常用电动机类型及特点
- 格式:docx
- 大小:30.37 KB
- 文档页数:15
常用电机的种类和用途一、直流电机1. 制动器•用途:直流电机制动器广泛应用于电梯、起重机、轨道交通等设备中,用于实现停车和制动控制。
•特点:具有快速反应、可靠性高、制动力矩稳定等特点。
2. 扇形电机•用途:扇形电机主要用于风扇、空调等家用电器中,用于产生风力或气流。
•特点:体积小、噪音低、节能高效。
3. 舵机•用途:舵机广泛应用于机器人、遥控模型等领域,用于控制机械臂、舵面等部件的运动。
•特点:具有高精度、快速响应、稳定性好等特点。
4. 无刷直流电机•用途:无刷直流电机主要应用于电动工具、家电、汽车等领域,用于实现动力传输。
•特点:寿命长、效率高、无电刷磨损等优点。
二、交流电机1. 感应电动机•用途:感应电动机广泛应用于工业生产中的泵、风机、压缩机等设备,用于驱动机械运动。
•特点:结构简单、可靠性高、维护成本低等特点。
•用途:同步电动机主要应用于电力系统中的发电机、水泵等设备,用于产生电能或驱动机械。
•特点:运行稳定、功率因数高、调速性能好等优点。
3. 阻抗式电动机•用途:阻抗式电动机主要用于家庭电器中的洗衣机、冰箱等设备,用于驱动转动部件。
•特点:体积小、噪音低、节能高效等特点。
4. 电磁矩电动机•用途:电磁矩电动机广泛应用于机床、冶金设备等领域,用于实现精密控制和高速运动。
•特点:响应速度快、控制精度高、负载能力强等优点。
三、步进电机1. 单相步进电机•用途:单相步进电机主要用于家用电器中的微波炉、洗衣机等设备,用于驱动转盘、搅拌器等部件。
•特点:结构简单、成本低、控制方便等特点。
2. 二相步进电机•用途:二相步进电机广泛应用于打印机、数码相机等设备,用于精确定位和控制转动角度。
•特点:精度高、运行平稳、响应速度快等优点。
3. 三相步进电机•用途:三相步进电机主要应用于纺织、印刷等行业的机械设备中,用于实现精密控制和高速运动。
•特点:输出扭矩大、运行平稳、控制精度高等特点。
•用途:四相步进电机广泛应用于数控机床、光纤设备等领域,用于实现高精度的定位和控制。
电机与拖动基础一、电机的基本概念电机是一种将电能转化为机械能的装置,它是现代工业中不可或缺的重要设备。
根据其工作原理和结构特点,电机可分为直流电机、交流异步电机、交流同步电机等多种类型。
二、电机的分类及特点1. 直流电机:直流电动机是最早发明的一种电动机,具有转矩大、转速范围广、调速方便等优点。
但由于其结构复杂,制造成本较高,在实际应用中逐渐被交流异步电动机所替代。
2. 交流异步电动机:交流异步电动机由于其结构简单、制造成本低廉等优点,在现代工业中得到广泛应用。
它主要分为单相异步电动机和三相异步电动机两种类型。
3. 交流同步电动机:与异步电动机不同,交流同步电动机在运行过程中转速始终与供给它的交流频率成正比。
它具有功率因数高、效率高等优点,但需要外部控制器进行调速。
三、拖动系统基础知识拖动系统是指利用各种驱动装置将某物体或工件进行运动的装置。
在现代工业中,拖动系统广泛应用于各种生产线和机械设备中。
拖动系统通常由电机、传动装置、行走部件等组成。
四、传动装置1. 皮带传动:皮带传动是一种常见的机械传动方式,其主要优点是结构简单、制造成本低廉等。
但由于其存在滑移现象,效率较低。
2. 齿轮传动:齿轮传动是一种高效的机械传动方式,它具有转矩大、精度高等优点。
但由于齿轮制造精度要求较高,成本较高。
3. 蜗杆传动:蜗杆传动是一种常用的减速装置,在工业生产中得到广泛应用。
它具有结构简单、减速比大等优点。
五、行走部件1. 轮式行走部件:轮式行走部件通常由车轮和驱动装置组成,适用于平整路面上的运输任务。
2. 履带式行走部件:履带式行走部件通常由履带和驱动装置组成,适用于复杂地形和恶劣环境下的运输任务。
3. 悬挂式行走部件:悬挂式行走部件通常由悬挂装置和驱动装置组成,适用于高速公路等平整路面上的运输任务。
六、拖动系统的应用领域1. 工业生产线:拖动系统在工业生产线中得到广泛应用,如汽车生产线、食品加工生产线等。
2. 交通运输:拖动系统在交通运输领域中也有重要作用,如汽车、火车、飞机等。
各种电机的分类特点电机是将电能转换为机械能的设备,广泛应用于工业、农业、交通、家电等领域。
根据不同的原理和应用需求,电机可以分为多种不同类型,下面将介绍一些常见的电机分类和特点。
1. 直流电机(Direct Current Motor)直流电机是最早发展的电机之一,其特点是容易控制转速和转向。
直流电机分为直流电动机(DC Motor)和直流发电机(DC Generator),直流电动机又分为永磁直流电机(Permanent Magnet DC Motor)和电磁直流电机(Electromagnetic DC Motor)。
直流电机可实现较宽的调速范围,对于需要高转矩启动和精确调速的应用非常适用。
2. 交流电机(Alternating Current Motor)交流电机是目前使用最广泛的电机类型,其特点是结构简单、制造成本低、维护方便。
交流电机分为异步电机(Synchronous Motor)和同步电机(Asynchronous Motor)。
异步电机是最常见的交流电机类型,适用于大部分功率范围的应用。
同步电机在需要精确调速和高效率运行的场合下常被采用。
3. 步进电机(Stepper Motor)步进电机是一种数字控制电机,其特点是运动时以固定的步进角移动,可实现高精确度的定位和轨迹控制。
步进电机分为永磁步进电机(Permanent Magnet Stepper Motor)和混合型步进电机(Hybrid Stepper Motor)。
步进电机在印刷、纺织、自动化设备等领域广泛应用于需要精确定位的场合。
4. 无刷电机(Brushless Motor)无刷电机也称为电子换向电机,其特点是结构简单、转速范围广、效率高。
无刷电机常用于无人机、电动汽车、家电等领域。
无刷电机由电子调速器控制转速和转向,无需维护换向系统,具有较长的使用寿命和较低的噪音。
5. 永磁同步电机(Permanent Magnet Synchronous Motor)永磁同步电机是一种功率密度高、效率高的电机,由于采用永磁体作为励磁源,具有高转矩、高响应和较低的能耗。
电机分类主要三类电机分为三类主要是交流电动机、直流电动机和步进电动机。
交流电动机是把交流电能转成机械能的电机,它是由定子和转子构成,由电源传送功率,具有高效率,低成本,结构简单,可以输出大功率,是大功率电机的主要类型。
直流电动机使用直流电来驱动,它的特点是电源电压可以控制它的速度和力矩,功率小,但是可以控制较精确。
直流电机应用在一些控制要求精确的场合,比如工业机器人部件所使用的,也有供电用途。
步进电动机把送入其中的电流所施加的作用变成角度,并转进转子所需要的步进电机是控制精密机械装置的重要元件,比如冲印机、电脑硬件等。
它们具有精度高、可靠性强、小体积等特点,是工业自动化的重要零部件。
总而言之,电机的分类主要分为交流电动机、直流电动机和步进电动机三类,它们是工业生产中不可缺少的重要部件,它们各具特点,工程师在应用时需要根据不同场合分别选择不同类型的电机。
交流电机通常分为定子电动机、转子电动机和杂交电动机等。
定子电动机是把定子中的相绕组把电能转成机械能的电机,它的优点是低噪声,高效率,可以转出大功率,通常应用在打印机上,说机等。
转子电动机是将转子上的相绕组把电能转成机械能的电机,它的优点是低成本,可以输出大功率,高效率,通常应用在风力发电机上、汽车上及电磁泵上。
杂交电动机是把定子和转子上的相绕组组合在一起,把电能转化成机械能的电机,它的优点是结构简单、较低的制动时间,可以输出大功率,通常用来驱动机器人及联接器。
直流电机主要分为分步电机、直流同步电机和双连杆电机等。
分步电机是把直流电源电压变换成相应的角度,用来控制机械设备的电机,它的特点是具有高精度、高可靠性等,广泛应用在工业机器人、自动化设备以及机械设备中。
直流同步电机把定速的直流电源电压变换成可调的转子转速的电机,它的优点是可以控制精确的转速,广泛应用在汽车仪表上、冰箱冷风机等。
双连杆电机是一种可以把直流电源变换成电动机转轴转速和力矩的电机,它的优点是可以控制较大的力矩,可以实现恒定的转速,常用于摩托车、拖拉机等机器的驱动上。
电动机详细分类电动机应用广泛,种类繁多。
我们一般的是根据电机的分类来区别电动机的应用于交易。
电动机详细分类如下:1.按工作电源种类划分:可分为直流电动机和交流电动机。
直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。
有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。
电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。
永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。
其中交流电机还可分:单相电机和三相电机。
2.按结构和工作原理划分:可分为直流电动机、异步电动机、同步电动机。
同步电动机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。
异步电动机可划分:感应电动机和交流换向器电动机。
感应电动机可划分:三相异步电动机、单相异步电动机和罩极异步电动机等。
交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。
3.按起动与运行方式划分:电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。
4.按用途划分:驱动用电动机和控制用电动机。
驱动用电动机划分:电动工具(包括钻孔、抛光、磨光、开槽、切割、扩孔等工具)用电动机、家电(包括洗衣机、电风扇、电冰箱、空调器、录音机、录像机、影碟机、吸尘器、照相机、电吹风、电动剃须刀等)用电动机及其它通用小型机械设备(包括各种小型机床、小型机械、医疗器械、电子仪器等)用电动机。
控制用电动机又划分:步进电动机和伺服电动机等。
5.按转子的结构划分:笼型感应电动机(旧标准称为鼠笼型异步电动机)和绕线转子感应电动机(旧标准称为绕线型异步电动机)。
6.按运转速度划分:高速电动机、低速电动机、恒速电动机、调速电动机。
低速电动机又分为齿轮减速电动机、电磁减速电动机、力矩电动机和爪极同步电动机等。
调速电动机除可分为有级恒速电动机、无级恒速电动机、有级变速电动机和无级变速电动机外,还可分为电磁调速电动机、直流调速电动机、PWM变频调速电动机和开关磁阻调速电动机。
描述电机的种类及优缺点。
电机是利用电磁感应原理将电能转换为机械能的一种装置。
根据不同的应用需求,电机的种类和优缺点各有不同。
首先,直流电机是最常见的电机类型之一。
它具有结构简单、控制容易、调速性能好等优点。
但是,直流电机的缺点也很明显,如维护成本高、效率低、噪音大等。
因此,在许多应用中,直流电机已经被交流电机所取代。
交流电机分为异步电机和同步电机两种。
异步电机是一种常见的电机类型,其优点包括结构简单、成本低、维护方便、可靠性高等。
但是,异步电机的缺点也很明显,如启动电流大、转矩特性差、调速性能不稳定等。
因此,在需要高性能、高精度控制的应用中,异步电机往往不能满足要求。
同步电机是一种高性能的电机类型,其优点包括转矩特性好、调速性能稳定、效率高等。
由于同步电机的转速与电源频率保持一致,因此可以方便地进行速度控制和定位。
但是,同步电机的缺点也很明显,如结构复杂、成本高、维护困难等。
因此,在许多应用中,同步电机往往不被优先考虑。
此外,还有一些其他类型的电机,如永磁同步电机、步进电机等。
这些电机各有其优缺点,适用于不同的应用场景。
例如,永磁同步电机具有高效、节能、可靠性高等优点,但是其成本较高;步进电机具有控制简单、定位精度高等优点,但是其速度和扭矩受到一定限制。
综上所述,电机的种类和优缺点各有不同,需要根据具体的应用场景选择合适的电机类型。
同时,随着技术的不断发展,电机的性能和可靠性也在不断提高,为各种应用提供了更好的解决方案。
机械设计课程设计电动机的选择随着工业技术的不断发展和进步,机械设计课程已经成为越来越多工科院校的重要学科之一。
在机械设计课程中,电动机的选择是一个极为重要且具有挑战性的问题。
本文将围绕着机械设计课程中电动机的选择展开讨论,以期帮助读者更好地理解和运用相关知识。
一、电动机的种类及特性在进行电动机的选择之前,首先需要了解各种类型电动机的特性和适用范围。
当前常见的电动机主要包括直流电动机、异步电动机、同步电动机等。
每种类型的电动机都具有自己的特点和适用场景,在实际应用中需要根据具体情况进行选择。
1.1 直流电动机直流电动机是一种常见的电动机类型,其特点是转速范围广,启动和制动性能好,控制方便。
适用于需要调速和精密控制的场合,例如机床、印刷设备等。
1.2 异步电动机异步电动机又称交流感应电动机,是目前应用最广泛的一种电动机类型。
其特点是结构简单、制造成本低、可靠性高,适用于大部分工业领域。
1.3 同步电动机同步电动机是一种定转速电动机,其特点是高效、运行平稳,适用于需要恒定转速的场合,例如风电、水泵等。
二、电动机选择的影响因素在选择电动机时,需要考虑到多种因素,包括但不限于功率、转速、负载特性、控制方式等。
下面将逐一介绍各个因素对电动机选择的影响。
2.1 功率电动机的功率是一个重要参数,需要根据设计的具体需求来确定。
一般而言,功率越大的电动机可以驱动更大的负载,但也会带来成本和能源利用效率等问题。
2.2 转速转速是影响电动机选择的关键因素之一。
根据设计需求和机械传动系统的匹配,需要选择适合的转速范围的电动机。
2.3 负载特性负载特性是指负载的转矩-转速曲线,不同的负载特性需要选择不同类型的电动机来驱动。
2.4 控制方式不同的控制方式对电动机的选择也有一定影响,例如需要调速和精密控制时,需要选择适合的调速电机或调速器。
2.5 经济性电动机的选择还需要考虑经济性,包括初投资、运行成本和维护成本等。
需要在满足设计要求的前提下,尽量降低成本。
各种电机的特点及典型应用电机是将电能转化为机械能的设备,广泛应用于工业、交通、农业等领域。
根据不同的工作原理和应用领域,电机可以分为直流电机、交流电机、步进电机和伺服电机等多种类型。
下面将详细介绍各种电机的特点及典型应用。
1. 直流电机(DC Motor)直流电机是利用直流电源供电,通过电流与磁场之间力的相互作用实现电力转换的电机。
其主要特点如下:-转速可调:转速与电压、电流成正比,通过调节电压或电流可以实现转速调节。
-启动和制动能力强:由于直流电机具有较高的起动扭矩,因此适用于大部分需要启动、制动频繁的场合。
-反向性好:通过改变电流的方向可以实现正转与反转。
-稳定性好:适用于对转速稳定性要求较高的场合。
典型应用:-电动汽车:直流电机因其较高的起动扭矩和调速灵活性,逐渐成为电动汽车的首选驱动电机。
-家电产品:如洗衣机、吸尘器、混合机等,直流电机在家电领域中应用广泛。
-动力传输:直流电机常被用于带动传送带、曳引机构等实现物料的输送和搬运。
2. 交流电机(AC Motor)交流电机是利用交流电源供电,通过电流与磁场之间的相互作用实现电力转换的电机。
其主要特点如下:-结构简单:交流电机结构简单,容量大,体积小。
-转速稳定:在额定电压、频率下运行,转速相对稳定。
-使用方便:交流电源广泛,适用于各种场合。
-成本低:与直流电机相比,交流电机制造成本更低。
典型应用:-空调、冰箱、电风扇等家电产品:交流异步电机被广泛应用于家电产品中。
-工业机械:如起重机、输送机、风机、压缩机等巨大的工业设备中,交流电机应用广泛。
-制冷与暖通设备:交流电机被应用于空调机组、冷水机组、风机盘管等机电设备中。
3. 步进电机(Stepper Motor)步进电机是一种将数字脉冲信号转换为角度或者线性位移的电动机。
其主要特点如下:-高精度:步进电机可以非常准确地控制转轴的位置。
-易于控制:步进电机只需提供驱动信号,无需反馈机制,控制比较简单。
电机设计知识点在现代工业和生活中,电机被广泛应用于各个领域,如汽车、家电、工业制造等。
电机设计是电机工程师必备的基本技能之一,它涉及到电机的结构、原理及设计参数等方面。
本文将介绍一些电机设计的基础知识点。
一、电机分类电机按照不同的工作原理和应用领域可以分为多个类型,常见的电机包括直流电机、交流电机和步进电机等。
每种电机都有其特点和适用范围。
1. 直流电机直流电机是最简单的一种电动机,它的转子和定子由磁铁组成。
直流电机具有转速可调、启动扭矩大的特点,因此常用于需要精确控制转速和扭矩的场合,如电动汽车。
2. 交流电机交流电机是最常见的电动机之一,其转子和定子都由电磁铁绕组组成。
根据不同的转子结构,交流电机又可分为异步电机和同步电机。
异步电机广泛应用于家电、工业生产线等场所,同步电机通常用于电网同步发电。
3. 步进电机步进电机是一种数字式电机,它按照指令进行一小步或多小步旋转。
步进电机具有精确定位、高转矩、无刷等特点,广泛应用于数控机床、机械手等需要准确位置控制的场合。
二、电机设计要点电机设计涉及到多个方面的知识和技术,下面介绍几个重要的设计要点。
1. 磁电路设计电机的磁电路设计是电机设计的基础,它决定了电机的磁场分布和工作性能。
磁电路设计需要考虑磁路的磁阻、磁通量和磁场分布等因素,以满足电机的输出功率、效率和工作温度等要求。
2. 绕组设计绕组是电机中的重要部分,它是转子和定子之间实现能量转换的关键。
绕组的设计需要考虑导线材质、截面积、绝缘性能等因素,并根据工作电压和电流确定合适的绕组方式,以满足电机的工作要求。
3. 散热设计高功率电机在工作过程中会产生大量热量,因此散热设计对于电机的可靠运行非常重要。
散热设计需要考虑散热表面积、散热方式和散热材料等因素,并通过热传导和对流等方式将热量有效地散发出去。
4. 控制系统设计在某些场合,电机需要与其他设备或系统进行配合工作,因此电机的控制系统设计也是电机设计的关键一环。
电动机类型及特点一、同步电机与异步电机区别:均属交流电机结构:同步电机和异步电机的定子绕组是相同的,主要区别在于转子的结构;同步电机的转子上有直流励磁绕组,所以需要外加励磁电源,通过滑环引入电流;而异步电机的转子是短路的绕组,靠电磁感应产生电流又称感应电机;相比之下,同步电机较复杂,造价高;应用:同步电机大多用在大型发电机的场合;而异步电机则几乎全用在电动机场合;同步电机效率较异步电机稍高,在2000KW以上的电动机选型时,一般要考虑是否选用同步电机;二、单相异步电动机与三相异步电动机:单项电动机:当单相正弦电流通过定子绕组时,电机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场;这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电机无法旋转;当我们用外力使电动机向某一方向旋转时如顺时针方向旋转,这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大;这样平衡就打破了,转子所产生的总的将不再是零,转子将顺着推动方向旋转起来;通常根据电动机的起动和运行方式的特点,将单相异步电动机分为单相电阻起动异步电动机、单相电容起动异步电动机、单相电容运转异步电动机、单相电容起动和运转异步电动机、单相罩极式异步电动机五种;区别:三相异步电动机采用380V三相供电,是用220V的电源,而且都是小功率的,最大只有;相比于同转速同功率的三相电机,单项电机的效率低、功率因数低、运行平稳性差、且体积大,成本高,但由于单相电源方便,且调速方便,因此广泛用于电动工具、医疗器械、家用电器等;三、无刷直流电机1、无刷直流电机:无刷直流电机是永磁式同步电机的一种,而并不是真正的直流电机;无刷直流电机不使用机械的电刷装置,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料,性能上相较一般的传统直流电机有很大优势,是当今最理想的调速电机;直流无刷电机由电动机主体和驱动器组成,在电动机内装有位置传感器检测电动机转子的极性,驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等;特点:●全面替代直流电机调速、变频器+变频电机调速、异步电机+减速机调速;●具有传统直流电机的所有优点,同时又取消了碳刷、滑环结构;●可以低速大功率运行,可以省去减速机直接驱动大的负载;●体积小、重量轻、出力大;●转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小;●无级调速,调速范围广,过载能力强;●软启软停、制动特性好,可省去原有的机械制动或电磁制动装置;●效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速耗,综合节电率可达20%~60%,仅节电一项一年收回购置成本;●可靠性高,稳定性好,适应性强,维修与保养简单;●耐颠簸震动,噪音低,震动小,运转平滑,寿命长;●没有无线电干扰,不产生火花,特别适合爆炸性场所,有防爆型;●根据需要可选梯形波磁场电机和正旋波磁场电机;2、无刷直流电机与有刷直流电机和直流电机是2个概念;虽然直流无刷电机名字带直流,实际上是不是直流电机;从分类上来看,直流电机是一类,而直流无刷电机则属于;1无刷电机的优点●无电刷、低干扰:没有了有刷电机运转时产生的电火花,极大减少了电火花对遥控无线电设备的干扰;●噪音低,运转顺畅:没有了电刷,运转时摩擦力大大减小,运行顺畅,发热量低,效率高,噪音低,对于模型运行稳定性是一个巨大的支持;●寿命长,低维护成本:无刷电机的磨损主要是在轴承上,从机械角度看,无刷电机几乎是一种免维护的电动机了,必要的时候,只需做一些除尘维护即可;但有刷电机低速扭力性能优异、转矩大等性能特点是无刷电机不可替代的2从趋势上论,无刷减速电机可能取代有刷减速电机●适用范围:无刷电机通常被使用在控制要求比较高,转速比较高的设备上,如航模,精密仪器仪表等对电机转速控制严格,转速达到很高的设备;通常动力设备使用的都是有刷电机,如吹风机,工厂的电动机,家用的抽油烟机等;●使用寿命:无刷电机通常使用寿命在几万小时这个数量级,主要取决于轴承的不同;通常有刷电机的连续工作寿命在几百到1千多个小时,到达使用极限就需要更换碳刷;●使用效果:无刷电机通常是数字变频控制,可控性强,从每分钟几转,到每分钟几万转都可以很容易实现;碳刷电机启动以后工作转速恒定,调速不是很容易,串激电机也能达到20000转/秒,但是使用寿命会比较短;●节能环保方面:相对而言,无刷电机采用变频技术控制的会比串激电机节能很多,最典型的就是变频空调和冰箱;●维修方面:碳刷电机需要更换碳刷,而无刷电机,使用寿命很长,日常维护基本不需要;●噪音方面:与是否是有刷电机无关,主要是看轴承和点击内部组件的配合情况;3、无刷直流电机与交流电机无刷直流电机,定子是旋转磁场,拖着转子磁场转动;交流同步电机,也是定子旋转磁场拖着转子磁场转动;它们的不同是,旋转磁场旋转的原因不同:1交流同步电机,定子磁场转动的原因是彼此落后120度的三相对称交流电,定子磁场的转动是交流电的变化快慢;2直流电机,是直流电源不变的恒定电压,与线圈连接实际位置的改变形成的,而且与线圈连接实际位置的改变是转子转动的快慢;这样,它们的调速方法就不同:1交流同步电机,定子磁场转动的原因是彼此落后120度的三相对称交流电,定子磁场的转动是交流电的变化快慢;只要改变交流电变化的快慢,就能改变电机的转速,即变频调速;2直流电机,是直流电源不变的恒定电压,与线圈连接实际位置的改变形成的,而且与线圈连接实际位置的改变只与转子转动的快慢相关;只要改变转子的转速就可以调速,而转子的转速与电压成正比,改变电压就可改变转速,即调压调速;直流调速不改变电机的负载性质,而交流调速改变了负载的性质;交流调速变频,频率不同时,交流电机的感抗大小不同,负载性质随之改变,是一个极不稳定的系统,很难实现精细调速;直流调速变压,电压不同时,直流电机的电阻大小不变,负载性质不变,是一个非常稳定的系统,很容易实现精细调速,几个毫伏的电压速度都可以分辨;由于无刷直流电动机的励磁来源于永磁体,没有激磁损耗的问题,由于转子中无交变磁通,其转子上既无铜耗又无铁耗,综合效率比同容量异步电动机高出10~20%左右依据功率大小而定;无刷直流电动机具有高效率、高转矩、高精度的三高特性,非常适合使用在24小时连续运转的机械,同时具有体积小,重量轻,可作成各种体积形状,产品性能超越传统直流电机的所有优点,是当今最理想的调速电机;比较:直流电机具有优良的启动特性和调速特性,但造价较高;交流电机造价低,电源方便,但启动特性和调速特性稍差;4、无刷直流电机与交流伺服电机直流无刷电机:无刷直流电机感应反电动势也是梯形波的;无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统;控制时各相电流也尽量控制成方波,逆变器输出电压按照有刷直流电机PWM的方法进行控制即可;本质上,无刷直流电机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴;交流伺服电机:通常说的交流永磁同步伺服电机具有定子三相分布绕组和永磁转子,感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供;永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制磁场定向控制或直接转矩控制的先进控制方式;区别:方波和正弦波控制导致的设计理念不同;最后明确一个概念,无刷直流电机的所谓“直流变频”实质上是通过逆变器进行的交流变频,从电机理论上讲,无刷直流电机与交流永磁同步伺服电机相似,应该归类为交流永磁同步伺服电机;但习惯上被归类为直流电机,因为从其控制和驱动电源以及控制对象的角度看,称之为“无刷直流电机”也算是合适的;四、电机调速1、直流电机调速:转子电路串联电阻短时调速、转子电路电压广泛应用,调节范围0—基速、改变磁通只能提高转速,基速以上,恒功率调速1电压调速:可控电源调速、PWM脉宽调制调速广泛应用与老式的可控直流电源调速系统相比,PWM调速系统有以下优点:a、采用全控型器件的PWM调速系统,其脉宽调制电路的开关频率高,因此系统的频带宽,响应速度快,动态抗扰能力强;b、由于开关频率高,仅靠电动机电枢电感的滤波作用就可以获得脉动很小的直流电流,电枢电流容易连续,系统的低速性能好,稳速精度高,调速范围宽,同时电动机的损耗和发热都较小;c、PWM系统中,主电路的电力电子器件工作在开关状态,损耗小,装置效率高,而且对交流电网的影响小,没有晶闸管整流器对电网的“污染”,功率因数高,效率高;d、主电路所需的功率元件少,线路简单,控制方便;目前,受到器件容量的限制,PWM直流调速系统只用于中、小功率的系统;国内的超大功率调速还要依靠可控硅实现可控整流来实现直流电机的调压调速2、交流电机调速:1三相异步电动机:a、变极对数调速方法:改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的;特点:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性;本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等;b、变频调速:改变电动机定子电源的频率,从而改变其同步转速的调速方法;变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器;其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难;本方法适用于要求精度高、调速性能较好场合;c、串级调速:绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的;根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大;本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用;d、串入附加电阻:绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行;串入的电阻越大,电动机的转速越低;此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上;属有级调速,机械特性较软;e、定子调压调速:由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻;为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的;调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种;晶闸管调压方式为最佳;调压调速的特点:调压调速线路简单,易实现自动控制;调压过程中转差功率以发热形式消耗在转子电阻中,效率较低;调压调速一般适用于100KW以下的生产机械;f、电磁调速:特点:装置结构及控制线路简单、运行可靠、维修方便;调速平滑、无级调速;对电网无谐影响;速度失大、效率低;本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械;g、液力耦合器调速:特点:功率适应范围大,可满足从几十千瓦至数千千瓦不同功率的需要;结构简单,工作可靠,使用及维修方便,且造价低;尺寸小,能容大;控制调节方便,容易实现自动控制;本方法适用于风机、水泵的调速;2单相异步电动机:和力矩电机相比,它恒转矩;和变频电机相比它不节能;和直流电机相比,它控制的精度低;单相异步电动机和三相异步电动机一样,它的转速调节较困难;如采用变频调速则设备复杂、成本高;为此一般只进行有极调速,主要的调速方法有:a、串电抗器调速降压调速:将电抗器与电动机定子绕组串联,利用电抗器上产生的压降使加到电机定子绕组上的电压低于电源电压,从而达到降低电动机转速的目的;此种调速方法,只能是由电机的额定转速往低调;多用在吊扇及台扇上;b、电动机绕组内部抽头调速:通过调速开关改变中间绕组与启动绕组及工作绕组的接线方法,从而达到改变电动机内部气隙磁场的大小,达到调节电动机转速的目的;有L型和T型两种接法;c、交流晶闸管调速:利用改变晶闸管的导通角,来实现调节加在单相电动机上的交流电压的大小,从而达到调速的目的;此方法可以实现无级调速,缺点是有一些电磁干扰;常用于电风扇的调速上;五、电机启动1、直流电机启动1启动方法直接合闸起动:直接合闸起动就是将电动机直接接入到额定电压的电源上启动;由于直流电机电枢回路电阻和电感都较小,而转动体具有一定的机械惯性,起动的开始阶段电流很大,最大可达额定电流的15~20倍;因为电动机启动电流很大,所以启动转矩大,电动机启动迅速,但这一电流会使电网受到扰动、机组受到机械冲击、换向器发生火花;它只适用于功率不大于4千瓦小型电动机,如家用电器中的直流电机;串电阻起动:在启动时将一组启动电阻RP串人电枢回路,以限制启动电流,而当转数上升到额定转数后,再把启动变阻器从电枢回路中切除;启动电流小,但是变阻器比较笨重,启动过程中要消耗很多的能量;降电压起动:在启动时通过暂时降低电动机供电电压的办法来限制启动电流,需要有一套可变电压的直流电源,这种方法只适合于大功率直流电机;2启动转矩直流电机的由你自己设定,假如全压直接起动,可以达到额定转矩的20多倍,这样将使机械损毁,所以必须加入以减少起动电流,从而减少,一般加入的使为额定转矩的倍左右,这样电机及机械可以承受,启动过程也能加快;2、交流电机启动(1)启动方法全压启动:在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动;优点是操纵控制方便,维护简单,而且比较经济;主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw的电动机不宜用此方法;自耦减压起动:利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式;它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%;并且可以通过抽头调节起动转矩;至今仍被广泛应用;Y-Δ起动:正常运行的定子绕组为三角形接法的鼠笼式异步电动机,在起动时将定子绕组接成星形,待起动完毕后再接成三角形,降低起动电流,减轻对电网的冲击;起动电流只是原来按三角形接法直接起动时的1/3,起动转矩也降为原来按三角形接法直接起动时的1/3;适用于无载或者轻载起动的场合;同任何别的减压起动器相比较,其结构最简单,价格也最便宜;除此之外,当负载较轻时,可以让电动机在星形接法下运行,这样能使电动机的效率有所提高,并节约了电力消耗;软起动器:利用可控硅的移相调压原理来实现电动机的调压起动,起动效果好但成本较高;可控硅工作时谐波干扰较大,对电网有一定的影响;另外电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时;因此可控硅元件的故障率较高,因为涉及到电力电子技术,因此对维护技术人员的要求也较高;变频器:因为涉及到电力电子技术,微机技术,因此成本高,对维护技术人员的要求也高,因此主要用在需要调速并且对速度控制要求高的领域;总之,星三角起动,自藕减压起动因其成本低,维护相对软起动和变频控制容易,目前在实际运用中还占有很大的比重;但因其采用分立电气元件组装,控制线路接点较多,在其运行中,故障率相对比较高;2启动转矩启动转矩表征了电动机的启动能力,启动转矩大于额定转矩,一般电机样板上标有两者的关系倍数,一般2倍左右,它与启动方式有关如星三角起动,变频调速起动等,直接起动鼠笼式一般为额定力矩的到倍;通常起动转矩为额定转矩的125%以上;与之对应的电流称为起动电流,通常该电流为额定电流的6倍左右;一般自耦变压器的抽头有65%和80%两组,需要较大启动转矩时接80%,否则接65%;六、电机制动1、:在电机断开电源后,在电机的电源上加上与正常运行电源反相的电源,加快电机的减速;有一个最大的缺点:当电机转速为0时,如果不及时撤除反相后的电源,电机会反转;因此,不允许反转的机械,如一些车床等,制动方法就不能采用反接制动了,而只能采用或机械制动;2、:中通以直流电,从而产生一个固定不变的磁场,转子按旋转方向切割磁力线,产生一个制动力矩;由于是在定子绕组中通以直流电来制动,因而能耗制动又叫直流注入制动;在一些要求制动时间短和制动效果好的场合,一般不使用此制动方法;3、再生制动:当电机的转子速度超过电机同步磁场的旋转速度时,转子绕组所产生的电磁转矩的旋转方向和转子的旋转方向相反,电机处于制动状态;此时,可以采取一定的措施把产生的电能回馈给电网,因此,再生制动也叫发电制动;再生制动会出现在以下两种场合:1、起重机重物下降时,电机转子在重物重力的手动下,转子的转速有可能超过同步转速,此时,电机处于再生制动状态;2、变频调速时,当变频器把频率降低时,同步转速也随之降低;但转子转速由于负载惯性的作用,不会马上降低,此时,电机也会处于再生制动状态,直至拖动系统的速度也下降为止;4、机械制动采用机械装置使电动机断开电源后迅速停转的制动方法;如电磁抱闸、电磁离合器等电磁铁制动器;七、伺服电机1、直流伺服电机与直流无刷电机直流和是2类,概念上不存在交集;简言之:特指直流;无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定;控制复杂,容易实现智能化,其电子换相方式灵活,可以正弦波换相;电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境;2、交流伺服电机与直流伺服电机直流伺服电机:就是把直流电机加上编码器形成闭环控制,电机通过改变电的大小来改变电机的扭矩、速度等参数;直流伺服电机的结构和普通直流电机差不多,只是直流电机为满足低惯量采用细长电枢,盘形或空心杯的,或者改成了永磁电机,是最理想的调速系统,这就导致直流伺服电机比较容易实现调速,控制精度较高;缺点是直流伺服电机有碳刷,容易造成电机的磨损,而且维护成本高操作麻烦;交流伺服电机:是交流电机的一种,通过伺服驱动器的矢量控制理论控制电机的扭矩,速度、位置等等,交流伺服电机的转子电阻一般很大,这样可以防止自转,当控制电压消失后,由于有励磁电压,此时的交流伺服电机中会有脉振磁动势,交流伺服就是是一种带编码器的同步电机,效果比直流伺服稍微差一点,但维护方便;缺点是价格高、精度没直流的好推荐使用交流伺服电机,直流伺服电机太热,控制精度不好,使用寿命短;永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向。