基本不等式复习公开课
- 格式:ppt
- 大小:202.50 KB
- 文档页数:20
授课内容:基本不等式授课班级:高三七班授课教师:授课时间:第17周(周三上午第1节)教学三维目标:1.知识与能力目标:掌握基本不等式及会应用基本不等式求最值2.过程与方法目标:体会基本不等式应用的条件:一正,二定,三相等;体会应用基本不等式求最值问题解题策略的构建过程。
3.情感态度与价值观目标:通过解题后的反思逐步培养学生养成解题反思的习惯教学重难点:重点:基本不等式在解决最值问题中的应用难点:基本不等式在解决最值问题中的变形应用及等号成立的条件学情分析与学法指导:基本不等式是求最值问题中的一种很重要的方法,但学生在运用过程中“一正,二定,三相等”的应用条件一方面容易被忽略,另一方面某些问题看似不符合前面的三个条件,但经过适当的变形,又可以转化成运用基本不等式的类型,学生解决起来有一定的困难。
在本节高三复习课中,结合学生实际编制了教案,力求在学生的“最近发展区”设计问题,逐步启发引导学生课前自主预习。
设计说明:1.设计课前导学旨在引导学生逐步养成自主预习的学习习惯。
2.设计答疑解惑环节旨在结合学生自主预习中找出的疑惑点,更有针对性的解答学生的疑惑。
3.设计回顾反思环节旨在逐步引导学生及时总结规律方法,逐步养成解题后反思的学习习惯。
课前导学(夯实基础)知识梳理一、基本不等式ab≤a+b 21.基本不等式成立的条件:a>0,b>0.2.等号成立的条件:当且仅当a =b 时取等号. 几何背景:半径不小于半弦(右图) 二、几个重要的不等式 a 2+b 2≥2ab (a ,b ∈R ); b a +a b≥2(a ,b 同号). 2)2(b a ab +≤(a ,b ∈R ); 222)2(2b a b a +≥+(a ,b ∈R ). 三、算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.四、利用基本不等式求最值问题已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)例题讲解:教材90页基础自测1、2、5题 考点二第一题练习:教材92页第1题和第3题小结:1.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.2.对于公式a +b ≥2ab ,2)2(b a ab +≤,要弄清它们的作用和使用条件及内在联系,两个公式也体现了ab 和a +b 的转化关系.3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b2≥ab (a ,b >0)逆用就是ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.说课稿一、说教材用基本不等式 ab b a ≥+2(a >0,b >0)求函数的最大(小)值是高中数学的一个重点,也是近几年高考的一个热点.三个必要条件——即一正(各项的值为正)二定(各项的和或积为定值)三相等(取等号的条件)更是相关考题瞄准的焦点.本节课是人教版高中数学必修5中第三章第4节的内容。
基本不等式及其应用(专题复习课)
目标导航:
1、熟记重要不等式、基本不等式及其变形式;
2、理解应用基本不等式的条件,会用基本不等式解决与最值有关的问题.
一、知识要点:
1、重要不等式:
2、基本不等式:
3、应用基本不等式求最值:
已知00>>y x ,,则
(1)若xy 是定值p ,那么当且仅当y x =时,y x +有最小值p 2.(简记:积定和最小)
(2)若y x +是定值s ,那么当且仅当y x =时,xy 有最大值4
2
s .(简记:和定积最大) 二、小题快练:
1、若0>x ,则x
x 1+的最小值是 2、对于任意两个正数a 、b ,且18=+b a ,则ab 的最大值是
3、下列式子中,最小值是4的是( )
A 、x x 4+
B 、x
x 42+,0>x C 、x x e e 4+ D 、x x sin 4sin +,),(πo x ∈
三、典型示例:
1、“配凑型”基本不等式
例1(1)若35>
x ,求函数5343-+=x x y 的最小值;
(2)若35<
x ,求函数5343-+=x x y 的最大值;
(3)若3
50<
<x ,求函数)35(x x y -=的最大值.
2、“条件型”基本不等式
例2、(1)若00>>y x ,,且
111=+y
x ,求y x +的最小值;
(2)已知0,0>>y x ,822=++xy y x ,求y x 2+的最小值.
变式:设y x ,为实数,若1422=++xy y x ,求y x +2的最大值.。
基本不等式公开课课件一、引言基本不等式是数学中的重要概念,它在解决实际问题、证明数学定理等方面起到了重要的作用。
本课件旨在介绍基本不等式的概念、性质和解题方法,帮助学生理解并掌握基本不等式的应用。
二、基本不等式的概念1. 不等式的定义和符号不等式是数学中一种表示大小关系的表达式。
通常用不等号(>、<、≥、≤)表示。
2. 基本不等式的定义基本不等式是指具有普遍适用性和重要性的不等式。
常见的基本不等式有:算术平均-几何平均不等式、柯西-施瓦茨不等式、均值不等式等。
三、基本不等式的性质1. 不等式的运算性质基本不等式满足不等式的运算性质,包括加法法则、乘法法则和取反法则等。
2. 不等式的传递性质如果对于任意的实数a、b、c,若a < b,b < c,则有a < c。
这种传递性质在解决不等式问题时具有重要意义。
四、基本不等式的应用1. 不等式求解方法不等式求解的一般步骤包括:将不等式转化为等价的形式、求解等价不等式,最后给出不等式的解集。
2. 基本不等式的应用举例例1:应用算术平均-几何平均不等式证明某个数值组的最优解。
例2:利用基本不等式解决实际问题,如最优化问题、优化调整问题等。
五、基本不等式的证明1. 不等式的证明方法常见的不等式证明方法有:直接证明法、间接证明法(反证法)、数学归纳法等。
2. 不等式的证明举例例:使用间接证明法证明算术平均-几何平均不等式。
六、课堂练习为了巩固学生对基本不等式的掌握,本课件设置了一些课堂练习,供学生在课后完成。
七、总结通过本课件的学习,我们了解了基本不等式的概念、性质和应用。
基本不等式作为数学中的重要工具,在解决实际问题和证明数学定理中具有广泛的应用。
希望同学们能够通过课后的练习进一步巩固对基本不等式的理解和运用能力。
§1.6 基本不等式(第一课时)课程标准1.掌握基本不等式: ab ≤a +b 2(a >0,b >0) 2.能用基本不等式解决简单的最大值或最小值问题.1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:_________. (2)等号成立的条件:当且仅当________时取等号.(3)其中a +b 2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 2≥_____(a ,b ∈R ). (2)b a +a b≥__(a ,b 同号). (3)ab ≤⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ). (4)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b .3.利用基本不等式求最值已知x >0,y >0,则(1) 如果积xy 是定值p ,那么当且仅当_____时,和x +y 有最___值2p . (简记:积定和最小)(2) 如果和x +y 是定值p ,那么当且仅当______时,积xy 有最___值p 24. (简记:和定积最大)注意:利用基本不等式求最值应满足三个条件:“一正,二定,三相等”.[练小题巩固基础]一、准确理解概念(判断正误)(1)不等式a 2+b 2≥2ab 与a +b 2≥ab 成立的条件是相同的.( )(2)函数y =x +1x 的最小值是2.( )(3)函数f (x )=sin x +4sin x 的最小值为4.( )(4)“x >0且y >0”是“x y +y x ≥2”的充要条件.( )二、练牢教材小题1.(人教B 版必修①P73例1改编)若x <0,则x +1x ( )A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-22.(人教A 版必修①P46例3改编)矩形两边长分别为a ,b ,且a +2b =6,则矩形面积的最大值是________.3.(北师大版必修①P28T4改编)已知x >2,则x +1x -2的最小值是________.考法(一) 配凑法例1(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________;(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________;(3)已知 ,则[方法技巧]配凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.配凑法的实质在于代数式的灵活变形,配系数、凑常数是关键.考法(二)常数代换法求最值[例2] 已知a>0,b>0,a+b=1,则 + 的最小值为________.[方法技巧] 1.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式;(4)利用基本不等式求解最值.2.常数代换法求解最值应注意的问题(1)条件的灵活变形,确定或分离出常数是基础;(2)已知等式化成“1”的表达式,是代数式等价变形的关键;(3)利用基本不等式求最值时注意基本不等式的前提条件.变式1:已知a>0,b>0,3a+2b=2,则 + 的最小值为________.2.已知a>0,b>0,3a+b=2ab,则a+b的最小值为________.ab的最大值为________________考法(三)消元法求最值[例3] 已知a>0,b>0,3a+b+ab=9,则a+b的最小值为________.[方法技巧] 利用消元法求最值的技巧消元法,即先根据条件建立两个量之间的函数关系,然后代入代数式,再进行最值的求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解,但应注意各个元的范围.变式:(2020·天津高考)已知a>0,b>0,且ab=1,则12a+12b+8a+b的最小值为________.。