机械原理课程设计牛头刨床说明书位置11、7’.
- 格式:doc
- 大小:863.50 KB
- 文档页数:18
机械原理课程设计牛头刨床说明书一、引言本文为机械原理课程设计牛头刨床的说明书,旨在介绍牛头刨床的结构、原理、使用方法以及维护保养等方面的内容,希望能对使用者有所帮助。
二、牛头刨床的结构与原理牛头刨床是一种用于刨削板材表面的机床,主要由机床床身、工作台、电机、导轨以及滑块等部件组成。
其工作原理是通过工作台上的牛头将木材压住并将其通过旋转的铣刀刨削出所需的形状。
同时,导轨和滑块的设计能够确保工作台能够进行稳定的上下移动以及平移。
三、牛头刨床的使用方法在使用牛头刨床时,首先需要将待加工的木材放在工作台上。
接着,按照所需的形状设计好牛头,并将其固定在工作台的卡箍上。
然后,开启电机,调整刨床刀具的高度和位置,开始进行刨削加工。
在加工过程中,需要保持稳定的物料进给速度和足够的润滑,以保证刨削的精度和质量。
四、牛头刨床的维护保养为了确保牛头刨床的正常运行,需要定期进行维护与保养。
首先,每天需要清理机床内部和机械表面的灰尘和碎屑,以保持机床的清洁和卫生。
其次,每周需要检查牛头和铣刀的状态,并在需要时进行维修或更换。
另外,还应该保持机床的导轨和滑块润滑充足,确保加工精度和刨削质量。
五、注意事项在使用牛头刨床时,需要特别注意安全事项。
首先,要保持机床周围的环境整洁、明亮,防止伤害事故的发生。
其次,需要正确穿戴工作服和工作手套,防范手部伤害。
同时,加工时应该保持注意力集中,避免加工过程中的疏忽。
最后,在进行加工前必须确保机床的各项控制仪器如电源、导轨等功能齐全、可用。
以上为机械原理课程设计牛头刨床说明书的内容,希望能为使用者提供帮助和指导,促进机械制造领域的发展和进步。
机械原理牛头刨床课程设计说明书一、设计目标本课程设计旨在通过设计和制作一个机械牛头刨床,使学生能够熟悉机械原理相关知识,并培养其机械设计和制造的能力。
二、设计要求1. 设计一个适用于木材刨削的牛头刨床,能够实现刨削操作。
2. 设计结构合理,刨削效果良好,安全可靠。
3. 刨削精度要求达到工业标准。
三、设计内容1. 刨床结构设计:a. 确定刨床的主要组成部分,包括床身、工作台、横梁、进给装置等。
b. 设计床身和工作台的结构,确定材料和尺寸。
c. 设计横梁的结构,确保刨床具有足够的强度和刚度。
d. 设计进给装置,以满足刨削的速度和精度要求。
2. 主动传动系统设计:a. 选择适当的传动方式,如皮带传动、齿轮传动等。
b. 设计传动比,以满足刨削速度要求。
c. 选取适当的传动元件,如电机、皮带轮、齿轮等。
3. 刨削工具设计:a. 选择适当的刨削刀具,如牛头刨刀。
b. 设计刨削刀头的结构和尺寸,以满足刨削要求。
4. 安全保护装置设计:a. 设计适当的安全装置,保证操作人员的安全。
b. 设计急停装置,以应对突发情况。
五、设计步骤1. 确定设计目标和要求,了解使用环境和条件。
2. 进行初步设计,包括结构设计、传动系统设计、刨削工具设计和安全保护装置设计。
3. 进行详细设计,确定各个零件的尺寸和形状。
4. 制作和加工零件,组装刨床。
5. 进行试验和调整,测试刨床的性能和刨削效果。
6. 完善设计和制作文档,撰写课程设计报告。
六、设计成果通过完成本课程设计,学生将获得一个机械牛头刨床的制作经验,并掌握机械原理相关知识。
同时,学生还将培养出良好的团队合作能力和工程实践能力。
机械原理课程设计牛头刨床说明书负责人:学院:机电工程学院班级:学号:日期: 2013年 7 月 11 日目录第1章设计任务1.1 设计任务 (3)1.2 原始参数 (4)第2章运动方案设计2.1 主机构方案(选型) (5)2.2 齿轮传动机构方案 (7)第3章电动机的选择3.1 电动机的功率 (8)3.2 电动机的型号 (8)第4章齿轮机构设计4.1 传动比的分配 (10)4.2 齿轮机构的设计 (10)第5章主机构的设计5.1 主机构运动分析 (12)5.2 主机构受力分析 (16)第6章速度波动调节w的计算 (26)6.1 Δmax6.2 飞轮的设计 (26)第7章总结7.1 体会心得 (30)7.2 参考文件 (32)第1章设计任务1.1 设计任务中小型牛头刨床的主运动(见机床)大多采用曲柄摇杆机构(见曲柄滑块机构)传动,故滑枕的移动速度是不均匀的。
大型牛头刨床多采用液压传动,滑枕基本上是匀速运动。
滑枕的返回行程速度大于工作行程速度。
由于采用单刃刨刀加工,且在滑枕回程时不切削,牛头刨床的生产率较低。
机床的主参数是最大刨削长度。
牛头刨床主要有普通牛头刨床、仿形牛头刨床和移动式牛头刨床等。
普通牛头刨床(见图)由滑枕带着刨刀作水平直线住复运动,刀架可在垂直面内回转一个角度,并可手动进给,工作台带着工件作间歇的横向或垂直进给运动,常用于加工平面、沟槽和燕尾面等。
仿形牛头刨床是在普通牛头刨床上增加一仿形机构,用于加工成形表面,如透平叶片。
移动式牛头刨床的滑枕与滑座还能在床身(卧式)或立柱(立式)上移动,适用于刨削特大型工件的局部平面。
牛头刨床一种刨床,利用住复运动的刀具切割已固定在机床工作平台上的工件〔一般用来加工较小工件)。
机床的刀架状似牛头,故名。
1.2 原始参数牛头刨床传动装置原始参数:方案平均数度mv(mm/s)变化系数k刨刀冲程H(mm)切削阻力rF(N)空行程摩擦阻力'r F(N)IV580 1.50 400 4000 200方案越程量ΔS(mm)刨头重量(N)杆件线密度(kg/m)不均匀系数[δ]IV20 620 300 0.05 第2章运动方案设计2.1 主机构方案主机构方案图:主机构尺寸计算:11*180+-=K K θ (2-1)36=θ ABm w HV )(θπ+= (2-2) 30ABAB n w π=(2-3) s rad /47.5w AB =)/11(60K H v n mAB+=∴ (2-4) min /2.52r n AB =2sin2θH L CD =(2-5) mm L CD 21.647=CD ACL L 53= (2-6) mm L AC33.388=CD CF L L 96.0= (2-7) mm L CF 32.621=2sinθAC AB L L = (2-8) mm L AB 00.120=CD DEL L 41= (2-9) mm L DE80.161=2.2 齿轮传动机构方案电动机的转速大概是n=1440r/min ,而min /2.52n r AB = ,所以 总传动比大概是58.272.521440==总i ,所以采用三级减速装置,第一级采用皮带,后两级采用展开式二级圆柱齿轮减速器。
机械原理牛头刨床课程设计说明书【课程设计说明书】机械原理牛头刨床一、设计要求设计一台工业用牛头刨床,实现对工件的加工和修整。
具体要求如下:1. 切削平面尺度:500mm×300mm;2.设计应符合牛头刨床机床的常见设计规范,确保机床的稳定性和可靠性;3.确定合适的传动方式,保证工作台的运动平稳、精度高;4.配备适用于牛头刨床的刀具,并设计合理的刀具固定装置;5.设计合适的工作台升降装置,以便对工件进行修整和加工;6.需要制作完整的设计图纸,包括总装图、零件图、工艺图、总体尺寸图等。
二、设计方案1.结构设计:本设计采用C型床身结构,床身采用优质铸铁材料,具有足够的刚性和稳定性。
设计采用铸造床身而非焊接结构,以确保床身的牢固性和寿命。
2.传动方式:采用液压传动和滚珠丝杠传动相结合的方式,保证牛头刨床的刨削平稳性和精确度。
使用液压缸控制工作台的下行速度,滚珠丝杠传动确保工作台的升降精度。
3.刀具固定装置:设计使用可调节的夹具和刀架装置,以便进行不同尺寸工件的加工。
采用刀架的固定方式,提高切削精度和稳定性。
4.工作台调整装置:使用螺杆和手柄的组合进行工作台的调整和锁定,确保工作台的位置在切削过程中保持稳定。
三、关键技术分析1.床身结构设计:床身是整个牛头刨床的基础,需要具备足够的刚性和稳定性。
采用C型床身结构可以有效避免因切削过程中产生的振动对加工质量的影响。
2.传动系统设计:液压传动和滚珠丝杠传动结合,确保切削平稳和升降精度。
液压系统可根据切削要求调节下行速度,滚珠丝杠传动可以精确控制工作台的升降位置。
3.刀具固定方式设计:可调节的夹具和刀架结合,使得牛头刨床可以适应不同尺寸工件的加工。
刀架的固定方式可以提高切削精度和稳定性。
4.工作台调整装置设计:使用螺杆和手柄的组合进行工作台的调整和锁定,使得工作台的位置在切削过程中保持稳定。
确保工件加工精度和切削平面的平整。
四、设计结果经过详细设计和计算,本课程设计的机械原理牛头刨床满足设计要求,具备较高的稳定性、精确度和操作性。
机械原理课程设计说明书牛头刨床一、设计题目牛头刨床的机械原理设计二、设计目的本次课程设计的目的是通过对牛头刨床的设计,深入理解机械原理中机构的运动和动力传递,掌握机械设计的基本方法和步骤,提高分析和解决实际工程问题的能力。
三、原始数据及设计要求1、刨削行程长度:____mm2、刨削速度:____m/min3、行程速比系数:____4、刨刀工作行程时的平均切削力:____N5、刨刀空行程时的平均阻力:____N设计要求:1、绘制机构运动简图。
2、对机构进行运动分析和动力分析。
3、确定电动机的功率和转速。
4、设计主要零部件的结构尺寸。
四、机构的选择和工作原理牛头刨床通常采用曲柄摇杆机构来实现刨刀的往复直线运动。
其工作原理是:电动机通过皮带传动将动力传递给飞轮,飞轮带动曲柄旋转,曲柄通过连杆带动摇杆摆动,摇杆与滑枕相连,从而使滑枕带动刨刀作往复直线运动。
五、运动分析1、位移分析设曲柄长度为 r,连杆长度为 l,摇杆长度为 a,偏距为 e。
以曲柄转角φ 为自变量,根据几何关系可以得到摇杆的摆角θ 和滑枕的位移 s 的表达式。
2、速度分析对位移方程求导,可以得到摇杆的角速度ω 和滑枕的速度 v 的表达式。
3、加速度分析对速度方程求导,可以得到摇杆的角加速度ε 和滑枕的加速度 a 的表达式。
六、动力分析1、工作阻力分析根据刨削工艺要求,确定刨刀在工作行程和空行程中的阻力变化规律。
2、惯性力分析计算各构件的质量和转动惯量,根据加速度分析结果计算惯性力。
3、平衡分析考虑惯性力和工作阻力,对机构进行平衡分析,以减小振动和冲击。
七、电动机的选择1、计算工作功率根据刨削力和刨削速度,计算刨削工作所需的功率。
2、考虑传动效率考虑皮带传动、齿轮传动等的效率,计算电动机所需的输出功率。
3、选择电动机根据所需功率和转速,选择合适的电动机型号。
八、主要零部件的设计1、曲柄和连杆的设计根据受力情况和运动要求,确定曲柄和连杆的材料、尺寸和结构形式。
目录一、设计题目与原始数据.............................................................................. - 1 -二、牛头刨床示意图...................................................................................... - 2 -三、导杆机构设计.......................................................................................... - 3 -四、机构的运动分析...................................................................................... - 5 -五、机构动态静力分析................................................................................ - 11 -六、飞轮设计 ............................................................................................... - 17 -七、设计凸轮轮廓曲线................................................................................ - 19 -八、齿轮设计及绘制啮合图 ........................................................................ - 19 -九、解析法 ................................................................................................... - 21 -1.导杆机构设计. (21)2.机构运动分析 (21)3.凸轮轮廓曲线设计 (24)4.齿轮机构设计 (27)十、本设计的思想体会................................................................................ - 28 -参考文献 ....................................................................................................... - 28 -附录 ....................................................................................................... - 29 -一、设计题目与原始数据1.题目:牛头刨床的综合设计与分析 2.原始数据:刨头的行程 H=550mm 行程速比系数 K=1.6 机架长 L O2O3=400mm 质心与导杆的比值 L O3S4/L O3B =0.5 连杆与导杆的比值 L BF /L O3B =0.3 刨头重心至F 点距离 X S6=160mm 导杆的质量 m 4=15 刨头的质量 m 6=58 导杆的转动惯量 J S4=0.7 切割阻力 F C =1300N 切割阻力至O 2的距离 Y P =175mm 构件2的转速 n 2=80 许用速度不均匀系数 [δ]=1/40 齿轮Z 1、Z 2的模数 m 12=15 小齿轮齿数 Z 1=18 大齿轮齿数 Z 2=46 凸轮机构的最大摆角 φmax =16º凸轮的摆杆长L=140mmO4C凸轮的推程运动角δ=60º凸轮的远休止角δ=10º01'=60º凸轮的回程运动角δ凸轮机构的机架长L=150mmo2o4=55mm凸轮的基圆半径ro凸轮的滚子半径r=15mmr二、牛头刨床示意图如图1所示图1 三、导杆机构设计1、已知:行程速比系数 K=1.6刨头的行程 H=550mm 机架长度 L O2O3=400mm 连杆与导杆的比 L BF /L O3B =0.32、各杆尺寸设计如下 A 、求导杆的摆角:ψmax =180°×(K-1)/(K+1)=180°×(1.6-1)/(1.6+1)=42° B 、求导杆长:L O3B1=H/[2sin (ψmax /2)]=550/[2sin (42°/2)]=776mm C 、求曲柄长:L O2A =L O2O3×sin (ψmax /2)=400×sin21°=142mm D 、求连杆长:L BF =L O3B ×L BF /L O3B =776×0.3=233mm E 、求导路中心到O 3的距离:L O3M =L O3B -L DE /2=L O3B {1-[1-cos(ψmax /2)]/2}=750mm F 、取比例尺: μL =0.005m/mm在1#图纸中央画机构位置图,机构位置图见1#图纸。
机械原理牛头刨床课程设计说明书机械原理是机械工程专业的一门基础课程,牛头刨床是机械原理中的一个重要实例。
牛头刨床是一种用于木材加工的机床,主要用于刨削、镶嵌、槽铣等木工加工工艺。
本文将就牛头刨床的课程设计进行说明。
一、选题依据1.教材资料:《机械原理》一书是机械原理课程的主要教材,通过研究教材内容可以了解到牛头刨床的结构、工作原理等。
2.工程实践:牛头刨床是一种常见的木工机械设备,广泛应用于木材加工行业。
通过课程设计可以培养学生的实际动手能力和创新思维。
3.学生需求:课程设计是培养学生创新能力和解决实际问题的重要途径。
选择与实际工程紧密结合的牛头刨床作为课程设计内容,能够提高学生的学习兴趣和实践能力。
二、课程设计目标1.熟悉牛头刨床的结构和工作原理;2.了解牛头刨床的主要参数和技术要求;3.掌握牛头刨床的使用和调整方法;4.能够进行牛头刨床的维修、保养和故障排除;5.培养学生的实际动手能力和解决问题的能力。
三、课程设计内容1.牛头刨床的结构和工作原理:介绍牛头刨床的主要部件,包括机身、传动装置、刨床等,以及输入输出的功能关系。
通过图示和文字说明,让学生了解牛头刨床的结构和工作原理。
2.牛头刨床的主要参数和技术要求:解释牛头刨床的主要参数,如最大刨削宽度、最大刨削深度等,并介绍牛头刨床的技术要求,如刨削表面粗糙度、加工精度等。
让学生了解牛头刨床的使用限制和技术要求。
3.牛头刨床的使用和调整方法:详细介绍牛头刨床的使用方法和调整方法,包括上料、定位、刨削、调整刀具等步骤。
通过图示和文字说明,让学生了解如何正确使用牛头刨床并进行刨削加工。
4.牛头刨床的维修、保养和故障排除:介绍牛头刨床的常见故障和解决方法,如电气故障、机械故障等,以及常规保养和维修方法。
让学生了解牛头刨床的维护和故障排除的基本操作。
5.课程设计实例:通过设计一个牛头刨床的调整模型或装置,让学生进行实际操作和调试。
通过实践,让学生掌握牛头刨床的调整方法和操作技巧,并培养学生的实际动手能力和解决问题的能力。
(此文档为word格式,下载后您可任意编辑修改!)目录1 : 机械原理课程设计内容及要求 12 :牛头刨床机构简介及原始数据 1 2-1:牛头刨床简介 1 2-2:机构的要求 1 2-3:牛头刨床设计原始数据 23 :机构方案的初步确定 23-1:曲柄滑块机构与摆动导杆机构 23-2:曲柄滑块机构与扇形齿轮齿条机构 43-3:综合评定确定方案 64 :机构工艺动作分解及运动循环图 75 :主机构尺度综合及运动特性评定 8 5-1:2号位置动态静力学分析 8 5-2:7号位置动态静力学分析 116 :电动机功率与型号的确定 137 : 主机构受力分析 14 7-1:2号受力分析 14 7-2:7号受力分析 158 :飞轮转动惯量的计算 169 :减速机构以及工作台进给机构的确定 199-1:减速机构的确定 20 9-2:工作台进给方案的确定 2010 :设计心得与体会 2211 :参考文献 24一:课程设计题目、内容及其目的题目:牛头刨床内容:平面刨削机床运动简图设计及分析,计算刨削机构在指定位置的速度、加速度、受力、绘制位移、速度、加速度曲线、平衡力矩曲线、等效阻力矩曲线以及等效驱动力曲线。
根据上述得到的数据,确定飞轮转动惯量。
目的:1:学会机械运动见图设计的步骤和方法;2:巩固所学的理论知识,掌握机构分析与综合的基本方法;3:培养学生使用技术资料,计算作图及分析与综和能力;4:培养学生进行机械创新设计的能力。
二:牛头刨床简介,机构的要求及原始数据1:牛头刨床简介牛头刨床是一种用于平面切削加工的机床,如图1。
电动机经皮带和齿轮传动,经过减速机构减速从而带动曲柄1。
刨床工作时,由导杆3经过连杆4带动刨刀5作往复运动。
刨头左行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量,刨头右行时,刨刀不切削,称空行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
机械原理牛头刨床课程设计牛头刨床课程设计本课程的目的是使学生理解牛头刨床的原理,掌握正确的操作方法,安全而且高效的操作机床,为以后的实验、制作做准备。
一、总述牛头刨床,是用来进行切铣或者刨削加工的机床,主要用于打凹槽、打丁、刨槽、切断、挤出、切透等工作。
由于它精度高,准确性好,可以用来在机械加工行业中制作同样形状的零件,因此十分流行。
二、物理原理牛头刨床是一种摩擦式加工机床,其工作原理是将工件把其用牛头刨刃进行切削,产生摩擦动力发生滑动现象,从而实现对工件的加工加工非常有效率。
它特点体现在机床的构造,通常由一个垂直的刨花杆,一个活动的刨刃和一个垂直的工件夹紧装置组成。
三、机床结构牛头刨床,基本包括:主轴系统,分度齿轮系统,臂节系统,工件夹紧系统,床身系统和润滑系统等结构。
主轴系统由主轴、轴夹等组成,分度齿轮系统由主齿轮、主动齿轮、位移齿轮和分度齿轮组成,臂节系统由夹紧臂、轨道臂、杠杆调整臂、弹簧臂和臂轮组成,工件夹紧系统由夹紧框、夹紧杆、紧固螺栓及液压夹紧装置组成,润滑系统由油箱、油泵和油管组成。
四、机床操作1、在夹紧上就好紧固螺丝杆调整压力,根据工艺要求选择合适锥度的刨刃,按照顺序从大到小的刨;2、翻转夹件夹紧装置夹紧工件,使其与机床的定位位置一致;3、调整切削深度,即调整刨刃夹紧臂的位置,当刨刃完全进入工件时,开机进行加工;4、加工中要注意机床及工件的热量,使其保持在一定范围内;5、加工完成后,去除刨刃,清理刨花,进行刀具检查,并更换新的刀具。
五、课程内容1、讲解物理原理及机床结构;2、讨论加工工艺;3、实操演示加工技术;4、实验室测试本课程学习的技能;5、指导并完成机床制作机械部件的实际操作。
六、学习成果1、理解牛头刨床的原理,掌握机床的结构及各部件;2、熟悉牛头刨床内所有工艺加工流程及其步骤;3、掌握各种加工技术,能够正确熟练地操作机床;4、能够正确配置工艺,以满足加工的要求。
机械原理课程设计---牛头刨床设计1.设计目的本设计旨在设计一台能够切削各种金属材料的牛头刨床。
该牛头刨床应具备高效率、高稳定性、切削精度高的特点,便于操作和维护。
2.设计原理牛头刨床是一种高速旋转的加工设备。
其主要原理是通过旋转锯齿式的切削工具,将工件表面上的金属材料逐渐削除,使得工件表面变得更加平整,并且加工出所需的形状和尺寸。
牛头刨床是一种中等负荷,高精度的机床。
牛头刨床通常由牛头床身、床身导轨、剪刀手柄、剪刀架、加工刀具等组成。
牛头刨床的加工过程是由电机驱动削刀旋转,刀架在滑轨的带动下来回作直线摆动,使牛头刨床作工件表面直线切削运动,从而切出工件所需的形状和尺寸。
3.设计要求3.1工件加工精度应达到5μm。
3.2牛头刨床的加工速度应达到1000mm/min。
3.3牛头刨床的集成度要高,结构紧凑,使用方便,易于维护。
3.4牛头刨床应能满足加工各种金属材料的需求。
3.5牛头刨床应具有高稳定性,能够保证工件加工的精度和表面质量。
4.设计方案4.1结构设计根据以上的设计要求,本设计方案选择使用牛头床身、床身导轨、剪刀手柄、剪刀架、加工刀具等组成。
牛头床身是整个牛头刨床的主要支撑结构,可以承受切削力和副作用力,保持机床的稳定性。
床身导轨主要用于支撑剪刀架和平台,保证刀架的平直移动。
剪刀手柄和剪刀架负责牛头刨床的切削过程,加工刀具可根据需要更换。
4.2电气控制设计本设计方案使用单片机控制系统,实现对牛头刨床的控制。
单片机通过输入脉冲信号,控制螺旋传动装置,从而改变刀具的进给量,达到精确控制切削深度和速度的目的。
4.3软件设计本设计方案采用Unigraphics NX软件进行电脑辅助设计。
对机床各零件进行三维建模,并进行机床的装配和结构分析。
5.结论通过本次牛头刨床的设计,可以使得产生出一款结构紧凑、使用便捷、高效率和高精度的机床。
在未来的制造业中,牛头刨床的应用前景非常广阔。
机械课程设计牛头刨床——说明书
牛头刨床是一种机械自动化的刨床用来加工钻头。
它具有技术先进、精度高、效率高、结构紧凑、安全可靠等优点,可以方便快捷地完成多种形状的钻头加工。
本项目旨在设计一台具有自动化控制和进给功能的牛头刨床,它能够实现对多种尺寸
钻头的高速加工。
首先,牛头刨床采用先进的机械结构,把主轴安装在轴承上,驱动系统
采用定位器和伺服电机控制,以及专门的单元位置控制器,从而实现高精度、高效率的转动。
其次,加工部分由刨复计算机控制组成,采用步进电动机驱动,辅以直接传动原理使
机器加工运行稳定可靠,同时采用数控系统将开关、传感器,以及容允误差等元器件连接
到计算机中,实现自动检测和改变加工参数,从而保障了加工精度和效率。
此外,牛头刨床采用安全保护系统,在加工进程中关闭主轴的驱动动力,并关闭传动
装置,达到操作安全的作用。
此外,还可以针对特殊工件采用手动调整加工参数功能,实
现更多加工精度要求。
总而言之,本台牛头刨床可以实现多种钻头加工,通过自动化控制和进给功能,实现
对钻头尺寸和质量的更精确控制,提高加工精度和效率,并保证操作安全。
此外,还可以
根据不同的工件型号,以满足不同精度要求。
机械原理牛头刨床课程设计说明书机械原理牛头刨床课程设计说明书1. 介绍在机械工程专业的课程设计中,机械原理牛头刨床是一个重要的实验项目。
本文将针对机械原理牛头刨床的课程设计进行全面评估和撰写,旨在帮助您深入理解这一主题。
2. 牛头刨床的工作原理2.1 主轴传动装置机械原理牛头刨床的工作原理首先涉及到主轴传动装置。
主轴传动装置是牛头刨床中最基本的部件之一,它负责将电机的旋转运动传递给牛头刨床的切削刀具,从而实现工件的加工。
2.2 工作台而牛头刨床的工作台则是用来支撑工件并进行切削加工的。
工作台的设计和调整对于牛头刨床的加工精度和效率有着非常重要的影响。
3. 课程设计内容在进行机械原理牛头刨床的课程设计时,我们需要重点关注以下内容:3.1 设计原理要对牛头刨床的工作原理进行深入的研究和理解,并结合课程中所学到的机械原理知识,设计出符合工程要求的传动装置和工作台结构。
3.2 零部件选型我们需要对牛头刨床的零部件进行选型和优化,确保牛头刨床在正常工作状态下具有稳定的性能和工作精度。
3.3 结构设计在课程设计中,我们还需要对牛头刨床的整体结构进行设计和分析,包括主轴传动装置、工作台、床身结构等,保证各部件之间的协调和配合。
3.4 控制系统设计我们还需要考虑牛头刨床的控制系统设计,包括电气控制装置、数控系统等,以实现牛头刨床的自动化加工。
4. 个人观点和总结在完成这份课程设计说明书之后,我对机械原理牛头刨床有了更深入的理解。
通过对牛头刨床的工作原理、课程设计内容的研究和总结,我认识到牛头刨床作为一种重要的机械加工工具,在工程实践中具有着重要的应用和推广价值。
机械原理牛头刨床的课程设计是一项非常有挑战性和意义的任务,在其中我们需要充分发挥自己的理论知识和实践能力,才能够设计出符合工程要求的牛头刨床结构和性能。
希望通过这篇文章的撰写,能够对您的课程设计工作有所帮助。
以上就是对机械原理牛头刨床课程设计的全面评估和撰写,希望能够对您有所启发。
机械原理课程设计说明书-牛头刨床的运动分析与设计一、设计目标本机械原理课程设计的目标是对牛头刨床进行运动分析与设计,通过分析刨床的运动原理和结构特点,设计出合理的刨床结构,确保刨床的运动稳定性和工作效率。
二、刨床的运动分析1. 刨床的基本运动牛头刨床的基本运动包括主轴转动、工作台进给运动和刀架进给运动。
主轴转动通过电动机驱动刨刀进行旋转,实现刨削工作。
工作台进给运动使工件在水平平面上进行进给运动,供刀架进行刨削。
刀架进给运动使刀架在垂直于工作台的方向上进行进给,并在工件刨削时左右平移,调整刨削的位置。
2. 刨床的运动传动刨床的运动传动主要通过齿轮传动和导轨传动实现。
主轴转动通过电动机通过齿轮传动带动主轴实现。
工作台进给运动通过齿轮和导轨的组合实现,工作台在导轨上进行水平移动。
刀架进给运动通过螺杆和导轨的组合实现,螺杆带动刀架进行垂直平移,并在导轨上进行水平移动。
三、刨床结构设计基于上述运动分析,对牛头刨床进行结构设计如下:1. 主轴结构:主轴采用直径大、刚度高的优质轴承,保证刨床的稳定性和工作效率。
主轴和电动机通过齿轮传动连接,确保刨床主轴的转动平稳。
2. 工作台结构:工作台采用结实的铸铁材料,设计为可拆卸结构,方便工件的放置和取出。
工作台通过导轨和齿轮传动实现水平进给运动,导轨和齿轮选用耐磨材料,减小运动阻力。
3. 刀架结构:刀架采用铸铁材料,设计为可调节结构,方便调整刨削位置。
刀架通过螺杆和导轨的组合实现垂直进给运动和水平进给运动,确保刀具与工件的接触面平整。
四、设计流程1. 进行刨床的运动分析,确定刨床的基本运动和运动传动方式。
2. 根据运动分析结果,进行刨床的结构设计,包括主轴结构、工作台结构和刀架结构。
3. 设计刨床各部件的尺寸和连接方式,确保结构的牢固性和可拆卸性。
4. 进行刨床的总体装配和调试,确保刨床的运动平稳和工作效率。
5. 测试刨床的性能和稳定性,进行必要的调整和改进。
五、安全注意事项1. 在使用刨床时,应仔细阅读操作指南,并按照操作规程进行操作。
牛头刨床机械原理课程设计牛头刨床是一种用于金属切削加工的机械设备,它具有较长的历史和广泛的应用。
牛头刨床的机械原理课程设计是机械类专业的重要教学内容之一,通过课程设计可以帮助学生更深入地了解和掌握机械系统的工作原理、设计方法和技能。
一、设计目的牛头刨床机械原理课程设计的目的是通过对牛头刨床的机构、零部件和控制系统等进行设计和分析,使学生掌握以下知识和技能:1.机构和零部件的设计和计算方法;2.常用金属材料和润滑剂的选用;3.机械系统的调整和测试技术;4.控制系统的工作原理和设计方法;5.加工精度和生产效率的分析和优化。
二、设计内容1.机构类型和运动分析牛头刨床是一种典型的曲柄滑块机构,其基本运动为往复直线运动和旋转运动。
机构类型和运动分析的主要内容包括:机构简图和运动分析图的绘制,机构自由度的计算,机构运动特性的分析和计算等。
2.机构零部件设计和计算牛头刨床的机构零部件包括机身、滑块、导轨、连杆、摇臂等。
机构零部件设计和计算的主要内容包括:零部件的结构形式和材料的选择,零部件的强度和刚度计算,导轨和连杆的润滑和防尘等。
3.控制系统设计和分析牛头刨床的控制系统包括电动机、变速器、离合器、制动器和操纵系统等。
控制系统设计和分析的主要内容包括:电动机的选择和计算,变速器的设计和计算,离合器和制动器的选用和调整,操纵系统的设计和调试等。
4.机械系统调整和测试机械系统调整和测试的主要内容包括:机构零部件的装配和调整,机构间隙和干涉的调整,滑块和摇臂的平衡调整,机械性能试验和运动精度检测等。
5.经济技术分析经济技术分析的主要内容包括:成本核算、经济效益分析、社会效益评估和技术可行性分析等。
学生应在设计过程中进行全面的经济技术分析,以确定设计方案的经济合理性和技术可行性。
三、设计步骤1.明确设计任务和要求;2.进行机构类型和运动分析,确定机构简图和运动分析图;3.进行机构零部件设计和计算,制定材料选用、结构形式、润滑和防尘等方面的方案;4.进行控制系统设计和分析,选用合适的电动机、变速器、离合器、制动器和操纵系统等;5.进行机械系统调整和测试,确保机构装配和运转的可靠性;6.进行经济技术分析,制定设计方案的经济合理性和技术可行性评估报告;7.编写设计说明书和使用维护说明书。
机械原理课程设计:牛头刨床1. 引言牛头刨床是一种常见的传统机床,主要用于对工件表面进行刨削加工。
本文将介绍牛头刨床的原理、结构和工作方式,并通过一个机械原理课程设计的案例来详细阐述。
2. 牛头刨床的原理和结构牛头刨床主要由床身、工作台、主轴箱、横板、横臂、滑枕、刀架、送料机构、弹簧加载机构等组成。
床身是牛头刨床的基础部件,承载整个刨床的重量。
工作台是工件安装和固定的平台,通常可沿床身移动。
主轴箱负责提供刨床的切削力和刨削转矩,通过主轴箱内的减速齿轮将电机的转速转化为切削运动。
横板和横臂构成刨削机构,横板可以沿床身滑动,横臂带动滑枕和刀架进行刨削运动。
送料机构负责推动工件在刨床上进行进给运动。
弹簧加载机构用于对刀架进行加载,使刀具保持稳定的切削力。
3. 牛头刨床的工作方式牛头刨床的工作方式主要包括工件装夹、刨削运动和进给运动。
首先,将待加工的工件安装在工作台上,使用夹具进行固定,保证工件不会在加工过程中移动。
然后,通过启动电机,主轴箱将转速转化为切削运动,带动刀架进行垂直方向的往复运动,实现工件表面的刨削加工。
同时,送料机构会推动工件在工作台上进行进给运动,保持刀具和工件之间的一定切削速度,从而达到理想的加工效果。
4. 机械原理课程设计案例:牛头刨床设计与制造为了更好地理解和应用牛头刨床的原理和结构,我们进行了一个机械原理课程设计案例——牛头刨床的设计与制造。
在该设计中,我们首先进行了对牛头刨床的结构和功能的分析,明确了所需的刨床尺寸、切削范围等参数。
接下来,我们进行了刨床的结构设计,包括床身、工作台、主轴箱、横板、横臂、滑枕等部件的设计和选材。
然后,我们进行了整体装配设计,考虑了各部件之间的协调性和连接方式,确保了刨床的正常运转和稳定性。
最后,我们进行了刨床的制造过程,包括零部件的加工、装配和调试,最终完成了一台功能完备的牛头刨床。
5. 结论通过本文的介绍和机械原理课程设计案例,我们了解了牛头刨床的原理、结构和工作方式,并通过设计与制造实例深入理解了牛头刨床的设计过程和挑战。
机械原理课程设计说明书设计题目:牛头刨床设计学院:机电工程学院班级:学号:设计者:指导教师:日期:目录一、机械原理课程设计任务书 (3)二、连杆机构对比 (5)1.方案a (5)2.方案b (6)三、机构尺寸 (6)四、导杆机构的运动分析 (8)1.图解法 (8)1)速度分析 (8)2)加速度分析 (10)2.解析法 (13)五、凸轮机构设计 (14)1)确定凸轮机构的基本尺寸 (14)2)凸轮廓线的绘制 (19)六、小结 (20)参考文献 (20)一、机械原理课程设计任务书1工作原理:牛头刨床是一种靠刀具的往复直线运动及工作台的间歇运动来完成工件的平面切削加工的机床。
下图为其参考示意图。
电动机经过减速传动装置(皮带和齿轮传动)带动执行机构(导杆机构和凸轮机构)完成刨刀的往复运动和间歇移动。
刨床工作时,刨头6由曲柄2带动右行,刨刀进行切削,称为工作行程。
在切削行程H中,前后各有一段0.05H的空刀距离,工作阻力F为常数;刨刀左行时,即为空回行程,此行程无工作阻力。
在刨刀空回行程时,凸轮8通过四杆机构带动棘轮机构,棘轮机构带动螺旋机构使工作台连同工件在垂直纸面方向上做一次进给运动,以便刨刀继续切削。
2设计要求:电动机轴与曲柄轴2平行,刨刀刀刃E点与铰链点C的垂直距离为50mm,要求导杆机构的最大压力角应为最小值;凸轮机构的最大压力角应在许用值[α]之内,摆动从动件9的升、回程运动规律均为等加速等减速运动。
3设计数据导杆机构运动分析转速n2(r/min) 48 机架l O2O4(mm) 380 工作行程H(mm) 300 行程速比系数K 1.40 连杆与导杆之比0.3凸轮机构设计从动件最大摆角ψmax15°从动件杆长l O9D(mm) 135 许用压力角][α38°推程运动角δ70°远休止角sδ10°回程运动角δ'70°4设计内容及工作量:1、根据牛头刨床的工作原理,拟定2~3个其他形式的执行机构(连杆机构),并对这些机构进行分析对比。
机械原理课程设计计算说明书设计题目:牛头刨床设计学校:xxxxxx院(系):机械工程系班级:xxxxx班姓名:xxx学号:xxxxxxxxxxxxxx指导教师:xx xxx时间:5月30日至6月12日共两周2011年6月12日目录:1、课程设计任务书 (2)(1)工作原理及工艺动作过程 (2)(2)原始数据及设计要求 (3)2、设计(计算)说明书 (3)(1)画机构的运动简图 (3)(2)机构运动分析 (6)①对位置11点进行速度分析和加速度分析 (6)②对位置7’点进行速度分析和加速度分析 (8)(3)对位置7’点进行动态静力分析 (11)3、摆动滚子从动件盘形凸轮机构的设计 (12)4、参考文献 (16)5、心得体会 (16)6、附件 (17)一、课程设计任务书1. 工作原理及工艺动作过程牛头刨床是一种用于平面切削加工的机床。
刨床工作时,如图(1-1)所示,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。
切削阻力如图(b)所示。
Y图(1-1)(b)2.原始数据及设计要求已知曲柄每分钟转数n2,各构件尺寸及重心位置,且刨头导路x-x位于导杆端点B所作圆弧高的平分线上。
要求作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图。
以上内容与后面动态静力分析一起画在1号图纸上。
二、设计说明书(详情见A1图纸)1.画机构的运动简图1、以O4为原点定出坐标系,根据尺寸分别定出O2点,B点,C点。
确定机构运动时的左右极限位置。
曲柄位置图的作法为:取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3…12等,是由位置1起,顺ω2方向将曲柄圆作12等分的位置(如下图)。
机械原理课程设计--牛头刨床设计说明书机械原理课程设计说明书牛头刨床设计说明书班级:学号:姓名:组别:指导老师:目录一概论 (3)1、设计目的 (3)2、设计任务 (3)3. 扭头刨床机构简介及工作原理 (3)二导杆机构的运动分析 (4)1、刨头位移线图 (11)2、速度分析 (6)三凸轮机构设计 (11)1、凸轮设计要求 (11)2、凸轮机构从动件位移、速度、加速度线图 (13)四齿轮机构设计 (14)1、齿轮设计要求 (14)2、齿轮计算 (15)3、绘制齿轮啮合区图 (18)五课程设计评价与分析六课程设计的心得体会 (18)七课程设计参考文献 (20)一、概论1.1机械原理课程设计目的机械原理课程设计是培养学生掌握机械系统运动方案设计能力的技术基础课程,它是机械原理课程学习过程中的一个重要实践环节。
机械原理课程设计目的在于巩固和加深所学的理论知识,培养学生独立解决有关本课程实际问题的能力,使学生对于常用机构(连杆机构、凸轮机构和齿轮机构)设计和运动分析有比较完整的认识,。
以及熟悉机械系统设计的步骤及方法,其中包括选型、运动方案的确定、运动学和动力学的分析和整体设计等,进一步提高设计计算和解决工程技术问题的能力。
1.2机械原理课程设计任务及要求机械原理课程设计任务是对主体机构进行设计和运动分析,并根据给定机器的工作要求,在此基础上绘制凸轮、齿轮;或对各机构进行运动分析。
要求:1、学生根据设计任务在规定时间内完成1# 设计图一张,3# 设计图两张,设计说明书一份(20页左右)。
2、要求计算正确、作图规范,图面整洁,说明书步骤清晰有条理,书写端正。
1.3牛头刨床机构简介及工作原理1.3.1扭头刨床简介牛头刨床是刨削类机床中应用较广的一种。
它适合刨削长度不超过1000mm的中、小型零件。
牛头刨床的主运动为电动机→变速机构→摇杆机构→滑枕往复运动;牛头刨床的进给运动为电动机→变速机构→棘轮进给机构→工作台横向进给运动。
机械原理课程设计计算说明书设计题目:牛头刨床设计学校:xxxxxx院(系):机械工程系班级:xxxxx班姓名:xxx学号:xxxxxxxxxxxxxx指导教师:xx xxx时间:5月30日至6月12日共两周2011年6月12日目录:1、课程设计任务书 (2)(1)工作原理及工艺动作过程 (2)(2)原始数据及设计要求 (3)2、设计(计算)说明书 (3)(1)画机构的运动简图 (3)(2)机构运动分析 (6)①对位置11点进行速度分析和加速度分析 (6)②对位置7’点进行速度分析和加速度分析 (8)(3)对位置7’点进行动态静力分析 (11)3、摆动滚子从动件盘形凸轮机构的设计 (12)4、参考文献 (16)5、心得体会 (16)6、附件 (17)一、课程设计任务书1. 工作原理及工艺动作过程牛头刨床是一种用于平面切削加工的机床。
刨床工作时,如图(1-1)所示,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。
切削阻力如图(b)所示。
Y图(1-1)(b)2.原始数据及设计要求已知曲柄每分钟转数n2,各构件尺寸及重心位置,且刨头导路x-x位于导杆端点B所作圆弧高的平分线上。
要求作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图。
以上内容与后面动态静力分析一起画在1号图纸上。
二、设计说明书(详情见A1图纸)1.画机构的运动简图1、以O4为原点定出坐标系,根据尺寸分别定出O2点,B点,C点。
确定机构运动时的左右极限位置。
曲柄位置图的作法为:取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3…12等,是由位置1起,顺ω2方向将曲柄圆作12等分的位置(如下图)。
取第Ⅱ方案的第11位置和第7’位置(如下图)。
2、机构运动分析(1)曲柄位置“11”速度分析,加速度分析(列矢量方程,画速度图,加速度图)取曲柄位置“11”进行速度分析。
因构件2和3在A处的转动副相连,故V A2=V A3,其大小等于W2l O2A,方向垂直于O2 A线,指向与ω2一致。
ω2=2πn2/60 rad/s=6.702rad/sυA3=υA2=ω2·l O2A=6.702×0.09m/s=0.603m/s(⊥O2A)取构件3和4的重合点A进行速度分析。
列速度矢量方程,得υA4=υA3+υA4A3大小? √?方向⊥O4B⊥O2A ∥O4B取速度极点P,速度比例尺µv=0.02(m/s)/mm ,作速度多边形如图1-2图1-2取5构件作为研究对象,列速度矢量方程,得υC=υB+υCB大小? √?方向∥XX(向右)⊥O4B ⊥BC取速度极点P,速度比例尺μv=0.02(m/s)/mm, 作速度多边行如图1-2。
Pb=P a4·O4B/ O4A=68.2 mm则由图1-2知,υC=PC·μv=0.68m/s加速度分析:取曲柄位置“11”进行加速度分析。
因构件2和3在A点处的转动副相连,故a n A2=a n A3,其大小等于ω22l O2A,方向由A指向O2。
ω2=6.702rad/s, a n A3=a n A2=ω22·l O2A=6.7022×0.09 m/s2=4.042m/s2取3、4构件重合点A为研究对象,列加速度矢量方程得:a A4 =a n A4+ a A4τ=a A3n + a A4A3K + a A4A3v大小:? ω42l O4A? √2ω4υA4A3?方向:? B→A⊥O4B A→O2⊥O4B(向右)∥O4B(沿导路)取加速度极点为P',加速度比例尺µa=0.05(m/s2)/mm,a n A4=ω42l O4A=0.041 m/s2 a A4A3K=2ω4υA4A3=0.417 m/s2a A3n=4.043 m/s2作加速度多边形如图1-3所示图1—3则由图1-3知, 取5构件为研究对象,列加速度矢量方程,得a c=a B+a cB n+a cBτ大小? √√?方向∥导轨√ C→B ⊥BC由其加速度多边形如图1─3所示,有a c =p c·μa =3.925m/s2(2)曲柄位置“7’”速度分析,加速度分析(列矢量方程,画速度图,加速度图)取曲柄位置“7’”进行速度分析,其分析过程同曲柄位置“11”。
取构件3和4的重合点A进行速度分析。
列速度矢量方程,得υA4=υA3+υA4A3大小? √?方向⊥O4B⊥O2A ∥O4B取速度极点P,速度比例尺µv=0.01(m/s)/mm,作速度多边形如图1-4。
图1—4Pb=P a4·O4B/ O4A=39.3 mm则由图1-4知,取5构件为研究对象,列速度矢量方程,得υC5 = υB5+υC5B5大小? √?方向∥导轨(向右)⊥O4B ⊥BC其速度多边形如图1-4所示,有υC=PC·μv=3.75m/s取曲柄位置“7’”进行加速度分析,分析过程同曲柄位置“3”.取曲柄构件3和4的重合点A进行加速度分析.列加速度矢量方程,得a A4=a A4n + a A4τ=a A3n +a A4A3k+a A4A3γ大小? ω42l O4A ? √2ω4υA4A3 ?方向 ? B→A ⊥O4B A→O2 ⊥O4B(向右)∥O4B(沿导路)取加速度极点为P',加速度比例尺μa=0.05(m/s2)/mm,作加速度多边形图1-5图1-5则由图1─5知,a n A4=ω42l O4A=0.176 m/s2 a A4A3K=2ω4υA4A3=0.718 m/s2 a A3n=4.043 m/s2用加速度影象法求得a B = a A4 ×l O4B/l O4A=4.35m/s2取5构件的研究对象,列加速度矢量方程,得a C =a B+a CB n+a CBτ大小? √√?方向∥导轨√ C→B ⊥BC其加速度多边形如图1─5所示,有a C = p C·μa = 4.3m/s23、机构动态静力分析取“7’”点为研究对象,分离5、6构件进行运动静力分析,作,组示力体如图1─6所示。
图1—6已知G6=800N,又a c= 4.3m/s2,可以计算Pi6=- (G6/g)×a c =-(800/9.8)×4.3=-351N又ΣF=P+G6+Pi6+N45+N16=0,作为多边行如图1-7所示,µN=80N/mm。
图1-7由图1-7力多边形可得:N45,N16分离2,3构件进行运动静力分析,杆组力体图如图1-8所示,在图中,由三力汇交定理得:图1-8代入数据,得N23=12720N作力的多边形如图1-9所示,µN=80N/mm。
图1-9对曲柄2进行运动静力分析,作曲柄平衡力矩如图1-10所示,图1-10三、摆动滚子从动件盘形凸轮机构的设计(详情见A3图纸)(一)已知条件、要求及设计数据1、已知:摆杆9为等加速等减速运动规律,其推程运动角Φ,远休止角Φ,回程运动角Φ',如图8所示,摆杆长度l O9D,最大摆角ψmax,许用压力s角〔α〕(见下表);凸轮与曲柄共轴。
2、要求:确定凸轮机构的基本尺寸,选取滚子半径rT,画出凸轮实际廓线。
3、设计数据:(二)设计过程选取比例尺,作图μl=1mm/mm。
1、取任意一点O2为圆心,以作r0=45mm基圆;2、再以O2为圆心,以l O2O9/μl=150mm为半径作转轴圆;3、在转轴圆上O2右下方任取一点O9;4、以O9为圆心,以l OqD/μl=130mm为半径画弧与基圆交于D点。
O9D即为摆动从动件推程起始位置,再以逆时针方向旋转并在转轴圆上分别画出推程、远休、回程、近休,这四个阶段。
再以11.6°对推程段等分、11.6°对回程段等分(对应的角位移如下表所示),并用A进行标记,于是得到了转轴圆山的一系列的点,这些点即为摆杆再反转过程中依次占据的点,然后以各个位置为起始位置,把摆杆的相应位置ψ画出来,这样就得到了凸轮理论廓线上的一系列点的位置,再用光滑曲线把各个点连接起来即可得到凸轮的外轮廓。
5、凸轮曲线上最小曲率半径的确定及滚子半径的选择(1)用图解法确定凸轮理论廓线上的最小曲率半径ρ:先用目测法估计min凸轮理论廓线上的ρ的大致位置(可记为A点);以A点位圆心,任选min较小的半径r 作圆交于廓线上的B、C点;分别以B、C为圆心,以同样的半径r 画圆,三个小圆分别交于D 、E 、F 、G 四个点处,如下图9所示;过D 、E 两点作直线,再过F 、G 两点作直线,两直线交于O 点,则O 点近似为凸轮廓线上A 点的曲率中心,曲率半径OA ≈m in ρ;此次设计中,凸轮理论廓线的最小曲率半径≈min ρ 。
图9(2)凸轮滚子半径的选择(r T )凸轮滚子半径的确定可从两个方向考虑:①几何因素——应保证凸轮在各个点车的实际轮廓曲率半径不小于 1~5mm 。
对于凸轮的凸曲线处T C r -=ρρ,对于凸轮的凹轮廓线T C r +=ρρ(这种情况可以不用考虑,因为它不会发生失真现象);这次设计的轮廓曲线上,最小的理论曲率半径所在之处恰为凸轮上的凸曲线,则应用公式:mm r r T T 2255min min =-<⇒>-=ρρρ;②力学因素——滚子的尺寸还受到其强度、结构的限制,不能做的太小,通常取0)5.01.0(r r T -=及mm r T 5.225.4<<。
综合这两方面的考虑,选择滚子半径为r T =15mm 。
得到凸轮实际廓线,如图10所示。
图10四、参考文献1、机械原理/孙恒,陈作模,葛文杰主编——六版——北京2006.52、理论力学Ⅰ/哈尔滨工业大学理论力学研究室编——六版——北京2002.83、机械原理课程设计指导书/罗洪田主编——北京1986.10五、心得体会通过本次课程设计,加深了我对机械原理这门课程的理解,同时我也对机械运动学和动力学的分析与设计有了一个较完整的概念,培养了我的表达,归纳总结的能力。
在设计过程中,我与同学们的交流协作,让我深刻的感受到“团结就是力量”这句话的真实意义。
一次实践就有一次收获,我很感谢学校能给我们这些机会体验锻炼自己,让我们将来更有信心在社会立足。
最后,衷心的感谢老师在整个设计过程中的帮助与指导,是他们,我们才能圆满的成功结束。
六、附件1、设计图纸共2张(A1 A3各一张)2、计算说明书电子文档(1份)指导老师签名:年月日。