电气主接线的形式及优缺点介绍
- 格式:docx
- 大小:20.55 KB
- 文档页数:4
发电厂的电器主接线的方式及优缺点一、主接线的分类:根据是否采用母线作为中间环节1、有汇流母线的接线方式单母线接线,双母线接线2、无汇流母线的接线方式桥形接线,角形接线,单元接线(一)有汇流母线的接线方式A、单母线接线优点:接线简单,操作方便,设备少,经济性好,扩建方便。
缺点:可靠性差,母线或者母线隔离开关故障、检修时,所有回路都要停止工作,造成蜷缩长期停电。
调度不方便,电源只能并列运行,不能分列运行,线路测放生短路有恒大的短路电流。
1)单母线分段接线一段母线发生故障时,非故障段母线不间断供电;2)单母线分段带旁路接线旁路母线和旁路断路器的作用:不停电检修线路断路器B、双母线接线每回线路都经一台断路器和两组隔离开关分别与两组母线连接,母线之间通过母线联络断路器QF(简称母联)连接。
优点:可靠性高,灵活性好,扩建性好优缺点:供电可靠,调度灵活,扩建方便;检修母线可以不停电;可用母线连断路器代替线路断路器工作1)双母线分段接线母线分段可减少母线故障时的停电范围;检修断路器无须停电。
2)双母线带旁路接线优缺点(1)、供电可靠、灵活、操作简单;(2)、检修任一断路器均无需停电;(3)、投资大、控制保护复杂。
(二)无汇流母线的接线方式A、多角形接线特点:1、把各个断路器互相连接起来,形成闭合的单环性接线。
2、每个回路都经过两台断路器接入电路中,从而达到双重连接的目的优点:1、较高的可靠性 2、断路器配置合理 3、隔离开关只作为检修时隔离电压之用,减少了停电事故 4占地面积小 5进出线的回路数受限制;配电装置不易扩建缺点:1、要对进出线的回路数进行限制 2、在闭环和开环两种情况下,流过个开关电气的工作电流差别较大,给选择电器带来困难,给继电保护整定和控制回路复杂化 3、配电装置不易扩建 4、以采用三、五角形接线为宜B、桥形接线1)内桥接线适用于输电线路较长、故障机会较多,而变压器又不需要经常切换的中小容量的发电厂和变电所中3)外桥接线适用于线路较短,检修、操作及故障机会较多,而变压器按经济运行的要求需要经常切换的场合C、单元接线优点:接线简单清晰、设备投资少,简化发电厂电气主接线压缩了占地面积。
电气主接线各种连接方式优缺点与实际应用摘要:结合自身工作经验,通过大量文献资料分析了电气主接线各种连接方式优缺点,总结了电气主接线8种接线方式的设计要求和应用原则,并通过案例进行了论证。关键词:电气主接线;连接方式;优缺点;分析;实际;应用电气主接线主要是指在发电厂、变电所、电力系统中,为满足预定的功率传送和运行等要求而设计的、表明高压电气设备之间相互连接关系的传送电能的电路。电路中的高压电气设备包括发电机、变压器、母线、断路器、隔离刀闸、线路等。它们的连接方式对供电可靠性、运行灵活性及经济合理性等起着决定性作用。一般在研究主接线方案和运行方式时,为了清晰和方便,通常将三相电路图描绘成单线图。在绘制主接线全图时,将互感器、避雷器、电容器、中性点设备以及载波通信用的通道加工元件(也称高频阻波器)等也表示出来。1 电气主接线接线要求对一个电厂而言,电气主接线在电厂设计时就根据机组容量、电厂规模及电厂在电力系统中的地位等,从供电的可靠性、运行的灵活性和方便性、经济性、发展和扩建的可能性等方面,经综合比较后确定。它的接线方式能反映正常和事故情况下的供送电情况。电气主接线又称电气一次接线图。电气主接线应满足以下几点要求:(1)运行的可靠性:主接线系统应保证对用户供电的可靠性,特别是保证对重要负荷的供电。(2)运行的灵活性:主接线系统应能灵活地适应各种工作情况,特别是当一部分设备检修或工作情况发生变化时,能够通过倒换开关的运行方式,做到调度灵活,不中断向用户的供电。在扩建时应能很方便的从初期建设到最终接线。(3)主接线系统还应保证运行操作的方便以及在保证满足技术条件的要求下,做到经济合理,尽量减少占地面积,节省投资。2 电气主接线常见8种接线方式优缺点分析2.1 线路变压器组接线线路变压器组接线就是线路和变压器直接相连,是一种最简单的接线方式。线路变压器组接线的优点是断路器少,接线简单,造价省。相应220kV采用线路变压器组,110kV宜采用单母分段接线,正常分段断路器打开运行,对限制短路电流效果显著,较适合于110kV开环运行的网架。但其可靠性相对较差,线路故障检修停运时,变压器将被迫停运,对变电所的供电负荷影响较大。其较适合用于正常二运一备的城区中心变电所,如上海中心城区就有采用。2.2 桥形接线桥形接线采用4个回路3台断路器和6个隔离开关,是接线中断路器数量较少、也是投资较省的一种接线方式。根据桥形断路器的位置又可分为内桥和外桥两种接线。由于变压器的可靠性远大于线路,因此中应用较多的为内桥接线。若为了在检修断路器时不影响和变压器的正常运行,有时在桥形外附设一组隔离开关,这就成了长期开环运行的四边形接线。2.3 多角形接线多角形接线就是将断路器和隔离开关相互连接,且每一台断路器两侧都有隔离开关,由隔离开关之间送出回路。多角形接线所用设备少,投资省,运行的灵活性和可靠性较好。正常情况下为双重连接,任何一台断路器检修都不影响送电,由于没有母线,在连接的任一部分故障时,对电网的运行影响都较小。其最主要的缺点是回路数受到限制,因为当环形接线中有一台断路器检修时就要开环运行,此时当其它回路发生故障就要造成两个回路停电,扩大了故障停电范围,且开环运行的时间愈长,这一缺点就愈大。环中的断路器数量越多,开环检修的机会就越大,所一般只采四角(边)形接线和五角形接线,同时为了可靠性,线路和变压器采用对角连接原则。四边形的保护接线比较复杂,一、二次回路倒换操作较多。2.4 单母线分段接线单母线分段接线就是将一段母线用断路器分为两段,它的优点是接线简单,投资省,操作方便;缺点是母线故障或检修时要造成部分回路停电。2.5 双母线接线双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。与单母线相比,它的优点是供电可靠性大,可以轮流检修母线而不使供电中断,当一组母线故障时,只要将故障母线上的回路倒换到另一组母线,就可迅速恢复供电,另外还具有调度、扩建、检修方便的优点;其缺点是每一回路都增加了一组隔离开关,使配电装置的构架及占地面积、投资费用都相应增加;同时由于配电装置的复杂,在改变运行方式倒闸操作时容易发生误操作,且不宜实现自动化;尤其当母线故障时,须短时切除较多的电源和线路,这对特别重要的大型发电厂和变电站是不允许的。2.6 双母线带旁路接线双母线带旁路接线就是在双母线接线的基础上,增设旁路母线。其特点是具有双母线接线的优点,当线路(主变压器)断路器检修时,仍有继续供电,但旁路的倒换操作比较复杂,增加了误操作的机会,也使保护及自动化系统复杂化,投资费用较大,一般为了节省断路器及设备间隔,当出线达到5个回路以上时,才增设专用的旁路断路器,出线少于5个回路时,则采用母联兼旁路或旁路兼母联的接线方式。2.7 双母线分段带旁路接线双母线分段带旁路接线就是在双母线带旁路接线的基础上,在母线上增设分段断路器,它具有双母线带旁路的优点,但投资费用较大,占用设备间隔较多,一般采用此种接线的原则为:(1)当设备连接的进出线总数为12~16回时,在一组母线上设置分段断路器;(2)当设备连接的进出线总数为17回及以上时,在两组母线上设置分段断器。2.8 3/2(4/3)断路器接线3/2(4/3)断路器接线就是在每3(4)个断路器中间送出2(3)回回路,一般只用于500kV(或重要220kV)电网的母线主接线。它的主要优点是:(1)运行调度灵活,正常时两条母线和全部断路器运行,成多路环状供电;(2)检修时操作方便,当一组母线停支时,回路不需要切换,任一台断路器检修,各回路仍按原接线方式霆,不需切换;(3)运行可靠,每一回路由两台断路器供电,母线发生故障时,任何回路都不停电。2/3(4/3)断路器接线的缺点是使用设备较多,特别是断路器和电流互感器,投资费用大,保护接线复杂。3 案例分析:10kV终端变电所主接线模式分析终端变电所又称受端变电所,这类变电所接近负荷中心,电能通过它分配给用户或下级配电所。在确保供电可靠性的前提下,变电所主接线设计应有利于规范化、简单化、自动化及无人化,尽可能减少占地面积。变电所主接线方式应根据负荷性质、变压器负载率、电气设备特点及上级电网强弱等因素确定。一般终端变电所高压侧主接线形式选用线路-变压器组接线和内桥接线。3.1 线路-变压器组接线线路-变压器组接线是最简单主接线方式。高压配电装置只配置2个设备单元,接线简单清晰,占地面积小,送电线路故障时由送电端变电所出线断路器跳闸。在正常运行方式下,L1、L2线路各带一台主变,系统接线简单,运行可靠、经济,有利于变电所实现自动化、无人化。如主变容量满足低负载率标准(2台主变负载率取0.5~0.65),系统发生故障时,恢复供电操作十分方便。当1台主变或一条线路故障退出运行,只需在变电所低压侧作转移负荷操作,就能确保100%负荷正常用电,对相邻变电所无影响。如主变容量按高负载率配置(2台主变负载率高于0.65),主变或线路发生故障时,需要通过相邻变电所联络线来转移部份负荷,实现相互支援。因此,对于地方电网中110kV终端变电所,如主变容量满足N-1要求,即主变容量满足低负载率标准,首先应推荐采用线路-变压器组接线方式。3.2 内桥接线内桥接线是终端变电所最常用的主接线方式(见图2)。其高压侧断路器数量较少,线路故障操作简单、方便,系统接线清晰。在正常运行方式下,桥断路器打开,类似于线路-变压器组接线,L1、L2线路各带1台主变。因内桥接线线路侧装有断路器,线路的投入和切除十分方便。当送电线路发生故障时,只需断开故障线路的断路器,不影响其它回路正常运行。但变压器故障时,则与其连接的两台断路器都要断开,从而影响了一回未故障线路的正常运行。随着主变制造工艺和质量的迅速提高,现在各厂家生产的主变大都为免维护式。因主变压器运行可靠性较高,其故障率一般小于1.5次/百台?年,而且主变也不需要经常切换,而送电线路故障率高达0.36次/百km?年。因此,对于地方电网中110kV终端变电所,如主变容量不能满足N-1 要求,采用内桥主接线方式有利于提高系统供电可靠性。参考文献[1] 李义山.变配电实用技术[M].北京:机械工业出版社,2003.[2] 居荣.供配电技术[M].北京:化学工业出版社,2005.。
各种接线方式的优缺点第一篇:各种接线方式的优缺点单母线接线优点:接线简单,清晰,设备少,操作方便,便于扩建和采用成套配电装置。
缺点:可靠性差,母线或母线隔离开关检修或故障时,所有回路都要停止工作,也就是要造成全厂或全站长期停电,调度不方便,电能只能并列运行,并且线路侧发生短路时,有较大的短路电流。
2.1 双母线接线优点:有两组母线,可以互为备用,运行可靠性和灵活性高,调度灵方便、便于扩建,可以向母线左右任意一个方向顺延扩建,检修任一母线时,隔离开关仅仅使本回路断开。
缺点:造价高,因为增加了一组母线及其隔离开关,增加了配电装置构架及占地面积;当母线故障或检修时,隔离开关作倒换操作电器,容易误操作,但可以装断路器的连锁装置加以克服。
单元接线(1)优点:单元接线简单,开关设备少,操作简单以及因不设发电机电压级母线,而在发电机和变压器之间采用封闭母线,使得在发电机和变压器低压侧短路的几率和短路电流相对于具有发电机电压级母线时,有所减小。
(2)缺点:存在如下技术问题:1)当主变压器或厂总变压器发生故障时,除了跳主变压器高压侧出口断路器外,还需跳发电机磁场开关。
2)发电机定子绕组本身故障时,若变压器高压侧断路器失灵拒跳,则只能通过失灵保护出口启动母差保护或发远方跳闸信号使线路对侧断路器跳闸;若因通道原因远方跳闸信号失效,则只能由对侧后备保护来切除故障,这样故障切除时间大大延长,会造成发电机、主变压器严重损坏。
单母线分段接线(1)优点:1)供电可靠性和灵活性相对于单母线接线高,操作简单,接线方便,便于检修,投资较小,对重要用户可以从不同段引出两回馈电线路,由两个电源供电。
2)当一段母线发生故障分段断路器自动将故障段切除,保证正常断母线不间断供电和不致使重要用户停电。
(2)缺点:1)当任一段母线发生故障时,将造成两段母线同时停电,在判断故障后,拉开分段隔离开关,完好段即可恢复供电,这期间将造成完好段的短时停电。
科技信息电气主接线是发电厂和变电所电气部分的主体,它反映各设备的作用、连接方式和回路间的相互关系。
高压电气设备包括发电机、变压器、母线、断路器、隔离刀闸、线路等,它们的连接方式对供电可靠性、运行灵活性及经济合理性等起着决定性作用·因此,建立一个科学的电气主接线评价系统,全面分析相关影响因素,综合评价各项技术经济比较,合理确定主接线方案是十分必要的。
一、电气主接线接线要求对一个电厂而言,电气主接线应该根据电厂在电力系统中的地位、变电站的规划容量、负荷性质、线路、变压器连接元件总数、设备特点等条件确定,并应综合考虑供电可靠性、运行灵活性、检修操作方便、节约投资、便于过渡和扩展等要求。
1、可靠性电气可靠性的要求与其在电力系统中的地位和作用有关,由其容量、电压等级、负荷大小和类别等因素决定。
评价电气主接线可靠性的标志是:断路器检修时,不宜影响对系统的供电;线路或母线发生故障时应尽量减少线路的停运回路数和主变的停运台数,尽量保证对重要用户的供电;尽量避免变电站全部停运的可能性。
2、灵活性应满足调度、检修的灵活性,能灵活地投入或切除机组、变压器或线路,灵活地调配电源和负荷,满足系统在正常、事故、检修及特殊运行方式下的要求;在扩建时应能很方便的从初期建设到最终接线。
3、经济性主接线系统还应保证运行操作的方便以及在保证满足技术条件的要求下,做到经济合理,尽量减少占地面积,节省投资。
二、电气主接线常见接线方式优缺点分析1、不分段的单母线接线单母线接线的特点是整个配电装置只有一组母线,每回进出线都只经过一台断路器固定接与母线的某一段上。
优点是:接线简单清晰、设备少、操作方便、便于扩建和采用成套配电装置。
缺点:灵活性和可靠性差,当母线或母线隔离开关故障或检修时,必须断开它所连接的电源,与之相联的所有电力装置,在整个检修期问均需停止工作。
此外,在出线断路器检修期问,必须停止该回路的供电。
适用范围:6~10kv配电装置的出线回路数不超过5回;35~66kv配电装置的出线回路数不超过3回;1l0~220kv配电装置的出线回路数不超过2回。
电气主接线的基本接线形式
电气主接线的基本接线形式
发电厂和变电站主接线的基本环节是电源和出线,母线是联接二者的中间环节,起到汇集和分配电能的作用,不论是发电机、变压器或其他电源都接到一组母线上,向母线输送电能;所有出线也都接到同一组母线由母线送出电能。
采用母线的优缺点:可使接线简单明了、运行方便,有利于安装和扩建,但配电装置占地面积大,使用的开关电器多。
无汇流母线的接线的优缺点:使用开关电器少,占地面积小,适于进出线回路少的场所。
据此,主接线的基本形式可以概括的分为两大类:有汇流母线的接线形式和无汇流母线的接线形式。
当然这两大类里面又可细分,分别进行介绍。
电气主接线的基本接线形式
(一)单母线接线
1.不分段单母线接线
3. 隔离开关和断路器的操作顺序(保证隔离开关“先通后断”)
在接通电路时,应先和断路器两侧的隔离开关,再和断路器;在切断
电路时,先断开断开断路器,再断开两侧的隔离开关。
4. 单母线接线的特点
优点:接线简单清晰、操作方便、设备少、投资小,隔离开关仅用于
检修,不作为操作电器,不容易发生误操作。
缺点:母线和母线隔离开关检修或故障时,将造成全部回路停电;
出线断路器检修时,该回路将停电。
调度不方便,电源只能并列运行,并且线路侧发生短路时,有
较大的短路电流
5. 适用范围
这种接线方式只适用于对供电可靠性和连续性要求不高的Ⅲ类负荷,
或有备用电源的Ⅱ级负荷用户。
一般只用在出线回路少,没有重要负荷的发电厂和变电所中。
《技术咨询本人微信:121616107》
《电力工程技术QQ二群:569901600》。
电气主接线母线又称汇流排,是汇集电能及分配电能的重要设备。
1、电气主接线的概念在变电站中,发电机、变压器、断路器、隔离开关、互感器等高压电气设备,以及将他们连接在一起的高压电缆和母线,按照其功能要求组成的主回路称为电气一次系统,又称电气主接线。
在选择电气主接线时,需要根据变电站在电网中的地位、进出线回路数、电压等级、负荷性质等条件,满足供电可靠性、调度灵活性、经济性等方面的要求。
2、电气主接线的类型 电气主接线的主体是电源(进线)回路和线路(出线)回路。
分为有汇流母线和无汇流母线两大类。
以下着重介绍有汇流母线的接线方式。
电气主接线的基本类型如下:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧角形接线外桥接线内桥接线桥形接线单元接线无汇流母线断路器接线2/3双母带旁路双母线母线简单双母线双母线单母带旁路单母分段简单单母线单母线有汇流母线 3、电气主接线的基本形式(1)单母接线如图为单母接线,各电源和出线都接在一条共同的母线W 上。
每条回路中都装有断路器和隔离开关。
紧靠母线侧的(如QS2)为母线隔离开关,靠近线路侧的(如QS3)为线路隔离开关。
当检修断路器QF2时,停电操作顺序为:先断开QF2,再依次拉开两侧隔离开关QS3、QS2。
然后在QF2两侧挂上接地线,以保证检修人员的安全。
QF2恢复送电的操作顺序为:先依次合上QS2、QS3,再合上QF2。
优点:接线简单清晰,设备少、投资低,操作方便。
缺点:可靠性不高,不够灵活。
具体表现为:a、任一线路断路器检修时,该回路必须停电;b、母线或母线隔离开关发生故障或检修时,连接在母线上的所有回路都将停电;适用范围:6~10KV出线数≤5回;35KV出线数≤3回;110KV出线数≤2回。
(2)、单母分段于单母接线相比,单母分段增加了一台母线分段断路器(或隔离开关)将单母线分为两段。
QF闭合,母线并列运行:相当于不分段的单母接线。
电气主接线基本形式第一节单母线接线一单母线接线1.接线特点单母线接线如图10-1所示图10-1 单母线接线单母线接线的特点是每一回路均经过一台断路器QF和隔离开关QS接于一组母线上。
断路器用于在正常或故障情况下接通与断开电路。
断路器两侧装有隔离开关,用于停电检修断路器时作为明显断开点以隔离电压,靠近母线侧的隔离开关称母线侧隔离开关(如11QS),靠近引出线侧的称为线路侧隔离开关(如13QS)。
在主接线设备编号中隔离开关编号前几位与该支路断路器编号相同,线路侧隔离开关编号尾数为3,母线侧隔离开关编号尾数为1(双母线时是1和2)。
在电源回路中,若断路器断开之后,电源不可能向外送电能时,断路器与电源之间可以不装隔离开关,如发电机出口。
若线路对侧无电源,则线路侧可不装设隔离开关。
二、单母线分段接线 1.接线特点单母线分段接线,如图10-2所示。
正常运行时,单母线分段接线有两种运行方式:(1)分段断路器闭合运行。
正常运行时分段断路器0QF 闭合,两个电源分别接在两段母线上;两段母线上的负荷应均匀分配,以使两段母线上的电压均衡。
在运行中,当任一段母线发生故障时,继电保护装置动作跳开分段断路器和接至该母线段上的电源断路器,另一段则继续供电。
有一个电源故障时,仍可以使两段母线都有电,可靠性比较好。
但是线路故障时短路电流较大。
(2)分段断路器0QF 断开运行。
正常运行时分段断路器0QF 断开,两段母线上的电压可不相同。
每个电源只向接至本段母线上的引出线供电。
当任一电源出现故障,接该电源的母线停电,导致部分用户停电,为了解决这个问题,可以在0QF 处装设备自投装置,或者重要用户可以从两段母线引接采用双回路供电。
分段断路器断开运行的优点是可以限制短路电流。
图10-2 单母线分段接线L11QFI 段11QS三、单母线分段带旁路母线接线1.接线特点图10-3为单母线分段带旁路接线的一种情况。
旁路母线经旁路断路器接至I 、II 段母线上。
电气主接线几种方式1线路变压器组接线:线路变压器组接线就是线路和变压器直接相连,是一种最简单的接线方式,其特点是设备少、投资省、操作简便、宜于扩建,但灵活性和可靠性2桥形接线:桥形接线采用4个回路3台断路器和6个隔离开关,是接线中断路器数量较少、也是投资较省的一种接线方式。
根据桥形断路器的位置又可分为内桥和外桥两种接线。
由于变压器的可靠性远大于线路,因此中应用较多的为内桥接线。
若为了在检修断路器时不影响和变压器的正常运行,有时在桥形外附设一组隔离开关,这就成了长期开环运行的四边形接线。
3多角形接线:多角形接线就是将断路器和隔离开关相互连接,且每一台断路器两侧都有隔离开关,由隔离开关之间送出回路。
多角形接线所用设备少,投资省,运行的灵活性和可靠性较好。
正常情况下为双重连接,任何一台断路器检修都不影响送电,由于没有母线,在连接的任一部分故障时,对电网的运行影响都较小。
其最主要的缺点是回路数受到限制,因为当环形接线中有一台断路器检修时就要开环运行,此时当其它回路发生故障就要造成两个回路停电,扩大了故障停电范围,且开环运行的时间愈长,这一缺点就愈大。
环中的断路器数量越多,开环检修的机会就越大,所一般只采四角(边)形接线和五角形接线,同时为了可靠性,线路和变压器采用对角连接原则。
四边形的保护接线比较复杂,一、二次回路倒换操作较多。
4单母线分段接线:单母线分段接线就是将一段母线用断路器分为两段,它的优点是接线简单,投资省,操作方便;缺点是母线故障或检修时要造成部分回路停电。
5双母线接线:双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。
与单母线相比,它的优点是供电可靠性大,可以轮流检修母线而不使供电中断,当一组母线故障时,只要将故障母线上的回路倒换到另一组母线,就可迅速恢复供电,另外还具有调度、扩建、检修方便的优点;其缺点是每一回路都增加了一组隔离开关,使配电装置的构架及占地面积、投资费用都相应增加;同时由于配电装置的复杂,在改变运行方式倒闸操作时容易发生误操作,且不宜实现自动化;尤其当母线故障时,须短时切除较多的电源和线路,这对特别重要的大型发电厂和变电站是不允许的。
电气主接线各种连接方式优缺点与实际应用袁文进(四川华能嘉陵江水电有限责任公司,四川南充637000)摘 要:结合自身工作经验,通过大量文献资料分析了电气主接线各种连接方式优缺点,总结了电气主接线8种接线方式的设计要求和应用原则,并通过案例进行了论证。
关键词:电气主接线;连接方式;优缺点;分析;实际;应用 电气主接线主要是指在发电厂、变电所、电力系统中,为满足预定的功率传送和运行等要求而设计的、表明高压电气设备之间相互连接关系的传送电能的电路。
电路中的高压电气设备包括发电机、变压器、母线、断路器、隔离刀闸、线路等。
它们的连接方式对供电可靠性、运行灵活性及经济合理性等起着决定性作用。
一般在研究主接线方案和运行方式时,为了清晰和方便,通常将三相电路图描绘成单线图。
在绘制主接线全图时,将互感器、避雷器、电容器、中性点设备以及载波通信用的通道加工元件(也称高频阻波器)等也表示出来。
1 电气主接线接线要求对一个电厂而言,电气主接线在电厂设计时就根据机组容量、电厂规模及电厂在电力系统中的地位等,从供电的可靠性、运行的灵活性和方便性、经济性、发展和扩建的可能性等方面,经综合比较后确定。
它的接线方式能反映正常和事故情况下的供送电情况。
电气主接线又称电气一次接线图。
电气主接线应满足以下几点要求:(1)运行的可靠性:主接线系统应保证对用户供电的可靠性,特别是保证对重要负荷的供电。
(2)运行的灵活性:主接线系统应能灵活地适应各种工作情况,特别是当一部分设备检修或工作情况发生变化时,能够通过倒换开关的运行方式,做到调度灵活,不中断向用户的供电。
在扩建时应能很方便的从初期建设到最终接线。
(3)主接线系统还应保证运行操作的方便以及在保证满足技术条件的要求下,做到经济合理,尽量减少占地面积,节省投资。
2 电气主接线常见8种接线方式优缺点分析2.1 线路变压器组接线线路变压器组接线就是线路和变压器直接相连,是一种最简单的接线方式。
电气主接线的形式及优缺点介绍
【单母线接线】
优点:接线简单清晰,设备少,操作方便,便于扩建和采用成套配电装置。
缺点:不够灵活可靠,任一元件(母线或母线隔离开关等)故障时检修,均需使整个配电装置停电,单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障的母线段分开后才能恢复非故障母线的供电。
适用范围:6-10KV配电装置的出线回路数不超过5回;35-63KV 配电装置出线回路数不超过3回;110-220KV配电装置的出线回路数不超过2回。
【单母线分段接线】
优点:用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电。
当一段母线发生故障,分段断路器自动将故障切除,保证正常段母线不间断供电和不致使重要用户停电。
缺点:当一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期间内停电。
当出线为双回路时,常使架空线路出现交叉跨越。
扩建时需向两个方向均衡扩建。
适用范围:6-10KV配电装置出线回路数为6回及以上时;35KV配电装置出线回路数为4-8回时;110-220KV配电装置出线回路数为3-4回时。
【单母分段带旁路母线】
这种接线方式在进出线不多,容量不大的中小型电压等级为
35-110KV的变电所较为实用,具有足够的可靠性和灵活性。
【桥型接线】
1、内桥形接线
优点:高压断器数量少,四个回路只需三台断路器。
缺点:变压器的切除和投入较复杂,需动作两台断路器,影响一回线路的暂时停运;桥连断路器检修时,两个回路需解列运行;出线断路器检修时,线路需较长时期停运。
适用范围:适用于较小容量的发电厂,变电所并且变压器不经常切换或线路较长,故障率较高的情况。
2、外桥形接线
优点:高压断路器数量少,四个回路只需三台断路器。
缺点:线路的切除和投入较复杂,需动作两台断路器,并有一台变压器暂时停运。
高压侧断路器检修时,变压器较长时期停运。
适用范围:适用于较小容量的发电厂,变电所并且变压器的切换较频繁或线路较短,故障率较少的情况。
【双母线接线】
优点:
1)供电可靠,可以轮流检修一组母线而不致使供电中断;一组母线故障时,能迅速恢复供电;检修任一回路的母线隔离开关,只停该回路。
2)调度灵活。
各个电源和各回路负荷可以任意分配到某一组母线上,能灵活地适应系统中各种运行方式调度和潮流变化的需要。
3)扩建方便。
向双母线的左右任何的一个方向扩建,均不影响两组母线的电源和负荷均匀分配,不会引起原有回路的停电。
4)便于试验。
当个别回路需要单独进行试验时,可将该回路分开,单独接至一组母线上。
缺点:
1)增加一组母线和使每回线路需要增加一组母线隔离开关。
2)当母线故障或检修时,隔离开关作为倒换操作电器,容易误操作。
为了避免隔离开关误操作,需在隔离开关和断路器之间装设连锁装置。
适用范围:6-10KV配电装置,当短路电流较大,出线需要带电抗器时;35KV配电装置,当出线回路数超过8回时,或连接的电源较多、负荷较大时;110-220KV配电装置,出线回路数为5回及以上时,或110-220KV配电装置在系统中占重要地位,出线回路数为4回及以上时。
【双母线分段接线】
双母线分段可以分段运行,系统构成方式的自由度大,两个元件
可完全分别接到不同的母线上,对大容量且相互联系的系统是有利的。
由于这种母线接线方式是常用传统技术的一种延伸,因此在继电保护方式和操作运行方面都不会发生问题,而较容易实现分阶段的扩建优点。
但容易受到母线故障的影响,断路器检修时需要停运线路。
占地
面积较大。
一般当连接的进出线回路数在11回及以下时,母线不分段。
你要更加全面的话,建议去网上下一本电子书《电力系统设计手册》,在P171~P177可以找到你想要的。