北师大版数学高二1.4 数学归纳法(一) 教案 (北师大选修2-2)
- 格式:doc
- 大小:124.00 KB
- 文档页数:5
数学归纳法-北师大版选修2-2教案一、教学目标1.了解数学归纳法的概念与特点;2.能够使用数学归纳法证明简单的命题;3.能够理解和应用数学归纳法解决实际问题。
二、教学内容1.数学归纳法的概念与特点;2.数学归纳法的推广和严密化;3.数学归纳法的应用。
三、教学重点1.数学归纳法的概念与特点;2.能够使用数学归纳法证明简单的命题。
四、教学难点1.数学归纳法的推广和严密化;2.数学归纳法的应用。
五、教学方法1.观察与讨论法:通过生动的例子,引导学生认识和理解数学归纳法的基本概念和特点;2.讲授与演示法:通过讲授和演示归纳法的具体步骤,使学生掌握如何运用归纳法证明命题;3.练习与探究法:通过练习和探究,让学生掌握数学归纳法的应用技巧。
第一步:引入1.引入数学归纳法的基本概念;2.通过实际例子,引导学生理解数学归纳法的重要性。
第二步:讲解1.讲解数学归纳法基本的步骤;2.分析数学归纳法的特点,包括归纳假设、基本步骤、归纳证明、结论;第三步:演示1.带领学生完成归纳法的几个简单例子,让学生深入掌握归纳法的基本操作;2.带领学生完成一道较为复杂的归纳证明练习,让学生掌握归纳法的应用技巧。
第四步:练习1.让学生分组自主练习归纳法的应用;2.教师辅助解答学生的问题。
第五步:总结1.对本节课所学的内容进行总结;2.强调数学归纳法在理解和应用中的重要性。
七、教学评价1.课堂参与度(20%):检测学生是否认真听讲、积极互动,师生互动是否频繁;2.练习与应用(40%):检测学生掌握归纳法的技巧和应用能力;3.课堂表现(40%):检测学生是否能够在课上正确展现自己的学习成果。
通过本节课的教学,我发现学生对于数学归纳法的概念和特点有了更加深入的理解和认识。
同时,在练习中也发现了一些问题,比如有些学生在归纳证明中容易犯错,需要加强指导和训练。
因此,在教学中需要更加强化实践,多引入真实案例来加强学生对归纳法的认识和理解,同时通过练习和探究来让学生得到更好的应用和提高。
教学准备1. 教学目标1、使学生了解归纳法, 理解数学归纳的原理与实质。
2、掌握数学归纳法证题的两个步骤;会用“数学归纳法”证明简单的与自然数有关的命题。
3、培养学生观察, 分析, 论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历知识的构建过程, 体会类比的数学思想。
4、努力创设课堂愉悦情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率。
5、通过对例题的探究,体会研究数学问题的一种方法(先猜想后证明), 激发学生的学习热情,使学生初步形成做数学的意识和科学精神。
2. 教学重点/难点二、教学重点:能用数学归纳法证明一些简单的数学命题。
教学难点:明确数学归纳法的两个步骤的必要性并正确使用。
3. 教学用具4. 标签教学过程四、教学过程(一)、复习:1、数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(kÎN*,k≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法2、数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立.3、用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n取第一个值n0结论正确;(2)假设当n=k(k∈N*,且k≥n0)时结论正确,证明当n=k+1时结论也正确. 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确(二)、探究新课用数学归纳法证明几何问题的关键是“找项”,即几何元素从k个变成k+1个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析,在实在分析不出来的情况下,将n=k+1和n=k分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧。
1.4《数学归纳法》一、教学分析本课是数学归纳法的第一节课。
前面学生已经学过归纳和推理相关内容的学习,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法。
不完全归纳法是研究数学问题,猜想或发现数学规律的重要手段,它有利于发现问题,形成猜想,但是结论不一定正确,这种推理方法不能作为一种论证方法;完全归纳,结论可靠,但一一核对困难。
从而需要一种科学的方法解决与正整数相关的数学问题,即必须进一步学习严谨的科学的论证方法——数学归纳法。
数学归纳法安排在归纳和推理之后,是促进学生从有限思维发展到无限思维的一个重要环节。
并且,本节内容是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。
二、教学目标学生通过归纳和推理等相关知识的学习,已基本掌握了不完全归纳法,具有一定的观察、归纳、猜想能力。
通过新课程教学方法的实施和新课程理念的渗透,学生已基本习惯于对已给问题进行探究,但主动提出问题和置疑的能力还有待进一步提高。
能主动提出问题和敢于置疑是学生具有独立人格和创新能力的重要标志。
如何让学生主动置疑和提出问题?本课在这方面作了一些尝试。
根据教学内容特点和新课程高中数学标准以及学生现有的知识水平,按照学生终身发展需要而制订以下教学目标。
1.知识和技能(1)了解由有限多个特殊事例得出的一般结论不一定正确。
(2)初步理解数学归纳法原理。
(3)理解并记住用数学归纳法证明数学命题的两个步骤。
(4)初步会用数学归纳法证明一些简单的与正整数有关的恒等式。
2.过程和方法(1)通过对数学归纳法的学习、应用,培养学生的观察、归纳、猜想、分析能力和严密的逻辑推理能力。
(2)让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生的创新能力。
3.情感、态度和价值观(1)通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神。
(2)学生通过对数学归纳法原理的理解,感受数学内在美的振憾力,从而使学生喜欢数学。
§ 数学归纳法.了解数学归纳法的思想实质,掌握数学归纳法的两个步骤.(重点) .体会归纳法原理,并能应用数学归纳法证明简单的命题.(重点、难点)[基础·初探]教材整理 数学归纳法阅读教材~,完成下列问题..数学归纳法的基本步骤数学归纳法是用来证明某些与正整数有关的数学命题的一种方法.它的基本步骤是:命题成立;,(如=或等)时第一个值()验证:当取 命题成立.,时=+推出当,时命题成立的前提下)≥,+∈=(()在假设当根据()()可以断定命题对一切从开始的正整数都成立..应用数学归纳法注意的问题有关的命题.正整数()用数学归纳法证明的对象是与 ()在用数学归纳法证明中,两个基本步骤缺一不可.()步骤()的证明必须以“假设当=(≥,∈+)时命题成立”为条件.判断(正确的打“√”,错误的打“×”)()与正整数有关的数学命题的证明只能用数学归纳法.( )()数学归纳法的第一步的初始值一定为.( )()数学归纳法的两个步骤缺一不可.( )【答案】()× ()× ()√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问:解惑:疑问:解惑:疑问:解惑:[小组合作型](∈+)时,第一步验证=时,左边应取的项是( )++++++()用数学归纳法证明(+)·(+)·…·(+)=×××…×(-)(∈+),“从到+”左端增乘的代数式为.【导学号:】【自主解答】()当=时,左边应为+++,故选.()令()=(+)(+)…(+),则()=(+)·(+)…(+),(+)=(+)(+)…(+)(+)(+),所以==(+).【答案】() ()(+)数学归纳法证题的三个关键点.验证是基础找准起点,奠基要稳,有些问题中验证的初始值不一定是..递推是关键。
陕西省石泉县高中数学第一章推理与证明1.4 数学归纳法(1)教案北师大版选修2-2
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省石泉县高中数学第一章推理与证明1.4 数学归纳法(1)教案北师大版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省石泉县高中数学第一章推理与证明1.4 数学归纳法(1)教案北师大版选修2-2的全部内容。
4 数学归纳法(1)。
§4 数学归纳法在学校,我们经常会看到这样的一种现象:排成一排的自行车,如果一个同学将第一辆自行车不小心弄倒了,那么整排自行车就会倒下.1.试想要使整排自行车倒下,需要具备哪几个条件?【提示】(1)第一辆自行车倒下;(2)任意相邻的两辆自行车,前一辆倒下一定导致后一辆倒下.2.利用这种思想方法能解决哪类数学问题?【提示】一些与正整数n有关的问题.数学归纳法是用来证明与正整数n有关的数学命题的一种方法,它的基本步骤是:(1)验证:n=1时,命题成立;(2)在假设当n=k(k≥1)时命题成立的前提下,推出当n=k+1时,命题成立.根据(1)(2)可以断定命题对一切正整数n都成立.拓展:一般地,数学归纳法可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0)时命题成立,证明当n=k+1时命题也成立;只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.+【思路探究】第(1)步验证n=1时等式成立,第(2)步在假设n=k等式成立的基础上,等式左边加上n=k+1时新增的项,整理出等式右边的项.【自主解答】(1)当n=1时,左边=1,右边=1,等式成立.(2)假设当n=k(k≥1)时,等式成立,即1+3+…+(2k-1)=k2,那么,当n=k+1时,1+3+…+(2k-1)+[2(k+1)-1]=k2+[2(k+1)-1]=k2+2k+1=(k+1)2.这就是说,当n=k+1时等式成立.根据(1)和(2),可知等式对任意正整数n都成立.1.本题在推证“n=k+1”等式成立时,必须把归纳假设“n=k”时1+3+…+(2k-1)=k2作为必备条件使用上,否则就不是数学归纳法了.2.用数学归纳法证明与自然数有关的等式命题,关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n的取值是否有关,由n=k到n=k+1时,等式两边会增加多少项.将本例等式左边的“n个奇数的和”改为“n个偶数的和”即变为2+4+…+2n=n2+n(n∈N+).【证明】(1)当n=1时,左边=2,右边=1+1=2,等式成立.(2)假设当n=k(k≥1)时等式成立,即2+4+…+2k=k2+k成立,那么当n=k+1时,2+4+…+2k+2(k+1)=k 2+k +2(k +1) =(k +1)2+k +1,这就说,当n =k +1时等式成立.根据(1)和求证:1n +1+1n +2+…+13n >56,(n ≥2,n ∈N *).【思路探究】 在由n =k 到n =k +1的推证过程中,可用分析法或“放缩”的技巧来证明.【自主解答】 (1)当n =2时,左边=13+14+15+16=5760,故左边>右边,不等式成立.(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即 1k +1+1k +2+…+13k >56,则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1)=1k +1+1k +2+…+13k +(13k +1+13k +2+13k +3-1k +1) >56+(13k +1+13k +2+13k +3-1k +1),* 法一 (分析法)下面证*式≥56,即13k +1+13k +2+13k +3-1k +1>0, 只需证(3k +2)(3k +3)+(3k +1)(3k +3)+(3k +1)(3k +2)-3(3k +1)(3k +2)>0, 只需证(9k 2+15k +6)+(9k 2+12k +3)+(9k 2+9k +2)-(27k 2+27k +6)>0, 只需证9k +5>0,显然成立.所以当n =k +1时,不等式也成立.法二 (放缩法)*式>(3×13k +3-1k +1)+56=56,所以当n =k +1时,不等式也成立.由(1)(2)可知,原不等式对一切n ≥2,n ∈N *均成立.1.本题中证明*式>56,用到了两种方法,其中分析法思维量较小,但运算量较大,而放缩法虽然运算量小,但需要通过观察、比较挖掘出已有代数式和目标间的差异,适当放缩,故思维量较大.2.对与正整数有关的不等式的证明,如果其它方法较困难,可考虑用数学归纳法证明,使用数学归纳法的难点在第二个步骤上,这时除了一定要运用归纳假设外,还经常用到比较法、放缩法、配凑法、分析法等.若n 为大于1的自然数,求证:1n +1+1n +2+…+12n >1324.【证明】 (1)n =2时,12+1+12+2=712>1324.(2)假设当n =k 时成立,即1k +1+1k +2+…+12k >1324.则当n =k +1时,1k +2+1k +3+…+12k +12k +1+12k +2+1k +1-1k +1>1324+12k +1+12k +2-1k +1=1324+1-1=13+1>13.由(1)(2)可知,原不等式成立.n n +1n n (1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式; (2)当a 1≥3时,证明对所有的n ≥1,有a n ≥n +2.【思路探究】 令n =1,2,3,求a 2,a 3,a 4→由a 2,a 3,a 4的式子结构猜想a n→数学归纳法证明【自主解答】 (1)由a 1=2,得a 2=a 21-a 1+1=3, 由a 2=3,得a 3=a 22-2a 2+1=4, 由a 3=4,得a 4=a 23-3a 3+1=5,由此猜想a n 的一个通项公式:a n =n +1(n ≥1). (2)证明:①当n =1时,a 1≥3=1+2,不等式成立.②假设当n =k (k ≥1)时不等式成立,即a k ≥k +2, 那么,a k +1=a k (a k -k )+1≥(k +2)(k +2-k )+1≥k +3. 即n =k +1时,a k +1≥(k +1)+2.由①②可知,对n ≥1,都有a n ≥n +2.1.本题用数学归纳法证明数列问题的思路为:归纳—猜想—证明.2.数列是定义在N +上的特殊函数,这与数学归纳法运用的范围是一致的,并且数列的递推公式与归纳原理实质上是一致的,数列中不少问题常用数学归纳法解决.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N +). (1)试求出S 1,S 2,S 3,S 4,并猜想S n 的表达式; (2)证明你的猜想,并求出a n 的表达式.【解】 (1)∵a n =S n -S n -1(n ≥2),S n =n 2a n , ∴S n =n 2(S n -S n -1).∴S n =n 2n 2-1S n -1(n ≥2),∵a 1=1,∴S 1=a 1=1,S 2=43,S 3=32=64,S 4=85,猜想S n =2nn +1.(2)证明:①当n =1时,S 1=1成立.②假设n =k (k ≥1,k ∈N +)时,等式成立,即S k =2kk +1,当n =k +1时,S k +1=(k +1)2·a k +1=a k +1+S k =a k +1+2kk +1,∴a k +1=2(k +2)(k +1),∴S k +1=(k +1)2·a k +1=2(k +1)k +2=2(k +1)(k +1)+1,∴n =k +1时等式也成立,得证.∴根据①②可知,对于任意n ∈N +,等式均成立.又∵a k +1=2(k +2)(k +1),∴a n =2n (n +1).放缩法在不等式证明中的应用(12分)已知S n =1+12+13+…+1n(n >1,n ∈N *).求证:S 2n >1+n2(n ≥2,n ∈N *).【思路点拨】 先弄清S 2n 的含义,然后用数学归纳法证明,在由n =k 推证n =k +1时,要注意已有代数式和目标的区别,适当放缩.【规范解答】 (1)当n =2时,S 2n =1+12+13+14=2512>1+22,即n =2时命题成立.3分(2)假设n =k (k ≥2,k ∈N *)时命题成立,4分即S 2k =1+12+13+…+12k >1+k2,5分则当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+12k +1+12k +2+…+12k +1 8分>1+k 2+2k 2k +2k =1+k 2+12=1+k +12,10分 故当n =k +1时,命题也成立.11分由(1)(2)知,对于一切n ≥2的正整数不等式都成立.12分1.此题容易犯两个错误,一是由n =k 到n =k +1项数变化弄错,认为12k 的后一项为121,实际上应为12+1,二是12+1+12+2+…+121共有多少项,实际上2k +1到2k +1是自然数递增,项数为2k +1-(2k +1)+1=2k.2.由n =k 推证n =k +1的过程中,用上归纳假设后,要有目标意识,如本题得到1+k 2+12k +1+12k +2+…+12k 1后,注意到目标为1+k +12,故只需证12k +1+12k +2+…+12k 1≥12即可,故考虑将12k +m 缩小为12k +2k,从而得出目标.。
数学归纳法(第一课时)【教学目标】知识与技能:(1)初步理解数学归纳法的原理;(2)掌握用数学归纳法证明数学命题的两个步骤;(3)会用数学证明一些与正整数相关的简单恒等式。
过程与方法亲历知识的构建过程----发现问题、提出问题、分析问题、解决问题;体会类比的数学思想;感受无限的问题用有限的步骤来解决的思想方法。
情感目标体会数学源于实际,高于实际的科学价值与文化价值;培养学生大胆猜想,小心求证的思维素质和科学精神;通过发现问题、提出问题、解决问题、合作交流等环节培养数学交流能力和合作精神。
【教学重点】借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用。
【教学难点】(1)理解数学归纳法整体的严密性和有效性。
(2)递推步骤中如何利用归纳假设,即如何利用假设证明当n=k+1时结论正确。
【教学过程设计】教学环节教学内容设计意图提出问题,激发兴趣情境1如何证明盒中的球都是黄色的?(逐一验证)情境 2 数列{an},已知)(21,111++∈-==Nnaaann,猜想其通项公式.从提出问题,到分析问题、解决问题,感受数学自然发生、发展的过程。
从实例中感受数学归纳法产生的必要性,我们需要将无限步骤情境2中的猜想无法逐一验证,则提出问题:如何证明这类有关正整数的命题呢?的问题转化为有限步骤来解决。
创设情境,启动思维1.多媒体演示一排自行车的图片和多米诺骨牌游戏的视频。
引导学生探讨多米诺骨牌全部依次倒下的条件:(1)第一块要倒下;(2)当前面一块倒下时,后面一块必须被第一块砸倒;强调条件(2)的作用:是一种递推关系(第k块倒下,使第k+1块倒下)。
播放视频活跃课堂氛围,激发学生的兴趣。
通过对生活实例的分析,使抽象的原理寓于简单的事例当中,通俗易懂,为深刻理解数学归纳法原理打好基础。
通过探讨骨牌全部倒下的条件,为类比得出数学归纳法做铺垫。
第六课时 1.4数学归纳法【教学目标】1.使学生了解归纳法, 理解数学归纳的原理与实质.2.掌握数学归纳法证题的两个步骤;会用“数学归纳法”证明简单的与自然数有关的命题.3.培养学生观察, 分析, 论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历知识的构建过程, 体会类比的数学思想.4.努力创设课堂愉悦情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.5.通过对例题的探究,体会研究数学问题的一种方法(先猜想后证明), 激发学生的学习热情,使学生初步形成做数学的意识和科学精神.【教学重点】归纳法意义的认识和数学归纳法产生过程的分析【教学难点】数学归纳法中递推思想的理解【教学方法】类比启发探究式教学方法【教学手段】多媒体辅助课堂教学【教学程序】第一阶段:输入阶段——创造学习情境,提供学习内容1.创设问题情境,启动学生思维(1) 不完全归纳法引例:明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字.这则笑话中财主的儿子得出“四就是四横、五就是五横……”的结论,用的就是“归纳法”,不过,这个归纳推出的结论显然是错误的.(2) 完全归纳法对比引例:有一位师傅想考考他的两个徒弟,看谁更聪明一些.他给每人一筐花生去剥皮,看看每一粒花生仁是不是都有粉衣包着,看谁先给出答案.大徒弟费了很大劲将花生全部剥完了;二徒弟只拣了几个饱满的,几个干瘪的,几个熟好的,几个没熟的,几个三仁的,几个一仁、两仁的,总共不过一把花生.显然,二徒弟先给出答案,他比大徒弟聪明.在生活和生产实际中,归纳法也有广泛应用.例如气象工作者、水文工作者依据积累的历史资料作气象预测,水文预报,用的就是归纳法.这些归纳法却不能用完全归纳法.2.回顾数学旧知,追溯归纳意识(从生活走向数学,与学生一起回顾以前学过的数学知识,进一步体会归纳意识,同时让学生感受到我们以前的学习中其实早已接触过归纳.)(1) 不完全归纳法实例:给出等差数列前四项, 写出该数列的通项公式.(2) 完全归纳法实例:证明圆周角定理分圆心在圆周角内部、外部及一边上三种情况.3.借助数学史料, 促使学生思辨(在生活引例与学过的数学知识的基础上,再引导学生看数学史料,能够让学生多方位多角度体会归纳法,感受使用归纳法的普遍性.同时引导学生进行思辨:在数学中运用不完全归纳法常常会得到错误的结论,不管是我们还是数学大家都可能如此.那么,有没有更好的归纳法呢?)问题1 已知n a =22)55(+-n n (n ∈N ),(1)分别求1a ;2a ;3a ;4a . (2)由此你能得到一个什么结论?这个结论正确吗? (培养学生大胆猜想的意识和数学概括能力.概括能力是思维能力的核心.鲁宾斯坦指出:思维都是在概括中完成的.心理学认为“迁移就是概括”,这里知识、技能、思维方法、数学原理的迁移,我找的突破口就是学生的概括过程.)问题2 费马(Fermat )是17世纪法国著名的数学家,他曾认为,当n ∈N 时,122+n 一定都是质数,这是他对n =0,1,2,3,4作了验证后得到的.后来,18世纪伟大的瑞士科学家欧拉(Euler )却证明了1252+=4 294 967 297=6 700 417×641,从而否定了费马的推测.没想到当n =5这一结论便不成立.问题3 41)(2++=n n n f , 当n ∈N 时,)(n f 是否都为质数?验证: f (0)=41,f (1)=43,f (2)=47,f (3)=53,f (4)=61,f (5)=71,f (6)=83,f (7)=97,f (8)=113,f (9)=131,f (10)=151,…,f (39)=1 601.但是f (40)=1 681=241,是合数.第二阶段:新旧知识相互作用阶段——新旧知识作用,搭建新知结构3. 搜索生活实例,激发学习兴趣(在第一阶段的基础上,由生活实例出发,与学生一起解析归纳原理, 揭示递推过程.孔子说:“知之者不如好之者,好之者不如乐之者.”兴趣这种个性心理倾向一般总是伴随着良好的情感体验.)实例:播放多米诺骨牌录像关键:(1)第一张牌被推倒; (2) 假如某一张牌倒下, 则它的后一张牌必定倒下. 于是, 我们可以下结论: 多米诺骨牌会全部倒下.搜索:再举几则生活事例:推倒自行车, 早操排队对齐等.4. 类比数学问题, 激起思维浪花类比多米诺骨牌过程, 证明等差数列通项公式d n a a n )1(1-+=:(1) 当n =1时等式成立; (2) 假设当n =k 时等式成立, 即d k a a k )1(1-+=, 则d a a k k +=+1=d k a ]1)1[(1-++, 即n =k +1时等式也成立. 于是, 我们可以下结论: 等差数列的通项公式d n a a n )1(1-+=对任何n ∈*N 都成立.(布鲁纳的发现学习理论认为,“有指导的发现学习”强调知识发生发展过程.这里通过类比多米诺骨牌过程,让学生发现数学归纳法的雏形,是一种再创造的发现性学习.)5. 引导学生概括, 形成科学方法证明一个与正整数有关的命题关键步骤如下:(1) 证明当n 取第一个值0n 时结论正确;(2) 假设当n =k (k ∈*N ,k ≥0n ) 时结论正确, 证明当n =k +1时结论也正确. 完成这两个步骤后, 就可以断定命题对从0n 开始的所有正整数n 都正确.这种证明方法叫做数学归纳法.第三阶段:操作阶段——巩固认知结构,充实认知过程6. 蕴含猜想证明, 培养研究意识典例分析(本例要求学生先猜想后证明,既能巩固归纳法和数学归纳法,也能教给学生做数学的方法,培养学生独立研究数学问题的意识和能力.)例1 数列{}n a 满足,2n n S n a =-*n N ∈,先计算前4项后,猜想n a 的表达式,并用数学归纳法证明; 解:815472314321====a a a a ,,,,猜想:1212--=n n n a 下面用数学归纳法证明:证明:(1)当时n=1有上面过程知猜想成立(2)假设)(1≥=k k n 时,命题真,即:1212--=k k k a ∵1111121222+-++++--=+-=+=k k k k k k k k a k a a k a S S 又1112++-+=k k a k S )( ∴112122+-+--k k k a k =112+-+k a k )(111121221222-+-+-=-+=⇒k k k k k a ∴kk k a 21211-=++,即当1+=k n 时也成立。
1.4 数学归纳法教学过程:一、创设情境,启动思维情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么? 以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常也会用归纳法思考问题,小孩也会由此总结出什么年龄人该叫爷爷,什么年龄人叫阿姨,叫哥哥或姐姐. 情境二:华罗庚的“摸球实验”1、这里有一袋球共12个,我们要判断这一袋球是白球,还是黑球,请问怎么判断? 启发回答:方法一:把它全部倒出来看一看.特点:方法是正确的,但操作上缺乏顺序性. 方法二:一个一个拿,拿一个看一个.比如结果为:第一个白球,第二个白球,第三个白球,……,第十二个白球,由此得到:这一袋球都是白球.特点:有顺序,有过程.2、如果想象袋子有足够大容量,球也无限多?要判断这一袋球是白球,还是黑球,上述方法可行吗?情境三: 回顾等差数列{}n a 通项公式推导过程:11213143123(1)n a a a a da a da a da a n d ==+=+=+=+-设计意图:首先设计情境一,分析情境,自然引出课题----归纳法,谈笑间进入正题.再通过情境二的交流激发学生的兴趣,调动学生学习的积极性.情境三点出两种归纳法的不同特点.通过梳理我们熟悉的一些问题,很自然为本节课主题与重点引出打下伏笔.二、师生互动,探究问题承上启下:以上问题的思考和解决,用的都是归纳法.什么是归纳法? 归纳法特点是什么?上述归纳法有什么不同呢?学生回答以上问题,得出结论:1. 归纳法:由一些特殊事例推出一般结论的推理方法. 特点:由特殊→一般;2. 完全归纳法: 把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法;3. 不完全归纳法: 根据事物的部分(而不是全部)特例得出一般结论的推理方法. 在生活和生产实际中,归纳法有着广泛的应用.例如气象工作者、水文工作者,地震工作者依据积累的历史资料作气象预测,水文预报,地震预测用的就是归纳法.4. 引导学生举例:⑴不完全归纳法实例:如欧拉发现立体图形的欧拉公式:2V E F -+=(V 为顶点数,E 为棱数,F 为面数)⑵ 完全归纳法实例: 如证明圆周角定理时,分圆心在圆周角内部、外部及一边上三种情况讨论.设计意图:从生活走向数学,与学生一起回顾以前学过的数学知识,并在这里我安排学生举完全归纳法的实例和不完全归纳法实例,进一步体会归纳意识,同时让学生感受到我们以前的学习中其实早已接触过归纳法,并引导学生积极投入到探寻论证方法过程的氛围中.三 、借助史料, 引申思辨问题1: 已知n a =22)55(+-n n (n ∈N ),(1) 分别求1a ;2a ;3a ;4a .(2) 由⑴你会有怎样的一个猜想?这个猜想正确吗?问题2: 费马(Fermat )是17世纪法国著名的数学家,他是解析几何的发明者之一,是对微积分的创立作出贡献最多的人之一,是概率论的创始者之一,他对数论也有许多贡献.他曾认为,当n ∈N 时,122+n 一定都是质数,这是他对n =0,1,2,3,4作了验证后得到的.后来,18世纪伟大的瑞士科学家欧拉(Euler )却证明了1252+=4 294 967 297=6 700 417×641,从而否定了费马的推测.没想到当n =5这一结论便不成立.教师总结: 有人说,费马为什么不再多算一个数呢?今天我们是无法回答的.但是要告诉同学们,失误的关键不在于多算一个数上!问题3 :41)(2++=n n n f , 当n ∈N 时,)(n f 是否都为质数?验证: f (0)=41,f (1)=43,f (2)=47,f (3)=53,f (4)=61,f (5)=71,f (6)=83,f (7)=97,f (8)=113,f (9)=131,f (10)=151,…,f (39)=1 601.但是f (40)=1 681=241,是合数.承上启下:这里算了39个数不算少了吧,但还是不行!我们介绍以上两个资料,不是说世界级大师还出错,我们有错就可以原谅,也不是说归纳法不行,不去学了,而是要找出运用归纳法出错的原因,并研究出对策来 , 寻求数学证明.教师设问:,不完全归纳法为什么会出错?如何弥补不足?怎么给出证明呢?设计意图:在生活引例与已学数学知识的基础上,进一步引导学生看数学史料,能够让学生多方位多角度体会归纳法,感受使用归纳法的普遍性.同时引导学生进行思辨:在数学中运用不完全归纳法常常会得到错误的结论,不管是我们还是数学大师都有可能如此.那么,不完全归纳法价值体现在哪里?不足之处如何去弥补呢? 结论正确性怎样给出证明?学生一定会带着许多问题进入下一阶段探究.四、实例再现,激发兴趣1、演示多米诺骨牌游戏视频.师生共同探讨多米诺骨牌全部依次倒下的条件:⑴ 第一块要倒下;⑵ 当前面一块倒下时,后面一块必须倒下;当满足这两个条件后,多米诺骨牌全部都倒下.再举例:再举几则生活事例:推倒自行车, 早操排队对齐等.2、学生类比多米诺骨牌依顺序倒下的原理,探究出证明有关正整数命题的方法(建立数学模型).设计意图:布鲁纳的发现学习理论认为,“有指导的发现学习”强调知识发生发展过程.这里通过类比多米诺骨牌过程,让学生发现数学归纳法的雏形,是一种再创造的发现性学习.另外,这个环节里,我在培养学生大胆猜想、类比概括能力方面实践的不够好.应该让学生在类比多米诺骨牌游戏的基础上说出数学归纳法原理,教师给予肯定和补充即可。
事实上,情境的设计都是为学生更好的知识迁移而服务的。
概括能力是思维能力的核心.鲁宾斯坦指出:思维都是在概括中完成的.心理学认为“迁移就是概括”,这里知识、技能、思维方法、数学原理的迁移,突破口就是学生的概括过程.五、类比联想,形成概念1、 类比多米诺骨牌过程, 证明等差数列通项公式d n a a n )1(1-+=(师生共同完成,教师强调步骤及注意点)(1) 当n =1时等式成立;(2) 假设当n =k 时等式成立, 即d k a a k )1(1-+=,则d a a k k +=+1=d k a ]1)1[(1-++, 即n =k +1时等式也成立.于是, 我们可以下结论: 等差数列的通项公式d n a a n )1(1-+=对任何n ∈*N 都成立.2.数学归纳法原理(学生表述,教师补正):(1)(递推奠基):n 取第一个值0n (例如 01n =)时命题成立;(2)(递推归纳):假设当n =k (k ∈N *,且k ≥n 0)时结论正确;(归纳假设)利用它证明当n =k +1时结论也正确.(归纳证明)由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确,这种证明方法叫做数学归纳法.3、数学归纳法的本质:无穷的归纳→有限的演绎(递推关系)设计意图:至此,由生活实例出发,与学生一起解析归纳原理, 揭示递推过程.教师强调数学归纳法特点. 数学归纳法实际上是一种以数学归纳法原理为依据的演绎推理,它将一个无穷的归纳过程转化为一个有限步骤的演绎过程,是处理自然数有关问题的有力工具,一种具普遍性的方法.六、讨论交流,深化认识例1、 数列{}n a 中, 1a =1, nn n a a a +=+11(n ∈*N ), {}n a 通项公式是什么?你是怎么得到的?探讨一:观察数列{}n a 特点,变形解出.探讨二:先计算2a ,3a ,4a 的值,再推测通项n a 的公式, 最后用数学归纳法证明结论.设计意图:通过典型例题使学生探究尝试,一方面体验“观察—归纳—猜想—证明”完整过程,既能巩固归纳法和数学归纳法,也能使他们体验数学方法,培养学生独立研究数学问题的意识和能力.不同的方法也体现解决问题的灵活性.七、反馈练习, 巩固提高(请两位同学板演以下两题,教师指正)1、用数学归纳法证明:1+3+5+…+(2n -1)=2n .2、首项是1a ,公比是q 的等比数列的通项公式是11-=n n q a a .3、用数学归纳法证明: 126422++=++++n n n 时,下列推证是否正确,说出理由?证明:假设k n =时,等式成立就是 126422++=++++k k k 成立那么()122642++++++k k()1212++++=k k k =()()1112++++k k 这就是说当1+=k n 时等式成立,所以*N n ∈时等式成立.4、判断下列推证是否正确,若是不对,如何改正. 求证:23111111()22222n n =-++++ 证明:①当n =1时,左边=21 右边=212111=⎪⎭⎫ ⎝⎛-,等式成立. ②设n =k 时,有k k )21(12121212132-=++++ 那么,当n=k +1时,有 11132211211211212121212121+++⎪⎭⎫ ⎝⎛-=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+k k k k ++++ ,即n=k+1时,命题成立 根据①②可知,对n ∈N *,等式成立.设计意图:练习题1,2的证明难度不大,套用数学归纳法的证明步骤不难解答,通过这两个练习能看到学生对数学归纳法证题步骤的掌握情况.这样既可以检验学生的学习水平,保证不盲目拔高,同时不冲淡本节课的重点,对例题是一个很好的对比与补充.通过3,4的易错辨析,进一步体会数学归纳法证题时的两个步骤、一个结论,“递推基础不可少,归纳假设要用到,结论写明莫忘掉”.八、总结归纳,加深理解1、本节课的中心内容是归纳法和数学归纳法;2、归纳法是一种由特殊到一般的推理方法,它可以分为完全归纳法和不完全归纳法两种,枚举法仅局限于有限个元素,而不完全归纳法得出的结论不一定具有可靠性,数学归纳法属于完全归纳法;3、数学归纳法作为一种证明方法,其基本思想是递推(递归)思想,使用要点可概括为:两个步骤一结论,递推基础不可少,归纳假设要用到,结论写明莫忘掉;4、本节课所涉及到的数学思想方法有:递推思想、类比思想、分类思想、归纳思想、辩证思想.九、布置作业, 课外延伸十、书面作业:见教材P 56课后思考题:1. 是否存在常数a 、b 、c 使得等式:=+++⨯+⨯+⨯)2(......534231n n )(612c bn an n ++ 对一切自然数n 都成立并证明你的结论. 2.是否存在常数a 、b 、c ,使得等式1)(12)1()1(.....3222222c bn an n n n n +++=+++⨯+⨯ 对一切自然数n 都成立?并证明你的结论(a=3,b=11,c=10)设计意图: 思考题则起着承上启下的作用, 它既是“观察—归纳—猜想—证明”的完整思维探究过程的再体验,也是对下节课内容的铺垫与伏笔.。