储 罐 设 计 计 算 书
- 格式:xls
- 大小:153.00 KB
- 文档页数:9
安徽工程大学课程设计说明书题目名称:卧式储罐设计专业班级:食品122班学生姓名:***指导教师:***完成日期: 2015-09-24目录摘要 (3)第一章绪论 (4)1.1设计任务: (4)1.2设计思想: (4)1.3设计特点: (4)第二章材料及结构的选择与论证 (5)2.1材料选择 (5)2.2结构选择与论证 (5)2.2.1 封头的选择 (5)2.2.2容器支座的选择 (5)2.3法兰型式 (6)2.4液面计的选择 (6)第三章结构设计 (7)3.1壁厚的确定 (7)3.2封头厚度设计 (7)3.2.1计算封头厚度 (7)3.2.2水压试验及强度校核 (8)3.3储罐零部件的选取 (8)3.3.1储罐支座 (8)3.3.2 罐体质量 (8)3.3.3封头质量 (9)3.3.4液氨质量 (9)3.3.5附件质量 (9)第四章接管的选取 (10)4.1液氨进料管 (10)4.2平衡口管 (10)4.3液位指示口管 (10)4.4放空口管 (10)4.5液体进口管 (11)4.6液体出口管 (11)第五章压力计选择 (12)符号说明 (13)总结 (14)摘要本说明书为《1.2m3液氨储罐设计说明书》。
扼要介绍了卧式储罐的特点及在工业中的广泛应用,详细的阐述了卧式储罐的结构及强度设计计算及制造、检修和维护。
本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。
设计结果满足用户要求,安全性与经济性及环保要求均合格。
关键词:压力容器、卧式储罐、结构设计、强度校核、开孔补强第一章绪论1.1 设计任务:针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图,并便携设计说明书。
1.2设计思想:综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。
1003m液化石油气储罐设计绪论m或随着我国化学工业的蓬勃发展,各地建立了大量的液化气储配站。
对于储存量小于5003 m时.一般选用卧式圆筒形储罐。
液化气储罐是储存易燃易爆介质.直接关系到单罐容积小于1503人民生命财产安全的重要设备。
因此属于设计、制造要求高、检验要求严的三类压力容器。
本次设m液化石油气储罐设计即为此种情况。
计的为1003液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其要注意安全, 还要注意在制造、安装等方面的特点。
目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。
球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂,m或单罐容积大于2003m时选用球形贮焊接工作量大, 故安装费用较高。
一般贮存总量大于5003罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, m, 单罐容积小于1003m时选用卧式贮罐比较经济。
圆筒形贮罐按安装方所以在总贮量小于5003式可分为卧式和立式两种。
在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。
本文主要讨论卧式圆筒形液化石油气贮罐的设计。
卧式液化石油气贮罐设计的特点。
卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。
液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。
贮罐主要有筒体、封头、人孔、支座以及各种接管组成。
贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等。
第一章 设计参数的选择1、设计题目:853m 液化石油气储罐的设计2、设计数据:如下表1:表1:设计数据3、设计压力:设计压力取最大工作压力的倍,即 1.10.790.869P MPa =⨯=4、设计温度:工作温度为50C 。
注:此处的设计压力应为设计内压,不可等同于按液柱所确定的设计压力。
463.1cm 30.745KPa 0.540KPa1.001.001.38500.00cm 3罐壁筒体的临界压力:5.611KPat min =7.2mm H E =∑H ei=3.48mH ei ——罐壁各段当量高度,m ;H ei =H i (t min /t i )2.5罐壁各段当量高度如下:罐壁段号实际高度Hi (m )有效壁厚ti (mm )当量高度Hei(m )1223.20.112221.20.133219.20.174215.20.315213.20.446 1.59.20.8171.57.21.50罐壁设计外压: 2.2767KPa 0.60KPa如果:按6.4.9的规定选用。
P 0/3>[P Cr ]≥P 0/4应设置2个中间抗风圈于H E /3,2HE/3处。
6.1.2.中间抗风圈计算顶部抗风圈的实际截面模数 W=按图实际尺寸计算(近似为T 型钢计算)∵ W>Wz故满足要求应设置3个中间抗风圈于HE/4,2HE/4,3HE/4处。
风载荷标准值P 0=2.25ωk +q=q---罐顶呼吸阀负压设定值的1.2倍∵[Pcr]>P0,故不需要设置中间抗风圈。
W z =0.083D 2H 1ωkP 0/2>[P Cr ]≥P 0/3ω0—基本风压值(<300时取300Pa)βz—高度Z处的风振系数,油罐取μs —风荷载体型系数,取驻点值μz—风压高度变化系数,ωk =βz μs μs ω0P 0>[P Cr ]≥P 0/2应设置1个中间抗风圈于H E /2处。
以此类推=⎪⎪⎭⎫⎝⎛=5.2m in 48.16][Dt E H D cr P8.771392MPa1罐底部垂直载荷 1.8009613MN A1=πDt 1.7492388m 2翘离影响系数取C L 1.4底部罐壁断面系数10.495433m 358.038423MN.m 9.921098MN.m 综合影响系数C z一般取0.4α=0.450.1404s R=D/212mKc 0.000432δ30.0192m αmax=0.45罐体影响系数Y 1一般取1.1m=m 1Fr5107701.9kg 罐内储液总质量8821592.2kg Fr 0.579其中:D/H1.846153828.98188MPa 199875MPa t------罐底圈壁板有效厚度0.0232mσ1<[σcr]合格0.472794m 0.026266Tg 0.35s储液晃动基本周期5.3643825sKs=1.095晃动周期系数(据D/H 按表D.3.3选取)m 1=0.25ρπD 2H动液系数(由D/H ,查D.3.4确定)6.2.2.罐壁许用临界应力[σcr ]=0.15Et/D储罐内半径储液耦连振动基本周期Q 0=10-6C z αY 1mg 地震影响系数(据Tc ,Tg ,αmax 按图D.3.1选取)地震影响系数(据Tw ,αmax 按图D.3.1选取)Tw=KsD 0.5α最大地震影响系数E-----设计温度下材料的弹性模量6.2.3.应力校核条件反应谱特征周期(按表D.3.1-1)耦连振动周期系数(据D/H 按表D.3.2选取)距底板1/3高度处罐壁有效厚度6.2.4.罐内液面晃动高度计算:罐内液面晃动高度h v =1.5αR竖向地震影响系数C v (7,8度地震区取1;9度地震区取1.45) N1=(m d +m t )gZ1=πD 2t/4总水平地震力在罐底部产生的地震弯矩M L =0.45Q 0H 罐壁横截面积(其中t 为底部罐壁有效厚度)总水平地震力在罐底部产生的水平剪力6.2.地震载荷计算:6.2.1.地震作用下罐壁底产生的最大轴向应力T c =K c H (R/δ3)0.5=产生地震作用力的等效储液质量M 56mm 地脚螺栓根径:d 150.67mm D b 24.256m n 48个σs235MPa1920647N16248039N 563479N 3416935N.m 15343260N迎风面积389.70m 2罐体总高16.24m 拱顶高度3.24m1130973N 2500.00Pa 7.2.3.储液在最高液位时,1.5倍计算破坏压力产生的升举力:2171239N16248039N 1800961N300981N A=2016.47mm 2单个地脚螺栓应力:σ=N b /A=149.26MPa每个地脚螺栓的承压面积:σ<2/3σs,合格7.4.地脚螺栓(锚栓)校核条件:N b =N/n d -W/n dN=Max[N 1,N 2,N 3,N 4]7.2.1.空罐时,1.5倍设计压力与设计风压产生的升举力之和:7.2.2.空罐时,1.25倍试验压力产生的升举力之和:设计风压产生的升举力N w =4M w /D b 设计风压产生的风弯矩M w =ω0A H H’N 2=PπD 2/4+Ne7.3地脚螺栓计算:N 3=P t πD 2/47.2罐体抗提升力计算:地脚螺栓圆直径:地脚螺栓个数:N 1=1.5PπD 2/4+N w 空罐时,设计压力与地震载荷产生的升举力之和地脚螺栓许用应力:地震载荷产生的升举力N e =Aσ7.3.2.单个地脚螺栓所承受的载荷:A H =H'D H'=H 1+H g Hg=Rs(1-COSθ)7.3.1.罐体总的锚固力为7.2.1,7.2.2.,7.2.3所计算升举力中的最大值W <N ,由于罐体自重不能抗倾覆力,故需要设置地脚螺栓W=(m t +m d )g罐体试验压力P t =1.25PN 4=1.5P Q πD 2/47. 地脚螺栓(锚栓)计算地脚螺栓直径:7.1地脚螺栓参数:罐体总重量。
荆楚理工学院课程设计成果学院:_____化工与药学院____________ 班级: 12级过程装备与控制工程2班学生姓名: 吴小天学号: 2012402020207设计地点(单位)___荆楚理工学院___________ ____________设计题目:__________15m³乙醇储罐设计_____________________________ 完成日期:2015 年12 月25 日指导教师评语: ______________ _____________________________________________________________________________________________________ ____________________________________________________________________________ _________________________________________________ __________ _成绩(五级记分制):_____ _ __________教师签名:__________ _______________目录一、设计任务书二、总体结构设计三、机械强度设计3.1筒体的强度计算3.2 封头的强度计算3.3 开孔补强验算3.4 法兰的选型或设计3.5 鞍座的设计3.6 水压试验校核计算四、设备装配图五、参考文献六、设计心得体会七、附录1.荆楚理工学院课程设计任务书设计题目:m3液氨储罐设计教研室主任:指导教师:张伟军2014年 11 月 2日2.总体结构设计2.1介质说明化学名称:乙醇,别名:乙基醇、酒精乙醇的分子式为C2H6O (结构简式为CH3CH2OH 或C2H5OH ),俗称酒精,在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有特殊的、令人愉快的香味,并略带刺激性,沸点:78.4 °C。
柴油储罐设计说明书精
选文档
TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-
钢制焊接常压容器
设计说明(计算)书
编写:郭攀
审核:曾淦伟
批准:张庆东
日期 2018年3月21日
云南省博来特石油设备安装有限公司曲靖分公司
一、设计概述
该产品为钢制焊接常压容器,盛装介质为柴油。
柴油的理化特性包括:外观与性状:稍有粘性的棕色液体,熔点(℃):-18,相对密度(水=1):,沸点(℃):282-338,闪点(℃):38,引燃温度(℃):257。
该产品罐体为卧式单层容器,罐体横截面为圆形,封头为标准椭圆形,主体材质为Q235B,设计容积为1m3。
该产品设计按照NB/T 《钢制焊接常压容器》的要求进行,设计计算按照
NB/T 47042-2014《钢制卧式容器》的有关规定进行。
二、基本参数表
三、强度计算表
强度计算表(续)
强度计算表(续)
强度计算表(续)
强度计算表(续)
强度计算表(续)
四、无损检测
1.容器对接焊接接头应进行局部射线检测或超声检测,检测长度不得少于各条
焊接接头长度的10%。
局部无损检测应优先选择T形接头部位。
2.焊接接头的无损检测应按NB/T 、NB/T 的规定进行,要求如下:
a)焊接接头的射线检测技术等级为AB级;质量等级III级合格;
b)焊接接头的超声检测技术等级为B级;质量等级II级合格。
五、试验
制造完成后,应进行盛水试验,试验方法按照NB/第的要求进行。
40m乙醇储罐设计40m乙醇储罐设计一、引言储罐是存储液体或气体的设备,广泛应用于石油、化工、制药等行业。
本文将详细介绍设计一座40m乙醇储罐的过程。
二、设计要求1. 储罐容量:40m³;2. 工作压力:常压;3. 材料选择:碳钢;4. 设计温度:常温。
三、结构设计1. 储罐形式:本次设计采用立式圆柱形储罐,具有较小的占地面积和良好的稳定性。
2. 底部结构:采用平底结构,便于清洁和维修。
底部设置排污孔,方便排放杂质。
3. 壁板厚度计算:a) 根据容积计算公式V = π * D² * H / 4,可得到直径D = 4 * √(V / (π * H)) = 4 * √(40 / (π * H));b) 根据ASME标准,选择合适的壁板厚度系数 K(根据材料和工作温度确定),计算壁板最小厚度 t_min = K * P * D / (2 * S);c) 根据常用的碳钢材料强度标准,选择合适的应力允许值 S;d) 根据所选材料和工作温度确定设计压力 P。
四、附件设计1. 进出料口:储罐设有进出料口,便于装卸液体乙醇。
2. 排气孔:为了防止压力过高引起安全事故,储罐设有排气孔。
3. 液位计:为了方便监测乙醇液位,储罐设有液位计。
4. 温度计:为了监测乙醇温度变化,储罐设有温度计。
五、安全设计1. 储罐设置安全阀,当压力超过预定值时自动释放压力,保证系统安全。
2. 储罐设置泄漏报警装置,一旦发现泄漏情况能及时报警并采取措施处理。
3. 储罐周围设置防火墙和灭火器材,以防止发生火灾事故。
六、施工工艺1. 地基处理:根据土质情况进行地基处理,确保储罐稳定。
2. 焊接工艺:采用符合国家标准的焊接工艺,确保焊缝质量。
3. 涂装工艺:储罐表面进行防腐涂装,提高储罐的耐腐蚀性能。
七、验收标准1. 储罐容积应满足设计要求;2. 储罐材料应符合国家标准;3. 储罐结构应牢固稳定,无渗漏现象;4. 储罐各附件功能完好。
设计规范:设计压力:P 10000Pa 500Pa设计温度:T 90°C 设计风压:ω0550 Pa 设计雪压P x 200 Pa 附加荷载:P h1250 Pa 地震烈度:7度罐壁内径: D 23m 罐壁高度: H 121.2m 充液高度:H w 19.44m 液体比重:ρ 1罐顶半径: Rs 23m焊缝系数:Φ 0.9腐蚀裕量:C 2 1.5mm 钢板负偏差:C 10.3mm假设所有本设计所有钢板的负偏差相同,如有不同,区别对待。
罐壁尺寸、材料及许用应力如下:高度(m)名义厚度t n(mm )材料设计[σ]d (MPa )σs (MPa )σb (MPa )水压试验[σ]t重量(kg )总重:m t########注:对于油罐罐壁厚度需满足“最小公称厚度要求”大罐设计计算书从下至上分段号2. 罐壁分段及假设壁厚:1.设计基本参数:GB50341-2003《立式圆筒形钢制焊接油罐设计规范》计算结果:从下至上分段数计算液位高度H (m )计算壁厚t d (mm )120.9014.08218.9312.91316.9611.73414.9910.56513.029.38611.058.2179.087.0487.11 5.869 5.14 4.6910 3.17 3.51111.202.34计算结果:从下至上分段数计算液位高度H (m )计算壁厚t t (mm )120.911.52 218.9310.44 316.969.37 414.998.30 513.027.23 611.05 6.15 79.08 5.08 87.114.013. 罐壁计算:1)设计厚度计算(储存介质):2)水压试验厚度计算:注:对于D<15m 的油罐罐壁最小公称厚度≥5mm.9 5.14 2.94 10 3.17 1.86 111.20.7911.46mm 设计外载荷 1.59KPa t h =6mm 顶板腐蚀裕量 C 2':1mm5800kg !!!!!!!!!!!!P a =136.81N/m 24956Pa式中:206000MPa 23000mm 4.7mm 15.10mm 15.10mm6787.8mm 100mm 10mm 2000mm15.38mmL S ——顶板有效参与筋板组合矩的宽度b 1——纬向肋厚度L 1S ——纬向肋在经向的间距e 1——纬向肋与顶板在经向的组合截面形心到顶板中面的距离罐顶固定载荷罐顶取用厚度4.1光面球壳顶板的计算厚度:t 1m ——纬向肋与顶板的折算厚度t m ——带肋球壳的折算厚度h 1——纬向肋宽度4. 罐顶计算(自支撑式拱顶):ths = 0.42* Rs + C2 + C1 =Pw = P h + P x + P a =注:按保守计算加上雪压值。