控制仪表及装置复习总结
- 格式:ppt
- 大小:436.01 KB
- 文档页数:26
检测技术与仪表复习总结检测技术与仪表复习总结一1.控制装置与仪表的分类按能源分:电动、气动、液动和混合式;按功能实现原理:模拟控制装置与仪表和数字装置与仪表;模拟的按结构形式分为:基地式,单元组合式,组件组装式。
2.控制的三要素:传感器,控制器,执行器3.电信号种类:模拟信号,数字信号,频率信号,脉宽信号用最多的是电模拟信号。
电模拟信号有:直流电流信号,直流电压信号,交流电流信号,交流电压信号。
4.用直流电流信号时,所有仪表必须串联连接。
适于远距离传输。
直流电压并联。
5.活零点的意义:便于检验信号传输线有无断线及仪表是否断电;使半导体器件工作在较好的工作段;使制作具有本质安全防爆性能,使节约传输线的两线制变送器成为可能。
(有利于识别断电,断线等故障,且为实现两线制提供了可能性)。
6.信号制:指在成套系列仪表中,各个仪表的输入输出信号采用何种统一的联络信号的问题,只有采用统一信号才能使各个仪表间的任意连接成为可能。
上(下)限:测量或检测过程中量程的最大(小)值;意义:适当选取提高灵敏度准确度。
7.国标统一信号:DC4-20mA,DC1--5V。
8.二线制和四线制:区别:四线制供电电源与输出信号分别用两根导线传输,供电电源可以是AC220V或者DC24V,输出信号可以是真零点0-10mA或活零点4-20mA。
而二线制同变送器连接的导线只有两根,这两根导线同时传输电源和输出信号,电源、变送器和负载是串联的,信号电流必须采用活零点电流。
应用场合:四线用于对电流信号的零点及元器件的功耗没有严格要求的场合;二线用于低功耗的场合。
可否互换:二线制可以转换为四线制,四线制不一定能转换为二线制,实现二线制必须满足:采用有活零点的电流信号;必须是单电源供电。
具备的基本元素:测量变送环节,控制器,执行机构二1.一个完整的过程调节系统时,传感器在两方压力共同作变送器:对被控参数进行测量用下产生位移(或位移的趋和信号变换势),这个位移量和两个腔室压控制器:将给定值与被控参数力差(差压)成正比,将这种进行比较,运算位移转换成可以反映差压大小执行机构:将控制器的运算输的标准信号输出。
概论思考题与习题0-1 控制仪表与装置采用何种信号进行联络?电压信号传输和电流信号传输各有什么特点?使用在何种场合?0-2 说明现场仪表与控制室仪表之间的信号传输及供电方式。
0~10mA的直流电流信号能否用于两线制传输方式?为什么?0-3 什么是本质安全型防爆仪表,如何构成本质安全防爆系统?0-4 安全栅有哪几种?它们是如何实现本质安全防爆的?第一章思考题与习题1-1 说明P、PI、PD调节规律的特点以及这几种调节规律在控制系统中的作用。
1-2 调节器输入一阶跃信号,作用一段时间后突然消失。
在上述情况下,分别画出P、PI、PD调节器的输出变化过程。
如果输入一随时间线性增加的信号时,调节器的输出将作何变化?1-3 如何用频率特性描述调节器的调节规律?分别画出PI、PD、PID的对数幅频特性。
1-4 什么是比例度、积分时间和微分时间?如何测定这些变量?1-5 某P调节器的输入信号是4~20mA,输出信号为1~5V,当比例度δ=60%时,输入变化6mA所引起的输出变化量是多少?1-6 说明积分增益和微分增益的物理意义。
它们的大小对调节器的输出有什么影响?1-7 什么是调节器的调节精度?实际PID调节器用于控制系统中,控制结果能否消除余差?为什么?1-8 某PID调节器(正作用)输入、输出信号均为4~20mA,调节器的初始值I i=I0=4mA,δ=200%,T I=T D=2min,K D=10。
在t=0时输入ΔI i=2mA的阶跃信号,分别求取t=12s 时:(1)PI工况下的输出值;(2)PD工况下的输出值。
1-9 PID调节器的构成方式有哪几种?各有什么特点?1-10 基型调节器的输入电路为什么采用差动输入和电平移动的方式?偏差差动电平移动电路怎样消除导线电阻所引起的运算误差?1-11 在基型调节器的PD电路中,如何保证开关S从“断”位置切至“通”位置时输出信号保持不变?1-12 试分析基型调节器产生积分饱和现象的原因。
内容总结一:仪表仪表的发展:DDZ, QDZ,DCS,FCS (等术语),检测变送的功能:转化为标准信号:24V DC电源供电,4~20 mA 电流信号(活零点),1~5V DC 电压信号,250欧姆转换;气动执行器20~100 Kpa仪表的指标(精度,特性曲线,零点,量程,测量范围,响应时间),精度和相对误差/绝对误差的关系p7 ~p111.检测变送仪表。
变送的原理温度:热电偶(原理,中间导体定律,补偿导线,冷端补偿的有关概念),常用标准热电偶的热电特性图。
习题热电阻(原理,类型,测温范围,型号意义)压力:压力的定义(表压,绝压,差压各种表述之间的关系)p41,差压测液位(测压点位置不同引起的迁移)压力表3去。
测量范围的确定1/3~2/3流量:各种流量计测量特点、分类p56;差压(孔板)流量计p58,转子流量计的测量特点,差压(孔板)流量之间的计算(习题),涡街原理。
液位:差压测液位,迁移的判断。
P702.执行器:结构(执行机构+调节机构),调节阀气开气关选择原则p178调节阀的流量特性:定义(影响因素);分类:固有+工作; 可调比串联管道工作时,分压比s 的变化,对流量特性的影响。
流量特性的选择:依据过程特性+配管情况+负荷情况 p181安全火花防爆系统: 两个条件 P1902. 控制仪表(调节器):正反作用的定义,控制框图,控制分析调节器调节规律:调节器的调节规律就是输出量与偏差之间的函数关系。
二. 控制(调节)仪表:1.模拟:PID 调节器的数学表达式:)11()(s T s T K s G d i c ++= PID 调节器的阶跃响应特性重点:比例积分特性,图形特点,Kc Ti 的判断, 公式计算2、智能仪表数字PID ,位置式,增量式。
公式!!数字控制系统的改进:积分饱和产生的原因,防积分饱和措施 P228三、控制:控制系统的分类(定值 伺服 程序)。
(0)01()()[()()]tc Di de t u t K e t e t dt T u T dt =+++⎰01()[()()]t p iy t K e t e d y T ττ=++⎰1. 控制原理负反馈+稳定运行稳定运行:各环节增益之积保持不变2.控制指标各单项指标(习题)3.控制对象锅炉4.控制结构:反馈控制(经典PID),正反作用,调节机理叙述。
仪表测控知识点总结大全仪表测控技术是指利用仪器和控制系统对物理量进行测量和控制的一种技术。
在现代工程领域,仪表测控技术起着至关重要的作用,它涉及到电子技术、自动化技术、通信技术等多个领域,是现代工程技术中的一个重要方面。
1. 仪表测控基础知识1.1 仪表测控系统仪表测控系统是指根据需要对被控对象进行测量、监视、记录、报警和控制的一种系统。
它包括测量仪表、信号调理、控制器、执行机构等组成部分。
根据控制对象的不同,仪表测控系统可以分为机电仪表测控系统、液压仪表测控系统、传感器仪表测控系统等。
1.2 仪表测量仪表测量是指通过仪器对物理量进行定量测量的过程。
仪表测量包括测量的方法、测量的原理、仪表的分类等内容。
常见的仪表测量方法有直接测量、间接测量、绝对测量、相对测量等。
常见的仪表有指针式仪表、数字式仪表、模拟仪表、数字信号处理仪表等。
1.3 仪表控制仪表控制是指通过仪器对物理量进行控制的过程。
仪表控制包括控制系统的组成、控制系统的分类、控制系统的性能指标等内容。
常见的控制系统有PID控制系统、模糊控制系统、自适应控制系统等。
2. 仪表测控传感器2.1 传感器的基本原理传感器是将被测量的物理量转换成电信号的装置。
传感器的基本原理有压电效应、霍尔效应、热敏效应、光敏效应等。
根据被测量的物理量不同,传感器可以分为力传感器、压力传感器、温度传感器、湿度传感器、光电传感器等。
2.2 传感器的分类传感器根据测量的物理量的不同可以分为力传感器、压力传感器、温度传感器、湿度传感器、流量传感器、光电传感器等。
传感器还可以按照不同的工作原理进行分类,如电阻式传感器、电感式传感器、电容式传感器、半导体传感器等。
2.3 传感器的性能指标传感器的性能指标包括灵敏度、线性度、分辨率、动态特性等。
这些性能指标直接影响传感器的测量精度和稳定性。
3.1 控制系统的组成控制系统一般包括传感器、控制器、执行机构等。
传感器用于测量被控制对象的参数,控制器根据传感器采集的信息进行计算,并输出控制信号,执行机构根据控制信号对被控制对象进行控制。
仪表重要基础知识点
为了深入了解仪表的重要基础知识点,我们首先需要了解仪表的定义和分类。
仪表是一种用来检测、测量和显示物理量的装置。
根据其功能和测量对象的不同,仪表可以分为多种类型,包括电力仪表、机械仪表、光学仪表、化学仪表等。
在仪表领域,最基本的知识点之一是关于传感器的原理和应用。
传感器是仪表中起到感知和采集待测量信号的作用的元件。
常见的传感器包括温度传感器、压力传感器、湿度传感器等。
了解传感器的原理和特点,可以帮助我们选择适合的传感器,并正确应用于相应的仪表系统中。
另一个重要的基础知识点是关于仪表的测量原理和技术。
仪表的核心功能是准确测量待测量信号的数值。
了解测量原理和技术,可以帮助我们理解仪表的测量误差来源、校准方法以及常见的测量技术,例如模拟量测量和数字量测量等。
同时,了解测量原理还可以帮助我们选择合适的仪表以及正确使用和维护仪表。
此外,仪表的显示和记录功能也是仪表领域的重要内容。
仪表通常具有显示测量结果的功能,可以以数字、图形或者曲线的形式呈现。
了解显示原理和技术,可以帮助我们正确解读仪表显示的结果,并了解常见的录入和输出方法。
总结起来,仪表的重要基础知识点包括传感器原理和应用、测量原理和技术、显示和记录功能等。
了解这些基础知识点可以帮助我们理解仪表的工作原理,正确选择和使用仪表,并解决仪表使用中可能出现的问题。
仪表知识点总结在工业生产中,仪表是用来检测、测量和控制各种工艺参数的设备。
它们包括各种传感器、变送器、记录仪和控制器等。
仪表在工业生产中起着重要的作用,对于提高生产效率、保证产品质量、降低能耗、确保安全生产都具有重要意义。
在工业生产中,对仪表的使用和维护都需要有一定的知识和技能。
本文将就仪表的相关知识点进行总结,以帮助读者更好地了解仪表的原理和应用。
一、仪表的分类1. 按使用功能分类(1) 测量仪表:用来检测和测量各种物理和化学量,如温度、压力、流量、液位、PH值等。
(2) 控制仪表:用来对生产过程进行控制,如调节温度、压力、流量等参数。
(3) 监视仪表:用来监视生产过程中各种参数的变化情况,如显示温度、压力、流量等数值。
2. 按测量原理分类(1) 机械式仪表:利用物理现象进行测量,如弹簧压力表、液位计等。
(2) 电子仪表:利用电子技术进行测量,如数字显示仪表、控制器等。
(3) 光学仪表:利用光学原理进行测量,如光电传感器、光栅编码器等。
3. 按安装位置分类(1) 本地仪表:安装在生产现场,用于实时监测和控制。
(2) 远程仪表:安装在控制室或操作室,用于集中监控和操作。
二、传感器1. 传感器的种类(1) 测温传感器:用来测量物体的温度变化,如热电偶、热电阻等。
(2) 压力传感器:用来测量气体或液体的压力变化,如压力变送器、压力传递器等。
(3) 流量传感器:用来测量流体的流量变化,如涡街流量计、电磁流量计等。
(4) 液位传感器:用来测量液体的液位变化,如浮球液位计、毛细管液位计等。
2. 传感器的特点(1) 灵敏度高:能够精确地捕捉各种物理和化学量的变化。
(2) 可靠性高:能够长期稳定地工作在恶劣的工作环境中。
(3) 鲁棒性强:对于各种干扰和干涉具有一定的抗干扰能力。
(4) 可维护性好:能够进行定期维护和检修,确保传感器的正常工作。
三、变送器1. 变送器的作用变送器是用来将传感器测得的信号进行处理和转换的设备,通常将传感器的模拟信号转换成为标准的电流信号或电压信号,以便于仪表的显示和控制。
自动化仪表考点总结1.控制仪表概念(2分)在自动控制系统中,除了对象以外,均为自动化仪表。
如:控制器、变送器、运算器和执行器。
2.仪表的基本性能指标(2分)灵敏度、精确地、复现性、稳定性、可靠性和响应时间。
3.控制仪表分类(2分)按能源方式:气动、液动、电动按信号类型:数字式和模拟式按结构形式:基地式、单元组合式、集散控制系统和现场总线控制系统4.仪表联络信号及传输方式1)传输方式有电压信号和电流信号两种。
①电流信号传输优点是:发送仪表输出电阻大,故电流信号适于远距传输。
对于要求电压输入的仪表,可以在电流回路中串入一电阻,取压方便灵活。
缺点是:由于仪表串联工作,期中任何一台故障或在回路中增减接收仪表时,将影响其它仪表的工作。
各台仪表没有公共接地点,若要和计算机联用,则应在仪表输入输出端采取直流隔离措施。
②电压信号传输优点是:增加或取消某个接收仪表不影响其他仪表的工作。
各接收仪表可设置公共接地点,可和计算机联用。
缺点是:要在引线电阻上产生电压降, 信号受一定损失, 且因接收仪表输入阻抗很高,易于引入干扰,所以电压信号并不适于远距离传输。
2)变送器与控制室仪表间的信号传输方式有四线制和两线制两种。
要实现两线制,必须采用活零点的电流信号。
因电源线和信号线公用,电源供给变送器的功率是通过信号电流提供的。
变送器输出电流为下限值时,应保证它内部的半导体器件仍能正常工作。
故信号电流下限值不能过低。
5.仪表防爆等级分类及应用(4分)【0区(Zone 0) -在正常情况下,爆炸性气体混合物连续地、频繁地出现或长时间存在的场所。
1区(Zone 1) -在正常情况下,爆炸性气体混合物有可能出现的场所。
2区(Zone 2) -在正常情况下,爆炸性气体混合物不可能出现,或即使出现也是短时间存在的场所。
】→→了解本安防爆系统应满足的两个条件:①在危险场所使用本安防爆仪表②控制室仪表和危险场所仪表之间设置安全栅安全栅:①齐纳式安全栅:基于齐纳二极管的反向击穿性能。
1、测量温度旳措施:接触式,非接触式。
2、热电偶:当两种不同样导体货半导体连接成闭合回路时,若两个节点温度不同样,回路中就会出现热电动势并产生电流。
3、第三导体定律:除热电偶A、B两种导体外,又插入第三种导体C组合成闭合回路,只要插入旳第三种导体旳两个接点温度相等,它旳接入对回路毫无影响。
4、测量某一点压力与大气压力之差,当这点旳压力高于大气压力时,此差值称为表压。
5、运用弹性元件受压产生变形可以测量压力。
常用旳弹性测压元件有:弹簧管(常用)、波纹管及膜片三类。
6、流量检测仪表:节流式流量计(在管道中放入一定旳节流元件,根据节流元件旳推力或在节流元件前后形成旳压差测量)分为:压差、靶式、转子流量计。
7、热导式气体分析仪是一种物理式旳气体分析仪。
根据不同样气体具有不同样旳热传导能力这一特性,通过测定混合气体旳导热系数,推算出其中某些成分含量。
(0度时H2为7.150,He为7.150)8、调整器旳作用:把测量值和给定值进行比较,根据偏差大小,按一定旳调整规律产生输出信号,推进执行器,对生产过程进行自动调整。
9、调整规律:他旳输出量与输入量(偏差信号)之间具有什么样旳函数关系。
10、比例调整特点:对干扰有及时而有力旳克制作用,但存在静态误差,是一种静差调整。
11、积分调整特点:可以消除静差,即当有偏差存在时积分输出将随时间变化,当偏差消失时输出能保持在某一值上不变。
但动作过于缓慢,过渡过程时间长,易导致系统不稳定。
12、微分调整器:能在偏差信号出现或变化瞬间,立即根据变化趋势,产生调整作用,是偏差尽快旳消除于萌芽状态之中。
但对静态片差毫无克制能力,不能单独使用。
13、在PID三作用调整器中,微分作用重要爱用来加紧系统动作速度,减少超调,克服震荡。
积分作用重要用来消除静态误差。
将比例、积分、微分三种调整规律结合在一起,即可抵达迅速敏捷,又可抵达平稳精确,只要配合得当便可得到满意旳调整效果。
14、数字调整器按其控制回路旳多少可分为:多回路调整器和单回路调整器;按控制程序旳变更措施可分为:固定程序(选择)型和可编程序型。
简答题5X8=40分第1章概论1. 一个简单的闭环调节系统中至少应包含哪几个环节?P1输入环节;输出环节;反馈环节等2. 过程控制仪表与装置的分类有哪几种形式? P2按能源形式分类:可分为电动、气动、液动和机械式等。
工业上普遍使用电动和气动控制仪表;按信号类型分类:分为模拟式和数字式两大类;按结构形式分类:单元组合式控制仪表,基地式控制仪表,集散型计算机控制系统,现场总线控制系统。
3. 过程控制仪表与装置按能源形式分类可分为哪几种?目前工业上普遍使用的是哪两种? P2过程控制仪表与装置按能源形式分类可分为电动、气动、液动和机械式等。
工业上普遍使用电动和气动控制仪表。
4.数字式控制仪表的特征有哪些?其传输信号为断续变化的数字量,可以进行各种数字运算和逻辑判断,功能完善性,能优越,能解决模拟式控制仪表难以解决的问题。
5. 变送单元的作用是什么?它能将各种被测参数,如温度、压力、流量、液位等变换成相应的标准统一信号传送到接收仪表,以供指示、记录或控制。
6. 控制单元的作用是什么?将来自变送单元的测量信号与给定信号进行比较,按照偏差给出控制信号,去控制执行器的动作。
7. 执行单元的作用是什么?它按照调节器输出的控制信号或手动操作信号,操作执行元件,改变控制变量的大小。
8. 现场总线控制系统的特征? P3其特征为:现场控制和双向数字通讯,即将传统上集中于控制室的控制功能分散到现场设备中,实现现场控制,而现场设备与控制室内的仪表或装置之间为双向数字通讯。
9. 信号制是指什么?P3-4信号制即信号标准,是指仪表之间采用的传输信号的类型和数值。
10. 制定信号制的目的是什么?P3-4达到通用性和相互兼容性的要求,以便不同系列或不同厂家生产的仪表能够共同使用在同一控制系统中,实现系统的功能。
11. 气动仪表的信号标准?P3-4现场与控制室仪表之间宜采用直流电流信号。
14. 直流电流信号有哪些优缺点?P4-5优点:a、直流比交流干扰少b、直流信号对负载的要求简单c、电流比电压更利于远传信息缺点:a、多个仪表接收同一电流信息,它们必须串联b、任何一个仪表在拆离信号回路之前首先要把该仪表的两个输入端短接,否则其它仪表将会因电流中断而失去信号c 、仪表无公共接地点,须浮空工作。
概论【控制仪表】在自动控制系统中,将被控变量转换成测量信号后,送入控制仪表,以便控制生产过程的正常运行的设备。
【控制仪表分类】控制仪表及装置可按能源形式、信号类型和结构形式进行分类。
【按能源形势分类】1、气动仪表:以压缩空气为能源。
优点:结构简单,易于掌握,性能稳定,可靠性高,天然防爆,输出功率大20~100kpa,需要气源配合;缺点:气动信号传输速度极限= 声速340m/s;体积庞大。
2、液动仪表:以高压油和高压水为能源。
优点:工作可靠,结构简单,输出功率更大,防爆。
缺点:速度传送慢≯声速。
3、电动仪表:以电为能源。
优点:①信号快速,远距离传输;②易于实现复杂规律的信号处理;③易于与其它装置相连;④供电用电方便,无需空压机和油泵、水泵。
缺点:①不天然防爆;②易受电磁干扰;③功率不易大。
4、混合自动化仪表:电动+气动或液动。
优点:发挥电动的信号传输快又长的特点和液(气)动的功率大的特点,仪表之间便于配合;天然防爆;例DEH 电液数字调节装置用于汽轮机控制。
【按结构形式分类】1、基地式控制仪表;2、单元组合式控制仪表(根据控制系统中各种组成环节的不同功能和使用要求,将仪表做成能够实现某种功能的独立单元,各单元之间用统一的标准信号来联系)3、组件组装式仪表4、集散控制系统DCS;5、现场总线控制系统FCS;6、可编程控制器7、工业控制计算机。
【单元组合式控制仪表组成】1、变送单元:将被测信号转换成标准信号;2、转换单元:把电压、频率等电信号转化成标准信号或执行统一标准信号之间的转换;3、控制单元:将来自变送器的测量信号与给定信号比较,给出控制信号;4、运算单元:将几个标准信号进行加减乘除平方开根号等运算;5、显示单元:对各种被测参数进行指示、记录和报警;6、给定单元:输出统一标准信号作为被控变量的给定值传到控制器;7、执行单元:按控制器输出的控制信号或手动信号进行动作的仪表;8、辅助单元:为满足自控系统某些要求而增设的仪表。
一 1.控制装置与仪表的分类按能源分:电动、气动、液动和混合式;按功能实现原理:模拟控制装置与仪表和数字装置与仪表;模拟的按结构形式分为:基地式,单元组合式,组件组装式。
2.控制的三要素:传感器,控制器,执行器3.电信号种类:模拟信号,数字信号,频率信号,脉宽信号用最多的是电模拟信号。
电模拟信号有:直流电流信号,直流电压信号,交流电流信号,交流电压信号。
4.用直流电流信号时,所有仪表必须串联连接。
适于远距离传输。
直流电压并联。
5.活零点的意义:便于检验信号传输线有无断线及仪表是否断电;使半导体器件工作在较好的工作段;使制作具有本质安全防爆性能,使节约传输线的两线制变送器成为可能。
(有利于识别断电,断线等故障,且为实现两线制提供了可能性)。
6.信号制:指在成套系列仪表中,各个仪表的输入输出信号采用何种统一的联络信号的问题,只有采用统一信号才能使各个仪表间的任意连接成为可能。
上(下)限:测量或检测过程中量程的最大(小)值;意义:适当选取提高灵敏度准确度。
7.国标统一信号:DC 4- 20mA,DC 1--5 V。
8.二线制和四线制:区别:四线制供电电源与输出信号分别用两根导线传输,供电电源可以是AC220V或者DC24V,输出信号可以是真零点0-10mA或活零点4-20mA。
而二线制同变送器连接的导线只有两根,这两根导线同时传输电源和输出信号,电源、变送器和负载是串联的,信号电流必须采用活零点电流。
应用场合:四线用于对电流信号的零点及元器件的功耗没有严格要求的场合;二线用于低功耗的场合。
可否互换:二线制可以转换为四线制,四线制不一定能转换为二线制,实现二线制必须满足:采用有活零点的电流信号;必须是单电源供电。
二1.一个完整的过程调节系统变送器:对被控参数进行测量和信号变换控制器:将给定值与被控参数进行比较,运算执行机构:将控制器的运算输出转换为开关阀门或者挡板位移或转角。
2.量程调整概念:量程调整包括下限调整(通常称为零点迁移)和上限调整,只有当下限为零或确定不变时才可以把上限调整看作量程调整。
第一章1.过程控制系统的组成调节器、调节阀、被控过程、检测变送2.过程控制系统的分类1)按系统的结构特点分类反馈控制系统(闭环)、前馈控制系统(开环)、前馈—反馈控制系统2)按给定值信号的特点分类定值控制系统、随动控制系统、程序控制系统系统是衰减震荡的过程.衰减比和衰减率(动态质量指标)、余差(静态)、最大偏差和超调量(偏离给定值的程度),峰值时间Tp(系统灵敏度),过渡时间(过渡过程快慢)振荡频率一样,衰减比n越大,调节时间相对较短;衰减比n相同,振荡频率越高,振荡周期(调节时间)就越短第二章被控过程的数学模型-----指被控过程在各输入量(包括控制量和扰动量)作用下,其相应输出量(被控量)变化函数关系的数学表达式。
1.解析法:根据过程的内在机理,通过静态与动态物料平衡关系,用数学推理建立数学模型的方法。
解析法建模:通过静态与动态物料平衡关系,用数学推导法建立过程的数学模型。
无自衡过程-----指过程在扰动作用下,其平衡状态被破坏后不需要操作人员或仪表等干预,依靠其自身不能重新恢复平衡的过程。
2.实验辨识法:根据过程输入、输出的实验测试数据,通过过程辨识和参数估计建立过程的数学模型。
3.混合法测定阶跃响应曲线的原理:在过程的输入量作阶跃变化时测定其输出量随时间而变化的曲线。
用阶跃响应曲线的原因:a能形象直观和完全描述被控过程的动态特性b容易添加信号a.阶跃响应法,试验时需要注意的问题;b.矩形响应法1)试验测定前,被控过程应处于相对稳定的工作状态2)输入阶跃信号的幅值不能过大,也不能过小3)分别输入正负阶跃信号,并测取其响应曲线作对比4)在相同的条件下重复测试几次第三章1.在过程控制系统中,变送器常和传感器组合使用,共同完成对温度、压力、物位、流量、成分等被控参数的检测并转换为统一标准的输出信号。
变送器的类型和特点差压变送器、温度变送器、流量变送器、液位变送器温度变送器的分类是直流毫伏变送器、热电隅温度变送器(热电效应、高温)、热电阻温(中低温度)温度变送器的特点:(1)采用低漂移,高增益的运算放大器作为主要放大器,具有线路简单和良好的可靠性,稳定性及各项技术性能。
第一章控制装置与仪表使生产过程自动化的重要工具,是实现自动控制理论的中各种各种控制原则和控制规律的手段,是实现工业过程自动化的基础平台按能源分:电动、气动、液动和混合式按功能实现原理:模拟控制装置与仪表和数字装置与仪表。
控制装置与仪表按结构形式分基地式,单元组合式,组件组装式三大类基地式:以指示仪表记录仪表为中心,附加一些线路或器件完成控制任务,结构简单,具有控制,指示,记录功能缺点:专用性,不通用,不能互操作。
单元组合式:整套仪表划分为具备一定功能的若干单元,单元间采用统一标准信号,应用灵活,通用性强。
组件组装式:单元组合式发展而来,由功能分离的组件组成,结构上分为控制柜和显示操作盘两大部分。
控制三要素:传感器,控制器,执行器分散控制系统:DCS系统开放性不够I/O信号传输方式为非数字是控制功能分散程度不够现场总线控制系统:FCS开放性和可互操作性采用全数字式的信号传输方式彻底的功能分散性信号制:在成套系列仪表中,各仪表输入输出信号采用何种统一的联络信号问题。
电信号种类:模拟信号,数字信号。
频率信号。
脉宽信号电模拟信号:直流电流信号,直流电压信号,交流电流信号,交流电压信号国际统一信号:DC4——20mA DC1-5V四线制传输:供电,信号各两根,对电流信号的零点及元件的功耗没有严格要求,可以是活零点或真零点二线制传输:单电源供电,信号电源公用传输线,因此,必须采用有活零点的电流信号,必须是以零电位为起始点的单电源供电,变送器正常工作的电流I小于等于信号电流最小值二线制和四线制的区别:两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。
因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的。
活零点的优点意义:便于检验信号传输线有无断线及仪表是否断电;使半导体器件工作在较好的工作段;使制作具有本质安全防爆性能和节约传输线的两线制变送器成为可能。
《控制仪表及装置》复习提纲
第一章概述
1.简单控制系统的组成
信号制和传输方式
标准传输信号,特点;
传输方式(电流信号,电压信号),特点;
四线制传输,二线制传输,特点。
2.安全火花型防爆系统
如何实现
第二章调节单元
1.运算规律(P,PI,PD,PID)
数学表达式(时域、频域),波形;关键点的计算;
,
T,D T的含义;
I
2.基型调节器的构成(图1-10);
3.调节器的正反作用;
4.输入电路的特点;
5.PI电路,PD电路;
6.无平衡无扰动切换;积分饱和问题;
7.调节器输出与输入的关系。
第三章变送单元
1.变送器的构成原理,输入与输出之间的关系;
2.量程调整、零点调整和零点迁移,为什么?
3.力平衡式差压变送器如何实现量程调整;
4.差动变压器的作用;
5.力平衡式差压变送器进行量程和零点调整时应注意什么;
6.电容式差压变送器的特点;
7.温度变送器如何实现非线性补偿;
8.温度变送器为什么要采用DC/AC/DC变换器。
第四章运算单元
1.乘除器的输入与输出之间的关系;
2.自激振荡时间分割器的工作原理;
3.开方器的输入与输出之间的关系;
4.开方器的小信号切除;
第五章执行器
1.气动执行器(执行机构和调节机构);输入与输出关系;如何克服非线性;
2.流量方程;
3.流量系数C;
4.可调比R;
5.流量特性(理想特性和工作特性);
6.气开、气关的选择原则。