高二数学 双基限时练3
- 格式:doc
- 大小:27.69 KB
- 文档页数:6
双基限时练(三)1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-32,-12,则sin α的值为( ) A .-32B .-12C.32D.12解析 利用三角函数的定义可得sin α=-12,故选B.答案 B2.若角α的终边经过M (0,2),则下列各式中,无意义的是( ) A .sin α B .cos α C .tan αD .sin α+cos α解析 因为M (0,2)在y 轴上,所以α=π2+2k π,k ∈Z ,此时tan α无意义.答案 C3.下列命题正确的是( )A .若cos θ<0,则θ是第二或第三象限的角B .若α>β,则cos α<cos βC .若sin α=sin β,则α与β是终边相同的角D .若α是第三象限角,则sin αcos α>0且cos αtan α<0解析 当θ=π时,cos θ=-1,此时π既不是第二象限的角,也不是第三象限的角,故A 错误;当α=390°,β=30°时,cos α=cos β,故B 错误;当α=30°,β=150°时,sin α=sin β,但α与β终边并不相同,故C 错误,只有D 正确.答案 D4.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .以上三种情况都可能解析 ∵α,β为三角形的内角,且sin αcos β<0, 又sin α>0,∴cos β<0,∴β为钝角. ∴三角形为钝角三角形. 答案 B5.设角α的终边过点P (3a,4a )(a ≠0),则下列式子中正确的是( ) A .sin α=45B .cos α=35C .tan α=43D .tan α=-43解析 ∵a ≠0,∴tan α=4a 3a =43.答案 C6.已知⎝ ⎛⎭⎪⎫12sin2θ<1,则θ所在的象限为( )A .第一或第三象限B .第二或第四象限C .第二或第三象限D .第一或第四象限解析 ∵⎝ ⎛⎭⎪⎫12sin2θ<1,且y =⎝ ⎛⎭⎪⎫12x 在R 上递减,∴sin2θ>0,∴2k π<2θ<π+2k π,k ∈Z , ∴k π<θ<π2+k π,k ∈Z .当k =2n ,n ∈Z 时,2n π<θ<π2+2n π,此时θ在第一象限内.当k =2n +1,n ∈Z时,π+2n π<θ<3π2+2n π,n ∈Z ,此时θ在第三象限内.综上可得θ所在的象限为第一象限或第三象限,故选A. 答案 A7.角α终边上有一点P (x ,x )(x ∈R ,且x ≠0),则sin α的值为________. 解析 由题意知,角α终边在直线y =x 上,当点P 在第一象限时,x >0,r =x 2+x 2=2x ,∴sin α=x2x=22.当点P 在第三象限时,同理,sin α=-22. 答案 ±228.使得lg(cos αtan α)有意义的角α是第________象限角.解析 要使原式有意义,必须cos αtan α>0,即需cos α,tan α同号,所以α是第一或第二象限角.答案 一或二9.点P (tan2 012°,cos2 012°)位于第____________象限. 解析 ∵2 012°=5×360°+212°,212°是第三象限角, ∴tan2 012°>0,cos2 012°<0,故点P 位于第四象限. 答案 四10.若角α的终边经过P (-3,b ),且cos α=-35,则b =________,sin α=________.解析 ∵cos α=-39+b2,∴-39+b 2=-35,∴b =4或b =-4.当b =4时,sin α=b9+b2=45,当b =-4时,sin α=b 9+b2=-45. 答案 4或-4 45或-4511.计算sin810°+tan765°+tan1125°+cos360°.解 原式=sin(2×360°+90°)+tan(2×360°+45°)+tan(3×360°+45°)+cos(360°+0°)=sin90°+tan45°+tan45°+cos0° =1+1+1+1=4.12.一只蚂蚁从坐标原点沿北偏西30°方向爬行6 cm 至点P 的位置.试问蚂蚁离x 轴的距离是多少?解 如下图所示,蚂蚁离开x 轴的距离是PA .在△OPA 中,OP =6,∠AOP =60°, ∴PA =OP sin60° =6×32=3 3. 即蚂蚁离x 轴的距离是3 3 cm.13.已知角α的终边落在直线y =2x 上,试求α的三个三角函数值. 解 当角α的终边在第一象限时,在y =2x 上任取一点P (1,2),则有r =5,∴sin α=25=255,cos α=15=55,tan α=2.当角α的终边在第三象限时,同理可求得: sin α=-255,cos α=-55,tan α=2.。
双基限时练(三)基 础 强 化1.如果角α的终边过点(2sin30°,-2cos30°),那么sin α的值等于( ) A.12 B .-12C .-32D .-33解析 2sin30°=1,-2cos30°=-3,∴P (1,-3). ∴r =12+ -3 2=2,sin α=-2cos30°2=-32.答案 C2.设α=-5π2,则sin α,tan α的值分别为( )A .-1;不存在B .1;不存在C .-1;0D .1;0解析 -5π2=-2π-π2,∴-5π2的终边在y 轴的负半轴,在其终边上取点(0,-1),由此可知sin α=-1,tan α的值不存在.答案 A3.已知P (x,4)是角θ终边上一点,且tan θ=-25,则x 的值为( )A .10 B.45 C .-10D .-15解析 tan θ=4x =-25,∴x =-10.答案 C4.若角α的终边上有一点P ⎝ ⎛⎭⎪⎫35k ,-45k (k <0),则sin α²tan α=( )A.1615 B .-1615C.1516D .-1516解析 ∵k <0,∴r =⎝ ⎛⎭⎪⎫35k 2+⎝ ⎛⎭⎪⎫-45k 2=-k ,∴sin α=45,tan α=-43,∴sin α²tan α=-1615.答案 B5.若点P 在角π3的终边上,且|OP |=2,则点P 的坐标( )A .(3,1)B .(-3,1)C .(1,3)D .(-1,3)解析 设P (x 0,y 0),sin π3=y 02=32,∴y 0= 3.cos π3=x 02=12,∴x 0=1.∴P (1,3).答案 C6.已知角θ的终边在直线y =3x 上,则tan θ的值( ) A .-33B .- 3C. 3 D .±33解析 角θ的终边在第一象限或第三象限,在直线y =3x 上取点(1,3)和(-1,-3),则tan θ=yx= 3.答案 C7.角α的终边上有一点P (m,5),且cos α=m13(m ≠0),则sin α+cos α=____.解析 r =m 2+25,∴cos α=m m 2+25=m13(m ≠0), ∴m =±12.当m =12时,cos α=1213,sin α=513,sin α+cos α=1713.当m =-12时,cos α=-1213,sin α=513,sin α+cos α=-713.∴sin α+cos α=1713或sin α+cos α=-713.答案1713或-7138.若y =tan α²cot α的定义域为M ,y =sec α²csc α的定义域为N ,则M 与N 的关系为________.答案 M =N能 力 提 升9.已知角α的终边经过点P (8a,15a )(a ≠0),则tan α+sec α的值是________. 解析 r = 8a 2+ 15a 2=17|a |, 当a >0时,r =17a ,tan α=158,sec α=17a 8a =178, ∴tan α+sec α=4.当a <0时,r =-17a ,tan α=158,sec α=-17a 8a =-178,∴tan α+sec α=-14.∴tan α+sec α=4或tan α+sec α=-14.答案 -14或410.已知α的终边上一点P (2,-5),求角α的六个三角函数值. 解析 r =3,sin α=-53,cos α=23,tan α=-52, cot α=-255,sec α=32,csc α=-355.11.已知θ的终边上一点P (x,3)(x ≠0),且cos θ=1010,求sin θ和tan θ. 解析 cos θ=x x 2+9=1010>0,∴x >0,∴x =1. ∴sin θ=312+32=310=31010,tan θ=y x =3.12.求下列函数的定义域: (1)f (x )=1+tan xsin x ;(2)f (x )=cos x .解析 (1)若使函数有意义, 则需满足⎩⎪⎨⎪⎧sin x ≠0,x ≠k π+π2,k ∈Z ,即⎩⎪⎨⎪⎧x ≠k π,k ∈Z ,x ≠k π+π2,k ∈Z ,即x ≠k π2,k ∈Z .∴函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2,k ∈Z. (2)若使函数有意义,则满足cos x ≥0, 即2k π-π2≤x ≤2k π+π2,k ∈Z .∴函数的定义域为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2,k ∈Z .品 味 高 考13.已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.解析 P (4,y )是角θ终边上一点,由三角函数的定义知sin θ=y16+y2,又sin θ=-255,∴y 16+y2=-255, ∵sin θ<0,∴y <0解得y =-8. 答案 -8。
1.空间任意四个点,,,A B C D ,则DA CD CB +- 等于 ;
2.已知向量,a b 满足条件:2,a b == ,且a 与2b a - 互相垂直,则a 与b 的夹角
为 ;
3.已知正方体1111ABCD A BC D -中,E 为底面11AC 的中心,若1AE AA xAB yAD =++ ,
则x 与y 的值分别是 ;
高二数学课前五分钟双基练(3)
1.空间任意四个点,,,A B C D ,则DA CD CB +- 等于 ;
2.已知向量,a b 满足条件:2,a b == ,且a 与2b a - 互相垂直,则a 与b 的夹角
为 ;
3.已知正方体1111ABCD A BC D -中,E 为底面11AC 的中心,若1AE AA xAB yAD =++ ,
则x 与y 的值分别是 ;
1.空间四边形OABC 中,,,OA a OB b OC c === ,点M 在OA 上,且2OM MA =,N 为
BC 中点,则MN 等于 ;(用,,a b c 表示)
2.设2,,,,36
a c a
b b
c ππ⊥== ,且1,2,3a b c === ,则a b c ++= ;
高二数学课前五分钟双基练(4)
1.空间四边形OABC 中,,,OA a OB b OC c === ,点M 在OA 上,且2OM MA =,N 为
BC 中点,则MN 等于 ;(用,,a b c 表示)
2.设2,,,,36
a c a
b b
c ππ⊥== ,且1,2,3a b c === ,则a b c ++= ;。
双基限时练(三)一、选择题1.用斜二测画法画水平放置的平面图形的直观图,对其中两条线段结论错误的是( )A.原来相交的仍相交B.原来垂直的仍垂直C.原来平行的仍平行D.原来共点的仍共点解析斜二测画法保平行,保相交,保平行线段的比,但不保垂直.答案 B2.如图所示的直观图中A′B′∥y′轴,B′C′∥A′D′∥x′轴,且B′C′≠A′D′.其对应的平面图形ABCD是( )A .任意梯形B .直角梯形C .任意四边形D .平行四边形解析 由直观图的画法,可知原四边形ABCD 为直角 梯形. 答案 B3.一个水平放置的三角形的斜二测直观图是等腰直角三角形A ′B ′O ′,如图若O ′B ′=1,那么原△ABO 的面积是( )A.12B.22C. 2D .2 2解析 由斜二测画法,可知原三角形为直角三角形,且∠AOB =90°,OB =1,OA =2O ′A ′=22,∴S△AOB=12×1×22= 2.答案 C4.如图所示为等腰直角三角形,其中AB=AC=2,则△ABC的直观图的面积为( )A.2 B. 2C.22D.2 2解析△ABC的直观图如图所示,则S△A′B′C′=12×2×1×sin45°=22.答案 C5.已知△A′B′C′为水平放置的△ABC的直观图,如图,则在△ABC的三边及中线AD中,最长的线段是( )A.AB B.ADC.BC D.AC解析由斜二测画法,可知原三角形ABC为直角三角形,AC为斜边,D为BC的中点,故AC>AD,故最长的线段为AC,故答案为D.答案 D6.已知等边三角形的边长为2,那么它的直观图的面积为( )A.32B.34C.64D.62解析如图①②分别为平面图与直观图,由②可知,A′B′=2,h′=C′O′sin45°=32×22=64,S△A′B′C′=12×64×2=64.答案 C二、填空题7.在一等腰梯形ABCD中,AB∥DC,∠A=45°,DC=2,AD=2,建立如图所示的直角坐标系,其中O为AB的中点,则其直观图的面积为________.解析由图可知AB=DC+2AD cos45°=4,EO=2sin45°=1,其直观图如图所示,其中A′B′=4,C′D′=2,高h′=E′O′.sin45°=24,∴S A ′B ′C ′D ′=(2+4)×242=324.答案 3248.一个水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度为________.解析 由斜二测画法,知△ABC 为直角三角形,AB =AC 2+BC 2=9+16=5,∴AB 边上的中线为52.答案 529.如图所示,ABCD为边长为2的正方形,其中B(2,2),则在斜二测画法中,直观图A′B′C′D′中B′点到x′轴的距离为________.解析在直观图中,A′B′C′D′是有一个角为45°的平行四边形,B′到x′轴的距离为d=1×sin45°=22.答案2 2三、解答题10.把下图水平放置的直观图P′Q′R′S′还原为真实图形.若S′R′=2,P′Q′=4,S′P′=2,S′R′∥P′Q′∥O′x′,P ′S′∥O′y′,试求其真实图形PQRS的面积.解由斜二测画法,知P′Q′∥O′x′,P′S′∥O′y′,R′S′∥O′x′.故PQ ∥Ox ,PS ∥Oy ,RS ∥Ox ,且PS =2P ′S ′,PQ =P ′Q ′,RS =R ′S ′.故真实图形如图所示.由上知PQ =P ′Q ′=4,SR =S ′R ′=2,SP =2S ′P ′=4,且四边形PQRS 是直角梯形,其面积S =12(SR +PQ )·SP =12 (2+4)×4=12.11.已知正△ABC 的边长为a ,求△ABC 的平面直观图△A ′B ′C ′的面积.解 由斜二测画法可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中,作C ′D ′⊥A ′B ′于点D ′,则C ′D ′=22O ′C ′=68a , 所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.12.画出长为5,宽为4,高为5的长方体的直观图.解(1)画出x轴,y轴,z轴三轴相交于O点,使∠xOy=45°,∠xOz=90°,∠yOz=90°.(2)在x轴上取OA=5,OC=2,过A作AB∥OC,过C作CB∥OA,则四边形OABC为下底面.(3)在z轴上取OO′=5,过O′作O′x′∥Ox,O′y′∥Oy,建立坐标系x′O′y′,重复(2)的步骤作出上底面O′A′B′C′.(4)连接AA′,BB′,CC′,OO′,即得到长方体OABC-O′A ′B′C′的直观图.思维探究13.已知水平放置的三角形ABC是正三角形,其直观图的面积为6a2,求△ABC的周长.4解 图△ABC 是△A ′B ′C ′的原图形,设△ABC 的边长为x ,由斜二测画法,知A ′B ′=AB =x ,O ′C ′=12OC =34x ,作C ′D ′⊥A′B ′,垂足为D ′,∵∠C ′O ′D ′=45°,∴C ′D ′=22O ′C ′=22×34x =68x ,∴S △A ′B ′C ′=12A ′B ′×C ′D ′=12x ×68x =616x 2.∴616x 2=64a 2,∴x =2a , ∴△ABC 周长为3×2a =6a .。
高中数学学习材料鼎尚图文*整理制作双基限时练(三)1.如图,是算法流程图的一部分,其算法的逻辑结构是( )A .顺序结构B .条件结构C .判断结构D .以上都不对答案 B2.下列函数的求值流程图中需要用到条件结构的是( ) A .f (x )=x 2-1B .f (x )=2x +1C .f (x )=⎩⎪⎨⎪⎧x 2+1,x 2-1D .f (x )=2x解析 对于分段函数求值需用到条件结构,故选C 项. 答案 C3.下列关于条件结构的说法正确的是( ) A .条件结构的程序框图中有两个入口和一个出口B .无论条件结构中的条件是否满足,都只能执行两条路径之一C .条件结构中的两条路径可以同时执行D .对于一个算法来说,判断框中的条件是唯一的 答案 B4.给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则x 的可能值的个数为()A .1B .2C .3D .4 解析 该程序框图的功能是已知函数y =⎩⎨⎧x 2 (x ≤2),2x -3 (2<x ≤5),1x (x >5),输入x 的值,输出对应的函数值.则当x ≤2时,x =x 2,解得x =0,或x =1; 当2<x ≤5时,x =2x -3,解得x =3; 当x >5时,x =1x ,解得x =±1(舍去). 即x =0,或1,或3. 答案 C5.如图所示的程序框图,其功能是()A.输入a,b的值,按从小到大的顺序输出它们的值B.输入a,b的值,按从大到小的顺序输出它们的值C.输出a,b中较大的一个D.输出a,b中较小的一个解析取a=1,b=2,知该程序框图输出2,因此是输出a,b 中较大的一个.答案 C6.已知函数y=|x-3|,以下程序框图表示的是给定x值,求其相应函数值的算法.请将该程序框图补充完整.其中①处应填_______,②处应填_______.解析 由f (x )=|x -3|=⎩⎪⎨⎪⎧x -3 (x ≥3),3-x (x <3),及程序框图知,①处应填x <3?,②处应填y =x -3.答案 x <3? y =x -37.指出下面程序框图的运行结果.若输入-4,则输出结果为________.解析 由程序框图知,求a 的算术平方根.当a ≥0时,输出a ;当a <0时,输出是负数.因此当a =-4时,输出的结果为是负数.答案 是负数8.如图所示的算法功能是________.解析 由程序框图知,当a ≥b 时,输出a -b ;当a <b 时,输出b -a .故输出|b -a |. 答案 计算|b -a |9.对任意非零实数a ,b ,若a ⊗b 的运算原理的程序框图如图所示.则3⊗2=________.解析 由程序框图知,当a ≤b 时,输出b -1a ;当a >b 时,输出a +1b .∵3>2,∴输出3+12=2.答案 210.如图给出了一个算法的程序框图.根据该程序框图,回答以下问题:(1)若输入的四个数为5,3,7,2,则最后输出的结果是什么? (2)该算法的程序框图是为什么问题而设计的?解 (1)由程序框图知,该运算是求a ,b ,c ,d 中的最小数.因此输入5,3,7,2,则最后输出结果为2.(2)求a ,b ,c ,d 四个数中的最小数,并输出最小数.11.已知函数y =⎩⎪⎨⎪⎧1+x (x >0),0 (x =0),-x -3 (x <0),设计一个算法,输入自变量x 的值,输出对应的函数值.请写出算法步骤,并画出程序框图.解算法如下:第一步,输入自变量x的值.第二步,判断x>0是否成立,若成立,计算y=1+x,转第四步,否则,执行下一步.第三步,判断x=0是否成立,若成立,令y=0,否则,计算y =-x-3.第四步,输出y.程序框图如图所示.12.儿童乘火车时,若身高不超过1.2米,则无需购票;若身高超过1.2米但不超过1.4米,买半票;若超过1.4米,应买全票.设计一个算法,并画出程序框图.解本问题中旅客的身高影响他的票价,属于分段函数问题.设身高为h米,票价为a元,则旅客的购票款y为:y =⎩⎨⎧0 (h ≤1.2),a2 (1.2<h ≤1.4),a (h >1.4).设计算法如下: 第一步,输入身高h .第二步,若h ≤1.2,则不必购买车票,否则进行下一步. 第三步,若h >1.4,则购买全票,否则买半票. 框图表示如下.。
双基限时练(三)顺序结构和条件分支结构基础强化1.条件分支结构不同于顺序结构的特征是含有()A.处理框B.判断框C.输入、输出框D.起、止框解析条件分支结构必须有判断框.答案 B2.程序框图中条件分支结构的判断框有________个入口和________个出口.()A.1,2B.2,3C.1,3 D.都不确定答案 A3.阅读下面的程序框图,若输入a,b,c分别是21、32、75,则输出的值是()A .96B .53C .107D .128解析 ∵21<32,∴m =21+75=96,即输出96. 答案 A4.已知f (x )=⎩⎨⎧2x ,0<x ≤4,1x ,4<x ≤11,log 2x ,11<x ≤14.在求f (a )(0<a <14)的算法中,需要用到条件分支结构,其中判断框的形式是()解析 因该函数f (x )的定义域被分成了三段,故在求f (a )的值的算法中要利用多分支结构,故选D.答案 D5.下列四个问题中不必用条件分支结构就能实现的是( ) A .解方程ax +b =0(a ,b 为常数) B .已知圆的面积,求半径rC .比较a 、b 、c 的大小,求a 、b 、c 中最大者D .计算函数f (x )=⎩⎪⎨⎪⎧x 2,x >0,2x -7,x ≤0的函数值解析 解方程ax +b =0需要判断a 、b 是否为零;比较a 、b 、c 的大小需比较a 与b ,a 与c ,b 与c 的大小关系;计算f (x )=⎩⎪⎨⎪⎧x 2,x >0,2x -7,x ≤0的函数值需判断自变量x >0还是x ≤0;求圆的半径只要知道圆的面积即可.所以A 、C 、D 选项中所述问题需要条件分支结构,B 选项中所述问题用顺序结构即可.故选B.答案 B6.根据下边程序框图,若输出y 的值是4,则输入的实数x 的值为( )A .1B .-2C .1或2D .1或-2解析 该程序框图表述的是分段函数y =⎩⎪⎨⎪⎧x 2,x <1,3x +1,1≤x <10,2x ,x ≥10.当y =4时x =-2或x =1.答案 D7.根据如图程序框图,若输入m 的值是3,则输出的y 的值是________.解析 若输入m 的值是3. 则p =8,y =8+5=13, 故输出y 的值为13. 答案 138.下面程序框图表示的算法功能是________.解析 其功能是比较a 、b 、c 的大小,输出最大值. 答案 输出a ,b ,c 中最大者9.某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为:不超过50千克按0.53元/千克收费,超过50千克的部分按0.85元/千克收费,相应收费系统的程序框图如图所示,则①处应填________.解析 由题意得y =⎩⎪⎨⎪⎧0.53x ,0≤x ≤50.50×0.53+(x -50)×0.85,x >50.①是在x >50成立时所执行的步骤,因此①处应填y =50×0.53+(x -50)×0.85.答案 y =50×0.53+(x -50)×0.85能力提升10.画出解方程ax+b=0(a,b∈R)的算法程序框图.解如下图所示.11.以下给出了一个程序框图,其作用是输入x的值,输出相应的y的值.若要使输入的x的值与输出的y的值相等,求x的值.解 该程序框图描述的算法是求分段函数y =⎩⎨⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5.因为输入的x 值与输出的y 值相等,所以y =x .(1)∵⎩⎪⎨⎪⎧x 2=x ,x ≤2,∴x =0或x =1.(2)∵⎩⎪⎨⎪⎧2x -3=x ,2<x ≤5,∴x =3.(3)∵⎩⎨⎧1x=x ,x >5,∴x 无解.综上所述,x 的值为0,1,3.12.火车站对乘客退票收取一定的费用,具体办法是:按票价每10元(不足10元按10元计算)核收2元;2元以下的票不退.试写出票价为x 元的车票退掉后,返还的金额y 元的算法的程序框图.(提示:[x ]表示不大于x 的最大整数)解 如下图所示.品味高考13.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于()C.[-4,3] D.[-2,5]解析 作出分段函数s =⎩⎪⎨⎪⎧3t ,t <1,-t 2+4t ,t ≥1的图象(图略),可知函数s 在[-1,2]上单调递增,在[2,+∞)上单调递减,∴t ∈[-1,3]时,s ∈[-3,4].答案A。
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(三)1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+c 2-b 2=3ac ,则角B 的值为( )A.π6 B.π3 C.π6,或5π6D.π3,或2π3解析 由余弦定理,得cos B =a 2+c 2-b 22ac =3ac 2ac =32,又0<B <π,∴B =π6.答案 A2.在△ABC 中,AB =3,A =45°,C =75°,则BC =( ) A .3- 3 B. 2 C .2D .3+ 3解析 由正弦定理,知BC sin A =AB sin C ,∴BC =AB sin Asin C =3×226+24=3- 3.答案 A3.在△ABC 中,已知a =52,c =10,A =30°,则B 等于( ) A .105° B .60°C .15°D .105°,或15°解析 先用正弦定理求角C ,由a sin A =c sin C ,得sin C =c sin A a =10×1252=22. 又c >a ,∴C =45°,或135°,故B =105°,或15°. 答案 D4.已知三角形的三边之比为a :b :c =2:3:4,则此三角形的形状为( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰直角三角形解析 设三边长为2a,3a,4a (a >0),它们所对的三角形内角依次为A ,B ,C .则cos C =(2a )2+(3a )2-(4a )22×2a ×3a =-14<0,∴C 为钝角.故该三角形为钝角三角形. 答案 B5.在△ABC 中,下列关系中一定成立的是( ) A .a >b sin A B .a =b sin A C .a <b sin AD .a ≥b sin A解析 在△ABC 中,由正弦定理,知 a =b sin Asin B ,∵0<sin B ≤1,∴a ≥b sin A . 答案 D6.△ABC 中,已知2A =B +C ,且a 2=bc ,则△ABC 的形状是( ) A .两直角边不等的直角三角形B .顶角不等于90°,或60°的等腰三角形C .等边三角形D .等腰直角三角形解析 解法1:由2A =B +C ,知A =60°.又cos A =b 2+c 2-a 22bc ,∴12=b 2+c 2-bc2bc∴b 2+c 2-2bc =0.即(b -c )2=0,∴b =c . 故△ABC 为等边三角形.解法2:验证四个选项知C 成立. 答案 C7.在△ABC 中,AC =3,A =45°,C =75°,则BC 的长为____________.解析 由A +B +C =180°,求得B =60°. ∴BC sin A =AC sin B ⇒BC =AC sin A sin B =3×2232= 2.答案28.△ABC 中,已知a =2,c =3,B =45°,则b =________. 解析 由余弦定理,得b 2=a 2+c 2-2ac cos B =2+9-2×2×3×22=5,∴b = 5.答案59.在△ABC 中,a =23,cos C =13,S △ABC =43,则b =________.解析 ∵cos C =13,∴sin C =223.又S △ABC =12ab sin C , ∴43=12×23×b ×223,∴b =3 2. 答案 3 210.在△ABC 中,a +b =10,而cos C 是方程2x 2-3x -2=0的一个根,求△ABC 周长的最小值.解 解方程2x 2-3x -2=0,得x 1=-12,x 2=2,而cos C 为方程2x 2-3x -2=0的一个根,∴cos C =-12.由余弦定理c 2=a 2+b 2-2ab cos C ,得c 2=a 2+b 2+ab .∴c 2=(a +b )2-ab =100-ab =100-a (10-a )=a 2-10a +100=(a -5)2+75≥75,∴当a =b =5时,c min =53.从而三角形周长的最小值为10+5 3.11.在△ABC 中,如果lg a -lg c =lgsin B =-lg 2,且B 为锐角,试判断此三角形的形状.解 ∵lgsin B =-lg 2,∴sin B =22.又∵B 为锐角,∴B =45°.∵lg a -lg c =-lg 2,∴a c =22.由正弦定理,得sin A sin C =22. 即2sin(135°-C )=2sin C .∴2(sin135°cos C -cos135°sin C )=2sin C . ∴cos C =0,∴C =90°,∴A =B =45°.∴△ABC 是等腰直角三角形.12.a ,b ,c 分别是△ABC 中角A ,B ,C 的对边,且(sin B +sin C +sin A )(sin B +sin C -sin A )=185sin B sin C ,边b 和c 是关于x 的方程x 2-9x +25cos A =0的两根(b >c ).(1)求角A 的正弦值; (2)求边a ,b ,c ; (3)判断△ABC 的形状.解 (1)∵(sin B +sin C +sin A )(sin B +sin C -sin A )=185sin B sin C , 由正弦定理,得(b +c +a )(b +c -a )=185bc , 整理,得b 2+c 2-a 2=85bc .由余弦定理,得cos A =b 2+c 2-a 22bc =45,∴sin A =35.(2)由(1)知方程x 2-9x +25cos A =0可化为x 2-9x +20=0, 解之得x =5或x =4,∵b >c ,∴b =5,c =4. 由余弦定理a 2=b 2+c 2-2bc cos A ,∴a =3.(3)∵a 2+c 2=b 2,∴△ABC 为直角三角形.高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin=, cos = , tg = , ctg= , sec = , csc = 。
双基限时练(二)1.当自变量x由x0变到x1时,函数值的增量与相应自变量的增量的比是函数()A.在区间[x0,x1]上的平均变化率B.在x1处的导数C.在区间[x0,x1]上的导数D.在x处的平均变化率解析由平均变化率的定义知选A.答案A2.对于函数f(x)=c(c为常数),则f′(x)为()A.0B.1C.c D.不存在解析f′(x)=limΔx→0f(x+Δx)-f(x)Δx=limΔx→0c-cΔx=0.答案A3.y=x2在x=1处的导数为()A.2x B.2C.2+Δx D.1解析∵Δy=(1+Δx)2-12=2Δx+(Δx)2,∴ΔyΔx=2+Δx.∴f′(1)=limΔx→0(2+Δx)=2.答案B4.在导数的定义中,自变量的增量Δx满足() A.Δx<0 B.Δx>0C.Δx=0 D.Δx≠0解析Δx可正、可负,就是不能为0,因此选D.答案D5.一物体运动满足曲线方程s=4t2+2t-3,且s′(5)=42(m/s),其实际意义是()A.物体5秒内共走过42米B.物体每5秒钟运动42米C.物体从开始运动到第5秒运动的平均速度是42米/秒D.物体以t=5秒时的瞬时速度运动的话,每经过一秒,物体运动的路程为42米解析由导数的物理意义知,s′(5)=42(m/s)表示物体在t=5秒时的瞬时速度.故选D.答案D6.如果质点A按规律s=3t2运动,那么在t=3时的瞬时速度为________.解析∵Δy=3(3+Δt)2-3×32=18Δt+3(Δt)2,∴s′(3)=limΔt→0ΔsΔt=limΔt→0(18+3Δt)=18.答案187.设函数f(x)满足limx→0f(1)-f(1-x)x=-1,则f′(1)=________.解析∵limx→0f(1)-f(1-x)x=limx→0f(1-x)-f(1)-x=f′(1)=-1.答案-18.函数f(x)=x2+1在x=1处可导,在求f′(1)的过程中,设自变量的增量为Δx,则函数的增量Δy=________.解析Δy=f(1+Δx)-f(1)=[(1+Δx)2+1]-(12+1)=2Δx +(Δx )2.答案 2Δx +(Δx )29.已知f (x )=ax 2+2,若f ′(1)=4,求a 的值.解 ∵Δy =f (1+Δx )-f (1)=a (1+Δx )2+2-(a ×12+2)=2a ·Δx +a (Δx )2,∴f ′(1)=lim Δx →0 Δy Δx =lim Δx →0(2a +a ·Δx )=2a =4.∴a =2.10.已知函数f (x )=13-8x +2x 2,且f ′(x 0)=4,求x 0的值. 解 Δy =f (x 0+Δx )-f (x 0)=[13-8(x 0+Δx )+ 2 (x 0+Δx )2]-(13-8x 0+2x 20)=-8Δx +22x 0Δx +2(Δx )2.f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0(-8+22x 0+2Δx )=-8+22x 0,又∵f ′(x 0)=4,∴-8+22x 0=4,∴x 0=3 2.11.在自行车比赛中,运动员的位移与比赛时间t 存在关系s (t )=10t +5t 2(s 的单位是m ,t 的单位是s).(1)求t =20,Δt =0.1时的Δs 与Δs Δt ;(2)求t =20时的速度.解 (1)当t =20,Δt =0.1时,Δs =s (20+Δt )-s (20)=10(20+0.1)+5(20+0.1)2-(10×20+5×202)=1+20+5×0.01=21.05.∴Δs Δt =21.050.1=210.5.(2)由导数的定义知,t =20时的速度即为v =lim Δt →0Δs Δt=lim Δt →010(t +Δt )+5(t +Δt )2-10t -5t 2Δt =lim Δt →05(Δt )2+10Δt +10tΔt Δt =lim Δt →0(5Δt +10+10t )=10+10t=10+10×20=210(m/s).12.若一物体运动方程如下(位移:m ,时间:s).s =⎩⎪⎨⎪⎧3t 2+2,t ≥3,29+3(t -3)2,0≤t <3. 求:(1)物体在t ∈[3,5]内的平均速度;(2)物体的初速度v 0;(3)物体在t =1时的瞬时速度.解 (1)∵物体在t ∈[3,5]内的时间变化量为Δt =5-3=2,物体在t ∈[3,5]内的位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48,∴物体在t ∈[3,5]上的平均速度为Δs Δt =482=24(m/s).(2)求物体的初速度为v 0,即求物体在t =0时瞬时速度.∵物体在t =0附近的平均速度为Δs Δt =f (0+Δt )-f (0)Δt=29+3(0+Δt -3)2-29-3(0-3)2Δt=3Δt -18,∴物体在t =0处的瞬时速度为lim Δt →0 Δs Δt =lim Δt →0(3Δt -18)=-18(m/s).即物体的初速度为-18 m/s.(3)物体在t =1时的瞬时速度即为函数在t =1处的瞬时变化率. ∵物体在t =1附近的平均速度变化为Δs Δt =29+3(1+Δt -3)2-29-3(1-3)2Δt=3Δt -12, ∴物体在t =1处的瞬时变化率为lim Δt →0 Δs Δt =lim Δt →0(3Δt -12)=-12(m/s).即物体在t =1时的瞬时速度为-12 m/s.新课标第一网系列资料 。
双基限时练(三)1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴垂直 C .与x 轴平行 D .与x 轴平行或重合答案 D2.一木块沿某一斜面自由下滑,测得下滑的水平距离s 与时间t 之间的函数关系为s =18t 2,则当t =2时,此木块在水平方向的瞬时速度为( )A. 2B. 1C.12D.14解析 s ′=lim Δt →0ΔsΔt =lim Δt →018(t +Δt )2-18t 2Δt=lim Δt →014tΔt +18(Δt )2Δt=lim Δt →0(14t +18Δt )=14t . ∴当t =2时,s ′=12. 答案 C3.若曲线y =h (x )在点P (a ,h (a ))处切线方程为2x +y +1=0,则( )A .h ′(a )<0B .h ′(a )>0C .h ′(a )=0D .h ′(a )的符号不定解析 由2x +y +1=0,得h ′(a )=-2<0. ∴h ′(a )<0. 答案 A4.曲线y =9x 在点(3,3)处的切线方程的倾斜角α等于( ) A .45° B .60° C .135°D .120°解析 k =y ′=lim Δx →0ΔyΔx =lim Δx →09x +Δx -9x Δx=lim Δx →-9x (x +Δx )=-9x 2.∴当x =3时,tan α=-1.∴α=135°. 答案 C5.在曲线y =x 2上切线倾斜角为π4的点是( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)解析 y ′=lim Δx →0ΔyΔx =lim Δx →0(x +Δx )2-x 2Δx=lim Δx →02xΔx +(Δx )2Δx=lim Δx →0(2x +Δx )=2x . 令2x =tan π4=1,∴x =12,y =14. 故所求的点是(12,14). 答案 D6.已知曲线y =2x 2上一点A (2,8),则过点A 的切线的斜率为________.解析 k =f ′(2)=lim Δx →02(2+Δx )2-2×22Δx=limΔx→08Δx+2(Δx)2Δx=limΔx→0(8+2Δx)=8.答案87.若函数f(x)在x0处的切线的斜率为k,则极限limΔx→0 f(x0-Δx)-f(x0)Δx=________.解析limΔx→0f(x0-Δx)-f(x0)Δx=-limΔx→0f(x0-Δx)-f(x0)-Δx=-k.答案-k8.已知函数f(x)在区间[0,3]上图象如图所示,记k1=f′(1),k2=f′(2),k3=f′(3),则k1,k2,k3之间的大小关系为________.(请用“>”连接)解析由f(x)的图象及导数的几何意义知,k1>k2>k3.答案k1>k2>k39.已知曲线y=2x2上的点(1,2),求过该点且与过该点的切线垂直的直线方程.解 ∵f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx=4,∴过点(1,2)的切线的斜率为4.设过点(1,2)且与过该点的切线垂直的直线的斜率为k ,则4k =-1,k =-14.∴所求的直线方程为y -2=-14(x -1), 即x +4y -9=0.10.已知曲线y =1t -x 上两点P (2,-1),Q ⎝ ⎛⎭⎪⎫-1,12.求: (1)曲线在点P 处、点Q 处的切线的斜率; (2)曲线在点P ,Q 处的切线方程.解 将P (2,-1)代入y =1t -x 得t =1,∴y =11-x.∴y ′=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →011-(x +Δx )-11-x Δx=lim Δx →01[1-(x +Δx )](1-x )=1(1-x )2.(1)曲线在点P 处的切线的斜率为y ′|x =2=1(1-2)2=1;曲线在点Q 处的切线的斜率为y ′|x =-1=1[1-(-1)]2=14.(2)曲线在点P 处的切线方程为 y -(-1)=x -2,即x -y -3=0. 曲线在点Q 处的切线方程为 y -12=14(x +1),即x -4y +3=0.11.已知点M (0,-1),F (0,1),过点M 的直线l 与曲线y =13x 3-4x +4在x =2处的切线平行.(1)求直线l 的方程;(2)求以点F 为焦点,l 为准线的抛物线C 的方程. 解 (1)∵f ′(2)=lim Δx →013(2+Δx )3-4(2+Δx )+4-⎝ ⎛⎭⎪⎫13×23-4×2+4Δx=0, ∴直线l 的斜率为0,其直线方程为y =-1.(2)∵抛物线以点F (0,1)为焦点,y =-1为准线,∴设抛物线的方程为x 2=2py ,则-p2=-1,p =2.故抛物线C 的方程为x 2=4y .12.已知曲线y =x 2+1,问是否存在实数a ,使得经过点(1,a )能作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.解 存在. 理由如下: ∵y =x 2+1,∴y ′=lim Δx →0ΔyΔx =lim Δx →0(x +Δx )2+1-(x 2+1)Δx= lim Δx →02xΔx +(Δx )2Δx=2x . 设切点坐标为(t ,t 2+1),∵y ′=2x ,∴切线的斜率为k =y ′|x =t =2t . 于是可得切线方程为y -(t 2+1)=2t (x -t ). 将(1,a )代入,得a -(t 2+1)=2t (1-t ),即t2-2t+a-1=0.∵切线有两条,∴方程有两个不同的解.故Δ=4-4(a-1)>0.∴a<2.故存在实数a,使得经过点(1,a)能作出该曲线的两条切线,a的取值范围是(-∞,2).。
双基限时练(三)1.A 345!=( ) A.120B.125C.15D.110答案 C2.下列各式中与排列数A m n 相等的是( )A.n !(m -n )!B .n (n -1)(n -2)…(n -m ) C.n n -m +1·A n -1n D .A 1n ·A m -1n -1 解析 A 1n ·A m -1n -1=n (n -1)!(n -m )!=A m n . 答案 D3.若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四种不同的工作,则分配方案共有( )A .180种B .360种C .15种D .30种解析 这是一个排列问题,A 46=6×5×4×3=360.答案 B4.已知3A n -18=4A n -29,则n 等于( )A .5B .6C .7D .8解析 ∵3A n -18=4A n -29,∴3·8!(8-n +1)!=4·9!(9-n +2)!, 即3(9-n )!=4·9(11-n )!∴(11-n )(10-n )=12.即n 2-21n +98=0,解得n =7,或n =14(舍去).答案 C5.已知A 2n +1-A 2n =10,则n 等于( )A .4B .5C .6D .7解析 把n =5代入验证知,A 26-A 25=6×5-5×4=10.答案 B6.以下四个命题,属于排列问题的是( )①一列车途经12个车站,应准备多少张车票;②在假期间,某班同学互通一次电话;③高三·2班有50名同学,选出2名同学去校长办公室开座谈会;④从1,2,3,4这四个数字中,任取3个数字组成三位数.A .①②B .②③C .③④D .①④答案 D7.若A 2n -2+n >2,则n 的取值范围是________________________________________________________________________.解析 根据题意,有⎩⎪⎨⎪⎧ n -2≥2,(n -2)(n -3)+n >2, 解得⎩⎪⎨⎪⎧n ≥4,n ∈N *. 答案 {n |n ≥4,n ∈N *}8.若S =A 11+A 22+A 33+A 44+…+A 100100,则S 的个位数是________. 解析 ∵A 11=1,A 22=2,A 33=6,A 44=24,A 55=120,…,∴S 的个位数字是3.答案 39.求证:A m n +1-A m n =m A m -1n. 证明 ∵A m n +1-A m n =(n +1)!(n +1-m )!-n !(n -m )!=n !(n -m )!⎝ ⎛⎭⎪⎫n +1n +1-m -1 =n !(n -m )!·m n +1-m=m ·n !(n -m +1)!=m A m -1n . ∴A m n +1-A m n =m A m -1n. 10.解方程:3A 3x =2A 2x +1+6A 2x .解 由3A 3x =2A 2x +1+6A 2x 得,3x (x -1)(x -2)=2(x +1)x +6x (x -1),∵x ≥3,∴两边同除以x 得,3(x -1)(x -2)=2(x +1)+6(x -1),即3x 2-17x +10=0,解得x =5,或x =23(舍去),∴x =5.11.(1)求证:n (n +1)!=1n !-1(n +1)!; (2)求和:12!+23!+34!+…+n (n +1)!. 解 (1)证明:∵1n !-1(n +1)!=(n +1)!-n !n !·(n +1)!=n ·n !n !(n +1)!=n (n +1)!∴n (n +1)!=1n !-1(n +1)!. (2)由(1)知,12!+23!+34!+…+n (n +1)!=(1-12!)+(12!-13!)+(13!-14!)+…+[1n !-1(n +1)!] =1-1(n +1)!. 12.对于任意正整数n ,定义“n 的双阶乘n !!”如下:当n 为偶数时,n !!=n ·(n -2)·(n -4)…6×4×2;当n 为奇数时,n !!=n (n -2)(n -4)…5×3×1.证明:(1)(2010!!)·(2009!!)=2010!;(2)2010!!=21005·1005!.证明 (1)由定义,得(2010!!)·(2009!!)=(2010×2008×2006×…×6×4×2)×(2009×2007×2005×…×5×3×1)=2010!.(2)2010!!=2010×2008×…×6×4×2=21005(1005×1004×…×3×2×1) =21005·1005!.。
双基限时练(三)
1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( )
A .不存在
B .与x 轴垂直
C .与x 轴平行
D .与x 轴平行或重合
答案 D
2.一木块沿某一斜面自由下滑,测得下滑的水平距离s 与时间t
之间的函数关系为s =18t 2,则当t =2时,此木块在水平方向的瞬时速
度为( )
A. 2
B. 1
C.12 D .14
解析 s ′=lim Δt →0 Δs Δt =lim Δt →0
18(t +Δt )2-18t 2Δt =lim Δt →0 14tΔt +18(Δt )2Δt =lim Δt →0
(14t +18Δt )=14t . ∴当t =2时,s ′=12.
答案 C
3.若曲线y =h (x )在点P (a ,h (a ))处切线方程为2x +y +1=0,则
( )
A .h ′(a )<0
B .h ′(a )>0
C .h ′(a )=0
D .h ′(a )的符号不定
解析 由2x +y +1=0,得h ′(a )=-2<0.
∴h ′(a )<0.
答案 A
4.曲线y =9x 在点(3,3)处的切线方程的倾斜角α等于( )
A .45°
B .60°
C .135°
D .120°
解析 k =y ′=lim Δx →0 Δy Δx =lim Δx →0
9x +Δx -9x Δx
=lim Δx →0
-9x (x +Δx )=-9x 2. ∴当x =3时,tan α=-1.∴α=135°.
答案 C
5.在曲线y =x 2
上切线倾斜角为π4的点是( ) A .(0,0) B .(2,4)
C .(14,116)
D .(12,14)
解析 y ′=lim Δx →0 Δy Δx =lim Δx →0
(x +Δx )2-x 2Δx =lim Δx →0 2xΔx +(Δx )2Δx =lim Δx →0
(2x +Δx )=2x . 令2x =tan π4=1,∴x =12,y =14.
故所求的点是(12,14).
答案 D
6.已知曲线y =2x 2上一点A (2,8),则过点A 的切线的斜率为________.
解析 k =f ′(2)=lim Δx →0
2(2+Δx )2-2×22Δx
=lim
Δx→0
8Δx
+2(Δx)2
Δx=lim
Δx→0
(8+2Δx)=8.
答案8
7.若函数f(x)在x0处的切线的斜率为k,则极限lim
Δx→0 f(x0-Δx)-f(x0)
Δx=________.
解析lim
Δx→0f(x0-Δx)-f(x0)
Δx
=-lim
Δx→0f(x0-Δx)-f(x0)
-Δx
=-k.
答案-k
8.已知函数f(x)在区间[0,3]上图象如图所示,记k1=f′(1),k2=f′(2),k3=f′(3),则k1,k2,k3之间的大小关系为________.(请用“>”连接)
解析由f(x)的图象及导数的几何意义知,k1>k2>k3.
答案k1>k2>k3
9.已知曲线y=2x2上的点(1,2),求过该点且与过该点的切线垂直的直线方程.
解 ∵f ′(1)=lim Δx →0
f (1+Δx )-f (1)Δx =4,∴过点(1,2)的切线的斜率为4.设过点(1,2)且与过该点的切线垂直的直线的斜率为k ,则4k =-
1,k =-14.
∴所求的直线方程为y -2=-14(x -1),
即x +4y -9=0.
10.已知曲线y =1t -x
上两点P (2,-1),Q ⎝ ⎛⎭⎪⎫-1,12.求: (1)曲线在点P 处、点Q 处的切线的斜率;
(2)曲线在点P ,Q 处的切线方程.
解 将P (2,-1)代入y =1t -x 得t =1,∴y =11-x
. ∴y ′=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0 11-(x +Δx )-11-x Δx =lim Δx →0
1[1-(x +Δx )](1-x )=1(1-x )2
. (1)曲线在点P 处的切线的斜率为y ′|x =2=1(1-2)2
=1; 曲线在点Q 处的切线的斜率为y ′|x =-1=
1[1-(-1)]2=14
. (2)曲线在点P 处的切线方程为
y -(-1)=x -2,即x -y -3=0.
曲线在点Q 处的切线方程为
y -12=14(x +1),即x -4y +3=0.
11.已知点M (0,-1),F (0,1),过点M 的直线l 与曲线y =13x 3
-4x +4在x =2处的切线平行.
(1)求直线l 的方程;
(2)求以点F 为焦点,l 为准线的抛物线C 的方程.
解 (1)∵f ′(2)=
lim Δx →0
13(2+Δx )3-4(2+Δx )+4-⎝ ⎛⎭⎪⎫13×23-4×2+4Δx =0, ∴直线l 的斜率为0,其直线方程为y =-1.
(2)∵抛物线以点F (0,1)为焦点,y =-1为准线,∴设抛物线的方
程为x 2=2py ,则-p 2=-1,p =2.故抛物线C 的方程为x 2=4y .
12.已知曲线y =x 2+1,问是否存在实数a ,使得经过点(1,a )能作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.
解 存在.
理由如下:
∵y =x 2+1,
∴y ′=lim Δx →0 Δy Δx =lim Δx →0
(x +Δx )2+1-(x 2+1)Δx = lim Δx →0 2xΔx +(Δx )2Δx
=2x . 设切点坐标为(t ,t 2+1),
∵y ′=2x ,∴切线的斜率为k =y ′|x =t =2t .
于是可得切线方程为y -(t 2+1)=2t (x -t ).
将(1,a )代入,得a -(t 2+1)=2t (1-t ),
即t 2-2t +a -1=0.
∵切线有两条,∴方程有两个不同的解.
故Δ=4-4(a-1)>0.∴a<2.故存在实数a,使得经过点(1,a)能作出该曲线的两条切线,a的取值范围是(-∞,2).
新课标第一网系列资料。