2019届九年级数学上学期开学回头考试题
- 格式:doc
- 大小:3.16 MB
- 文档页数:8
广东省2025届九年级数学第一学期开学质量检测模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列根式中属最简二次根式的是()A .B C D .2、(4分)如图,已知一次函数y =kx+b 的图象经过A 、B 两点,那么不等式kx+b >0的解集是()A .x >3B .x <3C .x >5D .x <53、(4分)函数y =k(x +1)和y =k x (k≠0)在同一坐标系中的图象可能是()A .B .C .D .4、(4分)实数x 取任何值,下列代数式都有意义的是()A B C D .x5、(4分)关于x 的方程无解,则m 的值为()A .﹣5B .﹣8C .﹣2D .56、(4分)有意义,则a 的取值范围是()A .a <3B .a >3C .a≤3D .a≠37、(4分)现定义运算“★”,对于任意实数a ,b ,都有23a b a a b =-+★,如2543454=-⨯+★,若26x =★,则实数x 的值为()A .-4或-1B .4或-1C .4或-2D .-4或28、(4分)在Rt ABC ∆中,90C ∠=︒,6AB =,2cos 3B =,则BC 的长为()A .3B .2C .D .4二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)化简_____.10、(4分)如图,菱形ABCD 的对角线长分别为a、b,以菱形ABCD 各边的中点为顶点作矩形1111D C B A ,然后再以矩形1111D C B A 的中点为顶点作菱形2222A B C D ,……,如此下去,得到四边形A 2019B 2019C 2019D 2019的面积用含a,b 的代数式表示为___.11、(4分)将直线22y x =--沿y 轴向上平移5个单位长度后,所得图象对应的函数关系式为_________.12、(4分)某种感冒病毒的直径是0.00000012米,用科学记数法表示为米.13、(4分)平面直角坐标系中,A 、O 两点的坐标分别为(2,0),(0,0),点P 在正比例函数y =x (x >0)图象上运动,则满足△PAO 为等腰三角形的P 点的坐标为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在边长为4的正方形ABCD 中,动点E 以每秒1个单位长度的速度从点A 开始沿边AB 向点B 运动,动点F 以每秒2个单位长度的速度从点B 开始沿边BC 向点C 运动,动点E 比动点F 先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动设点F 的运动时间为t 秒.(1)如图1,连接DE ,AF .若DE ⊥AF ,求t 的值;(2)如图2,连结EF ,DF .当t 为何值时,△EBF ∽△DCF ?15、(8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第一年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x (1)用含x 的代数式表示第3年的可变成本为万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年的增长百分率x.16、(8分)在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD 中,点E 为BC 边上任意一点(点E 不与B 、C 重合),点F 在线段AE 上,过点F 的直线MN ⊥AE ,分别交AB 、CD 于点M 、N .此时,有结论AE=MN ,请进行证明;(2)如图2:当点F 为AE 中点时,其他条件不变,连接正方形的对角线BD ,MN 与BD 交于点G ,连接BF ,此时有结论:BF=FG ,请利用图2做出证明.(3)如图3:当点E 为直线BC 上的动点时,如果(2)中的其他条件不变,直线MN 分别交直线AB 、CD 于点M 、N ,请你直接写出线段AE 与MN 之间的数量关系、线段BF 与FG 之间的数量关系.图1图2图317、(10分)已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.求证:四边形DEFG 是平行四边形.18、(10分)(1)先化简代数式+⎛⎫+÷ ⎪---+⎝⎭2a 11aa 1a 1a 2a 1.求:当2a =时代数式值.(2)解方程:3222x x x =+--.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)不等式组240120x x +≥⎧⎨->⎩的整数解是__________.20、(4分)若2-是关于x 的一元二次方程()221240k x kx -++=的一个根,则k =____.21、(4分)已知正n 边形的一个外角是45°,则n =____________22、(4分)如图,在△ABC 中,AB =3cm ,BC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于_______cm .23、(4分)函数y x 2=-有意义,则自变量x 的取值范围是___.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE AB =,连结CE . 1()求证:BD EC =.2()当DAB 60∠=时,四边形BECD 为菱形吗?请说明理由.25、(10分)(1)因式分解:x 2y ﹣2xy 2+y 3(2)解不等式组:513(1)1123x xx x-<+⎧⎪-⎨>-⎪⎩26、(12分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋23.52424.52525.526号人344711数(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式2、D【解析】由图象可知:A(1,0),且当x<1时,y>0,即可得到不等式kx+b>0的解集是x<1,即可得出选项.【详解】解:∵一次函数y=kx+b的图象经过A、B两点,由图象可知:A(1,0),根据图象当x<1时,y>0,即:不等式kx+b>0的解集是x<1.故选:D.此题考查一次函数与一元一次不等式,解题关键在于结合函数图象3、D【解析】【分析】分两种情况分析:当k>0或当k<0时.【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【点睛】本题考核知识点:一次函数和反比例函数的图象.解题关键点:理解两种函数的性质.【解析】根据二次根式有意义,被开方数大于等于0对各选项举例判断即可.【详解】解:A、由6+2x≥0得,x≥-3,所以,x<-3时二次根式无意义,故本选项错误;B、由2-x≥0得,x≤2,所以,x>2时二次根式无意义,故本选项错误;C、∵(x-1)2≥0,∴实数x取任何值二次根式都有意义,故本选项正确;D、由x+1≥0得,x≥-1,所以,x<-1二次根式无意义,又x=0时分母等于0,无意义,故本选项错误;故选:C.本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.5、A【解析】解:去分母得:3x﹣2=2x+2+m①.由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程①得:﹣1=﹣2+2+m,解得:m=﹣1.故选A.6、C【解析】根据被开方数是非负数,可得答案.【详解】解:由题意得,3−a⩾0,解得a⩽3,故选:C.本题主要考查了二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.7、B【解析】根据新定义a ★b=a 2-3a+b ,将方程x ★2=6转化为一元二次方程求解.【详解】依题意,原方程化为x 2−3x+2=6,即x 2−3x−4=0,分解因式,得(x+1)(x−4)=0,解得x 1=−1,x 2=4.故选B.此题考查解一元二次方程-因式分解法,解题关键在于掌握运算法则.8、D 【解析】根据2cos 3B =,可得23CB AB =,再把AB 的长代入可以计算出CB 的长.【详解】解:∵cos B =BC AB ,∴BC =AB •cos B =6×23=1.故选:D .此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦.二、填空题(本大题共5个小题,每小题4分,共20分)【解析】直接合并同类二次根式即可.【详解】原式=(3﹣2本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.10、202012ab 【解析】根据三角形中位线定理,逐步得到小长方形的面积,得到规律即可求解.【详解】∵菱形ABCD 的对角线长分别为a 、b ,AC ⊥BD ,∴S 四边形ABCD=12ab ∵以菱形ABCD 各边的中点为顶点作矩形1111D C B A ,根据中位线的性质可知S 四边形A 1B 1C 1D 1=12S 四边形ABCD=14ab …则S 四边形A n B n C n D n =12n S 四边形ABCD=112n ab +故四边形A 2019B 2019C 2019D 2019的面积用含a,b 的代数式表示为202012ab .故填:202012ab .此题主要考查特殊平行四边形的性质,解题的关键是根据题意找到规律进行求解.11、23y x =-+【解析】分析:直接根据“上加下减”的原则进行解答即可.详解:由“上加下减”的原则可知,直线y =-2x ﹣2向上平移5个单位,所得直线解析式是:y =-2x ﹣2+5,即y =-2x +1.故答案为:y =-2x +1.点睛:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12、【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.0.00000012=71.210-⨯.13、(1,1)或()或(1,1)【解析】分OP =AP 、OP =OA 、AO =AP 三种情况考虑:①当OP 1=AP 1时,△AOP 1为等腰直角三角形,根据等腰直角三角形的性质结合点A 的坐标可得出点P 1的坐标;②当OP 1=OA 时,过点P 1作P 1B ⊥x 轴,则△OBP 1为等腰直角三角形,根据等腰直角三角形的性质结合点A 的坐标可得出点P 1的坐标;③当AO =AP 3时,△OAP 3为等腰直角三角形,根据等腰直角三角形的性质结合点A 的坐标可得出点P 3的坐标.综上即可得出结论【详解】∵点A 的坐标为(1,0),∴OA =1.分三种情况考虑,如图所示.①当OP 1=AP 1时,∵∠AOP 1=45°,∴△AOP 1为等腰直角三角形.又∵OA =1,∴点P 1的坐标为(1,1);②当OP 1=OA 时,过点P 1作P 1B ⊥x 轴,则△OBP 1为等腰直角三角形.∵OP 1=OA =1,∴OB =BP 1,∴点P 1);③当AO =AP 3时,△OAP 3为等腰直角三角形.∵OA =1,∴AP 3=OA =1,∴点P 3的坐标为(1,1).综上所述:点P 的坐标为(1,1)或(1,1).故答案为:(1,1)或(1,1).本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP =AP 、OP =OA 、AO =AP 三种情况求出点P 的坐标是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)t=1;(2)当92=t 时,△EBF ∽△DCF ;【解析】(1)利用正方形的性质及条件,得出△ABF ≌△DAE ,由AE=BF 列式计算.(2)利用△EBF ∽△DCF ,得出EB BF DC FC =,列出方程求解.【详解】解:(1)∵DE ⊥AF ,∴∠AOE=90°,∴∠BAF+∠AEO=90°,∵∠ADE+∠AEO=90°,∴∠BAF=∠ADE ,又∵四边形ABCD 是正方形,∴AB=AD ,∠ABF=∠DAE=90°,在△ABF 和△DAE 中,AB BAF ADE ABF DAE AD ∠=∠∠=∠⎧⎪=⎨⎪⎩,∴△ABF ≌△DAE (ASA )∴AE=BF ,∴1+t=2t ,解得t=1;(2)如图2,∵四边形ABCD 是正方形,∴AB=BC=CD=4,∵BF=2t ,AE=1+t ,∴FC=4-2t ,BE=4-1-t=3-t ,当△EBF ∽△DCF 时,EB BF DC FC =,∴34t -=242t t -,解得,t 1=92,t 2=92+(舍去),故t=9572-.所以当t=9572时,△EBF ∽△DCF.本题主要考查了四边形的综合题,利用了全等三角形的判定和性质,相似三角形的判定和性质,难度一般.15、(1)2.6(1+x )2;(2)10%.【解析】(1)将基本等量关系“本年的可变成本=前一年的可变成本+本年可变成本的增长量”以及“本年可变成本的增长量=前一年的可变成本×可变成本平均每年增长的百分率”综合整理可得:本年的可变成本=前一年的可变成本×(1+可变成本平均每年增长的百分率).根据这一新的等量关系可以由第1年的可变成本依次递推求出第2年以及第3年的可变成本.(2)由题意知,第3年的养殖成本=第3年的固定成本+第3年的可变成本.现已知固定成本每年均为4万元,在第(1)小题中已求得第3年的可变成本与x的关系式,故根据上述养殖成本的等量关系,容易列出关于x的方程,解方程即可得到x的值.【详解】解:(1)∵该养殖户第1年的可变成本为2.6万元,又∵该养殖户的可变成本平均每年增长的百分率为x,∴该养殖户第2年的可变成本为:2.6(1+x)(万元),∴该养殖户第3年的可变成本为:[2.6(1+x)](1+x)=2.6(1+x)2(万元).故本小题应填:2.6(1+x)2.(2)根据题意以及第(1)小题的结论,可列关于x的方程:4+2.6(1+x)2=7.146解此方程,得x1=0.1,x2=-2.1,由于x为可变成本平均每年增长的百分率,x2=-2.1不合题意,故x的值应为0.1,即10%.答:可变成本平均每年增长的百分率为10%.本题考查了一元二次方程相关应用题中的“平均增长率”型问题.对“平均增长率”意义的理解是这类应用题的难点.这类实际问题中某量的增长一般分为两个阶段且每个阶段的实际增长率不同.假设该量的值在保持某一增长率不变的前提下由原值增长两次,若所得的最终值与实际的最终值相同,则这一不变的增长率就是该量的“平均增长率”.16、(1)证明见解析;(2)证明见解析;(3)AE与MN的数量关系是:AE=MN,BF与FG的数量关系是:BF=FG【解析】(1)作辅助线,构建平行四边形PMND,再证明△ABE≌△DAP,即可得出结论;(2)连接AG、EG、CG,构建全等三角形和直角三角形,证明AG=EG=CG,再根据四边形的内角和定理得∠AGE=90°,在R△AGE中,利用直角三角形斜边上的中线等于斜边的一半得BF=12AE,FG=12AE,则BF=GF;(3)①AE=MN,证明△AEB≌△NMQ;②BF=FG,同理得出BF 和FG 分别是直角△AEB 和直角△AGF 斜边上的中线,则BF=12AE,FG=12AE,所以BF=FG.证明:(1)在图1中,过点D 作PD ∥MN 交AB 于P ,则∠APD=∠AMN ∵正方形ABCD ∴AB =AD ,AB ∥DC ,∠DAB =∠B =90°∴四边形PMND 是平行四边形且PD =MN ∵∠B =90°∴∠BAE +∠BEA=90°∵MN ⊥AE 于F ,∴∠BAE +∠AMN =90°∴∠BEA =∠AMN =∠APD 又∵AB =AD ,∠B =∠DAP =90°∴△ABE ≌△DAP ∴AE =PD =MN(2)在图2中连接AG 、EG 、CG由正方形的轴对称性△ABG ≌△CBG ∴AG =CG ,∠GAB=∠GCB∵MN ⊥AE 于F ,F 为AE 中点∴AG =EG∴EG=CG,∠GEC=∠GCE∴∠GAB=∠GEC由图可知∠GEB+∠GEC=180°∴∠GEB+∠GAB=180°又∵四边形ABEG的内角和为360°,∠ABE=90°∴∠AGE=90°在Rt△ABE和Rt△AGE中,AE为斜边,F为AE的中点,∴BF=12AE,FG=12AE∴BF=FG(3)AE与MN的数量关系是:AE=MNBF与FG的数量关系是:BF=FG“点睛”本题是四边形的综合题,考查了正方形、全等三角形、平行四边形的性质与判定,在有中点和直角三角形的前提下,可以利用直角三角形斜边上的中线等于斜边的一半来证明两条线段相等.17、证明见解析.【解析】利用三角形中线的性质、中位线的定义和性质证得四边形EFGD的对边DE∥GF,且DE=GF=12BC;然后由平行四边形的判定--对边平行且相等的四边形是平行四边形,证得结论.【详解】证明:如图,连接ED、DG、GF、FE.∵BD、CE是△ABC的两条中线,∴点D、E分别是边AC、AB的中点,∴DE∥CB,DE=12CB;又∵F、G分别是OB、OC的中点,∴GF∥CB,GF=12CB;∴DE∥GF,且DE=GF,∴四边形DEFG是平行四边形(对边平行且相等的四边形是平行四边形).考查了三角形中位线定理、平行四边形的判定.平行四边形的判定:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.18、(1)2;(2)7x =.【解析】(1)把括号内通分化简,再把除法转化为乘法约分,然后把2a =代入计算即可;(2)两边都乘以x-2,化为整式方程求解,求出x 的值后检验.【详解】(1)原式=()()()()22a 1a 11a 1a a 1a 1⎡⎤+--+⋅⎢⎥--⎢⎥⎣⎦=()22a 11a 1a a 1-+-⋅-=()22a a 1a a 1-⋅-=()22a a 1a a 1-⋅-=1a a -,当2a =时,原式=2=221-;(2)3222xx x =+--,两边都乘以x-2,得3=2(x-2)-x ,解之得x=7,检验:当x=7时,x-2≠0,所以x=7是原方程的解.本题考查了分式的化简求值,以及分式方程的解法,熟练掌握分式的运算法则及分式方程的求解步骤是解答本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、2-,1-,1【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,最后求其整数解即可.【详解】解:240120x x +≥⎧⎨->⎩①②;由①得:2x ≥-;由②得:12x <;不等式组的解集为:122x -≤<;所以不等式组的整数解为2-,1-,1,故答案为:2-,1-,1.本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20、0【解析】根据一元二次方程的解即可计算求解.【详解】把x=-2代入方程得()241440k k --+=,解得k=1或0,∵k 2-1≠0,k ≠±1,∴k=0此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程二次项系数不为0.21、8【解析】解:∵多边形的外角和为360°,正多边形的一个外角45°,∴多边形得到边数360÷45=8,所以是八边形.故答案为822、8【解析】由折叠的性质知,AE=CE ,∴△ABE 的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+5=8cm .23、x 1≥且x 2≠【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件进行求解即可.【详解】要使x 2-在实数范围内有意义,必须x 10x 20-≥⎧⎨-≠⎩所以x ≥1且x 2≠,故答案为:x ≥1且x 2≠.本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.二、解答题(本大题共3个小题,共30分)24、(1)详见解析;(2)详见解析.【解析】(1)根据菱形的四条边的对边平行且相等可得AB=CD ,AB ∥CD ,再求出四边形BECD 是平行四边形,然后根据平行四边形的对边相等证明即可;(2)只要证明DC=DB ,即证明△DCB 是等边三角形即可解决问题;【详解】()1证明:四边形ABCD 是菱形,∴AB CD =,//AB CD ,又∵BE AB =,∴BE CD =,//BE CD ,∴四边形BECD 是平行四边形,∴BD EC =;()2解:结论:四边形BECD 是菱形.理由:∵四边形ABCD 是菱形,∴AD AB =,∵60DAB ∠=,∴ADB ,DCB 是等边三角形,∴DC DB =,∵四边形BECD 是平行四边形,∴四边形BECD 是菱形.考查了菱形的性质和判定,平行四边形的性质和判定,平行线的性质,熟记各图形的性质并准确识图是解题的关键.25、(1)y (x ﹣y )2;(2)﹣3<x <2【解析】(1)由题意对原式提取公因式,再利用完全平方公式分解即可;(2)根据题意分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)原式=y (x 2﹣2xy+y 2)=y (x ﹣y )2;(2)513(1)1123x x x x-<+⎧⎪⎨->-⎪⎩①②,由①得:x <2,由②得:x >﹣3,则不等式组的解集为:﹣3<x <2.本题考查因式分解和解不等式组,熟练掌握提公因式法与公式法的综合运用以及解不等式组的方法是解答本题的关键.26、(1)平均数是24.11,中位数是24.1,众数是21;(2)厂家最关心的是众数.【解析】(1)根据“平均数、中位数和众数的定义及确定方法”结合表中的数据进行分析解答即可;(2)根据“平均数、中位数和众数的统计意义”进行分析判断即可.【详解】解:(1)由题意知:男生鞋号数据的平均数=23.5324424.5425725.5126120⨯+⨯+⨯+⨯+⨯+⨯=24.11;男生鞋号数据的众数为21;男生鞋号数据的中位数=24.524.52+=24.1.∴平均数是24.11,中位数是24.1,众数是21.(2)∵在平均数、中位数和众数中,众数代表的是销售量最大的鞋号,∴厂家最关心的是众数.本题考查求平均数、众数、中位数.熟知:“平均数、中位数和众数的定义及各自的统计意义”是解答本题的关键.。
2019届天津市河西区九年级上期末数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 若将一个正方形的各边长扩大为原来的4倍,则这个正方形的面积扩大为原来的()A.16倍 B.8倍 C.4倍 D.2倍2. 下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3. 下列随机事件的概率,既可以用列举法求得,又可以用频率估计获得的是()A.某种幼苗在一定条件下的移植成活率B.某种柑橘在某运输过程中的损坏率C.某运动员在某种条件下“射出9环以上”的概率D.投掷一枚均匀的骰子,朝上一面为偶数的概率4. 正六边形的边长为2,则它的面积为()A. B. C. D.5. 袋中装有除颜色外完全相同的a个白球、b个红球、c个黄球,则任意摸出一个球是黄球的概率为()A. B. C. D.6. 如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)()A.4m B.6m C.8m D.12m7. 下列说法正确的是()A.两个大小不同的正三角形一定是位似图形B.相似的两个五边形一定是位似图形C.所有的正方形都是位似图形D.两个位似图形一定是相似图形8. 如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b) B.(﹣a.﹣b﹣1)C.(﹣a,﹣b+1) D.(﹣a,﹣b﹣2)9. 下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A. B.C. D.10. 过以下四边形的四个顶点不能作一个圆的是()A.等腰梯形B.矩形C.直角梯形D.对角是90°的四边形11. 如图,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,连接ED,图中的相似三角形的对数为()A.4对 B.6对 C.8对 D.9对12. 二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小二、填空题13. 两地的实际距离是2000m,在绘制的地图上量得这两地的距离是2cm,那么这幅地图的比例尺为.14. 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为.15. 在平面直角坐标系中,O为原点,点A(4,0),点B(0,3)把△ABO绕点B逆时针旋转90°,得△A′BO′,点A、O旋转后的对应点为A′、O′,那么AA′的长为.16. 如图,在△ABC中,已知∠C=90°,BC=6,AC=8,则它的内切圆半径是.17. 如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.18. 将边长为4的正方形ABCD向右倾斜,边长不变,∠ABC逐渐变小,顶点A、D及对角线BD的中点N分别运动列A′、D′和N′的位置,若∠A′BC=30°,则点N到点N′的运动路径长为.三、解答题19. 如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.20. 学生甲与学生乙学习概率初步知识后设计了如下游戏:学生甲手中有6,8,10三张扑克牌,学生乙手中有5,7,9三张扑克牌,每人从各自手中取一张牌进行比较,数字大的为本局获胜,每次获取的牌不能放回.(1)若每人随机取手中的一张牌进行比较,请列举出所有情况;(2)并求学生乙本局获胜的概率.21. 如图,在△ABC中,DE∥BC,分别交AB、AC于点D、E,若AD=3,DB=2,BC=6,求DE 的长.22. 已知二次函数y=2x2﹣4x+1(1)用配方法化为y=a(x﹣h)2+k的形式;(2)写出该函数的顶点坐标;(3)当0≤x≤3时,求函数y的最大值.23. 如图,CD是圆O的弦,AB是直径,且CD⊥AB,垂足为P.(1)求证:PC2=PA•PB;(2)PA=6,PC=3,求圆O的直径.24. 已知AB为⊙O的直径,OC⊥AB,弦DC与OB交于点F,在直线AB上有一点E,连接ED,且有ED=EF.(1)如图1,求证:ED为⊙O的切线;(2)如图2,直线ED与切线AG相交于G,且OF=1,⊙O的半径为3,求AG的长.四、填空题25. 如图,抛物线(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
2024-2025学年宁夏固原市泾源县九年级数学第一学期开学质量跟踪监视试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)以矩形ABCD 两对角线的交点O 为原点建立平面直角坐标系,且x 轴过BC 中点,y 轴过CD 中点,y =12x ﹣2与边AB 、BC 分别交于点E 、F ,若AB =10,BC =3,则△EBF 的面积是()A .4B .5C .6D .72、(4分)如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y=x+3与x 轴、y 轴分别交于点E ,F .将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是()A .2B .3C .4D .53、(4分)已知点()11,A y -,点()22,B y 都在直线32y x =-+上,则1y ,2y 的大小关系是()A .12y y >B .12y y <C .12y y =D .无法确定4、(4分)如图,OC 平分∠AOB ,点P 是射线OC 上的一点,PD ⊥OB 于点D ,且PD=3,动点Q 在射线OA 上运动,则线段PQ 的长度不可能是()A .2B .3C .4D .55、(4分)某型号的汽车在路面上的制动距离s =2256v ,其中变量是()A .s v 2B .s C .v D .s v 6、(4分)如图,Rt △ABC 的直角边AB 在数轴上,点A 表示的实数为0,以A 为圆心,AC 的长为半径作弧交数轴的负半轴于点D ,若CB=1,AB=2,则点D 表示的实数为()A .B .C .D .7、(4分)下列各式正确的是()A .B .C .D .8、(4分)如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕点C 顺时针旋转α角(0°<α<180°)至△A ′B ′C ,使得点A ′恰好落在AB 边上,则α等于().A .150°B .90°C .60°D .30°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)由作图可知直线52y x =-+与53y x =--互相平行,则方程组5253y x y x =-+⎧⎨=--⎩的解的情况为______.10、(4分)对于实数a ,b ,定义新运算“*”:2*a b a ab =-.如24*24428=-⨯=.若*56x =,则实数x 的值是______.11、(4分)已知线段a ,b ,c 能组成直角三角形,若a =3,b =4,则c =_____.12、(4分)一组数据:24,58,45,36,75,48,80,则这组数据的中位数是_____.13、(4分)=3-x ,则x 的取值范围是__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,△ABC 在直角坐标系中.(1)若把△ABC 向上平移2个单位,再向左平移1个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点A 1,B 1,C 1的坐标;(2)求△ABC 的面积.15、(8分)某校要从甲、乙两名同学中挑选一人参加创新能力大赛,在最近的五次选拔测试中,他俩的成绩分别如下表,请根据表中数据解答下列问题:第1次第2次第3次第4次第5次平均分众数中位数方差甲60分75分100分90分75分80分75分75分190乙70分90分100分80分80分80分80分(1)把表格补充完整:(2)在这五次测试中,成绩比较稳定的同学是多少;若将80分以上(含80分)的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是多少;(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.16、(8分)已知BD平分∠ABF,且交AE于点D.(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.17、(10分)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;18、(10分)某项工程由甲乙两队分别单独完成,则甲队用时是乙队的1.5倍:若甲乙两队合作,则需12天完成,请问:(1)甲,乙两队单独完成各需多少天;(2)若施工方案是甲队先单独施工x天,剩下工程甲乙两队合作完成,若甲队施工费用为每天1.5万元,乙队施工费为每天3.5万元求施工总费用y (万元)关于施工时间x (天)的函数关系式(3)在(2)的方案下,若施工期定为15~18天内完成(含15和18天),如何安排施工方案使费用最少,最少费用为多少万元?B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD=_______.20、(4分)已知:32y x +=+-,则x y =______.21、(4分)若函数()12m y m x -=+是正比例函数,则m=__________.22、(4分)已知平行四边形ABCD 中,∠B +∠D =270°,则∠C =________.23、(4分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm .二、解答题(本大题共3个小题,共30分)24、(8分)已知直线y 1=2x 与直线y 2=﹣2x +4相交于点A .以下结论:①点A 的坐标为A (1,2);②当x =1时,两个函数值相等:③当x <1时,y 1<y 2;④直线y 1=2x 与直线y 2=﹣2x +4在平面直角坐标系中的位置关系是平行.其中正确的个数有()个.A.4B.3C.2D.125、(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个A种品牌的足球比购买一个B种品牌的足球少30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少钱.(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌的足球售价上涨4元,B品牌足球按原售价的9折出售,如果学校第二次购买足球的总费用不超过第一次花费的70%,且保证B品牌足球不少于23个,则学校有几种购买方案?(3)求出学校在第二次购买活动中最多需要多少钱?26、(12分)先化简,再求值:24233x xx x--÷++,其中x=2019.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】根据题意得:B(2,﹣32),可得E的纵坐标为﹣32,F的横坐标为2.代入解析式y=12x﹣2可求E,F坐标.则可求△EBF的面积.【详解】解:∵x轴过BC中点,y轴过CD中点,AB=20,BC=3∴B(2,﹣3 2)∴E的纵坐标为﹣32,F的横坐标为2.∵y=12x﹣2与边AB、BC分别交于点E、F.∴当x=2时,y=1 2.当y=﹣32时,x=2.∴E(2,﹣32),F(2,12)∴BE=4,BF=2∴S△BEF=12BE×BF=4故选A.本题考查了一次函数图象上点的坐标特征,矩形的性质,关键是找到E,F两点坐标.2、D【解析】试题分析:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,由菱形ABCD,根据A与B的坐标确定出C坐标,进而求出CM与CN的值,确定出当点C落在△EOF的内部时k的范围,即可求出k的可能值.解:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,∵菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD 与x 轴平行,∴CQ=AQ=1,CM=2,即AC=2AQ=2,∴C (2,2),当C 与M 重合时,k=CM=2;当C 与N 重合时,把y=2代入y=x+4中得:x=﹣2,即k=CN=CM+MN=4,∴当点C 落在△EOF 的内部时(不包括三角形的边),k 的范围为2<k <4,则k 的值可能是3,故选B 3、A 【解析】根据一次函数的性质,当k <0时,y 随x 的增大而减小,可以解答本题.【详解】解:∵y=-3x+2,k=-3<0,∴y 随x 的增大而减小,∵点A (-1,y 1),B (2,y 2)都在直线y=-3x+2上,∴y 1>y 2,故选:A .本题考查一次函数y=kx+b (k≠0,且k ,b 为常数)的图象性质:当k >0时,y 随x 的增大而增大;当k <0时,y 将随x 的增大而减小.4、A【解析】试题分析:过点P 作PE ⊥OA 于E ,根据角平分线上的点到脚的两边距离相等可得PE=PD ,再根据垂线段最短解答.解:如图,过点P 作PE ⊥OA 于E ,∵OC 平分∠AOB ,PD ⊥OB ,∴PE=PD=3,∵动点Q 在射线OA 上运动,∴PQ≥3,∴线段PQ 的长度不可能是1.故选A .点评:本题考查了角平分线上的点到脚的两边距离相等的性质,垂线段最短的性质,是基础题,熟记性质是解题的关键.5、D 【解析】根据变量是可以变化的量解答即可.【详解】解:∵制动距离S=2256v ,∴S 随着V 的变化而变化,∴变量是S 、V .故选:D .本题考查常量与变量,是函数部分基础知识,常量是不可变化的常数,变量是可以变化的,一般用字母表示.6、B【解析】首先根据勾股定理计算出AC 的长,进而得到AD 的长,再根据A 点表示0,可得D 点表示的数.【详解】解:则AD=∵A 点表示0,∴D 点表示的数为:-故选:B .此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时考查了实数与数轴.7、D 【解析】对于选项A ,给的分子、分母同时乘以a 可得,由此即可作出判断;对于选项B 、C ,只需取一对特殊值代入等式两边,再判断两边的值是否相等即可;对于选项D ,先对的分子、分母分别因式分解,再约分即可判断.【详解】对于A 选项,只有当a=b 时,故A 选项错误;对于B 选项,可用特殊值法,令a=2、b=3,则,因此B 选项是错误;同样的方法,可判断选项C 错误;对于D 选项,=,因此D 选项是正确.故选D本题可以根据分式的基本性质和因式分解的知识进行求解。
,中,无理数的是(,则答案第2页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.B. C. D.6.一组数据:,a ,a ,,若添加一个数据a ,下列说法错误的是A.平均数不变B.中位数不变C.众数不变D.方差不变7.一条排水管的截面如图所示,已知排水管的截面圆的半径,水面宽AB 是16dm ,则截面水深CD 是A.3dmB.4dmC.5dmD.6dm8.据金华海关统计,2018年月金华市共实现外贸进出口总值亿元人民币,同比增长数据亿元用科学记数法表示正确的是A.元B.元C.元D.元9.如图1,已知,,点P 为AB 边上的一个动点,点E 、F 分别是CA ,CB 边的中点,过点P 作于D ,设,图中某条线段的长为y ,如果表示y 与x 的函数关系的大致图象如图2所示,那么这条线段可能是A.PDB.PEC.PCD.PF10.若直线与函数的图象仅有一个公共点,则整数c 的值为A.3B.4C.3或4D.3或4或5含、的大的半径为上的一点,点答案第4页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人得分二、计算题(共1题)6.计算:.评卷人得分三、作图题(共1题)7.如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.①在图中画出以线段AB 为一边的矩形ABCD (不是正方形),且点C 和点D 均在小正方形的顶点上;②在图中画出以线段AB 为一腰,底边长为2的等腰三角形ABE ,点E 在小正方形的顶点上,连接CE ,请直接写出线段CE 的长.评卷人得分四、综合题(共7题)8.如图1,AB 是⊙O 的直径,P 为⊙O 外一点,C ,D 为⊙O 上两点,连结OP ,CD ,PD =PC.已知AB =8.中,,,,得到答案第6页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)若产销甲、乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.11.小明在研究“利用木板余料裁出最大面积的矩形”时发现:如图1,是一块直角三角形形状的木板余料,以为内角裁一个矩形当DE ,EF 是中位线时,所裁矩形的面积最大若木板余料的形状改变,请你探究:(1)如图2,现有一块五边形的木板余料ABCDE ,,,,,现从中裁出一个以为内角且面积最大的矩形,则该矩形的面积为.(2)如图3,现有一块四边形的木板余料ABCD ,经测量,,,且,从中裁出顶点M ,N 在边BC 上且面积最大的矩形PQMN ,则该矩形的面积为.12.某校兴趣小组就“最想去的金华最美村落”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的最美乡村下面是根据调查结果绘制出的不完整的统计图,,,答案第8页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求抛物线的解析式;(2)如图2,D 点坐标为,连结若点H 是线段DC 上的一个动点,求的最小值.(3)如图3,连结AC ,过点B 作x 轴的垂线l ,在第三象限中的抛物线上取点P ,过点P 作直线AC 的垂线交直线l 于点E ,过点E 作x 轴的平行线交AC 于点F ,已知.求点P 的坐标;在抛物线上是否存在一点Q ,使得成立?若存在,求出Q 点坐标;若不存在,请说明理由.参数答案1.【答案】:第9页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:2.【答案】:【解释】:3.【答案】:【解释】:4.【答案】:【解释】:5.【答案】:【解释】:答案第10页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………6.【答案】:【解释】:7.【答案】:【解释】:第11页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………8.【答案】:【解释】:9.【答案】:【解释】:10.【答案】:答案第12页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:第13页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:【答案】:答案第14页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:第15页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:答案第16页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:(1)【答案】:(2)【答案】:第17页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:答案第18页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:第19页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:答案第20页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:第21页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:【解释】:(1)【答案】:(2)【答案】:【解释】:答案第22页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第23页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:(3)【答案】:【解释】:(1)【答案】:答案第24页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:【解释】:(1)【答案】:(2)【答案】:第25页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:答案第26页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第27页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:。
2019届浙教版九年级中考数学模拟试卷含解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9C.10 D.113.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45D.475.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣29.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4=.12.(4分)要使分式有意义,则字母x的取值X围是.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m=.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号【分析】根据题意,利用有理数的乘法法则判断即可.【解答】解:a,b,c为非零有理数,它们的积必为正数的是a>0,b与c同号.故选:A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9 C.10 D.11【分析】根据已知中三视图,由正视图和侧视图可判断该楼的层数,进而解答即可.【解答】解:由主视图和左视图发现该楼一共有三层,房子的最多间数见俯视图:2+2+2+3+1=10,故选:C.【点评】此题考查了由三视图判断几何体的知识,解题的关键是根据主视图和左视图中小长方形的层数确定楼的层数.3.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣【分析】首先得出的取值X围,进而分别得出a,b的值进而得出答案.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴5+的整数部分为a=8,5﹣的小数部分为b:5﹣﹣1=4﹣,∴a+b=12﹣.故选:D.【点评】此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45 D.47【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:把这些数从小到大排列为:40,42,43,45,47,47,58,最中间的数是45,故这组数据的中位数是45.故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=【分析】根据切线的性质、切线长定理判断即可.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴∠PAO=∠PBO=90°,OP平分∠APB,PA=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.【点评】本题考查的是切线的性质,掌握切线长定理是解题的关键.6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C. D.【分析】根据非负数的性质列式求出a、b的值,再代入代数式求出,然后根据平方根的定义解答即可.【解答】解:根据题意得,b﹣4=0,a﹣1=0,解得a=1,b=4,所以,=,∵(±)2=,∴的平方根是±.故选:A.【点评】本题考查了平方根的定义,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:D.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣2【分析】根据题意和平移的特点,可以求得点BB随之运动得到的图象的函数表达式,从而可以解答本题.【解答】解:∵半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴,∴当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为:y=(x﹣3﹣1)2﹣1=(x﹣4)2﹣1,故选:A.【点评】本题考查二次函数图象上点的坐标特征、平移的性质,解答本题的关键是明确点B 是点A向右平移一个单位长度的对应点.9.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM ≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB 中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【解答】解:延长AG交CD于M,如图1∵ABCD是正方形∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC∵AD=CD,∠ADB=∠BDC,DG=DG∴△ADG≌△DGC∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC∴△ADM≌△CDF∴FD=DM且AE=DF∴AE=DM且AB=AD,∠ADM=∠BAD=90°∴△ABE≌△ADM∴∠DAM=∠ABE∵∠DAM+∠BAM=90°∴∠BAM+∠ABE=90°,即∠AHB=90°∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD==∵DH≥OD﹣OH∴DH≥﹣1∴DH的最小值为﹣1故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1【分析】如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.只要证明△AOH∽△OCJ,可得=()2,推出=,由此即可解决问题;【解答】解:如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.∵CA=CB,OA=OB,∴CO⊥AB,∵cos∠CAB==,设AO=k,AC=5k,则OC=2k,∴OC=2OA,∵∠AHO=∠CJO=∠AOC=90°,∴∠AOH+∠COJ=90°,∠COJ+∠OCJ=90°,∴∠AOH=∠OCJ,∴△AOH∽△OCJ,∴=()2,∴=,∴k2=﹣4k1,故选:D.【点评】本题考查反比例函数图象上的点的特征,解直角三角形、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4= 4(2m+1)(2m﹣1).【分析】原式提取4,再利用平方差公式分解即可.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)要使分式有意义,则字母x的取值X围是x≠﹣3 .【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3≠0,解得x≠=﹣3,故答案为:x≠﹣3.【点评】本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m= ﹣1 .【分析】根据反比例函数的一般形式,可以得到x的次数是﹣1;根据当x>0时,y随x的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:,解得:m=﹣1.故答案为﹣1【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为(﹣4,3)或(4,﹣3).【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴或,解得:或,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= 3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x 2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为3+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来;(2)根据分式的加减法的法则计算即可.【解答】解:(1)解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:,(2)++=﹣+==.【点评】本题考查的是分式的加减法,解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=【分析】根据平方差公式、完全平方公式和单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:原式=x2﹣y2﹣(x2﹣2xy+y2)﹣xy+2y2=x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2=xy,当x=2018,y=时,原式=2018×=1.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的方法.19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.【分析】(1)根据等腰三角形的定义和正切函数的定义确定点C位置,据此连接三顶点即可得;(2)根据平行四边形的定义作图可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,▱ABCD即为所求,CE==.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握等腰三角形、平行四边形及正切函数的定义、勾股定理.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【解答】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=2AD=6,S△BCD=S△ABC∴BC=2DF=2.又∵∠ABC=90°,∴AB===4.∵平行四边形DBEC是菱形,∴S 四边形DBEC=2S△BCD=S△ABC=AB•BC=×4×2=4.【点评】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题,难度中等.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.【点评】本题考查了条形统计图、全面调查和抽样调查、总体、个体、样本、样本容量、用样本估计总体以及扇形统计图,解题的关键是:(1)用喜欢“转发内容”的人数÷其所占样本容量的比例求出样本容量;(2)用样本容量减去A、C、D、E的数据,求出喜欢给别人评论的人数;(3)根据扇形统计图,列式计算;(4)根据数量关系,列式计算.22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.【分析】应合理应用∠CAQ的度数,CD的长度,所以过点D作CA的平行线得到平行四边形.过点D向对边引垂线,得到直角三角形,进而利用三角函数值求得河宽.【解答】解:过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,(4分)∵PQ∥MN,DH∥CA∴四边形CAHD是平行四边形.∴AH=CD=50,∠DHQ=∠CAQ=30°(5分)在Rt△DBG中,∵∠DBG=∠BDG=45°,∴BG=DG,设BG=DG=x,在Rt△DHG中,得HG=x,(6分)又BH=AB﹣AH=110﹣50=60,∴60+x=x,∴x=30+30≈82.0(米).答:河流的宽为82.0米.(7分)【点评】本题考查解直角三角形的应用.难点是作出辅助线,利用三角函数求解.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.【分析】(1)根据图象坐标求出BC解析式;(2)①根据(1)中函数关系式,求点D坐标;②根据图象求出甲乙两车速度,计算MN距离;(3)由②中乙的速度列出s乙与时间t(h)的函数表达式,并画图象.【解答】解:(1)根据图象,点C表示甲行驶1.5小时时,甲乙两车相遇.设直线BC的函数解析式为:y=kt+b把B(0.5,60),D(1.5,0)解得∴BC解析式为:y=﹣60t+90(2)①把t=2.25代入y=﹣60t+90y=﹣60×2.25+90=45∴点D坐标为(2.25,45)②设甲的速度为akm/h,乙的速度为bkm/h由题意得∴∴MN之间距离为:3.5×20=70km(3)乙离M地的路程为s乙=70﹣40t【点评】本题为一次函数实际应用问题,考查一次函数图象的实际意义,待定系数法求函数关系式和二元一次方程组.。
2022—2023学年第一学期九年级数学期末考试题参考答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题列出的四个选项中只有一个是符合题目要求的.1-10.BDDCD AABBC二、填空题:本大题共5小题,每小题3分,共15分.11.x1=4,x2=﹣312.2:313.4914.28°15.6三、解答题(一):本大题共3小题,每小题8分,共24分.16.解:方程整理得:x2+2x﹣4=0,…………..1分这里a=1,b=2,c=﹣4,…………..2分∵Δ=22﹣4×1×(﹣4)=4+16=20>0,…………..4分∴x=−2±2√52=−1±√5,…………..7分解得:x1=﹣1+√5,x2=﹣1−√5.…………..8分17.解:四边形AEDF是菱形。
…………..1分理由:∵EF垂直平分AD交AB于E,∴AE=ED,AF=FD,AO=DO,…………..3分∵DE∥AC,∴∠FAD=∠EDA,…………..4分在△EDO和△FAO中{∠FAO=∠EDO AO=DO∠AOF=∠EOD,∴△EDO≌△FAO(ASA),…………..6分∴AF=ED,∴AE=AF=ED=DF,…………..7分∴四边形AEDF是菱形.…………..8分20222023学年第一学期九年级期末考试题—数学参考答案第1页(共7页)20222023学年第一学期九年级期末考试题—数学参考答案 第2页(共7页)18.解:由已知可得:∠AEB =∠CED , …………..1分又∵∠ABE =∠CDE =90°, ∴△ABE ∽△CDE , …………..3分∴AB CD =BE DE ,即1.5CD=158,…………..5分 解得:CD =87,…………..6分∴87÷2.9=30(层), 答:这栋楼房有30层.…………..8分四、解答题(二):本大题共3小题,每小题9分,共27分. 19.(1)证明:∵Δ=(k +6)2﹣4(3k +9)=k 2≥0, ∴方程总有两个实数根.…………..4分(2)解:当x =4时,原方程为:16﹣4(k +6)+3k +9=0, 解得k =1,…………..5分当k =1时,原方程为x 2﹣7x +12=0, ∴x 1=3,x 2=4.…………..6分由三角形的三边关系,可知3、4、4能围成等腰三角形, ∴k =1符合题意;…………..7分当Δ=k 2=0时,k=0,原方程为x 2﹣6x +9=0,解得:x 1=x 2=3. 由三角形的三边关系,可知3、3、4能围成等腰三角形, ∴k =0符合题意.…………..8分 综上所述:k 的值为1或0. …………..9分 20.解:(1) 120,99;…………..2分(2)条形统计图中,选修“厨艺”的学生人数为:120×54°360°=18(名), 则选修“园艺”的学生人数为:120﹣30﹣33﹣18﹣15=24(名), 补全条形统计图如下:20222023学年第一学期九年级期末考试题—数学参考答案 第3页(共7页)…………..5分(3)把“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程分别记为A 、B 、C 、D 、E , 画树状图如下:…………..7分共有25种等可能的结果,其中小刚和小强两人恰好选到同一门课程的结果有5种, ∴小刚和小强两人恰好选到同一门课程的概率为525=15.…………..9分21.解:(1)如图1,FO=6.65-1.65=5m AC=BD=12m CO=DE=18-12=6m ∵∠GAO =∠FCO =α, ∴CF ∥AG …………..2分∴GF FO=AC CO即GF 5=126解得GF =10m ∴条幅GF 的长度为10m.…………..4分(2)设经过t 秒后,以F 、C 、O 为顶点的三角形与△GAO 相似。
2019-2019学年北京市西城区九年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.二次函数y=(x﹣5)2+7的最小值是()A.﹣7 B.7 C.﹣5 D.52.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A.B.C.D.3.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A.12 B.C.D.4.将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5 B.y=(x﹣3)2+5 C.y=(x﹣3)2﹣4 D.y=(x+3)2﹣9 5.若一个扇形的半径是18cm,且它的弧长是12π cm,则此扇形的圆心角等于()A.30°B.60°C.90°D.120°6.如图,在平面直角坐标系xOy中,点A的坐标为(﹣1,2),AB⊥x轴于点B.以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,则点A1的坐标为()A.(﹣2,4)B.(,1)C.(2,﹣4)D.(2,4)7.如图,一艘海轮位于灯塔P的南偏东37°方向,距离灯塔40 海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的正东方向上的B处.这时,B处与灯塔P的距离BP的长可以表示为()A.40海里B.40tan37°海里C.40cos37°海里D.40sin37°海里8.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A.30°B.45°C.50°D.70°9.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)10.二次函数y=2x2﹣8x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为()A.8 B.﹣10 C.﹣42 D.﹣24二、填空题(本题共18分,每小题3分)11.若,则的值为.12.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1y2.(填“>”,“<”或“=”)13.△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为.14.如图,线段AB和射线AC交于点A,∠A=30°,AB=20.点D在射线AC上,且∠ADB是钝角,写出一个满足条件的AD的长度值:AD=.15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为.16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是;由此可证明直线PA,PB都是⊙O的切线,其依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:4cos30°•tan60°﹣sin245°.18.如图,△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,求tanC的值.19.已知抛物线y=﹣x2+2x+3与x轴交于A,B两点,点A在点B的左侧.(1)求A,B两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.20.如图,在四边形ABCD中,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB;(2)若AB=12,AD=8,CD=15,求DB的长.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?22.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n <t,直接写出m的取值范围.23.如图,AB是⊙O的一条弦,且AB=.点C,E分别在⊙O上,且OC⊥AB 于点D,∠E=30°,连接OA.(1)求OA的长;(2)若AF是⊙O的另一条弦,且点O到AF的距离为,直接写出∠BAF的度数.24.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B处测得最高塔塔顶A 的仰角为45°,然后向最高塔的塔基直行90米到达C处,再次测得最高塔塔顶A 的仰角为58°.请帮助他们计算出最高塔的高度AD约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)25.如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.(1)求证:∠PCE=∠PEC;(2)若AB=10,ED=,sinA=,求PC的长.26.阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.下面是他的探究过程,请将(2)、(3)、(4)补充完整:(1)将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x﹣1>;当x<0时,原不等式可以转化为x2+4x﹣1<;(2)构造函数,画出图象设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图象.双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为;(4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为.27.(7分)如图,在平面直角坐标系xOy中,二次函数y=﹣+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣+bx+c的图象分别交于B,C两点,点B在第一象限.(1)求二次函数y=﹣+bx+c的表达式;(2)连接AB,求AB的长;(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.28.(7分)在△ABC中,∠ACB=90°,AC=BC=4,M为AB的中点.D是射线BC 上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN.(1)如图1,当BD=2时,AN=,NM与AB的位置关系是;(2)当4<BD<8时,①依题意补全图2;②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.29.(8分)在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.(1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线;(2)当⊙O的半径为1时,如图3,①第一象限内的一条入射光线平行于x轴,且自⊙O的外部照射在其上点P处,此光线经⊙O反射后,反射光线与y轴平行,则反射光线与切线l的夹角为°;②自点A(﹣1,0)出发的入射光线,在⊙O内不断地反射.若第1个反射点P1在第二象限,且第12个反射点P12与点A重合,则第1个反射点P1的坐标为;(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.2019-2019学年北京市西城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.二次函数y=(x﹣5)2+7的最小值是()A.﹣7 B.7 C.﹣5 D.5【考点】二次函数的最值.【分析】根据二次函数的性质求解.【解答】解:∵y=(x﹣5)2+7∴当x=5时,y有最小值7.故选B.【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x 的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣,函数最小值y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣,函数最大值y=.2.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据锐角的余弦等于邻边比斜边,可得答案.【解答】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理,得AB==5.cosA==,故选:A.【点评】本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A.12 B.C.D.【考点】切线的性质.【分析】连接CP,由切线的性质可得CP⊥AO,再由切线长定理可得∠POC=45°,进而可得△POC是等腰直角三角形,利用勾股定理即可求出OC的长.【解答】解:连接CP,∵OA边与⊙C相切于点P,∴CP⊥AO,∵⊙C与∠AOB的两边分别相切,∠AOB=90°,∴∠POC=45°,∴OP=CP=6,∴OC==6,故选C.【点评】本题考查了切线的性质定理、切线长定理以及勾股定理的运用,能够正确的判定△POC是等腰直角三角形是解题关键.4.将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5 B.y=(x﹣3)2+5 C.y=(x﹣3)2﹣4 D.y=(x+3)2﹣9【考点】二次函数的三种形式.【分析】运用配方法把一般式化为顶点式即可.【解答】解:y=x2﹣6x+5=x2﹣6x+9﹣4=(x﹣3)2﹣4,故选:C.【点评】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键.5.若一个扇形的半径是18cm,且它的弧长是12π cm,则此扇形的圆心角等于()A.30°B.60°C.90°D.120°【考点】弧长的计算.【分析】把弧长公式进行变形,代入已知数据计算即可.【解答】解:根据弧长的公式l=,得n===120°,故选:D.【点评】本题考查的是弧长的计算,掌握弧长的公式l=是解题的关键.6.如图,在平面直角坐标系xOy中,点A的坐标为(﹣1,2),AB⊥x轴于点B.以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,则点A1的坐标为()A.(﹣2,4)B.(,1)C.(2,﹣4)D.(2,4)【考点】位似变换;坐标与图形性质.【分析】直接利用位似图形的性质以及结合A点坐标直接得出点A1的坐标.【解答】解:∵点A的坐标为(﹣1,2),以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,∴点A1的坐标为(﹣2,4).故选:A.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.7.如图,一艘海轮位于灯塔P的南偏东37°方向,距离灯塔40 海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的正东方向上的B处.这时,B处与灯塔P的距离BP的长可以表示为()A.40海里B.40tan37°海里C.40cos37°海里D.40sin37°海里【考点】解直角三角形的应用﹣方向角问题.【分析】根据已知条件得出∠BAP=37°,再根据AP=40海里和正弦定理即可求出BP的长.【解答】解:∵一艘海轮位于灯塔P的南偏东37°方向,∴∠BAP=37°,∵AP=40海里,∴BP=AP•sin37°=40sin37°海里;故选D.【点评】本题考查解直角三角形,用到的知识点是方位角、直角三角形、锐角三角函数的有关知识,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.8.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A.30°B.45°C.50°D.70°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】根据三角形的内角和定理得到∠A=80°,根据圆周角定理得到∠D=∠A=80°,根据等腰三角形的内角和即可得到结论.【解答】解:∵∠ABC=70°,∠ACB=30°,∴∠A=80°,∴∠D=∠A=80°,∵D是的中点,∴,∴BD=CD,∴∠DBC=∠DCB==50°,故选C.【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,等腰三角形的性质,熟练掌握圆周角定理是解题的关键.9.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)【考点】根据实际问题列二次函数关系式.【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【点评】此题主要考查了根据实际问题列二次函数解析式,关键是正确理解题意,找出题目中的等量关系,再列函数解析式.10.二次函数y=2x2﹣8x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x 轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为()A.8 B.﹣10 C.﹣42 D.﹣24【考点】二次函数的性质.【分析】根据抛物线顶点式得到对称轴为直线x=2,在7<x<8这一段位于x轴的上方,利用抛物线对称性得到抛物线在0<x<1这一段位于x轴的上方,而图象在1<x<2这一段位于x轴的下方,于是可得抛物线过点(﹣2,0),(6,0),然后把(﹣2,0)代入y=2x2﹣8x+m可求出m的值.【解答】解:∵抛物线y=2x2﹣8x+m=2(x﹣2)2﹣8+m的对称轴为直线x=2,而抛物线在﹣2<x<﹣1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方∴抛物线过点(﹣2,0),(6,0),把(﹣2,0)代入y=2x2﹣8x+m得8+16+m=0,解得m=﹣24.故选D.【点评】本题考查了抛物线与x轴的交点以及抛物线的轴对称性:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本题共18分,每小题3分)11.若,则的值为.【考点】比例的性质.【分析】已知的比值,根据比例的合比性质即可求得.【解答】解:根据比例的合比性质,已知=,则=.【点评】熟练应用比例的合比性质.12.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1>y2.(填“>”,“<”或“=”)【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为﹣3、2时的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣3时,y1=x2﹣5x=24;当x=2时,y2=x2﹣5x=﹣6;∵24>﹣6,∴y1>y2.故答案为:>.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.13.△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为90.【考点】相似三角形的性质.【分析】由△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,即可求得△AC的周长以及相似比,又由相似三角形的周长的比等于相似比,即可求得答案.【解答】解:∵△ABC的三边长分别为5,12,13,∴△ABC的周长为:5+12+13=30,∵与它相似的△DEF的最小边长为15,∴△DEF的周长:△ABC的周长=15:5=3:1,∴△DEF的周长为:3×30=90.故答案为90.【点评】此题考查了相似三角形的性质.熟练掌握相似三角形的周长比等于相似比是解题关键.14.如图,线段AB和射线AC交于点A,∠A=30°,AB=20.点D在射线AC上,且∠ADB是钝角,写出一个满足条件的AD的长度值:AD=10.【考点】含30度角的直角三角形.【分析】过B作BE⊥AC于E,由∠A=30°,AB=20,得到AE=10,推出∠ADB >∠AEB,即可得到结论.【解答】解:过B作BE⊥AC于E,∵∠A=30°,AB=20,∴AE=10,∵∠ADB是钝角,∴∠ADB>∠AEB,∴0<AD<10,∴AD=10,故答案为:10.【点评】本题考查了含30°角的直角三角形的性质,熟记直角三角形的性质是解题的关键.15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为102+(x﹣5+1)2=x2.【考点】由实际问题抽象出一元二次方程.【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理列出方程.【解答】解:设绳索长OA=OB=x尺,由题意得,102+(x﹣5+1)2=x2.故答案为:102+(x﹣5+1)2=x2.【点评】本题考查了由实际问题抽象出一元二次方程,考查学生理解题意能力,关键是能构造出直角三角形,用勾股定理来求解.16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对的圆周角是90°;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端,且与半径垂直的直线是圆的切线.【考点】作图—复杂作图;切线的判定.【分析】分别利用圆周角定理以及切线的判定方法得出答案.【解答】解:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是:直径所对的圆周角是90°;由此可证明直线PA,PB都是⊙O的切线,其依据是:经过半径外端,且与半径垂直的直线是圆的切线.故答案为:直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线.【点评】此题主要考查了切线的判定以及圆周角定理,正确把握切线的判定方法是解题关键.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:4cos30°•tan60°﹣sin245°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=4××﹣()2=6﹣=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.如图,△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,求tanC的值.【考点】解直角三角形.【分析】根据在△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,可以求得BD、AD、CD的长,从而可以求得tanC的值.【解答】解:∵△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,∴∠ADB=∠ADC=90°,∴AB=2BD,∴BD=6,∴CD=BC﹣BD=15﹣6=9,∴AD=,∴tanC=.即tanC的值是.【点评】本题考查解直角三角形,解题的关键是计算出题目中各边的长,找出所求问题需要的条件.19.已知抛物线y=﹣x2+2x+3与x轴交于A,B两点,点A在点B的左侧.(1)求A,B两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.【考点】抛物线与x轴的交点.【分析】(1)令y=0解方程即可求得A和B的横坐标,然后利用配方法即可求得对称轴和顶点坐标;(2)首先求得D的坐标,然后利用面积公式即可求解.【解答】解:(1)令y=0,则﹣x2+2x+3=0,解得:x1=﹣1,x2=3.则A的坐标是(﹣1,0),B的坐标是(3,0).y=﹣x2+2x+3=﹣(x﹣1)2+4,则对称轴是x=1,顶点C的坐标是(1,4);(2)D的坐标是(1,﹣4).AB=3﹣(﹣1)=4,CD=4﹣(﹣4)=8,则四边形ACBD的面积是:AB•CD=×4×8=16.【点评】本题考查了待定系数法求函数解析式以及配方法确定二次函数的对称轴和顶点坐标,正确求得A和B的坐标是关键.20.如图,在四边形ABCD中,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB;(2)若AB=12,AD=8,CD=15,求DB的长.【考点】相似三角形的判定与性质.【分析】(1)根据平行线的性质,可得∠ADB与∠DBC的关系,根据两个角对应相等的两个三角形相似,可得答案;(2)根据相似三角形的性质,可得答案.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠DBC.∵∠A=∠BDC,∴△ABD∽△DCB;(2)∵△ABD∽△DCB,AB=12,AD=8,CD=15,∴=,即=,解得DB=10,DB的长10.【点评】本题考查了相似三角形的判定与性质,利用了两个角对应相等的两个三角形相似,利用相似三角形的对应边成比例是解题关键.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?【考点】一元二次方程的应用.【分析】设人行道的宽度为x米,则矩形绿地的长度为:,宽度为:8﹣2x,根据两块绿地的面积之和为60平方米,列方程求解.【解答】解:设人行道的宽度为x米,由题意得,2××(8﹣2x)=60,解得:x1=2,x2=9(不合题意,舍去).答:人行道的宽度为2米.【点评】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.22.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n <t,直接写出m的取值范围.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征;二次函数图象与几何变换.【分析】(1)抛物线与x轴只有一个公共点,则判别式△=0,据此即可求得k 的值;(2)把C1化成顶点式的形式,利用函数平移的法则即可确定;(3)首先求得t的值,然后求得等y=t时C2中对应的自变量的值,结合函数的性质即可求解.【解答】解:(1)根据题意得:△=16﹣8k=0,解得:k=2;(2)C1是:y1=2x2﹣4x+2=2(x﹣1)2,抛物线C2是:y2=2(x+1)2﹣8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2﹣8=0,即t=0.在y2=2(x+1)2﹣8中,令y=0,解得:x=1或﹣3.则当n<t时,即2(x+1)2﹣8<0时,m的范围是﹣3<m<1.【点评】本题考查抛物线与x轴的交点的个数的确定,以及函数的平移方法,根据函数的性质确定m的范围是关键.23.如图,AB是⊙O的一条弦,且AB=.点C,E分别在⊙O上,且OC⊥AB 于点D,∠E=30°,连接OA.(1)求OA的长;(2)若AF是⊙O的另一条弦,且点O到AF的距离为,直接写出∠BAF的度数.【考点】垂径定理;勾股定理;圆周角定理.【分析】(1)根据垂径定理求出AD的长,根据圆周角定理求出∠AOD的度数,运用正弦的定义解答即可;(2)作OH⊥AF于H,根据勾股定理和等腰直角三角形的性质求出∠OAF的度数,分情况计算即可.【解答】解:(1)∵OC⊥AB,AB=,∴AD=DB=2,∵∠E=30°,∴∠AOD=60°,∠OAB=30°,∴OA==4;(2)如图,作OH⊥AF于H,∵OA=4,OH=2,∴∠OAF=45°,∴∠BAF=∠OAF+∠OAB=75°,则∠BAF′=∠OAF′﹣∠OAB=15°,∴∠BAF的度数是75°或15°.【点评】本题考查的是垂径定理、圆周角定理和勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键,注意分情况讨论思想的应用.24.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B处测得最高塔塔顶A 的仰角为45°,然后向最高塔的塔基直行90米到达C处,再次测得最高塔塔顶A 的仰角为58°.请帮助他们计算出最高塔的高度AD约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据已知条件求出BD=AD,设DC=x,得出AD=90+x,再根据tan58°=,求出x的值,即可得出AD的值.【解答】解:∵∠B=45°,AD⊥DB,∴∠DAB=45°,∴BD=AD,设DC=x,则BD=BC+DC=90+x,∴AD=90+x,∴tan58°===1.60,解得:x=150,∴AD=90+150=240(米),答:最高塔的高度AD约为240米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.25.如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.(1)求证:∠PCE=∠PEC;(2)若AB=10,ED=,sinA=,求PC的长.【考点】切线的性质.【分析】(1)由弦切角定理可知∠PCA=∠B,由直角所对的圆周角等于90°可知∠ACB=90°.由同角的余角相等可知∠AED=∠B,结合对顶角的性质可知∠PCE=∠PEC;(2)过点P作PF⊥AC,垂足为F.由锐角三角函数的定义和勾股定理可求得AC=8,AE=,由等腰三角形三线合一的性质可知EF=,然后证明△AED∽△PEF,由相似三角形的性质可求得PE的长,从而得到PC的长.【解答】解:(1)∵PC是圆O的切线,∴∠PCA=∠B.∵AB是圆O的直径,∴∠ACB=90°.∴∠A+∠B=90°.∵PD⊥AB,∴∠A+∠AED=90°.。
四川省自贡市初2019届毕业生学业考试数学试题一.选择题(共12个小题,每小题4分,共48分;在每题给出的四个选项中,只有一项是符合题目要求的) 1. 的倒数是( )A. B. C. D.考点:倒数.分析:1除以一个不 等于0的数的商就是这个数的倒数;实际上抓住互为倒数的两个数乘积为1就行了. 的倒数 .故选B .2.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示应为 ( ) A. B. C. D. 考点:科学记数法.分析:把一个数 记成的形式(其中是整数为1位的数,恰好为原数的整数的位数减1 ).就为科学记数法, .故选A .3.( )考点:轴对称图形、中心对称图形. 分析:轴对称图形、中心对称图形都是指的一个图形,只是运动方式不一样;轴对称图形是沿某直线翻折与自身重合,中心对称图形是绕着一个点旋转180°后与自身重合,D 选择支符合这一特点.故选D . 4.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是 ( )A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定考点:方差的性质.分析:在同样条件下,样本数据的方差越大,波动越大;方差越小,波动越小,B 选择支符合这一性质.故选B .5.下图是水平放置的全封闭物体,则它的俯视图是 ( )考点:三视图之俯视图.分析:几何体的俯视图是从上面往下面看几何体得到的平面图形,要注意看得见的轮廓线画成实线,看不见的轮廓线画成虚线;C 符合这一要求.故选C .6.已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为 ( ) A. 7 B. 8 C. 9 D. 10 考点:三角形三边之间的关系.分析:三角形的两边之和大于第三边,两边之差小于第三边;所以第三边 ,即第三边;第三边取整数为4, .故选C .7.实数在数轴上对应点的位置如图所示,则下列判断正确的是( )A.B. C. D. 考点:数轴上点的坐标的意义,实数的运算.分析:∵ ∴;也可以用“赋值法” 代入计算判断.故选B.( )分析:∵原一元二次方程无实数根,∴△= ,解得;故选D .考点:一次函数、二次函数以及反比例函数的图象及其性质.分析:根据本题的原图并结合一次函数和反比例函数图象的位置可知,所以对于二次函数的图象的抛物线开口向下,对称轴直线 (即抛物线的对称轴在的右侧),与轴的正半轴,A 符合这一特征;故选A.10.均匀的向一个容器内注水,在注水过程中,水面高度与时间该容器是下列中的)2019-2019-12019-1201920192019-12019-.42310⨯32310⨯.32310⨯.502310⨯A na 10⨯a n 423000 2.310=⨯41-<41<+3<5<4419++=m,n m 1<1m 1->mn 0>m 10+>m 0<1m 1->2m +m m >()2241m 0--⨯⨯<m 1>cy x =a 0,b 0,c 0<>>2y ax bx c =++b x 02a =->y y h t B C D A B C DA nmA B C D B C D A H考点:函数图象及其性质的实际应用.分析:根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.11.图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形翻折起来后,就能形成一个圆形桌面(可以近似看作正方形的外接圆),正方形桌面与翻折成圆形桌面的面积之比最接近()A. B.C. D.考点:正方形和圆的有关性质和面积计算.分析:连接正方形的对角线;根据圆周角的推论可知是正方形的外接圆的直径;设正方形的边长为,则正方形的面积为;根据正方形的性质并利用勾股定理可求正方形的对角线长为,则圆的半径为,所以圆的面积为,所以它们的面积之比为,与C的近似值比较接近;故选C.12.如图,已知两点的坐标分别为,点分别是直线和轴上的动点,,点是线段的中点,连接交轴于点;当⊿面积取得最小值时,的值是()A. B.C. D.考点:直角三角形、等腰三角形、相似三角形以及圆的有关性质,勾股定理、三角函数等.分析:见后面的示意图.根据题中“点分别是直线和轴上的动点,”可以得到线段的中点的运动“轨迹”是以点为圆心5半径的圆,当运动到轴上方的圆上处恰好使圆相切于时,此时的图中的最大,则最小,此时△面积最小.在△中,由坐标等可求. 根据题意和圆的切线的性质容易证明△∽△,∴,即解得:,∴ .∵两点的坐标分别为且∴ ;过点于 ,容易证明△是等腰直角三角形∴∴在△中,.故选B.点评:本题首先挖出点的运动“轨迹”是一个圆,然后在此基础上切入探究三角形面积最小时点的特殊位置,并利用关联知识来使问题得以解决.本题综合知识点较多,技巧性墙,并渗透“轨迹”思想,是一道高质量的考题.第Ⅱ卷非选择题(共102分)注意事项:必须使用0.5毫米黑色墨水铅签字笔在答题卡上题目所指示区域内作答,作图题可先用铅笔绘出,确认后用0.5毫米黑色墨水铅签字笔描清楚,答在试题卷上无效..填空题(共6个小题,每题4分,共24分)13. 如图,直线被直线所截,∥,;= .考点:平行线的性质、邻补角的定义.略解:∵∥∴∵∴4 53 42 312a2a22a a2a+=2a22221a a22ππ⎛⎫⨯=⎪⎪⎝⎭22a20.63661a2ππ=≈A B、()()8,00,8,C F、x5=-x CF10=D CF AD y E ABE tan BAD∠8 177 174 959C F、x5=-x CF10=CF D M D xD'AD'D'1∠BAD'∠ABERt'MD A AM13,MD'5==22AD'13512=-=AOE'AD MOE AOMD'AD'=OE8512=10OE3=1014BE833=-=A B、()()8,00,8,AOB90∠=22AB8882=+=EN AB⊥N ENB147NE NB2233==÷=717AN AB NB822233=-=-=Rt ANENE717tan BAD22AE37173∠==÷=DDAB CD、EF AB CD1120∠=2∠AB CD13120∠=∠=23180∠+∠=218012060∠=-=x-x=5EDAOFy1NC'F'ED'DCM ABOF21CDEAB第13题图321CDEAB故应填: .14.在一次12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别为1、3、4、2、2,那么这组数据的众数是 . 考点:众数的定义.分析:众数是指一组 数据中出现次数最多的数据,90分的有4人,次数最多;故应填:分.15.分解因式:= .考点:提公因式和公式法分解因式分析:先提取公因式,再利用平方差公式分解.即故应填:.16.某活动小组购买4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为元,足球的单价为元,依题意,可列方程组为 .15.分解因式:= . 考点:列方程组解应用题.分析:本题抓住两个等量关系列方程组:其一.4个篮球的费用+5个足球的费用=466元;其二.篮球的单价-足球的单价=4元.., ∥,= .考点:勾股定理、相似三角形的性质和判定、平行线的性质、等腰三 角形的性质以及角平分线的定义等等.略解: 在△中求出∵是的平分线 ∴∵∥ ∴ ∴ ∴∵∥ ∴△∽△ ∴ ∴又在△中. .如图所示,则= .考点:正三角形、菱形的性质,勾股定理、三角函数,整体思想等. 分析:本题可以先 拼在一个角中按如图方式连接辅助线 ; 根据正三角形可菱形的性质求出, ∴ ;设正三角形的边长为 ,则,利用菱形的性质并结合三角函数可以求得:在△中,∴即 点评:本题关键抓住把分散的和集中拼成在一个角中,通过连接一条辅助线就解决这个问题.然后再利用勾股定理和三角函数使问题得以解决,本题难度不大,但构思巧妙,是一道好题.三.解答题(共8个题,共78分) 19.(本题满分8分) 计算:.考点:实数的运算,含特殊锐角三角函数值、次幂、绝对值以及二次根式的化简等考点.分析:先算绝对值、三角函数值、化简根式等,再进行加减乘除.略解:原式 =4分 ==8分20..(本题满分8分)解方程:.考点:去分母法解分式方程、解一元一次方程.6090222x 2y -()()()22222x 2y 2x y 2x y x y -=-=+-()()2x y x y +-x y 222x 2y -,AB 10,BC 6==CD AB Rt ABC AC 8===BD ABC ∠12∠=∠CD AB 1D ∠=∠D 2∠=∠CD BC 6==CD AB ABE CDE CE DE CD 63AE BEAB 105====83=Rt BCE BE ====αβ∠∠、()cos αβ+αβ,BC α1230=∠∠=∠=360∠=ACB 2390∠=∠+∠=a AC 2a =BC =Rt ACB AB ===BC cos ABC AB ∠===()αβcos +=αβ()34sin 4583π--++-341-+31-+4x 21x 1x -=-B 第17题图分析:先去分母把分式方程化为整式方程,再解整式方程,注意验根. 略解:2分6分当时,代入7分 所以原方程的解为 8分21.(本题满分8分)如图,⊙中,弦与相交于点,,连接. 求证:⑴.;⑵..考点:圆的等对等关系、圆周角定理的推论、等腰三角形的判定 分析:⑴.利用弦相等得出对应的弧相等,再利用等式的性质证得;⑵.利用弧相等得到圆周角相等,然后利用“等角对等边”证得. 证明: ⑴.连接 1分∵ ∴3分 ∴ 即5分 ⑵.∵∴7分 ∴8分22.(本题满分8分)某校举行了创建全国文明城市知识竞赛活动,初一年级全体同学参加了竞赛.收集数据:现随机抽取初一年级30名同学“创文知识竞赛”成绩,分数如下(单位:分): 90 85 68 92 81 84 95 93 87 89 78 99 89 85 97 88 81 95 86 98 95 93 89 86 84 87 79 85 89 82⑴.请将图表中空缺的部分补充完整;⑵.学校决定表彰“创文知识竞赛”成绩在90分以上的同学,根据上表统计结果估计该校初一年级360人中,约有多少人将获得表彰;⑶.“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是 .考点:频数分布表和频数分布直方图、样本估计总体、概率.分析:⑴.直接根据提供的数据得到相应的频数,再按频数补全图表的空缺部分;⑵.先计算出30名学生获奖的百分比,以此估算360人中的获奖人数;⑶.列举法求概率,注意属于“不放回”的情况. 略解:⑴.图表各2分.⑵.(人).答:初一年级360人中,约有120人将获得表彰. 6分⑶.树状图分析图:共有12种情况,其中恰好有恐龙图案的是6种。
2019年长春市中考第一次试考数学试题一、选择题:(本大题共8个小题,每小题3分,共24分.)1.的绝对值是()A. -2019.B. 2019.C.D.2.据统计,截止2019年2月,某市实际居住人口约4210000人,4210000这个数,用科学记数法表示为:()A. B. C. D.3.如图是一个正六棱柱的茶叶盒,其俯视图为()A. B. C. D.4.不等式的解集在数轴上表示正确的是()A. B. C. D.5.如图,为直角三角形,,若沿图中虚线剪去,则的度数是()A. B. C. D.6. 如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行. 张强扛着箱子(人与箱子的总高度约为2.2m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高约为()A. 5.5mB. 6.2mC. 11 mD. 2.2 m7.如图,某地修建高速公路,要从地向修一座隧道(在同一水平面上),为了测量两地之间的距离,某工程师乘坐热气球从地出发,垂直上升200米到达处,在处观察地的俯角为,则两地之间的距离为()A. B. C. D.8.如图,在平面直角坐标系中,点、的坐标分别为(0,3)、(1、0).将线段绕着点顺时针旋转,得到线段.若点落在函数的图象上,则的值为()A. 3B. 4C. 6D. 8二、填空题(本大题共6小题,每小题3分,共18分)9.比较大小:__________3.(添“>”或“<”)10.计算:__________.11.如图,直线与直线(为常数)的交点在第三象限,则的值可以为_________.(写出一个即可)12.如图,四边形内接于.若,则的大小为__________度.13.如图,在Rt△ABC中,∠ACB=90°,BC=9,AC=12.分别以点A和点B为圆心、大于AB一半的长为半径作圆弧,两弧相交于点E和点F,作直线EF交AB于点D,连结CD.则CD的长为________.14.如图,在平面直角坐标系中,抛物线交轴于点,过点作轴交抛物线于点,点在抛物线上,连结、.若点关于轴的对称点恰好落在直线上,则的面积是_____________.三、解答题(本大题共10小题,共78分)15.小明解方程出现了错误,解答过程如下:方程两边都乘以,得(第一步)去括号,得(第二步)移项,合并同类项,得(第三步)检验,当时(第四步)所以是原方程的解. (第五步)(1)小明解答过程是从第步开始出错的,原方程化为第一步的根据是 . (2)请写出此题正确的解答过程.16.某校对初三学生进行物理、化学实验操作能力测试.物理、化学各有3个不同的操作实验题目,物理实验分别用①、②、③表示,化学实验分别用a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.王刚同学对物理的①、②号实验和化学的b、c号实验准备得较好.请用画树状图(或列表)的方法,求王刚同学同时抽到两科都准备得较好的实验题目的概率.17.定义:有一组对边相等而另一组对边不相等........的凸四边形叫做“等对边四边形”.(1)己知:图①、图②是的正方形网格,线段、的端点均在格点上.在图①、图②中,按要求以、为边各画一个等对边四边形.要求:四边形的顶点在格点上,且两个四边形不全等.(2)如图③,在Rt△BCP中,∠C=90°,点A是BP的中点,BP=13,BC=5,点D在边CP上运动,设CD=x,直接写出四边形ABCD为等对边四边形时x的值为_____________.18.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,己知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?19.如图,在中,以为直径的分别与,交于点,,过点作的切线,交于点.(1)求证:(2)若的半径为4,,请直接写出弧的长.20.为弘扬中华传统文化,某校组织七年级800名学生参加诗词大赛,为了解学生整体的诗词积累情况,随机抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,请根据尚未完成的下列图表,解答问题:(1)本次抽样中,= ,= ,样本成绩的中位数落在第组内. (2)补全频数分布直方图.(3)若规定成绩超过80分为优秀,请估计该校七年级学生中诗词积累成绩为优秀的人数.21.在一条笔直的公路上依次有、、三地,自行车爱好者甲、乙两人分别从、两地同时出发,沿直线匀速骑向地.己知甲的速度为,如图所示,甲、乙两人与地的距离....与行驶时间的函数图象分别为线段、.(1)、两地的距离为.(2)求线段所在直线对应的函数关系式.(3)若两人在出发时都配备了通话距离为3的对讲机,求甲、乙两人均在骑行过程中可以用对讲机通话的时间段.22.【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)23.如图,在△ABC中,∠C=90°,AC=8厘米,BC=6厘米.动点P在线段AC上以5厘米/秒的速度从点A 运动到点C.过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP.设点P的运动时间为x(秒).(1)求点A′落在边BC上时x的值;(2)设△A′DP和△ABC重叠部分图形周长为y(厘米),求y与x之间的函数关系式;(3)如图,另有一动点Q与点P同时出发,在线段BC上以5厘米/秒的速度从点B运动到点C.过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ.①求点A′在△B′EQ内部时x的取值范围;②连接A′B′,当直线A′B′与△ABC的边垂直或平行时,直接写出线段A′B′的长.24.定义:在平面直角坐标系中,将点绕点旋转180°得到点则称点为点的“发展点”.(1)当时,点(0,0)的“发展点”坐标为,点(-1,-1)的“发展点”坐标为 .(2)若,则点(3,4)的“发展点”的横坐标为 (用含的代数式表示).(3)若点在直线上,其“发展点”在直线上,求点的坐标.(4)点(3,3)在抛物线上,点在这条抛物线上,点为点的“发展点”.若是以是以点为直角顶点的等腰直角三角形,求的值.。
浙江省绍兴市袍江中学2018届九年级上学期开学回头考数学试题
新人教版
考生须知:
1、全卷共4页, 有三大题, 24小题. 满分150分, 考试时间120分钟.
2、本卷答案写在答题纸上.
一、选择题(本题有10小题,每小题4分,共40分.)
1有意义,则下列数值中字母x 不能取的是( )
A . 1
B .. 2 D . 4 2.下列计算正确的是( )
A.628=
-=4=
3.反比例函数4
y x
=-
的图象大致是( )
4.用配方法解方程2
210x x --=,变形结果正确的是( ) A .2
13()2
4x -=
B .213()44x -=
C .2117()416x -=
D .219()416
x -= 5.选择用反证法证明“已知:在△ABC 中,∠C =90o
.求证:∠A ,∠B 中至少有一个角不大 于45o
.”时,应先假设( )
A .∠A >45o
,∠B >45o
B .∠A ≥45o
,∠B ≥45o
C .∠A <45o
,∠B <45o
D .∠A ≤45o
,∠B ≤45o
6.平行四边形的对角线分别为a 和b ,一边长为12,则a 和b 的值可能是下面各组的数据中的 ( )
A .8和4
B .10和14
C .18和20
D .10和38
7.已知点A 与点B 关于原点对称.若点A 的坐标为(-1,a ),点B 的坐标为(b ,3),则
b a =( )
A .-3
B .3
C .-1
D .1 8.下列命题中正确的是( )
A .对角线相互垂直的平行四边形是矩形
B .对角线相等的平行四边形是菱形
C .对角线相等的梯形是等腰梯形
D .对角线相等的四边形是平行四边形
9.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形,③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( ) A .①②③
B .①④⑤
C .①③④
D .③④⑤
10.如图,已知121=A A ,
9021=∠A OA ,
3021=∠OA A ,以斜边2OA 为直角边作直角三角
形,使得 3032=∠OA A ,依次以前一个直角三角形的斜边为直角边一直作含o 30角的直角三角
形,则20122011OA A Rt ∆的最小边长为 ( ) A .2010
2
B .2011
2
C .2010)3
2(
D . 2011)3
2(
二、填空题(本题有6小题,每小题5分,共30分.) 11、若022=-+-y x ,则xy = 。
12、有一个一元二次方程,它的一个根x 1=1,另一个根-2<x 2<0.请你写出一个符合这 样条件的方程: 。
13、已知m 和n 都是方程x 2
+2007x -2019=0的根,则(㎡+2007m-2008)(n 2
+2007n-2019)
的值为 。
14、如图,在矩形ABCD 中,AB=3,BC=4,将矩形ABCD 沿EF 折叠后,点C 恰好与点A 重合, 点D 落在点G 处,则折痕EF 的长度为 .
15、一抛物线与x 轴的交点是)0,2(-A 、B (1,0),且经过 点C (2,8)。
则该抛物线的解析式为 ; 顶点坐标是 。
16、在面积为12的平行四边形ABCD 中,过点A 作直线
C
E
B
A
F
D
第9题图
第10题图
BC 的垂线交BC 于点E ,过点A 作直线CD 的垂线交CD
于点F ,若AB =4,BC =6,则CE +CF 的值为 ;
袍江中学九年级数学回头考评价答题卷
一.选择题 (本大题共10小题, 每小题4分, 共40分) 二.填空题(本大题有6小题, 每小题5分, 共30分)
11、 . 12、 . 13、 . 14、 . 15、 . 16、 .
三、解答题(本大题共8小题,满分80分.) 17、计算(每小题4分,共8分) (1)
(2
,
(2
)
18、解方程(每小题4分,共8分)
(1)2
68x x -=- (2) 2
2510x x -+=
19、(本题8分)为了解某城镇中学学做家务的时间,一综合实践活动小组对该班50名学生进行了调查,根据调查所得的数据制成如图的频数分布直方图.
(1)补全该图,并写出相应的频数; (2)求第1组的频率;
(3)求该班学生每周做家务时间的平均数;
20、(本题8分)如图,把长为2cm 的正方形剪成四个全等的直角三角形,请用这四个直角三角形(全部用上)拼成下列符合要求的图形(互不重叠且没有空隙),并把你的拼法画在下列4×7矩形方格纸内(小方格为1cm ×1cm )
(1)画一个不是正方形的菱形 (2)画一个不是正方形的矩形 (3)画一个不是矩形也不是菱形的平行四边形 (4)画一个梯形
21、(本题10分)如图,将矩形ABCD 沿对角线AC 对折,使ΔABC 落在ΔACE 的位置,且CE 与AD 相交于点F .求证:EF=DF .
22、(本题12分)在国家的宏观调控下,某市的商品房成交价由今年3月分的14000元
/
下降到5月份的12600元/
⑴问4、5两月平均每月降价的百分率是多少?(参考数据:
)
(第20题图)
⑵如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否 会跌破10000元/?请说明理由。
23、(本题12分)如图,在正方形ABCD 中,BD 是对角线,点E 在BD 上,△BEG 是等腰直
角三角形,且∠BEG=90°,点F 是DG 的中点,连结EF 与CF . (1)求证:EF=CF ;
(2)求证:EF ⊥CF ;
(3)如图2,若等腰直角三角形△BEG 绕点B 按顺时针旋转45°,其他条件不变,请判断△CEF 的形状,并证明你的结论.
24、(本题14分)如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作
EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.
(1)求点E 到BC 的距离;
图
1
图2
(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作
MN AB ∥交折线AD
CD (或)于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),求PMN △的面积;
②当点N 在线段DC 上时(如图3),是否存在点P ,使PM N △为等腰三角形?若存在请直接写出所有满足条件的x 的值;若不存在,请说明理由.
图
1
图
2
图3
袍江中学九年级数学回头考评价试卷答案
一、选择
DCADA CACBC 二、填空
(2)4
17
5±=
x 19、(1)14(图略) (2)52%
17、24.150
5.335.275.1145.026=⨯+⨯+⨯+⨯
20、
21、证明:在矩形ABCD 中AB=CD,90
=∠=∠D B
有题意得,AB=AE,90
=∠=∠E B
∴900
=
∠=∠E D
CFD AFE ∠=∠ CDF AEF ∆≅∆∴ DF EF =∴
22、⑴解:设百分率为x ,则95.1,05.0,12600)1(14000212
-===-x x x (不符合题意,舍去),答:百分率为5% 。
⑵5.11371)05.01(126002
=->10000, 答:不会跌破10000元/2
m 23、(1)证明:
CF
EF DG CF DG EF DG F DCG ABCD BEG DEG =∴==∴=∠=∠-=∠,2
1
,21,90,9018000中点是又中,在正方形 (2)
CF
EF BDC CFG EFG EFC FDC CFG FDE EFG CF DF EF ⊥∴=⨯=∠=∠+∠=∠∴∠=∠∠=∠∴==0
9045222,2,1)得由(
(3)
FGE
FBE EGB EBG FHD FDH FGB FBG FH
DF FG BF CH
BE EG BE CH EG CEGH DF FH BF BFH DBG H DC GH ∠=∠∴=∠=∠∠=∠∠=∠∴====∴=====∠=∠⊥00
045,,.
902190,又而中易得矩形)可得)(,由(易得于点作
易得EG ║DC ,
是等腰直角三角形
三角形且CEF BFH EFC HFC BEF FC FE FHC FBE FHC
FBE FGE FDH ∴=∠=∠∴∠=∠=∴∆≅∆∴∠=∠∴∠=∠∴0
90,, 24、(1)3=EG
(2)3=
∆PMN S
(3)3542-===x x x 或或。