基于STM32时钟系统的开发及配置
- 格式:pdf
- 大小:87.88 KB
- 文档页数:4
stm32 数字时钟课程设计一、课程目标知识目标:1. 学生能理解STM32的基本结构和工作原理,掌握其编程方法。
2. 学生能掌握数字时钟的基本原理,包括时钟源、分频器、计数器等组成部分。
3. 学生能了解实时时钟(RTC)的功能及其在STM32中的应用。
技能目标:1. 学生能运用C语言编写程序,实现STM32控制数字时钟的功能。
2. 学生能通过调试工具,对程序进行调试和优化,确保数字时钟的准确性。
3. 学生能运用所学知识,设计具有实用价值的数字时钟产品。
情感态度价值观目标:1. 培养学生对电子技术和编程的兴趣,激发其探究精神。
2. 培养学生团队合作意识,使其在项目实施过程中学会相互沟通、协作。
3. 培养学生严谨、细致、负责的工作态度,提高其解决实际问题的能力。
课程性质:本课程为实践性较强的课程,结合STM32和数字时钟知识,培养学生的动手能力和实际操作技能。
学生特点:学生具备一定的电子技术基础和C语言编程能力,对实际操作感兴趣,但可能缺乏项目实践经验。
教学要求:注重理论与实践相结合,引导学生主动探索,提高其分析问题、解决问题的能力。
在教学过程中,关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。
将课程目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容本课程教学内容主要包括以下几部分:1. STM32基本原理与编程基础:介绍STM32的内部结构、工作原理,C语言编程基础及其在STM32中的应用。
- 教材章节:第一章至第三章- 内容:微控制器基础、STM32硬件结构、C语言编程基础、STM32编程环境搭建。
2. 数字时钟原理与设计:讲解数字时钟的基本原理、组成部分以及设计方法。
- 教材章节:第四章至第五章- 内容:时钟源、分频器、计数器、实时时钟(RTC)、数字时钟设计方法。
3. STM32实现数字时钟功能:结合STM32和数字时钟知识,指导学生动手实践,实现数字时钟功能。
STM32F0系列寄存器操作02RCC时钟配置对于STM32F0系列的RCC时钟配置,以下是一个超过1200字的例子:RCC(Reset and Clock Control)是用于配置和控制STM32F0系列微控制器的时钟的模块。
时钟系统对于微控制器的运行非常重要,因为它影响到系统的性能、功耗和稳定性。
在使用STM32F0系列微控制器时,首先需要配置RCC模块的寄存器,以确定各种时钟源的频率、分频系数和使能状态。
以下是配置RCC模块的步骤:1.选择系统时钟源:RCC_CFGR寄存器用于选择系统时钟源。
主要的时钟源有内部高速时钟HSI(高速内部),外部晶体时钟HSE(高速外部),外部低速时钟LSI(低速内部)和外部低速时钟LSE(低速外部)。
可以使用RCC_CFGR寄存器的SW位域来选择时钟源。
2.设置时钟频率和分频系数:根据应用的需求,可以设置时钟的频率和分频系数。
RCC_CFGR寄存器的HPRE、PPRE、和PLLMUL位域用于设置时钟的分频系数。
同时,还可以使用RCC_CFGR2和RCC_CFGR3寄存器来设置PLL(锁相环)的输入时钟和分频因子。
3.使能时钟源:RCC_APB2ENR、RCC_APB1ENR和RCC_AHBENR寄存器用于使能各个外设的时钟源。
可以使用这些寄存器的位域来控制外设时钟的使能状态。
4.时钟安全配置:RCC_CFGR寄存器的MCO和MCOPRE位域用于配置主要时钟输出的时钟安全特性。
可以设置MCO和MCOPRE位域来输出主时钟信号、内部时钟信号或外部时钟信号。
配置完毕后,需要等待时钟系统配置完成。
通过读取RCC_CFGR寄存器的SWS位域,可以确保时钟系统配置已经生效。
一旦配置完成后,系统将按照配置的时钟源和频率来运行。
在使用STM32F0系列微控制器时,正确配置RCC时钟是非常重要的。
这样可以确保系统的稳定性、性能和功耗都能达到预期的要求。
通过操作RCC模块的相关寄存器,可以实现对时钟源和频率的灵活配置,以满足不同应用的需求。
基于STM32的TFT指针式时钟摘要自时钟发明的那天起,它就注定了与人们有着密不可分的关系,但科学技术在不断发展,人们随着时间的推移对时间计量的精度要求越来越高,机械式时钟也越来越满足不了人们日益增高的要求了。
取而代之的事具有高度准确性和直观性且无机械装置,使用寿命更长更长等优点的电子时钟。
电子时钟更具人性化,更能提高人们的生活质量,更受人们欢迎,机械时代已经远去,电子时代已经到来。
因此本设计是基于意法半导体公司(ST)的STM32开发平台实现一种高精度,智能化的指针式时钟系统,采用STM32内部RTC设计电子时钟时,通常是数字显示,这是由于选用数码管和1602等器件的显示能力有限。
而12864是基于点阵式的液晶屏,其像素点为128×64,但12864自身像素较低,使其显示指针式时钟效果远低于2.2寸TFT-LCD液晶,但两者所基于的原理相同。
因此本设计采用STM32为控制核心,2.2寸TFT-LCD液晶作为显示芯片,构成了一个指针式电子时钟。
关键词:STM32;RTC;TFT-LCD第1章绪论1.1 引言随着科学技术的发展和电子技术产业结构调整,单片机开始迅速发展,由于家用电器逐渐普及,市场对于智能时钟控制系统的需求也越来越大。
单片机以其芯片集成度高、处理功能强、可靠性高等优点,成功应用于工业自动化、智能仪器仪表、家电产品等领域。
近些年,人们对数字钟的要求也越来越高,传统的时钟已不能满足人们的需求。
多功能数字钟不管在性能还是在样式上都发生了质的变化,有电子闹钟、数字闹钟等等。
而目前,对于指针式时钟来说,所用的指针大多是靠机械装置驱动达到显示时间的目的,例如手表,挂钟,钟楼等等,单片机在指针式时钟中的应用也已经非常普遍的,人们对指针时钟的功能及工作顺序都非常熟悉。
但是却很少知道它的内部结构以及工作原理。
由单片机作为指针时钟的核心控制器,可以通过它的时钟信号进行计时实现计时功能,将其时间数据经单片机输出,利用显示器显示出来。
STM32单片机RTC时钟的使用方法及步骤以下是使用STM32单片机的RTC时钟的步骤:1.初始化RTC模块:首先,需要在RCC寄存器中使能RTC和LSE(Low-Speed External)晶振模块。
然后,配置RTC的时钟源和预分频器,选择合适的时钟频率。
2.配置RTC时间和日期:通过设置RTC的寄存器来配置当前时间和日期。
需要设置秒、分钟、小时、星期、日期、月份和年份,确保其具有正确的值。
3.启动RTC时钟:设置RTC的控制寄存器,使其开始工作。
可以选择启用或禁用闹钟功能,设置闹钟的时间和日期。
4.读取RTC数据:可以随时读取RTC的时间和日期数据。
读取数据后,可以进行各种计算和处理,如计算两个时间之间的差异、比较时间等。
5.处理RTC中断:可以设置RTC中断来触发一些操作,如闹钟触发时执行一些任务。
需要配置NVIC(Nested Vector Interrupt Controller)中断向量表,使能相应的中断。
6.备份和恢复RTC数据:RTC模块提供了备份寄存器,可以用来存储额外的信息。
可以使用一些特殊的寄存器,如BKP (Backup)寄存器或CPU的系统寄存器来备份和恢复数据。
7.断电维持能力:RTC模块的一个关键特性是其断电维持能力。
即使在断电情况下,RTC模块中的数据仍然能够保持。
可以通过电池供电电路来提供必要的电力。
8.节能模式:可以利用RTC模块的节能模式来降低功耗。
可以选择性地关闭RTC模块的不需要的功能,以减少功耗。
需要注意的是,具体的步骤可能会因芯片型号和开发工具的不同而有所差异。
因此,在使用STM32单片机的RTC时钟之前,需查阅相关的技术文档和参考手册,以了解具体操作步骤和寄存器配置。
以上是使用STM32单片机的RTC时钟的基本步骤。
在实际应用中,可以根据具体需求对RTC进行更多的配置和使用。
地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司 STM32F103RC 系统时钟配置1、打开D:\program\KEL_MDT_ARM\STM32_Template\USER 目录,找到STM32-DEMO 文件,双击打开,KEIL-uVision4就开始运行了,得到下图:2、双击“STARTCODE ”下面的“start_stm32f10x_hd.s ”打开STM32F103RC 的启动文件,找“SystemInit ”,得到下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司3、点击当前的行,右击鼠标,将光标移动到“Go To Definition Of SystemInit”,见下图:4、点击“Go To Definition Of SystemInit ”,会跳转到system_stm32f10x.c 文件,见下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司5、在“system_stm32f10x.c ”文件中,在“void SystemInit (void)”函数体内找到“SetSysClock();”,见下图:6、点击“SetSysClock()”,右击鼠标,将光标移动到“Go To Definition Of SystemClock”,见下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司 7、点击“Go To Definition Of SystemClock”,会跳转到system_stm32f10x.c 文件,见下图:8、点击“defined SYSCLK_FREQ_72MHz ”,右击鼠标,将光标移到到“Go To Definition Of SYSCLK_FREQ_72MHz ”,见下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司9、点击“Go To Definition Of SYSCLK_FREQ_72MHz ”,会跳转到下图:10、在上图中,我们可以设置所需要的系统时钟,这里设置系统时钟是SYSCLK_FREQ_72MHz ,见下面粘贴的部分#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL) /* #define SYSCLK_FREQ_HSE HSE_VALUE */#define SYSCLK_FREQ_24MHz 24000000#else/* #define SYSCLK_FREQ_HSE HSE_VALUE *//* #define SYSCLK_FREQ_24MHz 24000000 *//* #define SYSCLK_FREQ_36MHz 36000000 *//* #define SYSCLK_FREQ_48MHz 48000000 *//* #define SYSCLK_FREQ_56MHz 56000000 */#define SYSCLK_FREQ_72MHz 72000000 //这是我们要设置的系统时钟#endif。
STM32定时器定时时间配置总结STM32系列微控制器内置了多个定时器模块,它们可以用于各种定时功能,如延时、周期性触发、脉冲计数等。
在使用STM32定时器之前,我们需要进行定时时间配置,本文将总结一下STM32定时器定时时间配置的相关知识,包括定时器工作模式、定时器时钟源选择、定时器时钟分频、定时器计数器重载值以及定时器中断配置等内容。
首先,我们需要选择定时器的工作模式。
STM32定时器支持多种工作模式,包括基本定时器模式、高级定时器模式、输入捕获模式和输出比较模式等。
基本定时器模式适用于简单的定时和延时操作,输入捕获模式适用于捕获外部事件的时间参数,输出比较模式适用于产生精确的PWM波形。
根据具体的应用需求,选择合适的工作模式。
其次,我们需要选择定时器的时钟源。
STM32定时器的时钟源可以选择内部时钟源(如系统时钟、HCLK等)或外部时钟源(如外部晶体)。
内部时钟源的稳定性较差,适用于简单的定时操作,而外部时钟源的稳定性较好,适用于要求较高的定时操作。
然后,我们需要选择定时器的时钟分频系数。
定时器的时钟分频系数决定了定时器的时钟频率,从而影响了定时器的计数速度。
我们可以通过改变时钟分频系数来调整定时器的计数速度,从而实现不同的定时时间。
时钟分频系数的选择需要考虑定时器的最大计数周期和所需的定时精度。
接着,我们需要配置定时器的计数器重载值。
定时器的计数器从0开始计数,当计数器达到重载值时,定时器将重新开始计数。
通过改变计数器重载值,可以实现不同的定时时间。
计数器重载值的选择需要考虑定时器的时钟频率和所需的定时时间。
最后,我们需要配置定时器的中断。
定时器中断可以在定时器计数达到重载值时触发,用于通知CPU定时器已经计数完成。
在定时器中断中,我们可以执行相应的中断服务程序,比如改变一些IO口的状态,实现定时操作。
通过配置定时器的中断使能和中断优先级,可以实现不同的中断操作。
需要注意的是,不同型号的STM32微控制器的定时器模块可能略有不同,具体的配置方法和寄存器设置也可能不同,请参考相应的数据手册和参考手册进行具体操作。
STM32F072从零配置⼯程-⾃定义时钟配置详解从⾃⼰的板⼦STM32F407⼊⼿,参考官⽅的SystemInit()函数:核⼼在SetSysClock()这个函数,官⽅默认是采⽤HSE(设定为8MHz)作为PLL锁相环的输⼊输出168MHz的SYSCLK;/*** @brief Setup the microcontroller system* Initialize the Embedded Flash Interface, the PLL and update the* SystemFrequency variable.* @param None* @retval None*/void SystemInit(void){/* Reset the RCC clock configuration to the default reset state ------------*//* Set HSION bit */RCC->CR |= (uint32_t)0x00000001;/* Reset CFGR register */RCC->CFGR = 0x00000000;/* Reset HSEON, CSSON and PLLON bits */RCC->CR &= (uint32_t)0xFEF6FFFF;/* Reset PLLCFGR register */RCC->PLLCFGR = 0x24003010;/* Reset HSEBYP bit */RCC->CR &= (uint32_t)0xFFFBFFFF;/* Disable all interrupts */RCC->CIR = 0x00000000;/* Configure the System clock source, PLL Multiplier and Divider factors,AHB/APBx prescalers and Flash settings ----------------------------------*/SetSysClock();}这⾥⼤致分析⼀下官⽅默认的SetSysClock()配置:由于我个⼈采⽤的是STM32F407型号的芯⽚,因此精简⼀下函数;总体思路的话:使能HSE;等待HSE初始化完毕,进⾏下⼀步设置;设置HCLK、PCLK1、PCLK2的分频系数;配置PLL,使能PLL,等待PLL初始化完毕;选择PLL作为SYSCLK,等待SYSCLK时钟设置完毕;/*** @brief Configures the System clock source, PLL Multiplier and Divider factors,* AHB/APBx prescalers and Flash settings* @Note This function should be called only once the RCC clock configuration* is reset to the default reset state (done in SystemInit() function).* @param None* @retval None*/static void SetSysClock(void){/******************************************************************************//* PLL (clocked by HSE) used as System clock source *//******************************************************************************/__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* Enable HSE */RCC->CR |= ((uint32_t)RCC_CR_HSEON);/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++;} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){else{HSEStatus = (uint32_t)0x00;}if (HSEStatus == (uint32_t)0x01){/* Select regulator voltage output Scale 1 mode */RCC->APB1ENR |= RCC_APB1ENR_PWREN;PWR->CR |= PWR_CR_VOS;/* HCLK = SYSCLK / 1*/RCC->CFGR |= RCC_CFGR_HPRE_DIV1;/* PCLK2 = HCLK / 2*/RCC->CFGR |= RCC_CFGR_PPRE2_DIV2;/* PCLK1 = HCLK / 4*/RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;/* PCLK2 = HCLK / 1*/RCC->CFGR |= RCC_CFGR_PPRE2_DIV1;/* PCLK1 = HCLK / 2*/RCC->CFGR |= RCC_CFGR_PPRE1_DIV2;/* Configure the main PLL */RCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) |(RCC_PLLCFGR_PLLSRC_HSE) | (PLL_Q << 24);/* Enable the main PLL */RCC->CR |= RCC_CR_PLLON;/* Wait till the main PLL is ready */while((RCC->CR & RCC_CR_PLLRDY) == 0){}/* Configure Flash prefetch, Instruction cache, Data cache and wait state */FLASH->ACR = FLASH_ACR_PRFTEN | FLASH_ACR_ICEN |FLASH_ACR_DCEN |FLASH_ACR_LATENCY_5WS; /* Configure Flash prefetch, Instruction cache, Data cache and wait state */FLASH->ACR = FLASH_ACR_PRFTEN | FLASH_ACR_ICEN |FLASH_ACR_DCEN |FLASH_ACR_LATENCY_2WS; /* Select the main PLL as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= RCC_CFGR_SW_PLL;/* Wait till the main PLL is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS ) != RCC_CFGR_SWS_PLL);{}}else{ /* If HSE fails to start-up, the application will have wrong clockconfiguration. User can add here some code to deal with this error */}}在官⽅的基础上,直接设定HSE作为SYSCLK时钟:初始化HSE;等待HSE初始化成功后再继续;设置调压器电压输出级别为1以便使器件在最⼤频率⼯作;设置HCLK、PCLK1、PCLK2分频系数;设置HSE作为系统时钟;void HSE_SetSysClock(void){__IO uint32_t HSEStartUpStatus = 0; /* 开启HSE时钟 */ /* 此函数从stm32f0xx_rcc.c获取,⽤于配置外部时钟HSE: * 有三个配置:RCC_HSE_OFF关闭外部HSE时钟 * RCC_HSE_ON开始外部HSE晶振 * RCC_HSE_Bypass开始HSE旁路设置 */ RCC_HSEConfig(RCC_HSE_ON); /* 若时钟配置成功 */if(HSEStartUpStatus == SUCCESS){RCC->APB1ENR |= RCC_APB1ENR_PWREN;PWR->CR |= PWR_CR_VOS;RCC_HCLKConfig(RCC_SYSCLK_Div1);RCC_PCLK2Config(RCC_HCLK_Div1);RCC_PCLK1Config(RCC_HCLK_Div1); /* 将SYSCLK系统时钟设置为HSE */RCC_SYSCLKConfig(RCC_SYSCLKSource_HSE); /* 等待SYSCLK系统时钟设置成功 */while(RCC_GetSYSCLKSource() != 0x04){}}else{while(1);}}使⽤HSI经过PLL配置系统时钟:使能HSI时钟;获取HSI状态并等待HSI稳定;设置调节器电压输出级别配置为1;设置HCLK、PCLK1/2分频系数;设置PLL时钟分频系数;使能PLL并等待PLL稳定后配置PLL状态;设置PLL作为SYSCLK时钟并等待设置完成;void HSI_SetSysClock(uint32_t m, uint32_t n, uint32_t p, uint32_t q) {__IO uint32_t HSIStartUpStatus = 0;/* 去初始化RCC */RCC_DeInit();/* 使能HSI时钟 */RCC_HSICmd(ENABLE);/* 从RCC的CR寄存器中获取HSI配置状态 */HSIStartUpStatus = RCC->CR & RCC_CR_HSIRDY;/* 若HSI配置成功 */if(HSIStartUpStatus == RCC_CR_HSIRDY){/* 配置调节器电压输出级别为1 */RCC->APB1ENR |= RCC_APB1ENR_PWREN;PWR->CR |= PWR_CR_VOS;/* 配置SYSCLK到HCLK的分频系数为1 */RCC_HCLKConfig(RCC_SYSCLK_Div1);/* 配置HCLK到PCLK1/2的分频系数为2/4 */RCC_PCLK2Config(RCC_HCLK_Div2);RCC_PCLK1Config(RCC_HCLK_Div4);/* 配置PLL参数,选⽤HSI作为PLL参数,同时使能PLL */RCC_PLLConfig(RCC_PLLSource_HSI, m, n, p, q);RCC_PLLCmd(ENABLE);/* 等待PLL设置完成 */while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); FLASH->ACR = FLASH_ACR_PRFTEN| FLASH_ACR_ICEN| FLASH_ACR_DCEN| FLASH_ACR_LATENCY_5WS;RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);while(RCC_GetSYSCLKSource() != 0x08);}else{while(1);}}HAL时钟配置分析:与STM32标准外设库不同,HAL库来实现时钟配置需要重新适应配置⽅式,但是本质的寄存器调动是类似不变的,且配置的过程也和STM32标准外设库相似;参考使⽤STMCube⽣成的代码,时钟树如图所⽰:在STM32Cube中设置:HSE设置为Crystal/Ceramic Resonator,Input Frequency设置为16MHz;在⼯程中要配置的参数:第⼀个HSE_VALUE参数位于stm32f0xx_hal_conf.h中,此参数与在STMCube时钟树上定义的⼀致,需要⼿动设置为实际的参数值;第⼆个HSE_VALUE参数位于system_stm32f0xx.c中,此参数默认为8MHz,可以通过⽤户程序来提供和调整;第三个SystemCoreClock参数位于system_stm32f0xx.c中,其默认值也是8MHz,可以根据以下三种⽅式来更新: 调⽤CMSIS函数SystemCoreClockUpdate()、 调⽤HAL API函数HAL_RCC_GetHCLKFreq()、 调⽤HAL_RCC_ClockConfig();/*** @brief Adjust the value of External High Speed oscillator (HSE) used in your application.* This value is used by the RCC HAL module to compute the system frequency* (when HSE is used as system clock source, directly or through the PLL).*/#if !defined (HSE_VALUE)#define HSE_VALUE ((uint32_t)16000000) /*!< Value of the External oscillator in Hz */#endif /* HSE_VALUE */#if !defined (HSE_VALUE)#define HSE_VALUE ((uint32_t)8000000)/*!< Default value of the External oscillator in Hz.This value can be provided and adapted by the user application. */#endif /* HSE_VALUE *//** @addtogroup STM32F0xx_System_Private_Variables* @{*//* This variable is updated in three ways:1) by calling CMSIS function SystemCoreClockUpdate()2) by calling HAL API function HAL_RCC_GetHCLKFreq()3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequencyNote: If you use this function to configure the system clock there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically.uint32_t SystemCoreClock = 8000000;实际的时钟配置函数如下图:使⽤了三个参数来配置:RCC_OscInitStruct⽤来配置外部时钟参数,这⾥设置晶振类型为HSE、设置HSE的状态为开启状态、不使⽤PLL;RCC_ClkInitStruct⽤来配置系统时钟内的参数(如Sys CLK、HCLK、PCLK1),这⾥设置要配置的时钟类型为HCLK、SYSCLK、PCLK1,选择HSE时钟作为SYSCLK的时钟源,并设置系统时钟SYSCLK分频系数为0、HCLK的分频系数为4;PeriphClkInit⽤来配置外设时钟的时钟源,这⾥设置USART1/2的时钟源为PCLK1;/*** @brief System Clock Configuration* @retval None*/void SystemClock_Config(void){RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};/** Initializes the CPU, AHB and APB busses clocks*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB busses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK){Error_Handler();}PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART2;art1ClockSelection = RCC_USART1CLKSOURCE_PCLK1;art2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK){Error_Handler();}HAL_SYSTICK_Config(SystemCoreClock / 1000);HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);}这⾥加⼊了对SysTick的时钟配置,参考HAL库本⾝的设置:HAL_SYSTICK_Config()⽤来配置使能和配置SysTick寄存器;HAL_SYSTICK_CLKSourceConfig()选择AHB时钟(或AHB时钟除以8)作为SysTick时钟源;HAL_NVIC_SetPriority()配置SysTick_IRQn的中断优先级为0,默认为最⾼;。
stm32数字时钟课程设计一、课程目标知识目标:1. 学生能理解STM32的内部时钟结构和定时器工作原理;2. 学生能掌握利用STM32设计数字时钟的基本步骤和方法;3. 学生能了解数字时钟的显示原理,并掌握与STM32定时器相结合的编程技巧;4. 学生能解释数字时钟在实际应用中的重要性。
技能目标:1. 学生能运用C语言进行STM32定时器的编程;2. 学生能通过调试工具解决数字时钟编程中的问题;3. 学生能设计并实现一个具有基本功能的数字时钟,包括时、分、秒显示和闹钟功能;4. 学生能对所设计的数字时钟进行测试和优化。
情感态度价值观目标:1. 学生培养对电子制作的兴趣,增强实践操作的自信心;2. 学生培养团队协作意识,学会在项目中相互沟通、共同解决问题;3. 学生通过数字时钟设计,认识到技术与生活的紧密联系,激发创新意识;4. 学生培养严谨的科学态度,注重实验数据的准确性和程序的可维护性。
二、教学内容1. STM32内部时钟结构:介绍STM32的时钟树,讲解时钟源、时钟分频、时钟使能等概念,为学生设计数字时钟提供基础理论知识。
2. 定时器工作原理:详细讲解STM32定时器的工作原理,包括计数器、预分频器、自动重装载寄存器等组成部分,使学生了解定时器在数字时钟中的作用。
3. C语言编程:回顾与定时器编程相关的C语言知识,包括数据类型、运算符、控制语句等,为编写数字时钟程序打下基础。
4. 数字时钟设计步骤:按照以下步骤组织教学内容:a. 硬件设计:讲解如何使用STM32最小系统板,选择合适的显示屏和驱动芯片,连接电路;b. 软件设计:介绍定时器初始化、中断处理、时间计算等编程方法;c. 程序调试:指导学生使用调试工具,如Keil、ST-Link等,进行程序调试;d. 测试与优化:要求学生完成数字时钟设计后进行功能测试,并根据测试结果进行优化。
5. 教材章节关联:教学内容与教材第3章“STM32定时器”和第5章“STM32中断与事件”相关,结合实例进行讲解,使学生更好地掌握相关知识。
基于定时中断的电子闹钟一、系统主要功能可以通过LCD的输出显示公历和农历时间,通过按键设置时间和闹钟;通过蜂鸣器响应闹钟。
三、电路原理图、接口、硬件构成1.原理图2.接口本次实验使用了串口、定时器、中断接口。
3.硬件组成(1)实验设计程序流程图如图左所示,中断流程图如图右所示。
(2)该设计分为软件设计和硬件设计两大模块,硬件电路由ARM 最小系统电路、时钟显示电路和闹钟提醒电路组成,采用stm32f103RCT6芯片,芯片管脚图示如下。
(3)时钟电路此电路主要是复位电路和时钟电路两部分,其中复位电路采用按键手动复位和上电自动复位组合,电路如图所示:晶振采用的是 8MHz 和 32.786KHz , 8MKz 分别接 STM32 的5 脚和 6 脚, 32.786KHz 分别接 STM32 的 3 脚和 4 脚。
(4)闹钟提醒电路本次实验设计的闹钟提醒电路为蜂鸣器电路,接入芯片的PC7引脚,当时间为设置闹钟时间时,蜂鸣器工作,发出响声,提醒电路如图所示。
四、核心代码(带注释)#include "delay.h"#include "sys.h"#include "lcd.h"#include "dht11.h"#include "ds1302.h"#include "KEY.h"#include "beep.h"u8 temp;u8 humi;u8 t=0;u8 flag=0,flag1=0,flag2=0,flag3=1; u8 a,b,c;int min1=10,hour1=10;DHT11_Data_TypeDef DHT11_Data;void TIM3_Int_Init(u16 arr,u16 psc){TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //时钟使能//定时器TIM3初始化TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载计时器的值TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_tim TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMx的时间基数单位TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE ); //使能指定的TIM3中断,允许更新中断//中断优先级NVIC设置NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; //TIM中断NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //先占优先级0级NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //从优先级3级NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能NVIC_Init(&NVIC_InitStructure); //初始化NVIC寄存器TIM_Cmd(TIM3, DISABLE); //使能TIMx }void gui0(u8 mode){LCD_ShowPicture(0,0,480,320);if(flag3==1){LCD_ShowPicture3(445,0,479,34);}LCD_ShowChinese(0+40,0,0,BLUE,32,mode);//字LCD_ShowChinese(32+40,0,8,BLUE,32,mode);LCD_ShowChinese(64+40,0,9,BLUE,32,mode);LCD_ShowChinese(96+40,0,10,BLUE,32,mode);LCD_ShowNum(52,40,temp,2,BLUE,32,mode);//温度LCD_ShowChinese(132,40,12,BLUE,32,mode);LCD_ShowChinese(128+80+30,0,0,BLUE,32,mode);LCD_ShowChinese(160+80+30,0,8,BLUE,32,mode);LCD_ShowChinese(192+80+30,0,11,BLUE,32,mode);LCD_ShowChinese(224+80+30,0,10,BLUE,32,mode);LCD_ShowNum(248+30,40,humi,2,BLUE,32,mode);LCD_ShowChar(280+30,40,'%',BLUE,32,mode);LCD_ShowNum(20,80,hour/10,1,BLUE,160,mode);//时间 LCD_ShowNum(110,80,hour%10,1,BLUE,160,mode);LCD_ShowChar(200,65,':',BLUE,160,mode);LCD_ShowNum(290,80,min/10,1,BLUE,160,mode);LCD_ShowNum(380,80,min%10,1,BLUE,160,mode);LCD_ShowNum(0,250,year+2000,4,BLUE,32,mode);LCD_ShowChinese(64,250,13,BLUE,32,mode);LCD_ShowNum(96,250,month,2,BLUE,32,mode);LCD_ShowChinese(128,250,14,BLUE,32,mode);LCD_ShowNum(160,250,day,2,BLUE,32,mode);LCD_ShowChinese(192,250,15,BLUE,32,mode);LCD_ShowChinese(224,250,16,BLUE,32,mode);LCD_ShowChinese(256,250,week,BLUE,32,mode);LCD_ShowNum(0,283,hour1,2,BLUE,32,mode);LCD_ShowChar(33,283,':',BLUE,32,mode);LCD_ShowNum(50,283,min1,2,BLUE,32,mode);}void keyscan(u8 mode){switch(t){case KEY0_PRES:if(min1==min&&hour1==hour){flag2=1;BEEP(OFF);}switch(flag){case 1: hour++; if(hour>23)hour=0;LCD_ShowPicture2(20,80,190,240);LCD_ShowNum(20,80,hour/10,1,BLUE,160,mode);//时间LCD_ShowNum(110,80,hour%10,1,BLUE,160,mode);break;case 2: min++; if(min>59)min=0;LCD_ShowPicture2(290,80,460,240);LCD_ShowNum(290,80,min/10,1,BLUE,160,mode); LCD_ShowNum(380,80,min%10,1,BLUE,160,mode); break;case 3: year++; LCD_ShowPicture2(0,250,64,282);LCD_ShowNum(0,250,year+2000,4,BLUE,32,mode);break;case 4: month++; if(month>12) month=1;LCD_ShowPicture2(96,250,128,282); LCD_ShowNum(96,250,month,2,BLUE,32,mode);break;case 5: day++; if(day>31) day=1;LCD_ShowPicture2(160,250,192,282);LCD_ShowNum(160,250,day,2,BLUE,32,mode); break; case 6: week++; if(week>7) week=1;LCD_ShowPicture2(256,250,288,282);LCD_ShowChinese(256,250,week,BLUE,32,mode);break;case 7: hour1++; if(hour1>23)hour1=0;LCD_ShowPicture2(0,283,32,315);LCD_ShowNum(0,283,hour1,2,BLUE,32,mode);break;case 8: min1++;if(min1>59)min1=0;LCD_ShowPicture2(50,283,82,315);LCD_ShowNum(50,283,min1,2,BLUE,32,mo de);break;case 9: flag3=1; LCD_ShowPicture3(445,0,479,34); break;default: break;}break;case KEY1_PRES:if(min1==min&&hour1==hour){flag2=1;BEEP( OFF );}switch(flag){case 1: hour--; if(hour<0)hour=23;LCD_ShowPicture2(20,80,190,240);LCD_ShowNum(20,80,hour/10,1,BLUE,160,mode);//时间LCD_ShowNum(110,80,hour%10,1,BLUE,160,mode); break;case 2: min--; if(min<0) min=59;LCD_ShowPicture2(290,80,460,240);LCD_ShowNum(290,80,min/10,1,BLUE,160,mode);LCD_ShowNum(380,80,min%10,1,BLUE,160,mode); break;case 3: year--; LCD_ShowPicture2(0,250,64,282);LCD_ShowNum(0,250,year+2000,4,BLUE,32,mode);break;case 4: month--; if(month<1) month=12; LCD_ShowPicture2(96,250,128,282);LCD_ShowNum(96,250,month,2,BLUE,32,mode);break;case 5: day--; if(day<1) day=31;LCD_ShowPicture2(160,250,192,282);LCD_ShowNum(160,250,day,2,BLUE,32,mode); break;case 6: week--; if(week<1) week=7;LCD_ShowPicture2(256,250,288,282);LCD_ShowChinese(256,250,week,BLUE,32,mode); break; case 7: hour1--; if(hour1<0)hour1=23;LCD_ShowPicture2(0,283,32,315);LCD_ShowNum(0,283,hour1,2,BLUE,32,mode);break;case 8: min1--;if(min1<0)min1=59;LCD_ShowPicture2(50,283,82,315);LCD_ShowNum(50,283,min1,2,BLUE,32,mo de);break;case 9: flag3=0; LCD_ShowPicture2(445,0,480,36);break;default: break;}break;case WKUP_PRES:cc1();flag++;switch(flag){case 1: TIM_Cmd(TIM3, DISABLE); LCD_DrawLine(20,242,190,243,BLUE);break;case 2: LCD_ShowPicture1(242,243);LCD_DrawLine(290,242,460,243,BLUE); break;case 3: LCD_ShowPicture1(242,243); LCD_DrawLine(0,287,64,288,BLUE);break;case 4: LCD_ShowPicture1(287,288);LCD_DrawLine(96,287,128,288,BLUE);break;case 5: LCD_ShowPicture1(287,288); LCD_DrawLine(160,287,192,288,BLUE); break; case 6: LCD_ShowPicture1(287,288);LCD_DrawLine(256,287,288,288,BLUE); break; case 7: LCD_ShowPicture1(287,288); LCD_DrawLine(0,316,32,317,BLUE);break; case 8: LCD_ShowPicture1(316,317); LCD_DrawLine(50,316,82,317,BLUE);break;case 9: LCD_ShowPicture1(316,317); LCD_DrawLine(445,37,479,38,BLUE);break;case 10: LCD_ShowPicture2(445,37,479,38);ds_wtime();a=sec;b=min;c=hour;TIM_Cmd(TIM3, ENABLE);flag=0;break;default: break;}break;default: delay_ms(5); break;}}int main(void){delay_init();NVIC_Configuration();DHT11_Init ();KEY_Init();BEEP_GPIO_Config();BEEP( OFF );TIM3_Int_Init(9999,7199);ds1302_init();ds_read_time();cc();a=sec;b=min;c=hour;Lcd_Init();LCD_Clear(WHITE);gui0(1);TIM_Cmd(TIM3, ENABLE);while(1){t=KEY_Scan(0);keyscan(1);if( DHT11_Read_TempAndHumidity (&DHT11_Data ) == SUCCESS&&flag==0) {temp=DHT11_Data.temp_int;humi=DHT11_Data.humi_int;LCD_ShowPicture2(52,40,84,72);LCD_ShowPicture2(278,40,310,72);LCD_ShowNum(52,40,temp,2,BLUE,32,1);LCD_ShowNum(278,40,humi,2,BLUE,32,1);}if(flag==0&&min1==min&&hour1==hour&&flag2==0&&flag3==1) {BEEP( ON );}}}。
一、在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。
①HSI是高速内部时钟,RC振荡器,频率为8MHz。
②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。
③LSI是低速内部时钟,RC振荡器,频率为40kHz。
④LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
⑤PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。
倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。
二、在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法:如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理:①对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
②对于少于100脚的产品,有2种接法:第1种:OSC_IN和OSC_OUT分别通过10K电阻接地。
此方法可提高EMC性能;第2种:分别重映射OSC_IN 和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。
此方法可以减小功耗并(相对上面)节省2个外部电阻。
三、用HSE时钟,程序设置时钟参数流程:01、将RCC寄存器重新设置为默认值RCC_DeInit;02、打开外部高速时钟晶振HSE RCC_HSEConfig(RCC_HSE_ON);03、等待外部高速时钟晶振工作HSEStartUpStatus = RCC_WaitForHSEStartUp();04、设置AHB时钟RCC_HCLKConfig;05、设置高速AHB时钟RCC_PCLK2Config;06、设置低速速AHB时钟RCC_PCLK1Config;07、设置PLL RCC_PLLConfig;08、打开PLL RCC_PLLCmd(ENABLE);09、等待PLL工作while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)10、设置系统时钟RCC_SYSCLKConfig;11、判断是否PLL是系统时钟while(RCC_GetSYSCLKSource() != 0x08)12、打开要使用的外设时钟RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()四、下面是STM32软件固件库的程序中对RCC的配置函数(使用外部8MHz晶振)/******************************************************************************** Function Name : RCC_Configuration* Description : RCC配置(使用外部8MHz晶振)* Input : 无* Output : 无* Return : 无*******************************************************************************/void RCC_Configuration(void){/*将外设RCC寄存器重设为缺省值*/RCC_DeInit();/*设置外部高速晶振(HSE)*/RCC_HSEConfig(RCC_HSE_ON); //RCC_HSE_ON——HSE晶振打开(ON)/*等待HSE起振*/HSEStartUpStatus = RCC_WaitForHSEStartUp();if(HSEStartUpStatus == SUCCESS) //SUCCESS:HSE晶振稳定且就绪 {/*设置AHB时钟(HCLK)*/RCC_HCLKConfig(RCC_SYSCLK_Div1); //RCC_SYSCLK_Div1——AHB 时钟= 系统时钟/* 设置高速AHB时钟(PCLK2)*/RCC_PCLK2Config(RCC_HCLK_Div1); //RCC_HCLK_Div1——APB2时钟= HCLK/*设置低速AHB时钟(PCLK1)*/RCC_PCLK1Config(RCC_HCLK_Div2); //RCC_HCLK_Div2——APB1时钟= HCLK / 2/*设置FLASH存储器延时时钟周期数*/FLASH_SetLatency(FLASH_Latency_2); //FLASH_Latency_2 2延时周期/*选择FLASH预取指缓存的模式*/FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); // 预取指缓存使能/*设置PLL时钟源及倍频系数*/RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);// PLL的输入时钟= HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x 9/*使能PLL */RCC_PLLCmd(ENABLE);/*检查指定的RCC标志位(PLL准备好标志)设置与否*/while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){}/*设置系统时钟(SYSCLK)*/RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟/* PLL返回用作系统时钟的时钟源*/while(RCC_GetSYSCLKSource() != 0x08) //0x08:PLL作为系统时钟 {}}/*使能或者失能APB2外设时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph _GPIOB |RCC_APB2Periph_GPIOC , ENABLE);//RCC_APB2Periph_GPIOA GPIOA时钟//RCC_APB2Periph_GPIOB GPIOB时钟//RCC_APB2Periph_GPIOC GPIOC时钟//RCC_APB2Periph_GPIOD GPIOD时钟}五、时钟频率STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。
STM32单片机RTC时钟的使用方法及步骤一、配置RTC模块时钟源RTC模块的时钟源可以选择外部低速晶振(LSE)或者低速内部时钟(LSI)。
通过以下步骤配置RTC时钟源:1.使能外部低速晶振(LSE)或者低速内部时钟(LSI)。
例如,如果使用外部低速晶振,则需要使能相应的GPIO端口,并配置为晶振模式。
2.配置RCC时钟控制寄存器(RCC_CR)和时钟配置寄存器(RCC_CSR)。
二、使能RTC模块时钟1.使能PWR模块时钟和备份寄存器访问。
RCC_APB1ENR,=(1<<28);RCC_APB1ENR,=(1<<27);2.校验并关闭RTC模块。
RCC->BDCR,=RCC_BDCR_RTCEN;PWR->CR,=PWR_CR_DBP;if ((RCC->BDCR & RCC_BDCR_RTCEN) == 0)RCC->BDCR,=RCC_BDCR_RTCEN;3.配置RTC时钟预分频器和提供给RTC的时钟源。
RTC->PRER ,= rtc_prescaler_value << RTC_PRER_PREDIV_S_Pos;RTC->PRER ,= 127 << RTC_PRER_PREDIV_A_Pos;RTC->CR&=~RTC_CR_FMT;三、配置RTC模块时间和日期1.关闭RTC时钟写保护功能。
RTC->WPR=0xCA;RTC->WPR=0x53;RTC->ISR,=RTC_ISR_INIT;while((RTC->ISR & RTC_ISR_INITF) == 0);2.配置RTC的时间和日期寄存器。
RTC->TR ,= (uint32_t)((hours / 10) << RTC_TR_Hours10_Pos);RTC->TR ,= (uint32_t)((hours % 10) << RTC_TR_Hours1_Pos);RTC->TR ,= (uint32_t)((minutes / 10) <<RTC_TR_Minutes10_Pos);RTC->TR ,= (uint32_t)((minutes % 10) <<RTC_TR_Minutes1_Pos);RTC->TR ,= (uint32_t)((seconds / 10) <<RTC_TR_Seconds10_Pos);RTC->TR ,= (uint32_t)((seconds % 10) <<RTC_TR_Seconds1_Pos);RTC->DR ,= (uint32_t)((year / 10) << RTC_DR_YT_Pos);RTC->DR ,= (uint32_t)((year % 10) << RTC_DR_YU_Pos);RTC->DR ,= (uint32_t)((month / 10) << RTC_DR_MT_Pos);RTC->DR ,= (uint32_t)((month % 10) << RTC_DR_MU_Pos);RTC->DR ,= (uint32_t)((day / 10) << RTC_DR_DT_Pos);RTC->DR ,= (uint32_t)((day % 10) << RTC_DR_DU_Pos);3.开启RTC时钟写保护功能。
STM32f407系统定时器时钟配置计算首先,我们需要配置系统定时器的时钟源。
STM32F407的系统定时器可以使用内部时钟源(HCLK/8)或外部时钟源。
通过软件配置,我们可以选择其中一种时钟源。
1.配置内部时钟源:要使用内部时钟源,可以通过RCC寄存器来配置。
具体需要做以下几步:a. 使能系统定时器时钟:在 RCC_APBxENR 寄存器中设置位SysTickEN=1,其中 x 为适当的 APBx 总线索引。
b.配置系统定时器时钟源:在STK_CTRL寄存器中设置位CLKSOURCE=12.配置外部时钟源:如果要使用外部时钟源作为系统定时器的时钟源,我们需要将外部时钟源与系统的时钟树相连。
具体的配置方法因时钟源的不同而不同,可参考具体芯片的参考手册。
配置了系统定时器的时钟源后,我们可以计算定时器中断的时间间隔。
系统定时器中断的时间间隔=(计数器周期)*(重载值+1)/(时钟频率)其中,计数器周期为24位,取值范围为0~2^24-1、时钟频率为系统定时器的时钟源频率。
重载值是计数器的初始值,当计数器减到0时,会触发定时中断。
举个例子,假设系统定时器的时钟源频率为8MHz,我们希望计算系统定时器中断每100ms触发一次的重载值。
中断触发周期 = 100ms = 0.1s时钟频率=8MHz=8*10^6Hz由于重载值需要为整数,我们可以将计算结果四舍五入为最接近的整数,即重载值为477以上就是STM32F407系统定时器时钟配置和计算方法的简要介绍。
配置完系统定时器的时钟源,并计算出需要的重载值后,我们可以通过编程设置相关寄存器,来开始使用系统定时器进行定时中断的任务。
STM32时钟配置方法详解STM32是意法半导体(STMicroelectronics)公司推出的一系列32位Flash微控制器,被广泛应用于各种嵌入式系统中。
时钟是STM32微控制器的核心部分,正确配置时钟可以确保系统正常工作并达到预期的性能。
本文将详细介绍STM32时钟配置的方法。
1.时钟源:STM32微控制器提供了多个时钟源,包括内部时钟(HSI、LSI)和外部时钟(HSE、LSE)。
其中,HSI(高速内部时钟)是一个高频率(通常为8MHz)的内部RC振荡器,适用于低功耗应用;LSI(低速内部时钟)是一个低频率(通常为40kHz)的内部RC振荡器,用于RTC(实时时钟)模块;HSE(高速外部时钟)是一个外接的高频晶振,用于提供更精确的时钟信号;LSE(低速外部时钟)是一个外接的低频晶振,适用于RTC模块。
2.主频和系统时钟:主频是指CPU的时钟频率,系统时钟是指STM32微控制器的总线时钟,包括AHB(高性能总线)、APB1(低速外设总线)和APB2(高速外设总线)。
在进行STM32时钟配置之前,需要按照以下几个步骤来完成。
1.启用对应的时钟源:根据具体需求,选择合适的时钟源并启用相应的时钟。
可以通过设置RCC_CR寄存器和RCC_APB1ENR/RCC_APB2ENR寄存器来实现。
例如,要使用HSE作为时钟源,需要首先启用HSE时钟。
2.配置时钟分频器:为了使系统时钟不超过芯片规格要求的最大频率,需要对时钟进行分频。
分频器有两个,即AHB分频器和APB分频器。
可以通过设置RCC_CFGR寄存器来实现。
例如,将AHB分频器设置为8,将APB1和APB2分频器分别设置为4,可以将主频分别分频为8MHz、32MHz和64MHz。
3.等待时钟稳定:当启用外部时钟源时,需要等待时钟稳定。
可以通过读取RCC_CR寄存器的特定标志位来判断时钟是否稳定。
4. 配置Flash存储器的延时:根据主频的不同,需要设置Flash存储器的访问延时,以确保正常读写数据。
基于STM32的DS1302时钟模块驱动程序(详细)⽬录1.项⽬概述2.DS1032的数据⼿册解析2.1 DS1302的引脚介绍2.2 DS1302的通讯协议及时序2.3 DS1302的相关寄存器3.程序代码及其注释4.结果演⽰5.附录:7针0.96⼨OLED屏驱动代码(SPI驱动)1.项⽬概述本程序采⽤的主控芯⽚为STM32F103RCT6,通过主控芯⽚驱动DS1302时钟模块,并将其实时时间显⽰在7针0.96⼨OLED屏上。
使⽤STM32的普通IO⼝模拟DS1302的通信时序,使⽤STM32的SPI外设驱动OLED屏。
下⾯从DS1302的数据⼿册开始完成整个项⽬。
2.DS1302数据⼿册解析2.1DS1302引脚介绍VCC1,VCC2是电源引脚,VCC1是主供电引脚,VCC2接备⽤电池,当主供电电源电量不⾜或者断电时,备⽤电池会通过VCC2及时供电,保证时钟模块在主供电引脚断电后任然会正常计时。
GND是地引脚。
X1,X2是有关晶振的引脚,不做深究。
CE引脚是输⼊引脚,在单⽚机从DS1302读取数据或者向其写⼊数据时,CE引脚必须配置为⾼电平。
在芯⽚内部连接有40K下拉电阻。
I/O引脚充当双向数据引脚,即数据的发送和接收都在这条线上完成。
SCLK是同步时钟引脚,控制I/O引脚上数据的接收和发送。
2.2 DS1302的通讯协议及时序指令字节启动每次的数据传输,上图说明了指令字节的构造。
①位7必须为逻辑1,位7为逻辑0时指令会失效。
②我们使⽤的不是RAM当中的寄存器及数据,故位6应该为逻辑0。
③位1到位5为寄存器地址。
④位0为逻辑0时表明要往指定寄存器⾥⾯写数据,为逻辑1时要从指定寄存器⾥⾯读出数据。
指令字节的传输总是从位0(LSB)开始传输。
上图是ds1302通信时序图。
1.CE和时钟控制。
将CE置⾼将开启数据传输,CE输⼊提供俩个功能,⾸先CE开启了通信数据进⼊移位寄存器的通路,其次CE提供了⼀个可以终⽌单个字节或者多个字节的数据传输。