计说明(计算)书
编写:郭攀
审核:曾淦伟
批准:张庆东
日期 2018年3月21日
云南省博来特石油设备安装有限公司曲靖分公司
一、设计概述
该产品为钢制焊接常压容器,盛装介质为柴油。
柴油的理化特性包括:外观与性状:稍有粘性的棕色液体,熔点(℃):-18,相对密度(水=1):,沸点(℃):282-338,闪点(℃):38,引燃温度(℃):257。
该产品罐体为卧式单层容器,罐体横截面为圆形,封头为标准椭圆形,主体材质为Q235B,设计容积为1m3。
该产品设计按照NB/T 《钢制焊接常压容器》的要求进行,设计计算按照
NB/T 47042-2014《钢制卧式容器》的有关规定进行。
二、基本参数表
三、强度计算表
强度计算表(续)
强度计算表(续)
强度计算表(续)
强度计算表(续)
强度计算表(续)
四、无损检测
1.容器对接焊接接头应进行局部射线检测或超声检测,检测长度不得少于各条
焊接接头长度的10%。
局部无损检测应优先选择T形接头部位。
2.焊接接头的无损检测应按NB/T 、NB/T 的规定进行,要求如下:
a)焊接接头的射线检测技术等级为AB级;质量等级III级合格;
b)焊接接头的超声检测技术等级为B级;质量等级II级合格。
五、试验
制造完成后,应进行盛水试验,试验方法按照NB/第的要求进行。
40m乙醇储罐设计40m乙醇储罐设计一、引言储罐是存储液体或气体的设备,广泛应用于石油、化工、制药等行业。
本文将详细介绍设计一座40m乙醇储罐的过程。
二、设计要求1. 储罐容量:40m³;2. 工作压力:常压;3. 材料选择:碳钢;4. 设计温度:常温。
三、结构设计1. 储罐形式:本次设计采用立式圆柱形储罐,具有较小的占地面积和良好的稳定性。
2. 底部结构:采用平底结构,便于清洁和维修。
底部设置排污孔,方便排放杂质。
3. 壁板厚度计算:a) 根据容积计算公式V = π * D² * H / 4,可得到直径D = 4 * √(V / (π * H)) = 4 * √(40 / (π * H));b) 根据ASME标准,选择合适的壁板厚度系数 K(根据材料和工作温度确定),计算壁板最小厚度 t_min = K * P * D / (2 * S);c) 根据常用的碳钢材料强度标准,选择合适的应力允许值 S;d) 根据所选材料和工作温度确定设计压力 P。
四、附件设计1. 进出料口:储罐设有进出料口,便于装卸液体乙醇。
2. 排气孔:为了防止压力过高引起安全事故,储罐设有排气孔。
3. 液位计:为了方便监测乙醇液位,储罐设有液位计。
4. 温度计:为了监测乙醇温度变化,储罐设有温度计。
五、安全设计1. 储罐设置安全阀,当压力超过预定值时自动释放压力,保证系统安全。
2. 储罐设置泄漏报警装置,一旦发现泄漏情况能及时报警并采取措施处理。
3. 储罐周围设置防火墙和灭火器材,以防止发生火灾事故。
六、施工工艺1. 地基处理:根据土质情况进行地基处理,确保储罐稳定。
2. 焊接工艺:采用符合国家标准的焊接工艺,确保焊缝质量。
3. 涂装工艺:储罐表面进行防腐涂装,提高储罐的耐腐蚀性能。
七、验收标准1. 储罐容积应满足设计要求;2. 储罐材料应符合国家标准;3. 储罐结构应牢固稳定,无渗漏现象;4. 储罐各附件功能完好。
设计规范:设计压力:P 10000Pa 500Pa设计温度:T 90°C 设计风压:ω0550 Pa 设计雪压P x 200 Pa 附加荷载:P h1250 Pa 地震烈度:7度罐壁内径: D 23m 罐壁高度: H 121.2m 充液高度:H w 19.44m 液体比重:ρ 1罐顶半径: Rs 23m焊缝系数:Φ 0.9腐蚀裕量:C 2 1.5mm 钢板负偏差:C 10.3mm假设所有本设计所有钢板的负偏差相同,如有不同,区别对待。
罐壁尺寸、材料及许用应力如下:高度(m)名义厚度t n(mm )材料设计[σ]d (MPa )σs (MPa )σb (MPa )水压试验[σ]t重量(kg )总重:m t########注:对于油罐罐壁厚度需满足“最小公称厚度要求”大罐设计计算书从下至上分段号2. 罐壁分段及假设壁厚:1.设计基本参数:GB50341-2003《立式圆筒形钢制焊接油罐设计规范》计算结果:从下至上分段数计算液位高度H (m )计算壁厚t d (mm )120.9014.08218.9312.91316.9611.73414.9910.56513.029.38611.058.2179.087.0487.11 5.869 5.14 4.6910 3.17 3.51111.202.34计算结果:从下至上分段数计算液位高度H (m )计算壁厚t t (mm )120.911.52 218.9310.44 316.969.37 414.998.30 513.027.23 611.05 6.15 79.08 5.08 87.114.013. 罐壁计算:1)设计厚度计算(储存介质):2)水压试验厚度计算:注:对于D<15m 的油罐罐壁最小公称厚度≥5mm.9 5.14 2.94 10 3.17 1.86 111.20.7911.46mm 设计外载荷 1.59KPa t h =6mm 顶板腐蚀裕量 C 2':1mm5800kg !!!!!!!!!!!!P a =136.81N/m 24956Pa式中:206000MPa 23000mm 4.7mm 15.10mm 15.10mm6787.8mm 100mm 10mm 2000mm15.38mmL S ——顶板有效参与筋板组合矩的宽度b 1——纬向肋厚度L 1S ——纬向肋在经向的间距e 1——纬向肋与顶板在经向的组合截面形心到顶板中面的距离罐顶固定载荷罐顶取用厚度4.1光面球壳顶板的计算厚度:t 1m ——纬向肋与顶板的折算厚度t m ——带肋球壳的折算厚度h 1——纬向肋宽度4. 罐顶计算(自支撑式拱顶):ths = 0.42* Rs + C2 + C1 =Pw = P h + P x + P a =注:按保守计算加上雪压值。
储罐计量实施方案1. 引言储罐是工业生产中常用的储存设备,用于储存液体、气体或粉末物料。
为了管理储罐内物料的用量和流量,需要实施储罐计量方案。
本文档旨在提供一个储罐计量实施方案的详细说明,以帮助相关人员了解实施该方案的步骤和要点。
2. 设备和软件要求为了实施储罐计量方案,以下设备和软件是必需的:•储罐:用于储存物料的容器。
•流量计:用于测量物料的流量。
•液位传感器:用于测量储罐内物料的液位。
•控制系统:用于接收并处理流量和液位的数据。
•计量软件:用于计算和记录物料的用量和流量。
3. 实施步骤储罐计量方案的实施步骤如下:3.1 安装设备首先,将流量计和液位传感器安装在储罐上。
确保安装位置合适,并按照设备厂商提供的安装指南正确连接设备。
3.2 连接设备和控制系统将流量计和液位传感器的输出连接到控制系统。
根据设备和控制系统的接口要求,正确连接传感器到控制系统的输入端口。
确保连接稳定可靠,数据传输正常。
3.3 配置控制系统在控制系统中配置传感器的参数。
根据实际情况,设置流量计和液位传感器的量程范围、精度和校准值。
确保配置参数准确,并进行相应的测试和校准。
3.4 安装计量软件将计量软件安装到计算机或服务器上。
根据软件提供的安装指南,选择合适的安装位置和选项。
确保软件安装成功,并可以正常运行。
3.5 连接计量软件和控制系统将计量软件与控制系统进行连接。
根据软件提供的接口文档,配置软件与控制系统的连接设置。
确保连接正常,并能够接收和处理控制系统发送的数据。
3.6 配置计量软件在计量软件中配置储罐的相关信息。
根据实际储罐的属性,设置储罐的名称、容量、物料类型等信息。
确保配置准确,并进行数据的测试和验证。
3.7 进行实时监测和计量启动计量软件,并进行实时监测和计量。
根据需要,可以设置监测频率和数据记录间隔。
确保计量数据准确可靠,并能够及时反馈和记录。
4. 风险和安全考虑在实施储罐计量方案时,需要考虑以下风险和安全问题:•设备故障:设备可能出现故障导致测量数据不准确或无法获取。
储罐制作安装预算书
为了确保储存媒体的安全和方便使用,我们计划制作和安装一个储罐。
下面是我们的预算书,包含材料、人工和其他相关费用的估算。
1.材料费用估算:
1.1储罐主体材料费用:
设计容积:100m³
材料:碳钢板
储罐主体材料总费用=碳钢板单价×碳钢板总面积
假设碳钢板单价为100元/㎡,碳钢板总面积为(4×π×(半径+壁
厚)²+2×π×(半径+壁厚)×高度)
1.2储罐防腐涂层费用:
预计储罐防腐涂层费用=防腐涂料单价×防腐涂料总面积
1.3储罐附件费用:
包括进气阀、出气阀、液位计、温度计、搅拌器等附件,根据具体要
求预估费用。
2.人工费用估算:
2.1制作费用:
设计储罐制作时间为30人天,预估每人天工资为500元。
储罐制作总人工费用=30人天×500元/人天
2.2安装费用:
预计储罐安装需要5人工作3天,预估每人天工资为500元。
储罐安装总人工费用=5人×3天×500元/人天
3.其他费用估算:
3.1运输费用:
包括从储罐生产工厂到现场的运输费用,根据距离和货物重量预估费用。
3.2管路费用:
包括与储罐相关的管路安装费用,根据具体要求预估费用。
4.预算总结:
+储罐制作总人工费用+储罐安装总人工费用+运输费用+管路费用
以上仅为预算估算,并不包括可能的额外费用和变动。
具体预算可根据实际项目情况进行调整。
4000m³储罐计算书一、 计算个圈壁板厚度1、计算罐壁板厚度,确定罐底板、罐顶板厚度: 用GB50341-2003中公式(6.3.1-1)计算罐壁厚度ϕσρd d ][0.3)-(H 9.4t D =式中:d t —储存介质条件下管壁板的计算厚度,mm D —油罐内径(m )(21m )H —计算液位高度(m ),从所计算的那圈管壁板底端到罐壁包边角钢顶部的高度,或到溢流口下沿(有溢流口时)的高度(12.7m ) ρ—储液相对密度(1.0)d ][σ—设计温度下钢板的许用应力,查表4.2.2(157MPa ) ϕ—焊接接头系数(0.9) 第1圈: mm 7.89.0163.010.3)-(12.7219.4t d =⨯⨯⨯⨯=n δ=8.7+2.3=11mm 取12mm 第2圈: mm 38.79.0163.011.88)-0.3-(12.7219.4t d =⨯⨯⨯⨯=n δ=7.38+2.3=9.68mm 取12mm 第3圈: mm 06.69.0163.011.88)2-0.3-(12.7219.4t d =⨯⨯⨯⨯⨯=n δ=6.06+2.3=8.36mm 取10mm 第4圈: mm 74.49.0163.011.88)3-0.3-(12.7219.4t d =⨯⨯⨯⨯⨯=n δ=4.74+2.3=7.04mm 取8mm根据表6.4.4,罐壁最小厚度得最小厚度为6+2=8mm ,故第5、6、7圈取8mm 。
二、罐底、罐顶厚度、表边角钢选择(按GB50341规定) 罐底板厚度:查表5.1.1,不包括腐蚀余量的最小公称直径为6mm ,加上腐蚀余量2mm ,中幅板厚度为8mm查表5.1.2,不包括腐蚀余量的最小公称直径为11mm ,加上腐蚀余量2mm ,取边缘板厚度为14mm 罐顶板厚度:查7.1.3,罐顶板不包括腐蚀余量的公称厚度不小于4.5mm ,加上1mm 的腐蚀余量后取6mm包边角钢:按GB50341表6.2.2-1,选∠75×10 罐顶加强筋:-60×8 三、罐顶板数据计算:①分片板中心角(半角)55.2425200302/21000arcsin 302/arcsini 1︒=-=-=)()(SR D α ②顶板开孔(φ2200)中心角(半角)5.2252001100arcsin r arcsin2︒===SR α 顶板开孔直径参照《球罐和大型储罐》中表5-1来选取注:中心顶板与拱顶扇形顶板的搭接宽度一般取50mm ,考虑到分片板最小弧长不小于180mm ,故取φ2200mm③分片板展开半径mm 1151144.25tg 25200tg 11=︒⨯==αSR R mm 1100.52tg 25200tg 22=︒⨯==αSR R④分片板展开弧长:⌒AD =mm 96985.255.24360252002360221=-⨯⨯⨯=-⨯)()(πααπSR ⑤分片板大小头弧长:大头:⌒ABmm 1535446021000n302i =∆+-⨯=∆+⨯-=)()(ππD 小头:⌒CDmm 1974411002n r 2=∆+⨯⨯=∆+=ππ ⑥中心顶板展开弧长⌒L mm 22995023605.22520022502360222=⨯+⨯⨯⨯=⨯+⋅⋅=)()(παπSR四、拱顶高度计算内侧拱顶高:mm 227830)-(21000/2252002520030)-/2(D h 222i 2n =--=--=SR SR外侧拱顶高:m m 228462278h w =+=五、盘梯计算计算参数:g H —罐壁高度,mm (12700) i R —罐内半径,mm (10500)W SR —拱顶半径,mm (25206) α—内侧板升角(45°)n R —内侧板半径,mm (n R =10500+12+150=10662mm )B —盘梯宽度(内外板中心距)取656mm ,板宽150mm ,板厚6mm 1、平台高度WW SR SR --+=2i 2w 1L)-(R h h425mm 252061000)-(1050025206228422=--+=mm 3125142512700=+=H式中:1h —平台支撑角钢上表面至包边角钢上表面的距离,mmL —平台端部至罐内表面的距离,一般取800-1000mm ,取L=1000mm2、内侧板展开长度mm 184202100)-(1312523n =⨯=-=)(H H L式中:3H —盘梯下端至罐底上表面的距离,mm ,≮50mm ,取100mm3、外侧板展开长度mm 189951066265611184207071.0117071.022n n w =++⨯⨯=++=•R B L L )()( 4、三角架个数个)(717001225)-(13125x n 3==-=L H式中:x —第一个三角架到罐底上表面的距离,mm 取1225mm 3L —相邻三角架的垂直距离,mm 一般1500-2000mm5、三角架在罐壁上的水平位置a n =n01n 2b h R R)(- 式中:1b —内侧板及外侧板的宽度,mm ,一般取150mm —n h 第n 个三角架平台表面的距离,n ×1700mm0R —底圈壁板外半径,mm (10500+12=10512mm ) n R —内侧板半径mm (10662)a 1=mm 1467106621051221507001=-)( a 2=mm 31431066210512215070012=-⨯)( a 3=mm 48191066210512215070013=-⨯)( a 4=mm 64951066210512215070014=-⨯)( a 5=mm 81711066210512215070015=-⨯)( a 6=mm 98471066210512215070016=-⨯)( a 7=mm 115231066210512215070017=-⨯)( 6、盘梯包角︒=⋅-=⋅-=96.691801066210013119180n 3b ππαR H H ≈70° 六、带肋球壳稳定性验算21mn 2s m t t t 0001.0][)()(⋅=R E P (C.2.1-1) 式中: ][P —带肋求壳的许用外载荷,KPaE —设计温度下钢材的弹性模量,MPa 查表4.1.6得192×103 MPaS R —球壳的曲率半径,mm S R =SR=25200mm n t —罐顶板有效厚度,mm n t =6-C=6-1-0.6=4.4mmm t —带肋球壳的折算厚度,mm332m3n 31m m 4t t 2t t ++= (C.2.1-2)式中:]e t n 12t 4t 2t h 3h b h [12t 21n 13n 2nn 121s 11131m-+++⨯=)(L (C.2.1-3)]e t n 12t 4t 2t h 3h b h [12t22n 23n 2nn 222s 22232m-+++⨯=)(L (C.2.1-4) S L 1n 111t b h 1n += (C.2.1-5)SL 2n 222t b h 1n += (C.2.1-6) 式中:31m t —纬向肋与顶板组合截面的折算厚度,mm1h —纬向肋宽度,mm (高度60)1b —纬向肋有效厚度mm (8-(2×1+0.8)=5.2) 1s L —纬向肋在径向的间距,mm (1228) 1n —纬向肋与顶板在径向的面积折算系数058.112284.42.5061t b h 1n 1n 111=⨯⨯+=+=S L 1e —纬向肋与顶板在径向组合截面的形心到顶板中面的距离,mm(按CD130A6-86《钢制低压湿式气柜设计规定》算出下面公式)78.1)602.54.41214(2)4.460(602.5)(2)(e 1111111=⨯+⨯⨯+⨯⨯=++=h b t l t h h b n s n32m t —径向肋与顶板组合截面的折算厚度,mm 2h —径向肋宽度,mm (高度60)2b —径向肋有效厚度mm (8-(2×1+0.8)=5.2)2s L —径向肋在纬向的间距,mm 下面求2s L :a) 先求第1圈纬向肋的展开半径3R 先求第圈纬向肋处的角度(半角3α) ∵600360/252002=⋅⋅∆πα ∴364.1=∆α° ︒=︒-︒=∆-=186.23364.155.2413ααα 再求第1圈纬向肋处展开半径3Rm m 10793186.23tg 25200tg R 33=︒⨯==αSRb) 求第1圈纬向肋的每块分片板肋板的弧长2s Lmm 14152]186.23cos 10790244360sin[L 2s =⨯︒⨯⨯⨯=)( 2n —径向肋与顶板在径向的面积折算系数05.114154.4602.51t b h 1n 2n 222=⨯⨯+=+=S L 2e —径向肋与顶板在纬向组合截面的形心到顶板中面的距离,mm537.1)602.54.41415(2)4.460(602.5)(2)(e 2222222=⨯+⨯⨯+⨯⨯=++=h b t l t h h b n s n带肋球壳按下图布置把上面各参数代入C.2.1-3中求31m t4082]78.14.4058.1124.444.424.40636012152.506[12t232231m=⨯⨯-++⨯+⨯⨯⨯=)(把上面各参数代入C.2.1-4中求32m t3492]4537.14.405.1124.444.424.40636014152.506[12t232232m=⨯⨯-++⨯+⨯⨯⨯=)(c) 把31m t ,31m t 代入C.2.1-2中,求m tmm 46.12492434.424082t 33m =+⨯+=d) 把m t 代入C.2.1-1中求[P]78.246.124.42.2546.12101920001.0][2123=⋅⨯⨯⨯=)()(P KPae) 验算:设计外载荷(外压)L P 按7.1.2条规定取1.7KPaL P <[P] 即1.7<2.78 ∴ 本带肋球壳是稳定的 (L P 是外载荷,按7.1.2条规定,取1.7MPa )七、 加强圈计算1、设计外压,按6.5.3-3q 25.2P k o +=W (6.5.3-3)式中:o P —罐壁筒体的设计外压(KPa ) •W k —风载荷标准值(KPa )见式6.4.7q —罐顶呼吸阀负压设定压力的1.2倍(KPa ),取1.2(按SYJ1016 5.2.2条规定)风载荷标准值:按式6.4.7o z s z k w μμβ=•W (6.4.7)式中:•z β——高Z 处见风振系数,油罐取1s μ—风载体系形数,取驻点值,o w —基本风压(取0.4KPa )z μ—风压高度变化系数z μ风压高度变化系数,查表6.4.9.1,建罐地区属于B 类(指田野、乡村,丛林及房屋计较稀疏的乡镇和城市郊区,本储罐高度为12.7m ,介于10和15中间,要用内插法求x=z μ=1.08 (15m —1.14 10—1.0 12.7—x )风载荷标准值:432.04.008.111k =⨯⨯⨯=•W KPa 把k w =0.432KPa 代入6.5.3-3中a 2.22.1432.025.2P o KP =+⨯=2、计算罐壁筒体许用临界压力 2.5min cr )Dt (48.16][P E H D = (6.5.2-1)∑=ei H H E5.2imin iei t t h )(=H 式中:][P cr —核算区间罐壁筒体的需用临界压力,KPa E H —核算区间罐壁筒体的当量高度,mm in t —核算区间最薄板的有效厚度,mm(8-2.3=5.7) i t —第i 圈罐壁板的有效厚度,mmi h —第i 圈罐壁板的实际高度,mm (1880) ei H —第i 圈壁板的当量高度E H 表∑==95.8ei H H E m把E H 代入(6.5.2-1)中48.1)215.7(95.82148.16][P 2.5cr =⨯⨯=KPa ∵o P =2.3>1.48MPa ∴需要加强圈 具体用几个加强圈依据6.5.4的规定 ∵22.3][P 2.3 cr ≥> ∴应设1个加强圈,其位置在1/2E 处 根据6.5.5规定,在最薄板上,不需要换算,到包边角钢的实际距离就是4.5m (距包边角钢上表面4.5m )根据表6.5.6选取加强圈规格,本设计选∠125×80×8八、 抗震计算(CD130A 2-84) 1、水平地震载荷W a Q max 0Z C =式中:0Q —水平地震载荷 kgfZ C —综合影响系数 0.4m ax a —地震影响系数,按附表A 选0.45W —产生地震荷载的储液等效重量(波动液体)’w F W f =式中:f F —动液系数,由R H W /的比值,按附表A 2选取,如遇中间值则用插值法求。
目录摘要 (1)关键词 (1)1 绪论 (1)1.1贮罐的应用及意义 (1)2 设计概述 (1)2.1设计任务书 (1)2.2设计思想 (2)2.3设计特点 (2)3 材料及结构的选择与论证 (2)3.1材料选择 (2)3.2结构选择与论证 (3)3.2.1封头的选择 (3)3.2.2 入孔的选择 (3)3.2.3 容器支座的选择 (4)3.2.4 法兰型式 (4)3.2.5 液面计的选择 (4)4 机械计算 (5)4.1筒体厚度设计 (5)4.2封头壁厚设计 (5)4.3水压试验及强度校核 (6)4.4人孔并核算开孔补强 (6)4.5核算承载能力并选择鞍座 (7)5 附件的选择 (8)5.1液面计选择 (8)5.2压力表选择 (8)5.3接口管选择 (9)6 设计结果一览表 (10)7 设计小结 (10)主要参考资料 (11)致谢 (12)Φ5000大型贮罐机械设计化学化工专业学生黄克旺指导教师赵慧敏摘要:压力容器广泛应用于化工生产中的传热、传质、化学反应、物料贮存等各个方面,约占工厂装备的百分之八十。
本文首先介绍容器的基本知识,包括压力容器的分类与结构;封头的种类与选择;容器的零部件(法兰、支座、接口管、手孔、人孔等)。
然后以液化石油气贮罐的设计为例,讲述了内压薄壁圆筒和标准椭圆形封头的强度设计,以及容器主要零部件的选用。
关键词:容器;零部件;封头;强度设计Φ5000mm mechanical design of liquid ammonia storage tank Student majoring in Chemical Engineering and Technology Hang Ke-wangTutor Zhao Hui-minAbstract:Pressure vessels are widely used in heat and mass transfer, chemical reaction, material storage, and other aspects of chemical production.And they account for about 80 percent of the factory equipment. This paper first introduces the basics of container, including the classification and structure of pressure vessels; the types of sealing head and how to select it; the parts of container (flange, bearing, interface tube, hand hole, manhole, etc.). Then take the design of liquid liquefied pentroeum gas(LPG) storage tank for example, tells the strength design of cylinder of internal pressure and standard-elliptical head, and the selection of the main components of container.Key words: Containers; Parts; Sealing head; Strength design1 绪论1.1 贮罐的应用及意义贮罐是储存或盛装气体、液体、液化气体等介质的设备,在化工、石油、能源、轻工、环保、制药及食品等行业得到广泛应用。
燕京理工学院Yanching Institute of Technology (2018)届本科生化工设备机械基础大作业题目:50立方米液氨储罐设计学院:化工与材料工程学院专业:应用化学1402学号:140140059 :震指导教师:周莉莉教研室主任(负责人):顾明广2017年6月20日目录课程设计任务书................................................................................................................... - 3 - 50m³液氨储罐设计..................................................................................................... - 3 - 课程设计容............................................................................................................................ - 5 - 液氨物化性质及介绍.................................................................................................. - 5 - 第一章设备的工艺计算........................................................................................... - 6 -1.1设计储存量..................................................................................................... - 6 -1.2 设备的选型的轮廓尺寸的确定............................................................. - 6 -1.3 设计压力的确定 ........................................................................................ - 7 -1.4 设计温度的确定 ........................................................................................ - 8 -1.5 主要元件材料的选择 ............................................................................... - 8 -第二章设备的机械设计........................................................................................... - 9 -2.1 设计条件(见表2-1和表2-2)......................................................... - 9 -2.2 结构设计.................................................................................................... - 10 -2.2.1 材料选择........................................................................................... - 10 -2.2.2 筒体和封头结构设计.................................................................... - 10 -2.2.3 法兰的结构设计 ............................................................................. - 11 -2.2.4 人孔、液位计结构设计................................................................ - 13 -2.2.5 支座结构设计................................................................................ - 15 -2.2.6 焊接接头设计及焊接材料的选取........................................... - 20 -2.3 开孔补强计算............................................................................................. - 21 -2.3.1补强设计方法判别.......................................................................... - 22 -2.3.2有效补强围........................................................................................ - 22 -2.3.3 有效补强面积.................................................................................. - 23 -2.3.4接管的多余面积 .............................................................................. - 23 -2.3.5补强面积............................................................................................ - 24 -第三章液面计的选用........................................................................................... - 24 - 第四章视镜的选用................................................................................................ - 24 - 第五章安全阀的选用........................................................................................... - 25 - 第六章焊接接头的设计 ...................................................................................... - 25 - 第七章垫片及螺栓的选择.................................................................................. - 25 - 课程设计总结............................................................................................................. - 26 - 参考文献 .............................................................................................................. - 27 -课程设计任务书50m³液氨储罐设计一、课程设计要求:1.按照国家最新压力容器标准、规进行设计,掌握典型过程设备设计的全过程。