初三数学中考模试题
- 格式:doc
- 大小:548.00 KB
- 文档页数:9
2024年江苏省常州市第二十四中学、教科院、市实验中学联考中考一模数学试题一、选择题:(本大题共8小题,每小题2分,共16分)1.(2分)把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.﹣6+3=9 B.﹣6﹣3=﹣3 C.﹣6+3=﹣3 D.﹣6+3=32.(2分)计算(﹣a)3•a2的结果是()A.﹣a6B.a6C.﹣a5D.a53.(2分)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤﹣1 B.m≤1 C.m≤4 D.4.(2分)下列几种著名的数学曲线中,不是轴对称图形的是()A.B.C.D.5.(2AD应该是△ABC的()A.角平分线B.中线C.高线D.以上都不是6.(2分)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A=88°,∠C =42°,AB=60,则点A到BC的距离为()A.60sin50°B.C.60cos50°D.60tan50°7.(2分)如图,已知∠AOB=60°,以点O为圆心,与角的两边分别交于C,D两点,D为圆心,大于,两条圆弧交于∠AOB内一点P,连结OP,过点P作直线PE∥OA交OB于点E,过点P作直线PF∥OB交OA于点F,OP=6cm,则四边形PFOE的面积是()A.B.C.D.8.(2分)如图①,底面积为30cm2的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②,若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱体的底面积为()cm2.A.24 B.12 C.18 D.21二、填空题:(本大题共10小题,每小题2分,共20分)9.(2分)25的算术平方根是.10.(2分)当a时,分式有意义.11.(2分)因式分解:a2+8a+16=.12.(2分)若m<2<m+1,且m为整数,则m=.13.(2分)图中的小正方形的边长都相等,若△MNP≌△MEQ,则点Q可能是图中的点.14.(2分)如图,在平行四边形ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=2,则△ADE的周长为.15.(2分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=8,AD=6,则AF的长为.16.(2分)若一次函数y=kx+b的图象如图所示,则关于x的不等式的解集为.17.(2分)初三(9)班同学在“2021义卖”活动中表现特别突出,他们设计了两款特别的产品.第一是“人分纪念品”套装,销售一件此产品可获利16%;第二是“一路向北”手提袋,销售一件此产品可获利24%;当销售量的比为3:2时,总获利为18%.当销售量的比为1:3时,总获利为.18.(2分)如图,半圆O的半径为1,AC⊥AB,BD⊥AB,且AC=1,BD=3,P是半圆上任意一点,则封闭图形ABDPC面积的最大值是.三、解答题(本大题共10小题,第19题6分.第20-25题每题8分,第26-28题每题10分,共84分)19.(6分)计算:(﹣)﹣1+tan60°+|﹣2|+(π﹣3)0.20.(8分)解不等式组:,并求出它的正整数解.21.(8分)某社区通过公益讲座的方式普及垃圾分类知识.为了了解居民对相关知识的了解情况及讲座效果,请居民在讲座前和讲座后分别回答了一份垃圾分类知识问卷,从中随机抽取20名居民的两次问卷成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.这20名居民讲座前、讲座后成绩得分统计图如图:b.这20名居民讲座前、讲座后成绩的平均数、中位数、方差如下:平均数中位数方差讲座前72.071.599.7讲座后86.8m88.4c.结合讲座后成绩x,被抽取的20名居民中有5人获得“参与奖”(x<80),有7人获得“优秀奖”(80≤x<90),有8人获得“环保达人奖”(90≤x≤100),其中成绩在80≤x<90这一组的是:80 82 83 85 87 88 88根据以上信息,回答下列问题:(1)居民小张讲座前的成绩为80分,讲座后的成绩为95分,在图中用“〇”圈出代表居民小张的点;(2)写出表中m的值;(3)参加公益讲座的居民有160人,估计能获得“环保达人奖”的有人.22.(8分)完全相同的四张卡片,上面分别标有数字﹣1,2,1,﹣3,将其背面朝上,从中任意抽出1张(不放回),记为m,再抽一张记为n,以m作为M点的横坐标,n作为M点的纵坐标,记为M(m,n).(1)抽出一张卡片标有数字为正数的概率是;(2)用树状图或列表法求所有点M(m,n)的坐标,并且点M在第二象限的概率.23.(8分)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.24.(8分)【问题背景】新能源汽车多数采用电能作为动力来源,不需要燃烧汽油,这样就减少了二氧化碳等气体的排放,从而达到保护环境的目的.【实验操作】为了解汽车电池需要多久能充满,以及充满电量状态下电动汽车的最大行驶里程,某综合实践小组设计两组实验.实验一:探究电池充电状态下电动汽车仪表盘增加的电量y(%)与时间t(分钟)的关系,数据记录如表1:电池充电状态时间t(分钟)0103060增加的电量y(%)0103060实验二:探究充满电量状态下电动汽车行驶过程中仪表盘显示电量e(%)与行驶里程s(千米)的关系,数据记录如表2:汽车行驶过程已行驶里程s(千米)0160200280显示电量e(%)100605030【建立模型】(1)观察表1、表2发现都是一次函数模型,请结合表1、表2的数据,求出y关于t的函数表达式及e关于s的函数表达式;【解决问题】(2)某电动汽车在充满电量的状态下出发,前往距离出发点460千米处的目的地,若电动汽车行驶240千米后,在途中的服务区充电,一次性充电若干时间后继续行驶,且到达目的地后电动汽车仪表盘显示电量为20%,则电动汽车在服务区充电多长时间?25.(8分)如图,在平面直角坐标系中,反比例函数,k>0)的图象经过点A(1,2),B (m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求反比例函数的表达式;(2)当△ABC的面积为4时,求B点坐标.26.(10分)【问题发现】如图1所示,将△ABC绕点A逆时针旋转90°得△ADE,连接CE、DB,根据条件填空:①∠ACE的度数为°;②若CE=2,则CA的值为;【类比探究】如图2所示,在正方形ABCD中,点E在边BC上,点F在边CD上,且满足∠EAF=45°,BE=1,DF=2,求正方形ABCD的边长;【拓展延伸】如图3所示,在四边形ABCD中,CD=CB,∠BAD+∠BCD=90°,AC、BD为对角线,且满足AC=CD,若AD=3,AB=4,请直接写出BD的值.27.(10分)在一个三角形中,如果三个内角的度数之比为连续的正整数,那么我们把这个三角形叫做和谐三角形.(1)概念理解:若△ABC为和谐三角形,且∠A<∠B<∠C,则∠A=°,∠B =°,∠C=°.(任意写一种即可)(2)问题探究:如果在和谐三角形ABC中,∠A<∠B<∠C,那么∠B的度数是否会随着三个内角比值的改变而改变?若∠B的度数改变,写出∠B的变化范围;若∠B的度数不变,写出∠B的度数,并说明理由.(3)拓展延伸:如图,△ABC内接于⊙O,∠BAC为锐角,BD为圆的直径,∠OBC=30°.过点A 作AE⊥BD,交直径BD于点E,交BC于点F,若AF将△ABC分成的两部分的面积之比为1:2,则△ABC一定为和谐三角形吗?”请说明理由.28.(10分)已知,抛物线y=x2﹣(2m+2)x+m2+2m与x轴交于A,B两点(A在B的左侧).(1)当m=0时,求点A,B坐标;(2)若直线y=﹣x+b经过点A,且与抛物线交于另一点C,连接AC,BC,试判断△ABC的面积是否发生变化?若不变,请求出△ABC的面积;若发生变化,请说明理由;(3)当5﹣2m≤x≤2m﹣1时,若抛物线在该范围内的最高点为M,最低点为N,直线MN与x轴交于点D,且,求此时抛物线的解析式.参考答案与试题解析一、选择题:(本大题共8小题,每小题2分,共16分)1.(2分)把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.﹣6+3=9 B.﹣6﹣3=﹣3 C.﹣6+3=﹣3 D.﹣6+3=3【解答】解:由题意可知:﹣6+3=﹣3,故选:C.2.(2分)计算(﹣a)3•a2的结果是()A.﹣a6B.a6C.﹣a5D.a5【解答】解:(﹣a)3•a2=﹣a3•a2=﹣a5,故选:C.3.(2分)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤﹣1 B.m≤1 C.m≤4 D.【解答】解:∵一元二次方程x2+2x+m=0有实数解,∴b2﹣4ac=22﹣4m≥0,解得:m≤1,则m的取值范围是m≤1.故选:B.4.(2分)下列几种著名的数学曲线中,不是轴对称图形的是()A.B.C.D.【解答】解:A.不是轴对称图形,故此选项符合题意;B.是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项不合题意.故选:A.5.(2分)王老汉要将一块如图所示的三角形土地平均分配给两个儿子,则图中他所作的线段AD应该是△ABC的()A.角平分线B.中线C.高线D.以上都不是【解答】解:由三角形的面积公式可知,三角形的中线把三角形分为面积相等的两部分,∴他所作的线段AD应该是△ABC的中线,故选:B.6.(2分)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A=88°,∠C =42°,AB=60,则点A到BC的距离为()A.60sin50°B.C.60cos50°D.60tan50°【解答】解:过点A作AD⊥BC于点D,如图所示:∵∠BAC=88°,∠C=42°,∴∠B=180°﹣88°﹣42°=50°,在Rt△ABD中,AD=AB×sin B=60×sin50°,∴点A到BC的距离为60sin50°,故A正确.故选:A.7.(2分)如图,已知∠AOB=60°,以点O为圆心,与角的两边分别交于C,D两点,D为圆心,大于,两条圆弧交于∠AOB内一点P,连结OP,过点P作直线PE∥OA交OB于点E,过点P作直线PF∥OB交OA于点F,OP=6cm,则四边形PFOE的面积是()A.B.C.D.【解答】解:过P作PM⊥OB于M,由作图得:OP平分∠AOB,∴,∴,∴,∵PE∥OA,PF∥OB,∴四边形OEPF为平行四边形,∠EPO=∠POA=30°,∴∠POE=∠OPE,∴OE=PE,设OE=PE=x cm,在Rt△PEM中,PE2﹣MP2=EM2,即:,解得:,∴.故选:B.8.(2分)如图①,底面积为30cm2的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②,若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱体的底面积为()cm2.A.24 B.12 C.18 D.21【解答】解:根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体”到注满用了:42s﹣24s=18(s),这段高度为:14﹣11=3(cm),设匀速注水的水流速度为x cm3/s,则18•x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;“几何体”下方圆柱的高为a,则a•(30﹣15)=18×5,解得a=6,所以“几何体”上方圆柱的高为11﹣6=5(cm),设“几何体”上方圆柱的底面积为S cm2,根据题意得5•(30﹣S)=5×(24﹣18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.故选:A.二、填空题:(本大题共10小题,每小题2分,共20分)9.(2分)25的算术平方根是5.【解答】解:∵52=25,∴25的算术平方根是5.故答案为:5.10.(2分)当a≠﹣2时,分式有意义.【解答】解:根据题意得,a+2≠0,解得a≠﹣2.故答案为:≠﹣2.11.(2分)因式分解:a2+8a+16=(a+4)2.【解答】原式=(a+4)2,故答案为:(a+4)2.12.(2分)若m<2<m+1,且m为整数,则m=5.【解答】解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.13.(2分)图中的小正方形的边长都相等,若△MNP≌△MEQ,则点Q可能是图中的点D.【解答】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故答案为:D.14.(2分)如图,在平行四边形ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=2,则△ADE的周长为12.【解答】解:∵四边形ABCD是平行四边形,∠B=60°,AB=2,∴∠D=∠B=60°,CD=AB=2,∴由折叠得∠E=∠D=60°,CE=CD=2,∵将△ADC沿AC折叠后,点D落在DC的延长线上的点E处,∴D、C、E三点在同一条直线上,∴DE=CE+CD=2+2=4,∠DAE=180°﹣∠E﹣∠D=60°,∴△ADE是等边三角形,∴AD=AE=DE=4,∴AD+AE+DE=3×4=12,∴△ADE的周长为12,故答案为:12.15.(2分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=8,AD=6,则AF的长为.【解答】解:∵四边形ABCD是矩形,∴AB=CD=8,∠ADC=90°,AB∥CD,∵AD=6,∴AC===10,∵点E是AB的中点,∴AE=AB=4,∵AB∥CD,∴∠CDE=∠DEA,∠DCF=∠CAE,∴△CDF∽△AEF,∴===2,∴AF=AC=,故答案为:.16.(2分)若一次函数y=kx+b的图象如图所示,则关于x的不等式的解集为x>3.【解答】解:由题意得,一次函数y=kx+b的图象经过(2,0),k>0,∴2k+b=0,∴b=﹣2k,∴不等式可化为:2kx﹣6k>0,解得x>3,故答案为:x>3.17.(2分)初三(9)班同学在“2021义卖”活动中表现特别突出,他们设计了两款特别的产品.第一是“人分纪念品”套装,销售一件此产品可获利16%;第二是“一路向北”手提袋,销售一件此产品可获利24%;当销售量的比为3:2时,总获利为18%.当销售量的比为1:3时,总获利为20.8%.【解答】解:设一件“人分纪念品”套装卖x元,一件“一路向北”手提袋卖y元,则一件此产品可获利16%x元,一件“一路向北”手提袋可获利24%y元,令“人分纪念品”的销售量为3a,则“一路向北”的销售量为2a,由销售量的比为3:2时,总获利为18%,得:=18%,解得x=2y,设销售量的比为1:3时,令“人分纪念品”的销售量为b,则“一路向北”的销售量为3b,则总获利为:===20.8%,即总获利为20.8%.故答案为:20.8%.18.(2分)如图,半圆O的半径为1,AC⊥AB,BD⊥AB,且AC=1,BD=3,P是半圆上任意一点,则封闭图形ABDPC面积的最大值是2+.【解答】解:如图,连接DC,并延长交BA的延长线于点G,欲使封闭图形ACPDB的面积最大,因梯形ACDB的面积为定值,故只需△CPD的面积最小.而CD为定值,故只需使动点P到CD的距离最小.为此作半圆平行于CD的切线EF,设切点为P′,并分别交BD及BA的延长线于点F,E.连接OC,∵CA⊥AB,DB⊥AB,∴△CGA∽△DGB,∴=,∴GA=AO=AC=1.∴△ACO和△GAC是等腰直角三角形,∴∠GCA=∠OCA=45°,∴∠GCO=90°,∴OC⊥GD.OC⊥EF,∴切点P′就是OC与半圆的交点.即当动点P取在P′的位置时,到CD的距离最小,而OC=,∴CP´=﹣1,∴S△CP´D=×2×(﹣1)=2﹣,∴封闭图形ACPDB的最大面积为:×(1+3)×2﹣(2﹣)=4﹣2+=2+.故答案为:2+.三、解答题(本大题共10小题,第19题6分.第20-25题每题8分,第26-28题每题10分,共84分)19.(6分)计算:(﹣)﹣1+tan60°+|﹣2|+(π﹣3)0.【解答】解:(﹣)﹣1+tan60°+|﹣2|+(π﹣3)0=﹣2++2﹣+1=1.20.(8分)解不等式组:,并求出它的正整数解.【解答】解:,解不等式①得:x≤5,解不等式②得:x<14,所以不等式组的解集为x≤5,则不等式组的正整数解为1,2,3,4,5.21.(8分)某社区通过公益讲座的方式普及垃圾分类知识.为了了解居民对相关知识的了解情况及讲座效果,请居民在讲座前和讲座后分别回答了一份垃圾分类知识问卷,从中随机抽取20名居民的两次问卷成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.这20名居民讲座前、讲座后成绩得分统计图如图:b.这20名居民讲座前、讲座后成绩的平均数、中位数、方差如下:平均数中位数方差讲座前72.071.599.7讲座后86.8m88.4c.结合讲座后成绩x,被抽取的20名居民中有5人获得“参与奖”(x<80),有7人获得“优秀奖”(80≤x<90),有8人获得“环保达人奖”(90≤x≤100),其中成绩在80≤x<90这一组的是:80 82 83 85 87 88 88根据以上信息,回答下列问题:(1)居民小张讲座前的成绩为80分,讲座后的成绩为95分,在图中用“〇”圈出代表居民小张的点;(2)写出表中m的值;(3)参加公益讲座的居民有160人,估计能获得“环保达人奖”的有64人.【解答】解:(1)如图所示:(2)讲座后成绩的中位数是第10和第11个数的平均数,所以m==87.5;(3)估计能获得“环保达人奖”的有160×=64(人).故答案为:64.22.(8分)完全相同的四张卡片,上面分别标有数字﹣1,2,1,﹣3,将其背面朝上,从中任意抽出1张(不放回),记为m,再抽一张记为n,以m作为M点的横坐标,n作为M点的纵坐标,记为M(m,n).(1)抽出一张卡片标有数字为正数的概率是;(2)用树状图或列表法求所有点M(m,n)的坐标,并且点M在第二象限的概率.【解答】解:(1)由题意知,共有4种等可能的结果,其中抽出一张卡片标有数字为正数的结果有:2,1,共2种,∴抽出一张卡片标有数字为正数的概率是=.故答案为:.(2)列表如下:由表格可知,共有12种等可能的结果.其中点M在第二象限的结果有:(﹣1,2),(﹣1,1),(﹣3,2),(﹣3,1),共4种,∴点M在第二象限的概率为=.23.(8分)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.【解答】(1)证明:∵CF∥AB,∴∠ADF=∠CFD,∠DAC=∠FCA,∵点E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF;(2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:由(1)知,AD=CF,∵AD∥CF,∴四边形ADCF是平行四边形,∵AC⊥BC,∴△ABC是直角三角形,∵点D是AB的中点,∴CD=AB=AD,∴四边形ADCF是菱形.24.(8分)【问题背景】新能源汽车多数采用电能作为动力来源,不需要燃烧汽油,这样就减少了二氧化碳等气体的排放,从而达到保护环境的目的.【实验操作】为了解汽车电池需要多久能充满,以及充满电量状态下电动汽车的最大行驶里程,某综合实践小组设计两组实验.实验一:探究电池充电状态下电动汽车仪表盘增加的电量y(%)与时间t(分钟)的关系,数据记录如表1:电池充电状态时间t(分钟)0103060增加的电量y(%)0103060实验二:探究充满电量状态下电动汽车行驶过程中仪表盘显示电量e(%)与行驶里程s(千米)的关系,数据记录如表2:汽车行驶过程已行驶里程s(千米)0160200280显示电量e(%)100605030【建立模型】(1)观察表1、表2发现都是一次函数模型,请结合表1、表2的数据,求出y关于t的函数表达式及e关于s的函数表达式;【解决问题】(2)某电动汽车在充满电量的状态下出发,前往距离出发点460千米处的目的地,若电动汽车行驶240千米后,在途中的服务区充电,一次性充电若干时间后继续行驶,且到达目的地后电动汽车仪表盘显示电量为20%,则电动汽车在服务区充电多长时间?【解答】解:(1)根据题意,两个函数均为一次函数,设y=a1t+b1,e=a2s+b2,将(10,10),(30,30)代入y=a1t+b1得,解得,∴函数解析式为:y=t,将(160,60),(200,50)代入e=a2s+b2得,解得,∴函数解析式为:e=﹣+100.(2)由题意得,先在满电的情况下行走了w1=240km,当s1=240时,e1=﹣s1+100=﹣=40,∴未充电前电量显示为40%,假设充电充了t分钟,应增加电量:e2=y2=t,出发是电量为e=e+e=40+t,走完剩余路程w=460﹣240=220km,w2应耗电量为:e4=﹣w2+100=﹣=45,满电状态下剩余电量45%,据此可得:应耗电量100%﹣45%=55%,20=e3﹣e4=40+t﹣55,解得t=35,答:电动汽车在服务区充电35分钟.25.(8分)如图,在平面直角坐标系中,反比例函数,k>0)的图象经过点A(1,2),B (m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求反比例函数的表达式;(2)当△ABC的面积为4时,求B点坐标.【解答】解:(1)把点A(1,2)代入反比例函数得,=2,∴k=2,∴反比例函数解析式为:;(2)把点B(m,n)代入反比例函数得,=n,∴B(m,),∴C(0,),BC=,∵S△ABC=),∴m=5,∴B的坐标为(5,).26.(10分)【问题发现】如图1所示,将△ABC绕点A逆时针旋转90°得△ADE,连接CE、DB,根据条件填空:①∠ACE的度数为45°;②若CE=2,则CA的值为;【类比探究】如图2所示,在正方形ABCD中,点E在边BC上,点F在边CD上,且满足∠EAF=45°,BE=1,DF=2,求正方形ABCD的边长;【拓展延伸】如图3所示,在四边形ABCD中,CD=CB,∠BAD+∠BCD=90°,AC、BD为对角线,且满足AC=CD,若AD=3,AB=4,请直接写出BD的值.【解答】【问题发现】解:①将△ABC绕点A逆时针旋转90°得△ADE,∴∠DAB=∠CAE=90°,CA=EA,∴∠ACE=45°,故答案为:45;②∵△CAE是等腰直角三角形,∠ACE=45°,∴AC=CE•cos45°=2×=,故答案为:;【类比探究】解:将△ABE绕A逆时针旋转90°得△ADG,如图所示:∵△ABE绕A逆时针旋转90°得△ADG,∴∠BAE=∠DAG,AE=AG,BE=DG=1,∠ABE=∠ADG=90°,∵∠ADC+∠ADG=180°,∴G、D、C共线,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAG+∠DAF=45°=∠EAF,即∠F AG=∠EAF,在△GAF与△EAF中,,∴△GAF≌△EAF(SAS),∴EF=GF,∵GF=GD+DF=1+2=3,∴EF=3,设正方形ABCD边长为x,则CE=x﹣1,CF=x﹣2,在Rt△CEF中,CE2+CF2=EF2,∴(x﹣1)2+(x﹣2)2=32,解得:x=或x=(舍去),∴正方形ABCD的边长为;【拓展延伸】解:将△ADC绕C逆时针旋转至△CBE,连接AE,如图所示:∴AD=BE,CA=CE,∠ACD ECB,∠ADC=∠EBC,∵CD=CB,∴∠BCD=∠ACE,,∴△DCB∽△ACE,∴,∵∠BAD+∠BCD=90°,∴∠ABC+∠ADC=270°,∵∠ADC=∠EBC,∴∠ABC+∠EBC=270°,∴∠ABE=90°,∴AE=,∴BD=.27.(10分)在一个三角形中,如果三个内角的度数之比为连续的正整数,那么我们把这个三角形叫做和谐三角形.(1)概念理解:若△ABC为和谐三角形,且∠A<∠B<∠C,则∠A=30°,∠B=60°,∠C=90°.(任意写一种即可)(2)问题探究:如果在和谐三角形ABC中,∠A<∠B<∠C,那么∠B的度数是否会随着三个内角比值的改变而改变?若∠B的度数改变,写出∠B的变化范围;若∠B的度数不变,写出∠B的度数,并说明理由.(3)拓展延伸:如图,△ABC内接于⊙O,∠BAC为锐角,BD为圆的直径,∠OBC=30°.过点A 作AE⊥BD,交直径BD于点E,交BC于点F,若AF将△ABC分成的两部分的面积之比为1:2,则△ABC一定为和谐三角形吗?”请说明理由.【解答】解:(1)由题意得:设∠A:∠B:∠C=(n﹣1):n:(n+1),其中n≥2,n为正整数,∴.可设n=2,由∠A:∠B:∠C=1:2:3,∴.故答案为:30;60;90.(2)∠B的度数不变.由题意得:设∠A:∠B:∠C=(n﹣1):n:(n+1),其中n≥2,n为正整数,∴.∴∠B的度数不变,且∠B=60°.(3)△ABC一定为和谐三角形.理由如下:分两种情况讨论:①当S△ACF=2S△ABF时,如图1,连结OA,OC,过点O作OG⊥BC于点G.由OA=OB=OC=r,∠OBC=30°,可得∠OCB=30°,∠BOC=180°﹣30°﹣30°=120°.∴.∴.∵,∴.又∵S△ACF=2S△ABF,∴CF=2BF.∴.∵AF⊥BD,∠OBC=30°,∴∠AFB=60°=∠BAC.又∵∠ABF=∠CBA,∴△ABF∽△CBA.∴AB2=BF•BC.∴.∴解得:AB=r.∴△AOB为等边三角形.∵,∴.∴∠ABC=90°.∵30°:60°:90°=1:2:3,∴△ABC为和谐三角形.②当S△ABF=2S△ACF时,如图2,连结OA,OC,过点O作OG⊥BC于点G.同理可得OA=OB=OC=r,∠BAC=60°,,△ABF∽△CBA,∴AB2=BF•BC.∴.∴△AOB为等腰直角三角形.∴.∴∠ABC=75°.∵45°:60°:75°=3:4:5,∴△ABC为和谐三角形.综上所述,△ABC一定为和谐三角形.28.(10分)已知,抛物线y=x2﹣(2m+2)x+m2+2m与x轴交于A,B两点(A在B的左侧).(1)当m=0时,求点A,B坐标;(2)若直线y=﹣x+b经过点A,且与抛物线交于另一点C,连接AC,BC,试判断△ABC的面积是否发生变化?若不变,请求出△ABC的面积;若发生变化,请说明理由;(3)当5﹣2m≤x≤2m﹣1时,若抛物线在该范围内的最高点为M,最低点为N,直线MN与x轴交于点D,且,求此时抛物线的解析式.【解答】解:(1)当m=0时,y=x2﹣2x,当y=0时,有x2﹣2x=0,解得x1=0,x2=2,∵A在B的左侧,∴点A坐标为(0,0),点B坐标为(2,0).(2)△ABC的面积不变.对于抛物线y=x2﹣(2m+2)x+m2+2m,当y=0时,有x2﹣(2m+2)x+m2+2m=0,解得:x1=m,x2=m+2.∵A在B的左侧,∴点A坐标为(m,0),点B坐标为(m+2,0),∴AB=2,∵直线y=﹣x+b经过点A(m,0),∴0=﹣m+b,∴b=m,∴y=﹣x+m,联立解得x1=m,x2=m+1,∵点C在y=﹣x+m上,当x2=m+1时,y C=﹣1,∴C点坐标为(m+1,﹣1).∴S△ABC=,∴△ABC的面积不发生变化,S△ABC=1.(3)∵5﹣2m≤x≤2m﹣1,∴5﹣2m<2m﹣1,∴m>.由题可知对称轴为x=m+1,则对称轴x=m+1,∵,即范围5﹣2m≤x≤2m﹣1的中点为x=2,∴,即抛物线的对称轴在直线x=2的右侧.①若2m﹣1≤m+1,m≤2,即<m≤2时,∵抛物线开口向上,当5﹣2m≤x≤2m﹣1时,y随x的增大而减小,如图,当x=5﹣2m时,取最高点M(5﹣2m,9m2﹣24m+15),当x=2m﹣1时,取最低点N(2m﹣1,m2﹣4m+3),分别过点M,N作x轴的垂线交于点H,G,则△MDH∽△NDG,∴,即,∴,解得m=1(舍)或m=2,∴当m=2时,抛物线的解析式为y=x2﹣6x+8.②若2<m+1<2m﹣1,即m>2,∴最低点在顶点处取得,∴N(m+1,﹣1),当x=5﹣2m时,取最高点M(5﹣2m,9m2﹣24m+15),由,得9m2﹣24m+15=3,解得,∵m>2,∴m1与m2不符合题意,舍去,综上所述,抛物线的解析式为y=x2﹣6x+8.。
扬州九年级第三次模拟考试数学试卷一、选择题(每题3分,共24分)1.如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A .B .C .D .2的值等于( )A .0.3B .C .0.03D .3.据报道,2023年1月研究人员通过研究获得了XBB.1.5病毒毒株,该毒株体积很小,呈颗粒圆形或椭圆形,直径大概为,已知,则用科学记数法表示为()A .B .C .D .4.如图所示几何体是由一个球体和一个圆柱组成的,它从上面看到的形状图是()A .B .C .D .5.如图,,,,则的度数是()A .30°B .40°C .50°D .80°6.已知是整数,当的值是( )A .5B .6C .7D .87.如图,在菱形纸片中,,,分别剪出扇形和,恰好能作为一个锥圆的侧面和底面.若点在上,则的最大值是()0.3±0.03±85nm 91nm 10m -=85nm 60.8510m -⨯70.8510m-⨯88.510m-⨯98510m-⨯a b ∥380∠=︒1220∠-∠=︒1∠x x -x ABCD 6AB =60ABC ∠=︒ABC O O BD BDA .B .C .D .8.如图,点与点关于原点对称.,,,、是的三等分点.反比例函数()的图象经过点,.若的面积为3,则的值为()A .4B .5C .6D .7二、填空题(每题3分共30分)9.若式子在实数范围内有意义,则的取值范围是______.10.因式分解______.11.若一组数据2,3,4,5,7的方差是,另一组数据11,12,13,14,15的方差是,则______(填“>”“<”或“=”).12.一个圆锥的侧面展开图时一个圆心角为216°、半径为的扇形,这个圆锥的底面圆半径为______.13.如图,一副直角三角板(,)按如图所示的位置摆放,如果,那么的度数为______.14.规定一种新的运算:,求的解是______.15.如图,点、、在上,的半径为3,,则的长为______.1-2-1+2+A B 90ACB ∠=︒AC BC =45CAD ∠=︒A E DF ky x=0k >A E ACE △k 1x x-x 4a a 3-=21S 22S 21S 22S 15cm cm 30ACB ∠=︒45BED ∠=︒AC DE ∥EBC ∠*2a b a b =--211*132x x-+=A B C O O AOC ABC ∠=∠AC16.已知,点,,在反比例函数(为常数,)的图像上,则,,的大小关系是______.(用“>”连接)17.如图,点在双曲线()上,点在双曲线(),点在轴的正半轴上,若、、、构成的四边形为正方形,则对角线的长是______.18.如图,在中,,点是的外心,连接并延长交边于点,,,则的值为______.三、解答题(本大题共有10小题,共96分)19.(8分)计算:(1);(2).20.(8分)解不等式组,并写出该不等式组的整数解.21.(8分)树人学校想了解学生家长对“双减”政策的认知情况,随机抽取了部分学生家长进行调查,将抽查的数据结果进行统计,并绘制两幅不完整的统计图(:不太了解,0a b c >>>()1,A a b y -()2,B a c y -()3,C c a y -ky x=k 0k >1y 2y 3y ()5,D m -30y x =-0x <B 12y x=0x <A y A B C D AC ABC △ABC ACB ∠=∠O ABC △CO AB P 3AP =4BP =cos ABC ∠0112452-++︒--53222x x x x +⎛⎫+-÷⎪--⎝⎭()4132235x x x ->-⎧⎪⎨-≤⎪⎩A:基本了解,:比较了解,:非常了解).请根据图中提供的信息回答以下问题:(1)请直接写出这次被调查的学生家长共有______人;(2)请补全条形统计图;(3)试求出扇形统计图中“比较了解”部分所对的圆心角度数;(4)该学校共有6800名学生家长,估计对“双减”政策了解程度为“非常了解”的学生家长大约有多少?22.(8分)把算珠放在计数器的3根插棒上可以构成一个数,例如:如图摆放的算珠表示数210.(1)若将一颗算珠任意摆放在这3根插棒上,则构成的数是三位数的概率是______;(2)若一个数正读与反读都一样,我们就把这个数叫做回文数.现将两颗算珠任意摆放在这3根插棒上,先放一颗算珠,再放另一颗,请用列表或画树状图的方法,求构成的数是三位数且是回文数的概率.23.(10分)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?24.(10分)在中,,是的中点,是的中点,过点作交的延长线于点.(1)求证:;(2)证明四边形是菱形.25.(10分)已知:为的直径,为圆心,点为圆上一点,过点作的切线交的延长线于点,点为上一点,且,连接交于点.B C D Rt ABC △90BAC ∠=︒D BC E AD A AF BC ∥BE F AEF DEB ≌△△ADCF BD O O A B O DA F C O AB AC =BC AD E(1)如图1,求证:;(2)如图2,点为内部一点,连接,.若,的半径为10,,求的长.26.(10分)如图是边长为1的正方形网格,每个小正方形的顶点叫格点,的顶点都在格点上.仅用无刻度的直尺,按要求画出下列图形.(1)的周长为______;(2)如图,点、分别是与竖格线和横格线的交点,画出点关于过点竖格线的对称点;(3)请在图中画出的角平分线.27.(12分)(1)【基础巩固】如图1,内接于,若,弦______;(2)【问题探究】如图2,四边形内接于,若,,点为弧上一动点(不与点,点重合).求证:;(3)【解决问题】如图3,一块空地由三条直路(线段、、)和一条道路劣弧围成,已知千米,,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点处,另外三个入口分别在点、、处,其中点在上,并在公园中修四条慢跑道,即图中的线段、、、,是否存在一种规划方案,使得四条慢跑道总长度(即四边形的周长)最大?求其最大值;若不存在,说明理由.ABF ABC ∠=∠H O OH CH 90OHC HCA ∠=∠=︒O 6OH =DA ABC △ABC △D P AB P D Q ABC △BE ABC △O 60C ∠=︒AB =r =ABCD O 60ADC ∠=︒AD DC =B AC A C AB BC BD +=AD AB BC CDCM DM ==60DMC ∠=︒ CD M C D PP CDDM MC CP PD DMCP28.(12分)在平面直角坐标系中,已知抛物线()与轴交于,两点(点在点的左侧),与轴交于点,顶点为点.(1)当时,直接写出点,,,的坐标:______,______,______;(2)如图1,直线交轴于点,若,求抛物线的解析式;(3)如图2,在(2)的条件下,若点为的中点,动点在第三象限的抛物线上,过点作轴的垂线,垂足为,交于点;过点作,垂足为.设点的横坐标为,记.①用含的代数式表示;②设(),请直接写出的最大值.2446y ax ax a =++-0a >x A B A B y C D 6a =A B C D A B D DC x E 4tan 3AED ∠=N OC P P x Q AN F F FH DE ⊥H P t f FP FH =+t f 5t m -<≤0m <f初三数学三模答案一、选择题1.C 2.A 3.C 4.C 5.C 6.A 7.B 8.A二.填空题9. 10. 11.> 12.9 13.15° 14. 15.16. 171819.(本题满分8分)(1)2 (2)20.(本题满分8分)解不等式①得:解不等式②得:不等式组的解集是:整数解是:3,421.(本题满分8分)(1)这次抽样调查的家长有(人);(2)表示“基本了解”的人数为:(人),表示“非常了解”的人数为:(人)图略(3)“比较了解”部分所对应的圆心角是:(4)(人)22.(本题满分8分)(1)(2)画树状图如下:共有9种等可能的结果,其中构成的数是三位数且是回文数的结果有2种,∴构成的数是三位数且是回文数的概率为.23.(本题满分10分)解:设该景点在设施改造后平均每天用水吨,则在改造前平均每天用水吨,根据题意,得.0x ≠()()2121a a a +-57x =123y y y >>3x -2x >4x ≤24x <≤510%50÷=5030%15⨯=505152010---=2036014450⨯=︒︒106800136050⨯=1329x 2x 202052x x-=解得.经检验:是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2吨.24.(本题满分10分)(1)∵,∴,∵是的中点,是边上的中线,∴,,在和中,,∴;(2)由(1)知,,则.∵,∴.∵,∴四边形是平行四边形,∵,是的中点,是的中点,∴,∴四边形是菱形.25.(本题满分10分)(1)证明:∵为的直径,∴,∴,∵是的切线,∴,∴,∴,∵,∴,∵,∴;(2)解:连接,∵,∴,∴,∵,∴,∴,即,∴,∵,∴,∴,∵,的半径为10,∴,,∴.26.(本题满分10分)(1)的周长(2)如图,点即为所求;(3)如图,线段即为所求.2x =2x =AF BC ∥AFE DBE ∠=∠E AD AD BC AE DE=BD CD =AFE △DBE △AFE DBEFEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AFE DBE ≌△△AFE DBE ≌△△AF DB =DB DC =AFCD =AF BC ∥ADCF 90BAC ∠=︒D BC E AD 12AD DC BC ==ADCF BD O 90BAD ∠=︒90D ABD ︒∠+∠=FB O 90FBD ∠=︒90FBA ABD ︒∠+∠=FBA D ∠=∠AB AC =C ABC ∠=∠C D ∠=∠ABF ABC ∠=∠OC 90OHC HCA ∠=∠=︒AC OH ∥ACO COH ∠=∠OB OC =OBC OCB ∠=∠ABC CBO ACB OCB ∠+∠=∠+∠ABD ACO ∠=∠ABD COH ∠=∠90H BAD ︒∠=∠=ABD HOC ∽△△2AB BDOH OC==6OH=O 212AB OH ==20BD =16DA ==ABC △549=++=Q BE27.(本题满分12分)(1)2(2)证明:在上取点,使,连接,,∵,,∴为等边三角形,∴,,∵四边形为圆的内接四边形,∴,∴,∵,∴,∴,∴,∴为等边三角形,∴,,∴,∴,∴,∴;(3)解:存在.∵千米,∴当取得最大值时,四边形的周长最大,连接,过点作于点,设,∵,,,∴,∴,∴,∴,BD E BE BC =EC AC AD CD =60ADC ∠=︒ADC △DC AC =60DCA ∠=︒ABCD O 180ABC ADC ︒∠+∠=120ABC ︒∠=AD CD = AD CD=ABD CBD ∠=∠60CBD ∠=︒BEC △BC CE =60BCE ∠=︒BCA ECD ∠=∠()SAS ACB DCE ≌△△AB DE =DB DE BE AB BC =+=+CM DM ==DP CP +DMCP PM O OHDM ⊥H OH x =DM CM =OM OM =DO CO =()SSS DOM COM ≌△△1302DMO CMO DMC ︒∠=∠=∠=HM=DH =-∵,∴,∴或(舍去),∴,∴,∴、、、四点共圆,∴,由(2)可知,故当是直径时,最大值为2,∵四边形的周长,∴四边形的周长的最大值为:即四条慢跑道总长度(即四边形的周长)的最大值为.28.(本题满分12分)(1)、、的坐标分别为、、;(2),令,则,则点,函数的对称轴为,故点的坐标为,由点、的坐标得,直线的表达式为:,令,则,故点,则,,解得:,∴抛物线的表达式为:.(3)①如图,作与的延长线交于点,由(2)知,抛物线的表达式为:,故点、的坐标分别为、,则点,由点、的坐标得,直线的表达式为:;设点,则点;则,222DH OH OD +=)2221x +=12x =1x =12OH =1OM =D P C M 120DPC ︒∠=DP CP PM +=PM PD PC +DMCP DM CM PC PD PD PC =+++=++DMCP 2+DMCP 2+A B D ()3,0-()1,0-()2,6--2446y ax ax a =++-0x =46y a =-()0,46C a -2x =-D ()2,6--C D CD 246y ax a =+-0y =32x a =-32,0E a ⎛⎫- ⎪⎝⎭32OE a =-644332OC a tan AED OE a -∠===-23a =22810333y x x =+-PF ED J 22810333y x x =+-A C ()5,0-100,3⎛⎫- ⎪⎝⎭50,3N ⎛⎫- ⎪⎝⎭A N AN 1533y x =--22810,333P t t t ⎛⎫+- ⎪⎝⎭15,33F t t ⎛⎫-- ⎪⎝⎭225333PF t t =--+由点、的坐标得,直线的表达式为:,则点,故,∵,轴,故,,∴,故,则,;②(且);∴当时,;当时,. 5,02E ⎛⎫ ⎪⎝⎭C CE 41033y x =-410,33J t t ⎛⎫- ⎪⎝⎭5533FJ t =-+FH DE ⊥JF y ∥90FHJ EOC ︒∠=∠=FJH ECO ∠=∠FJH ECO ∽△△FH FJ OE CE =1OE FH FJ t CE=⨯=-+()2225283143333f PF FH t t t t t =+=--++-+=--+()2228226433333f t t t =--+=-++5t m -<≤0m <53m -<<-2max 28433f m m =--+30m -≤<max 263f =。
重庆市初三中考数学第一次模拟试卷一、选择题(本大题共12小题,共36.0分)1.下列各组数中结果相同的是()A. 与B. 与C. 与D. 与2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. B. C. D.3.下列计算中,错误的是()A. B.C. D.4.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个5.某班班长统计去年1-8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A. 平均数是58B. 众数是42C. 中位数是58D. 每月阅读数量超过40的有4个月6.在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是()A. 正三角形B. 正四边形C. 正五边形D. 正六边形7.下列命题错误的是()A. 若一个多边形的内角和与外角和相等,则这个多边形是四边形B. 矩形一定有外接圆C. 对角线相等的菱形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形8.如图是某几何体的三视图,则该几何体的表面积为()A. B. C. D.9.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A. B. C. D.10.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A. 1B. 2C. 3D. 411.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A. B. C. D.12.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形=2S△BGE.ECFGA. 4B. 3C. 2D. 1二、填空题(本大题共4小题,共12.0分)13.分解因式:4ax2-ay2=______.14.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为______.15.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,cos A=,则k的值为______.16.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=______.三、计算题(本大题共2小题,共12.0分)17.先化简,再求值:(-)÷,其中a=.18.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,求线段BE的长.四、解答题(本大题共5小题,共40.0分)19.计算:+tan30°+|1-|-(-)-2.20.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E 组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.21.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?22.如图,△AOB中,A(-8,0),B(0,),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F,(1)⊙P的半径为______;(2)求证:EF为⊙P的切线;(3)若点H是上一动点,连接OH、FH,当点P在上运动时,试探究是否为定值?若为定值,求其值;若不是定值,请说明理由.23.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.答案和解析1.【答案】D【解析】解:A、32=9,23=8,故不相等;B、|-3|3=27(-3)3=-27,故不相等;C、(-3)2=9,-32=-9,故不相等;D、(-3)3=-27,-33=-27,故相等,故选:D.利用有理数乘方法则判定即可.本题主要考查了有理数乘方,解题的关键是注意符号.2.【答案】A【解析】解:14420000=1.442×107,故选:A.根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.【答案】D【解析】解:A、5a3-a3=4a3,正确,本选项不符合题意;B、(-a)2•a3=a5,正确,本选项不符合题意;C、(a-b)3•(b-a)2=(a-b)5,正确,本选项不符合题意;D、2m•3n≠6m+n,错误,本选项符合题意;故选:D.根据合并同类项法则,同底数幂的乘法法则等知识求解即可求得答案.本题考查的是合并同类项法则,同底数幂的乘法,需注意区别:同底数幂的乘法:底数不变,指数相加;幂的乘方:底数不变,指数相乘.4.【答案】C【解析】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选C.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.【答案】C【解析】解:A、每月阅读数量的平均数是=56.625,故A错误;B、出现次数最多的是58,众数是58,故B错误;C、由小到大顺序排列数据28,36,42,58,58,70,78,83,中位数是58,故C正确;D、由折线统计图看出每月阅读量超过40天的有6个月,故D错误;故选:C.根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.本题考查的是折线统计图、平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位,关键是根据折线统计图获得有关数据.6.【答案】D【解析】解:由题意这个正n边形的中心角=60°,∴n==6,∴这个多边形是正六边形,故选:D.求出正多边形的中心角即可解决问题.本题考查正多边形与圆,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;C、对角线相等的菱形是正方形,故此选项正确;D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;本题选择错误的命题,故选:D.A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;C、根据正方形的判定方法进行判断;D、一组对边平行且相等的四边形是平行四边形.本题主要考查的是多边形的内角和和外角和,四点共圆问题,正方形的判定,平行四边形的判定,掌握这些定理和性质是关键.8.【答案】A【解析】解:观察该几何体的三视图发现该几何体为正六棱柱;该六棱柱的棱长为2,正六边形的半径为2,所以表面积为2×2×6+×2××6×2=24+12,故选:A.首先确定该几何体的形状,然后根据各部分的尺寸得到该几何体的表面积即可.本题考查由三视图求表面积,考查由三视图还原直观图,注意求面积时,由于包含的部分比较多,不要漏掉,本题是一个基础题.9.【答案】B【解析】解:画树状图得:∵共有8种等可能的结果,经过3次传球后,球仍回到甲手中的有2种情况,∴经过3次传球后,球仍回到甲手中的概率是:=.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与经过三次传球后,球仍回到甲手中的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.【答案】D【解析】解:∵3※2=1,∴运算※就是找到第三列与第二行相结合的数,∴(2※4)=3,(1※3)=3,∴3※3=4.故选:D.根据题目提供的运算找到运算方法,即:3※2=1就是第三列与第二行所对应的数,按此规律计算出(2※4)※(1※3)的结果即可.本题考查了学生们的阅读理解能力,通过观察例子,从中找到规律,进而利用此规律进行进一步的运算.11.【答案】C【解析】解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.12.【答案】B【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x-k)2+4k2,∴x=,∴sin∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S=4S△BGE,故④错误.四边形ECFG故选:B.首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.13.【答案】a(2x+y)(2x-y)【解析】解:原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为:a(2x+y)(2x-y).首先提取公因式a,再利用平方差进行分解即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】+【解析】解:设AD与圆的切点为G,连接BG,∴BG⊥AD,∵∠A=60°,BG⊥AD,∴∠ABG=30°,在直角△ABG中,BG=AB=×2=,AG=1,∴圆B的半径为,∴S△ABG=×1×=在菱形ABCD中,∠A=60°,则∠ABC=120°,∴∠EBF=120°,∴S阴影=2(S△ABG-S扇形)+S扇形FBE=2×(-)+=+.故答案为:+.设AD与圆的切点为G,连接BG,通过解直角三角形求得圆的半径,然后根据扇形的面积公式求得三个扇形的面积,进而就可求得阴影的面积.此题主要考查了菱形的性质以及切线的性质以及扇形面积等知识,正确利用菱形的性质和切线的性质求出圆的半径是解题关键.15.【答案】-4【解析】解:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,cosA=,∴∠BOD+∠AOC=90°,tanA=,∴∠BOD=∠OAC,∴△OBD∽△AOC,∴=()2=(tanA)2=2,又∵S△AOC=×2=1,∴S△OBD=2,∴k=-4.故答案为:-4.作AC⊥x轴于点C,作BD⊥x轴于点D,易证△OBD∽△AOC,则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.本题考查了相似三角形的判定与性质,以及反比例函数的比例系数k的几何意义,正确作出辅助线求得两个三角形的面积的比是关键.16.【答案】2+或4+2【解析】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x2=2,解得:x=1(负数舍去),则AE=EC=2,EN==,故AN=2+,则AD=DC=4+2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,AE=y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故AE=,DE=2,则AD=2+,综上所述:CD的值为:2+或4+2.故答案为:2+或4+2.根据题意结合裁剪的方法得出符合题意的图形有两个,分别利用菱形的判定与性质以及勾股定理得出CD的长.此题主要考查了剪纸问题以及勾股定理和平行四边形的性质等知识,根据题意画出正确图形是解题关键.17.【答案】解:原式=[-]÷=•=,当a=时,原式===5-2.【解析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.18.【答案】解:根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是平行四边形,而EA=ED,∴四边形AEDF为菱形,∴AE=DE=DF=AF=4,∵DE∥AC,∴BE:AE=BD:CD,即BE:4=6:3,∴BE=8.【解析】根据作法得到MN是线段AD的垂直平分线,则AE=DE,AF=DF,所以∠EAD=∠EDA,加上∠BAD=∠CAD,得到∠EDA=∠CAD,则可判断DE∥AC,同理DF∥AE,于是可判断四边形AEDF是平行四边形,加上EA=ED,则可判断四边形AEDF为菱形,所以AE=DE=DF=AF=4,然后利用平行线分线段成比例可计算BE 的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与性质和平行线分线段成比例.19.【答案】解:原式=2+×+-1-4=2+1+-1-4=3-4.【解析】依据二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质进行化简,然后再进行计算即可.本题主要考查的是实数的运算,熟练掌握二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质是解题的关键.20.【答案】解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A组男人成绩不合格,∴合格人数为:50-5=45(人);(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,∴成绩的中位数落在C组;∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为:=.【解析】(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A组男人成绩不合格,可得:合格人数为:50-5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由D组有15人,占15÷50=30%,即可求得:对应的圆心角为:360°×30%=108°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意,得,解得:.答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元.(2)设建m(m为整数)个地上停车位,则建(50-m)个地下停车位,根据题意,得:12<0.1m+0.5(50-m)≤13,解得:30≤m<32.5.∵m为整数,∴m=30,31,32,共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.【解析】(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意列出方程就可以求出结论;(2)设建m个地上停车位,则建(50-m)个地下停车位,根据题意建立不等式组就可以求出结论本题考查了二元一次方程组的运用及解法,一元一次不等式及不等式组的运用及解法.在解答中要注意实际问题中未知数的取值范围的运用.22.【答案】5【解析】解:(1)连接PC,∵AC平分∠OAB,∴∠BAC=∠OAC,∵PA=PC,∴∠PCA=∠PAC,∴∠BAC=∠ACP,∴PC∥AB,∴△OPC∽△OAB,∴,∵A(-8,0),B(0,),∴OA=8,OB=,∴AB=,∴=,∴PC=5,∴⊙P的半径为5;故答案为:5;(2)证明:连接CP,∵AP=CP,∴∠PAC=∠PCA,∵AC平分∠OAB,∴∠PAC=∠EAC,∴∠PCA=∠EAC,∴PC∥AE,∵CE⊥AB,∴CP⊥EF,即EF是⊙P的切线;(3)是定值,=,连接PH,由(1)得AP=PC=PH=5,∵A(-8,0),∴OA=8,∴OP=OA-AP=3,在Rt△POC中,OC===4,由射影定理可得OC2=OP•OF,∴OF=,∴PF=PO+OF=,∵=,==,∴,又∵∠HPO=∠FPH,∴△POH∽△PHF,∴,当H与D重合时,.(1)连接PC,根据角平分线的定义得到∠BAC=∠OAC,根据等腰三角形的性质得到∠PCA=∠PAC,等量代换得到∠BAC=∠ACP,推出PC∥AB,根据相似三角形的性质即可得到结论;(2)连接CP,根据等腰三角形的性质得到∠PAC=∠PCA,由角平分线的定义得到∠PAC=∠EAC,等量代换得到∠PCA=∠EAC,推出PC∥AE,于是得到结论;(3)连接PH,由(1)得AP=PC=PH=5,根据勾股定理得到OC== =4,根据射影定理得到OF=,根据相似三角形的判定和性质即可得到结论.本题考查了角平分线的定义,平行线的判定和性质,切线的判定,相似三角形的判定和性质,射影定理,正确的作出辅助线是解题的关键.23.【答案】解:(1)由题意可得,解得a=1,b=-5,c=5;∴二次函数的解析式为:y=x2-5x+5,(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,设对称轴交x轴于Q.则,∵MQ=,∴NQ=2,B(,);∴ ,解得,∴,D(0,),同理可求,,∵S△BCD=S△BCG,∴①DG∥BC(G在BC下方),,∴=x2-5x+5,解得,,x2=3,∵x>,∴x=3,∴G(3,-1).②G在BC上方时,直线G2G3与DG1关于BC对称,∴=,∴=x2-5x+5,解得,,∵x>,∴x=,∴G(,),综上所述点G的坐标为G(3,-1),G(,).(3)由题意可知:k+m=1,∴m=1-k,∴y l=kx+1-k,∴kx+1-k=x2-5x+5,解得,x1=1,x2=k+4,∴B(k+4,k2+3k+1),设AB中点为O′,∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点,∴O′P⊥x轴,∴P为MN的中点,∴P(,0),∵△AMP∽△PNB,∴,∴AM•BN=PN•PM,∴1×(k2+3k+1)=(k+4-)(),∵k>0,∴k==-1+.【解析】(1)根据已知列出方程组求解即可;(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别分析出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.此题主要考查二次函数的综合问题,会中学数学一模模拟试卷一、 选择题( 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上) 1. 63a a ÷结果是 ( )A .3aB .2aC . 9aD .3a -2.在函数y =x 的取值范围 ( ) A .1x ≤ B .1x ≥ C .1x < D . 1x >3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( )A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( ) A . 40° B . 50° C . 130° D . 140°5、若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形6. 若1=x 是方程052=+-c x x 的一个根,则这个方程的另一个根是 ( )A .-2B .2C .4D .-57. 已知一个圆锥的侧面积是10πcm 2,它的侧面展开图是一个圆心角为144°的扇形,则这个圆锥的底面半径为 ( )A . 45cm BC . 2 cm D.8. 如图,在楼顶点A 处观察旗杆CD 测得旗杆顶部C 的仰角为30°,旗杆底部D 的俯角为45°.已知楼高9AB = m ,则旗杆CD 的高度为( )A. (9+mB. (9+mC.D.C(第4题)1ABDEADEF第10题9. 如图,在矩形ABCD 中,AB =3,BC =5,以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )10. 如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm /s 的速度沿A →C →B运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上)11.在实数范围内分解因式:1642-m = .12. 已知a -2b =-5,则8-3a +6b 的值为 . 13. 一组数据2、3、4、5、6的方差等于 .14.抛物线241y x x =-+的顶点坐标为 第15题 15.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度. 16. 如图,在△ABC 中,AC >AB ,点D 在BC 上,且BD =BA ,∠ABC 的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和 △BDE 的面积都为3,则△ABC 的面积为 .17. 如图,在边长为10 的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是第16题 第17题 第18题18. 如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点,点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是 .三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算:101()2cos60(2)2π--︒+-20.(本题满分5分)解不等式组:1123(2)4x x x ⎧-<⎪⎨⎪--≤⎩21.(本题满分6分) 先化简,再求值:121a a a a a --⎛⎫÷- ⎪⎝⎭,其中a.22.(本题满分6分) 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:AB =AC ;(2)若AD =,∠DAC =30°,求△ABC 的周长.23.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?ABDCF E24.(本题满分8分)在地铁入口处检票进闸时,3个进闸通道A、B、C中,可随机选择其中的一个通过.(1)如果你经过此进闸口时,选择A通道通过的概率是;(2)求两个人经过此进闸口时,选择不同通道通过的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程.)25. (本题满分8分) 如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运中学数学一模模拟试卷一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠55.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;。
中考数学一模考试试卷(附解析)刚升初三的学生在期待与欢乐之余内心会有一丝繁重,因为摆在眼前的有两个问题,一是如何样对自己的初三学习有个科学的规划,二是在找到行之有效的学习方法提高学习效率,下文为2021中考数学一模考试试题的内容。
一、选择题(本题有10小题,每小题3分,共30分,请选出各题中一个符合题的正确选项)1. 下列各组数中,互为相反数是( ▲)A.3和B.3和-3C.3和-D.-3和-2. 如图,直线AB∥CD,A=70,C=40,则E等于( )A.30B. 40C. 60D. 703. 某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:C),这组数据的中位数和众数分别是( )A. 22C,26B. 22C,20C. 21C,26D. 21C,20C4.不等式组的解集是( )A. B. C. D.5.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(右图),则它的主视图是( )A.图①B.图②C.图③D.图④6. 若反比例函数的图象通过点,则那个函数的图象一定通过点( )A. B. C. D.7. 一个圆形人工湖如图所示,弦AB是湖上的一座桥.已知桥AB长10 0m,测得ACB=45.则那个人工湖的直径AD为( )A. B.C. D.8.一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2. 5米,底面半径为2米,则做这把遮阳伞需用布料的面积是( )平方米(接缝不计)A. B. C. D.9. 如图是有关x的代数式的方阵,若第10行第2项的值为1034,则现在x的值为( )A. 10B. 1C. 5D. 210. 已知△ABC中,D,E分别是AC,AB边上的中点,BDCE与点F,CE=2,BD=4,则△ABC的面积为( )A. B.8 C.4 D.6卷Ⅱ二、填空题(本题有6小题,每题4分,共24分)11.函数中自变量x的取值范畴是.12.分解因式:.13.如图,在ABC中,M、N分别是AB、AC的中点,且A +B=136,则ANM=14.除颜色外完全相同的五个球上分别标有1,2,3,4,5五个数字,装入一个不透亮的口袋内搅匀.从口袋内任摸一球记下数字后放回.搅匀后再从中任摸一球,则摸到的两个球上数字和为5的概率是15.(2021扬州)如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处.若,则tanDCF的值是_________.16.(原创题)已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若EAB=ABO,则点E的坐标为。
2023年初三模拟考试数学满分为120分,考试时间90分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数为( )A. 13−B. 1C.D. π 【答案】A【解析】【分析】先根据负指数幂进行计算,再根据实数的大小比较法则比较数的大小,即可得到答案. 【详解】解:1133−= , 11π3∴<<<, 故选:A .【点睛】本题考查了实数的大小比较,负指数幂,熟练掌握:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2. 如图,a b ∥,130∠=°,则2∠的度数是( )A. 150°B. 145°C. 35°D. 30°【答案】D【解析】 【分析】根据两直线平行,内错角相等可直接得到答案.【详解】∵,130a b ∠=° ,∴2130∠=∠=°,故选:D .【点睛】本题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.3. 当前随着新一轮科技革命和产业变革孕育兴起,新能源汽车产业正进入加速发展的新阶段.下列图案是我国的一些国产新能源车企的车标,车标图案既是轴对称图形,又是中心对称图形的是( )A.B. C. D.【答案】C【解析】 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、该图形不是轴对称图形,也不是中心对称图形,不符合题意;B 、该图形是轴对称图形,不是中心对称图形,不符合题意;C 、该图形既是中心对称图形又是轴对称图形,符合题意;D 、该图形不是轴对称图形,是中心对称图形,不符合题意.故选:C .【点睛】本题考查了轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的概念是解题关键. 4. 下列各式中,正确的是( )A. B. 5=C. 6=D. = 【答案】D【解析】【详解】解:AB ,故本选项错误,不符合题意;CD故选:D .【点睛】本题主要考查了二次根式的加法、乘法、除法等知识点,熟练掌握二次根式的相关运算法则是解题的关键.5. 在平面直角坐标系中,将点(1,1)−向右平移2个单位后,得到点的坐标是( )A. (3,1)−B. (1,1)C. (1,3)−D. (1,1)−− 【答案】B【解析】【分析】把点()1,1−的横坐标加2,纵坐标不变,据此即可解答.【详解】解:点()1,1−向右平移2个单位长度后得到的点的坐标为()1,1.故选:B .【点睛】本题主要考查了坐标与图形变化﹣平移.掌握平移的规律“左右横,上下纵,正加负减”是解答本题的关键.6. 如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是( )A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 三角形两边之和大于第三边【答案】B【解析】【分析】由直线公理可直接得出答案. 法用几何知识解释应是:两点确定一条直线.故选:B .【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.7. 如图是一个可以自由转动的转盘.转动转盘,当指针停止转动时,指针落在红色区域的概率是( )A. 1B. 23C. 12D. 13【答案】D【解析】【分析】用红色区域的圆心角除以周角度数即可. 【详解】解:转动转盘,当指针停止转动时,指针落在红色区域的概率是12013603°=°, 故选:D .【点睛】本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.8. 如图,以点O 为位似中心,作四边形ABCD 的位似图形A B C D ′′′′,已知13OA OA =',若四边形ABCD 的面积是2,则四边形A B C D ′′′′的面积是( )A. 3B. 6C. 9D. 18【答案】D【解析】 【分析】直接利用位似图形的性质得出面积比进而得出答案.【详解】解: 以点O 为位似中心,作四边形ABCD 的位似图形A B C D ′′′′,13OA OA =', 21139ABCDA B C D S S ′′′′ ∴== 四边形四边形, 四边形ABCD 的面积是2,∴四边形A B C D ′′′′的面积是18,故选:D .【点睛】本题主要考查了位似变换,正确得出面积比是解决此题的关键.9. 如图,在ABC 中,AB AC BC >>,按如下步骤作图.第一步:作BAC ∠的平分线AD 交BC 于点D ;第二步:作AD 的垂直平分线EF ,交AC 于点E ,交AB 于点F ;第三步:连接DE .则下列结论正确的是( )A. DE AB ∥B. EF 平分ACC. CD DE =D. CD BD =【答案】A【解析】 【分析】如图,由角平分线和垂直平分线的性质可得1223∠=∠∠=∠、,进而得到13∠=∠,最后运用平行线的判定定理即可说明B 选项正确.【详解】解:如图:∵AD 是BAC ∠的角平分,EF AD 的中垂线,∴12∠=∠,AE DE =,∴23∠∠=,∴13∠=∠,∴DE AB ∥.故选:A .【点睛】本题主要考查了角平分线的定义、垂直平分线的性质以及平行线的判定,灵活运用相关知识成为解答本题的关键.10. 某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流()A I 与电阻()R Ω的关系图象,该图象经过点()8800.25P ,.根据图象可知,下列说法正确的是( )A. 当0.25I <时,880R <B. I 与R 的函数关系式是()2000I R R >C. 当1000R >时,0.22I >D. 当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【解析】【分析】设I 与R 的函数关系式是()0U I R R >,利用待定系数法求出()2200I R R>,然后求出当1000R =时, 2200.221000I =,再由2200>,得到I 随R 增大而减小,由此对各选项逐一判断即可. 【详解】解:设I 与R 的函数关系式是()0U IR R >, ∵该图象经过点()8800.25P ,, ∴()0.250880U R =>, ∴220U =,∴I 与R 的函数关系式是()2200IR R >,故B 不符合题意; 当1000R =时, 2200.221000I=, ∵2200>,∴I 随R 增大而减小,∴当0.25I <时,880R >,当1000R >时,0.22I <,当8801000R <<时,I 的取值范围是0.220.25I <<,故A 、C 不符合题意,D 符合题意;故选D .【点睛】本题主要考查了反比例函数的实际应用,正确求出反比例函数解析式是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11. 若实数a ,b 满足2(2)|3|0a b −++=,则ab =_________.【答案】6−【分析】根据非负数的性质列出算式求出a ,b 的值,代入计算即可得到答案.【详解】解: 2(2)|3|0a b −++=,2(2)|3|00a b ≥−+≥,, 2030a b ∴−=+=,,23a b ∴==−,,()236ab ∴=×−=−,故答案为:6−.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键. 12. 如果一个三角形两边的长分别等于一元二次方程217660x x −+=的两个实数根,那么这个三角形的第三边的长可能是20吗?__________.(填“可能”或“不可能”)【答案】不可能【解析】【分析】先求出方程的解,再根据三角形三边关系定理判断即可得到答案.【详解】解: 217660x x −+=,()()1160x x ∴−−=, 11x ∴=或6x =,即三边为6、11、20,61120+< ,不符合三角形三边关系定理,∴这个三角形的第三边的长不可能是20,故答案为:不可能.【点睛】本题考查了解一元二次方程,三角形三边关系定理的应用,能求出一元二次方程的解是解此题的关键.13. 化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为110 时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、壬、癸——表示,其中甲烷、乙烷、丙烷,丁烷的分子结构式如图所示,则第7个庚烷分子结构式中“H ”的个数是_________.【答案】16【分析】根据题目中的图形,可以发现“H ”的个数的变化特点,然后即可写出第7个庚烷分子结构式中“H ”的个数.详解】解:由图可得:甲烷分子结构中“H ”的个数是:2214+×=,乙烷分子结构中“H ”的个数是:2226+×=,丙烷分子结构中“H ”的个数是:2238+×=,……∴庚烷分子结构中“H ”的个数是:22716+×=,故答案为:16.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现“H ”的个数的变化特点. 14. 如图,在四边形ABCD 中,E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点,依次连接E 、G 、F 、H 得到四边形是__________.【答案】平行四边形【解析】【分析】根据中位线性质和平行四边形的判定条件,即可解答;【详解】解: E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点,,GF DC EH DC ∴∥∥,且11,22GF CD EH CD ==, GF EH ∴∥且GF EH =,∴四边形GFHE 为平行四边形,故答案为:平行四边形.【点睛】本题考查了中位线的性质,平行四边形的判定,能判断出GF 是BCD △的中位线,EH 是ACD 的中位线是解题的关键.15. 如图,AD 是一根3cm 的绳子,一端拴在柱子(点A )上,另一端(点D )拴着一只羊,EABC 为一道围墙,3AE >cm ,2AB =cm ,120ABC ∠=°,则羊最大的活动区域的面积是__________.(结果保【的留π)【答案】229cm 12π 【解析】【分析】羊最大的活动区域的面积是一个扇形+一个小扇形的面积.详解】解:如图所示:大扇形的圆心角是90度,半径是3, ∴面积229039cm 3604ππ°×°==, 小扇形圆心角是18012600°−°=°,半径是1, ∴面积226011cm 3606ππ°×°==,则羊最大的活动区域的面积是()2929cm 412ππ=, 故答案为:229cm 12π. 【点睛】本题关键是从图中找出小羊的活动区域是由哪几个图形组成的.三、解答题(一)(本大题共3小题,每小题8分,共24分)16. 求不等式组()3135131x x x x + >− −≥−的解集,并把不等式组的解集在数轴上表示出来.【答案】不等式组的解集为13x −≤<,图见解析【解析】【分析】先分别求出每一个不等式的解集,再根据不等式组解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无处找,即可得到解集,在数轴上画出解集即可.【【详解】解:()3135131x x x x + >− −≥−①②,解不等式①可得:()331x x +>−,333x x +>−,333x x −>−−,26x −>−,3x <,解不等式②可得:5133x x −≥−,5313x x −≥−,22x ≥−,1x ≥−,∴不等式组的解集为13x −≤<,在数轴上表示为:.大中间找,大大小小无处找,是解题的关键.17. 在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,调查统计了部分学生一周的课外阅读时长(单位:小时),整理数据后绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为__________,图①中m 的值为__________;(2)求统计的这部分学生一周课外阅读时长的平均数、众数和中位数.【答案】(1)20;30(2)统计的这部分学生一周课外阅读时长的平均数、众数和中位数分别为8,9,8【解析】【分析】(1)用条形统计图中的数据除以扇形统计图中对应的占比,即可得到总人数;再用学生一周的课外阅读时长为9小时的人数除以总人数,即可得到m的值;(2)按照平均数,众数和中位数的概念,依次求出即可.【小问1详解】解:本次接受调查的人数为315%20÷=(人);根据条形统计图,学生一周的课外阅读时长为9小时的人数为6人,故学生一周的课外阅读时长为9小时的人数占比为6200.330÷==%,30m∴=,故答案为:20;30【小问2详解】解:36748596210820x×+×+×+×+×=,观察条形统计图,9出出现的次数最多,故众数为9;将这组数据从小到大排列,其中位于中间的两个数都是8,故中位数为8,∴统计的这部分学生一周课外阅读时长的平均数、众数和中位数分别为8,9,8.键.18. 按下列程序计算,把答案填写在表格内,并回答下列问题:(1)根据上述计算你发现了什么规律?(2)你能说明你发现的规律是正确的吗?【答案】(1)输入除0以外的数,输出结果都为1;(2)见解析【解析】【分析】(1)输入-2时,输出结果为1,输入13−时,输出结果为1,即可得;(2)结合题意可将程序表示:221()(0)x x x x x+÷−≠,进行计算即可得. 【详解】解:(1)输入-2时,输出结果为1,输入13−时,输出结果为1,故可得规律:输入除0以外的数,输出结果都为1; (2)结合题意可将程序表示为:221()(0)x x x x x+÷−≠, 222221111()11x x x x x x x x x x x+÷−=+−=+−=,所以发现的规律是正确的.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序和运算法则.四、解答题(二)(本大题共3小题,每小题9分,共27分)19. 佛山奇龙大桥犹如一架巨大的竖琴,横跨于东平水道上,是禅城区的“东大门”,大桥采用独塔斜拉桥结构,全长395米,已知主塔AB 垂直于桥面BC 于点B ,其中两条斜拉索AD 、AC 与桥面BC 的夹角分别为60°和45°,两固定点D 、C 之间的距离约为60m ,求主塔AB 的高度.(结果保留整数,参考数1.41≈1.73≈)【答案】141m 【解析】【分析】在Rt △ABD中,利用正切的定义求出=AB ,然后根据45C ∠=°得出AB BC =,列方程求出BD 即可解答. 【详解】解:∵AB BC ⊥,∴90ABC ∠=°, 在Rt △ABD中,tan 60AB BD =⋅°=,在Rt ABC △中,45C ∠=°,为∴AB BC=,∴AB BD CD=+,60BD=+,∴)301 BD=m,∴)16090141.3141 AB BC==30++=+=≈m.答:主塔AB的高度约为141m.【点睛】本题主要考查了解直角三角形的应用,熟练掌握正切的定义是解题的关键.20. 某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)(1)分别求出y1、y2的函数关系式(不写自变量取值范围);(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?【答案】(1)y1=273x−+;y2=13x2﹣4x+13;(2)5月出售每千克收益最大,最大为73.【解析】【分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,3563k bk b+=+=,解得237kb=−=.∴y1=﹣23x+7.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=13.∴y2=13(x﹣6)2+1,即y2=13x2﹣4x+13.(2)收益W =y 1﹣y 2, =﹣23x+7﹣(13x 2﹣4x+13) =﹣13(x ﹣5)2+73, ∵a =﹣13<0,∴当x =5时,W 最大值=73. 故5月出售每千克收益最大,最大为73元. 【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法21. 如图,在△ABC 中,以边AB 为直径作⊙O ,交AC 于点D ,点E 为边BC 上一点,连接DE .给出下列信息:①AB =BC ;②∠DEC =90°;③DE 是⊙O 的切线.(1)请在上述3条信息中选择其中两条作为条件,剩下的一条作为结论,组成一个命题.你选择的两个条件是______,结论是______(只要填写序号).判断此命题是否正确,并说明理由; (2)在(1)的条件下,若CD =5,CE =4,求⊙O 的直径.【答案】(1)①和②,③,真命题,证明见解析;(答案不唯一) (2)254【解析】【分析】(1)选择①和②为条件,③为结论,连接OD ,由等边对等角可得出∠A =∠C ,∠A =∠ODA ,即可推出∠C =∠ODA ,从而可证明//OD BC ,再根据平行线的性质和∠DEC =90°,可证明∠ODE =∠DEC =90°,即OD DE ⊥,说明DE 是⊙O 的切线;(2)连接BD ,由直径所对圆周角为直角得出DB AC ⊥.再结合等腰三角形三线合一的性质可得出AD =CD =5.又易证 ABD CDE ,即得出AB ADCD CE=,代入数据即可求出AB 的长. 【小问1详解】解:选择①和②为条件,③为结论,且该命题为真命题. 证明:如图,连接OD , ∵AB =BC , ∴∠A =∠C . ∵OA =OD , ∴∠A =∠ODA , ∴∠C =∠ODA , ∴//OD BC . ∵∠DEC =90°,∴∠ODE =∠DEC =90°,即OD DE ⊥, ∴DE 是⊙O 的切线.故答案为:①和②,③;(答案不唯一) 【小问2详解】 解:如图,连接BD , ∵AB 为直径,∴90ADB ∠=°,即DB AC ⊥. ∵AB =BC , ∴AD =CD =5.在ABD △和CDE 中90ADB DEC A C ∠=∠=° ∠=∠,∴ ABD CDE , ∴AB AD CD CE=,即554AB =, ∴254AB =. 故圆O 的直径为254.【点睛】本题考查等腰三角形的性质,平行线的判定和性质,切线的判定和性质,圆周角定理以及三角形相似的判定和性质.解题的关键是连接常用的辅助线.五、解答题(三)(本大题共2小题,每小题12分,共24分)22. 在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”,例如(3,3)−−、(1,1)、(2023,2023)都是“不动点”,已知双曲线9y x=. (1)求双曲线9y x=上的“不动点”; (2)若抛物线23y ax x c =−+(a 、c 为常数)上有且只有一个“不动点”. ①当1a >时,求c 的取值范围; ②如果1a =,过双曲线9y x=图象上第一象限的“不动点”作平行于x 轴的直线l ,若抛物线上有四个点到l 的距离为m ,直接写出m 的取值范围.【答案】(1)双曲线9y x=上的“不动点”为()3,3和()3,3−−; (2)①04c <<;②504m <<【解析】【分析】(1)根据定义设“不动点”为(),x x ,即可求解;(2)①设抛物线23y ax x c =−+(a 、c 为常数)上的“不动点”为(),x x ,根据抛物线上有且只有一个“不动点”,列不等式求解;②根据题意先求出抛物线解析式和直线l ,设直线r 在直线l 下方且到直线l 的距离为m ,直线32x =交直线l 于点A ,交直线r 于点C ,可得AB 即可求出答案. 【小问1详解】 解:设双曲线9y x=上的“不动点”为(),x x ,则9x x=,解得:13x =,23x =-, ∴双曲线9y x=上的“不动点”为()3,3和()3,3−−; 【小问2详解】解:①设抛物线23y ax x c =−+(a 、c 为常数)上的“不动点”为(),x x , 则23x ax x c =−+,∵抛物线上有且只有一个“不动点”,∴关于x 的一元二次方程240ax x c −+=有两个相等的实数根, ∴()224440b ac ac −−−==, 解得:4a c=, ∵1a >, ∴4>1c, ∴04c <<; ②当1a =时,则41c=, 解得:4c =,∴抛物线为234y x x =−+, 由(1)得:双曲线9y x=在第一象限上的“不动点”为()3,3, ∴直线l 即直线3y =,∵223734+24y x x x =−+=−, ∴抛物线顶点坐标为37,24,对称轴为直线32x =,设直线r 在直线l 下方且到直线l 的距离为m ,直线32x =交直线l 于点A ,交直线r 于点C , ∴AC m =,3,32A, ∴75344AB =−=, 设直线t 与直线r 关于直线l 对称,∵当点C 在点B 上方时,抛物线上四个点到l 的距离为m , ∴504m <<; 【点睛】本题考查反比例函数图像与性质、二次函数的图像与性质、新定义问题的求解等,综合性强、难度大.23. 如图1,在矩形ABCD 中,5AB =,3AD =,点P 在线段AB 上运动,设AP x =,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E 为折痕与AD 或AB 的交点,点F 为折痕与BC 或CD 的交点),再将纸片还原.(1)①当0x =时,折痕EF 的长为__________; ②当x =__________时,点E 与点A 重合.(2)当点P 与点B 重合时,在图2中画出四边形DEPF ,求证:四边形DEPF 为菱形,并求出菱形DEPF 的周长;(3)如图3,若点E 在边AD 上,点F 在边CD 上,线段DP 与EF 相交于点M ;连接EP ,FP ,用含x 的代数式表示四边形DEPF 的面积. 【答案】(1)①5;②3 (2)证明见解析,周长为685(3)33271224x x x++【解析】【分析】(1)①当0x =时,折痕EF 的长正好等于矩形的长为5;②当点E 与点A 重合时,画出符合要求的图形,根据折叠的性质即可得到答案;(2)由由折叠的性质可得:DE PE DF PF DEF PEF ==∠=∠,,,由矩形的性质可得AB CD ,从而得到PEF DFE ∠=∠,则DFE DEF ∠=∠,从而得到DE PD DF PF ===,即可得证,设DF x =,则DF PF x ==,5CF x =−,在Rt CFP △中,222CF PC PF +=,解方程即可得到答案; (3)作FGAB ⊥,交AB 于G ,在Rt AEP △中,222AE AP EP +=,由勾股定理可得,296xAE −=,则296x DE PE +==,通过证明AEP GPF ∽,可得AP EP FG PF =,即2963x x PF+=,可得29+2x PF x=,最后由APE DEPFAPFD S S S =− 四边形梯形即可得到答案. 【小问1详解】解:① 折叠纸片,使点D 与点P 重合,得折痕EF ,∴当0AP x ==时,点D 与点P 重合,即为A D 、重合,B C 、重合,5EF AB CD ∴===,故答案为:5;②当点E 与点A 重合时,如图所示:由折叠的性质可得:3AD AP ==,∴当3x =时,点E 与点A 重合,故答案为:3; 【小问2详解】,由折叠性质可得:DE PE DF PF DEF PEF ==∠=∠,,, 四边形ABCD 为矩形,AB CD ∴∥,PEF DFE ∴∠=∠,DFE DEF ∴∠=∠,DE PD DF PF ∴===,∴四边形DEPF 为菱形,设DF x =,则DF PF x ==,5CF x =−,的在Rt CFP △中,222CF PC PF +=,()22253x x ∴−+=, 解得:751x =, ∴菱形DEPF 的周长为1768455×=; 【小问3详解】 解:如图所示,作FGAB ⊥,交AB 于G ,,则四边形ADFG 为矩形,3FG AD ∴==,由折叠的性质可得:90DE PE DF PF EPF EDF ==∠=∠=°,,, 设AE a =,则3DE PE a ==−, 在Rt AEP △中,222AE AP EP +=, 即()2223a x a +=−,解得:296x a −=,296x AE −∴=,296x DE PE +==, 9090EPA FPG EPA AEP ∠+∠=°∠+∠=° ,, AEP FPG ∴∠=∠,90EAP FGP ∠=∠=° , AEP GPF ∴ ∽,AP EP FG PF∴=,即2963x x PF+=,29+2x PF x∴=,第21页/共22页22319+19327322261224APE DEPF APFD x x x x S S S x x x x−=−=+×−⋅=++ 四边形梯形. 【点睛】本题主要考查了折叠的性质、矩形的性质、菱形的判定与性质、相似三角形的判定与性质、勾股定理,熟练在掌握折叠的性质、矩形的性质、菱形的判定与性质、相似三角形的判定与性质,添加适当的辅助线,是解题的关键.第22页/共22页。
中考数学模试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)4的倒数的相反数是()A.﹣4 B.4 C.D.2.(3分)提出了未来5年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×106B.1.17×107C.1.17×108D.11.7×1063.(3分)在一次数学测试中,某学校小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95,关于这组数据,下列说法错误的是()A.众数是82 B.中位数是82 C.方差8.4 D.平均数是814.(3分)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()A.B.C.D.5.(3分)下列运算正确的是()A.a6+a3=a9 B.a2•a3=a6 C.(2a)3=8a3D.(a﹣b)2=a2﹣b26.(3分)如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B.C.D.7.(3分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=45°,∠1=65°,则∠2的度数为()A.45°B.65°C.70°D.110°8.(3分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF 的周长是()cm.A.7 B.11 C.13 D.169.(3分)不等式组的解集为x<2,则k的取值范围为()A.k>1 B.k<1 C.k≥1 D.k≤110.(3分)如图,分别延长圆内接四边形ABDE的两组对边,延长线相交于点F、C,若∠F=27°,∠A=53°,则∠C的度数为()A.30°B.43°C.47°D.53°11.(3分)二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)12.(3分)已知点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是()A.B.C.D.13.(3分)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG,DE和FG相交于点O.设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个14.(3分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)分解因式:a2b+2ab2+b3=.16.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为.17.(3分)如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC 绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为.18.(3分)如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数y=的图象经过点E,则k的值是.19.(3分)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是.三、解答题(本大题共7小题,共计63分)20.(6分)+()﹣1﹣﹣|﹣2|21.(7分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?22.(7分)如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)23.(9分)如图,⊙O是△ABC的外接圆,AC为直径,=,BE⊥DC交DC 的延长线于点E.(1)求证:∠1=∠BCE;(2)求证:BE是⊙O的切线;(3)若EC=1,CD=3,求cos∠DBA.24.(10分)甲、乙两辆汽车沿同一路线赶赴出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修),请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)25.(11分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB 上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.26.(13分)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求△ABC的面积;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.【考点】17:倒数;14:相反数.【分析】先求出4的倒数,再根据相反数即可解答.【解答】解:4的倒数是,的相反数﹣,故选:C.【点评】本题考查了倒数和相反数,解决本题的关键是熟记相反数,倒数的定义.2.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:11700000用科学记数法表示为1.17×107,故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】根据方差、中位数、众数及平均数的定义,结合数据进行分析即可.【解答】解:将数据重新排列为65、76、82、82、86、95,A、数据的众数为82,此选项正确;B、数据的中位数为=82,此选项正确;C、数据的平均数为=81,所以方差为×[(65﹣81)2+(76﹣81)2+2×(82﹣81)2+(86﹣81)2+(95﹣81)2]=84,此选项错误;D、由C选项知此选项正确;故选:C.【点评】本题考查了众数、中位数、平均数、方差,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.4.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5.【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方与完全平方公式逐一计算可得.【解答】解:A、a6与a3不是同类项,不能合并,此选项错误;B、a2•a3=a5,此选项错误;C、(2a)3=8a3,此选项正确;D、(a﹣b)2=a2﹣2ab+b2,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法法则、积的乘方与完全平方公式.6.【考点】U1:简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,可得答案.【解答】解:圆柱从上边看是一个圆,从正面看是一个矩形,既可以堵住方形空洞,又可以堵住圆形空洞,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上边看得到的图形是俯视图.7.【考点】JA:平行线的性质.【分析】根据平行线的性质求出∠AEF,根据三角形内角和定理求出∠AFE,即可得出答案.【解答】解:如图,∵直线l1∥l2,∠1=65°,∴∠AEF=∠1=65°,∵∠A=45°,∴∠2=∠AFE=180°﹣∠A﹣∠AEF=70°,故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,对顶角相等的应用,解此题的关键是求出∠AEF的度数,注意:两直线平行,同位角相等.8.【考点】Q2:平移的性质;KH:等腰三角形的性质.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故选:C.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.9.【考点】CB:解一元一次不等式组.【分析】求出每个不等式的解集,根据已知得出关于k的不等式,求出不等式的解集即可.【解答】解:解不等式组,得.∵不等式组的解集为x<2,∴k+1≥2,解得k≥1.故选:C.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集和已知得出关于k的不等式,难度适中.10.【考点】M6:圆内接四边形的性质.【分析】先根据三角形外角性质∠CBD=∠A+∠F=80°,根据圆内接四边形的性质得到∠A+∠BDE=180°,求得∠BDE=180°﹣53°=127°,根据三角形的外角的性质即可得到结论.【解答】解:∵∠A=53°,∠F=27°,∴∠CBD=∠A+∠F=80°,∵∠A+∠BDE=180°,∴∠BDE=180°﹣53°=127°,∵∠BDE=∠C+∠CBD,∴∠C=127°﹣80°=47°.故选:C.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.也考查了三角形外角性质.11.【考点】H5:二次函数图象上点的坐标特征.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.12.【考点】E6:函数的图象.【分析】由点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,可得A 与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵A(﹣1,1),B(1,1),∴A与B关于y轴对称,故C,D错误;∵B(1,1),C(2,4),当x>0时,y随x的增大而增大,而B(1,1)在直线y=x上,C(2,4)不在直线y=x上,所以图象不会是直线,故A错误;故B正确.故选:B.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.13.【考点】S9:相似三角形的判定与性质;KB:全等三角形的判定;LE:正方形的性质.【分析】由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,CG=CE,∠BCD=∠ECG=90°,则可根据SAS证得①△BCG≌△DCE;然后延长BG交DE于点H,根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH⊥DE;由△DGO与△DCE相似即可判定③错误,证明△EFO∽△DGO,即可求得④正确;即可得出结论.【解答】解:①∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,CD∥EF,∴∠BCG=∠DCE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),故①正确;②延长BG交DE于点H,如图所示:∵△BCG≌△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE;∴BG⊥DE.故②正确;③∵四边形GCEF是正方形,∴GF∥CE,∴,是错误的.故③错误;④∵DC∥EF,∴△EFO∽△DGO,∴=()2=()2=,∴(a﹣b)2•S△EFO=b2•S△DGO.故④正确;正确的有3个,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定和性质及相似三角形的判定和性质,综合性较强,掌握三角形全等、相似的判定和性质是解题的关键.14.【考点】H4:二次函数图象与系数的关系.【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共5小题,每小题3分,共15分)15.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式,再利用公式法把原式进行因式分解即可.【解答】解:原式=b(a+b)2.故答案为:b(a+b)2.【点评】本题考查的是提公因式法与公式法的综合运用,熟记完全平方公式是解答此题的关键.16.【考点】X3:概率的意义.【分析】设红球有x个,根据摸出一个球是蓝球的概率是,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.【解答】解:∵在一个不透明的口袋里有红、黄、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有5个黄球,4个蓝球,随机摸出一个蓝球的概率是,设红球有x个,∴=,解得:x=3∴随机摸出一个红球的概率是:=.故答案为:.【点评】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.17.【考点】MO:扇形面积的计算;KO:含30度角的直角三角形;R2:旋转的性质.【分析】根据题意可以求得AC和AB的长,然后根据旋转的性质即可求得BC扫过的面积.【解答】解:∵在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,∴AB=4,AC=2,∴BC扫过的面积为:=π,故答案为:π.【点评】本题考查扇形面积的计算、含30度角的直角三角形、旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.【考点】G6:反比例函数图象上点的坐标特征;G4:反比例函数的性质;LE:正方形的性质.【分析】作EH⊥x轴于H,求出AB的长,根据△AOB∽△BCG,求出DG的长,再根据△AOB∽△EHA,求出AE的长,得到答案.【解答】解:作EH⊥x轴于H,∵OA=1,OB=2,由勾股定理得,AB=,∵AB∥CD,∴△AOB∽△BCG,∴CG=2BC=2,∴DG=3,AE=4,∵∠AOB=∠BAD=∠EHA=90°,∴△AOB∽△EHA,∴AH=2EH,又AE=4,∴EH=4,AH=8,∴点E的坐标为(9,4),则k=36,故答案为:36.【点评】本题考查的是正方形的性质和反比例函数图象上点的特征,运用相似三角形求出图中直角三角形两直角边是关系是解题的关键,解答时,要认真观察图形,找出两正方形边长之间的关系.19.【考点】18:有理数大小比较.【分析】分五种情况讨论x的范围:①﹣1<x<﹣0.5,②﹣0.5<x<0,③x=0,④0<x<0.5,⑤0.5<x<1即可得到答案.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.【点评】本题考查了学生对[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数)的理解,难度适中,解此题的关键是分类讨论思想的应用.三、解答题(本大题共7小题,共计63分)20.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及负指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=2+2﹣﹣(2﹣)=2+2﹣(2+)﹣2+=2+2﹣2﹣﹣2+=2﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.21.【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据统计图可以得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)根据统计图可以估计该校九年级男生“引体向上”项目成绩为C类的有多少名.【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如右图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.【点评】本题考查条形统计图、扇形统计图、用本估计总体,解题的关键是明确题意,利用数形结合的思想解答.22.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△ABD中,求出BD,在Rt△ACD中,求出CD,二者相加即为楼高BC【解答】解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将原三角形转化为两个直角三角形是解题的关键.23.【考点】ME:切线的判定与性质;M5:圆周角定理;T7:解直角三角形.【分析】(1)过点B作BF⊥AC于点F,易证△ABF≌△DBE(AAS),所以BF=BE,从而可证明∠1=∠BCE;(2)连接OB,易证∠BAC=∠EBC,由于OA=OB,所以∠BAC=∠OBA,所以∠EBC=∠OBA,从而可知∠EBC+∠CBO=∠OBA+∠CBO=90°,所以BE是⊙O的切线;(3)易证:△EBC≌△FBC(AAS),所以CF=CE=1,由(1)可知:AF=DE=1+3=4,所以AC=CF+AF=1+4=5,利用锐角三角函数的定义即可求出答案.【解答】解:(1)过点B作BF⊥AC于点F,在△ABF与△DBE中,∴△ABF≌△DBE(AAS)∴BF=BE,∵BE⊥DC,BF⊥AC,∴∠1=∠BCE(2)连接OB,∵AC是⊙O的直径,∴∠ABC=90°,即∠1+∠BAC=90°,∵∠BCE+∠EBC=90°,且∠1=∠BCE,∴∠BAC=∠EBC∵OA=OB,∴∠BAC=∠OBA,∴∠EBC=∠OBA,∴∠EBC+∠CBO=∠OBA+∠CBO=90°,∴BE是⊙O的切线(3)由(2)可知:∠EBC=∠CBF=∠BAC,在△EBC与△FBC中,∴△EBC≌△FBC(AAS)∴CF=CE=1由(1)可知:AF=DE=1+3=4,∴AC=CF+AF=1+4=5,∴cos∠DBA=cos∠DCA==【点评】本题考查圆的综合问题,涉及圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识.24.【考点】FH:一次函数的应用.【分析】(1)由图可看出,乙车所行路程y与时间x的成一次函数,使用待定系数法可求得一次函数关系式;(2)由图可得,交点F表示第二次相遇,F点横坐标为6,代入(1)中的函数即可求得距出发地的路程;(3)交点P表示第一次相遇,即甲车故障停车检修时相遇,点P的横坐标表示时间,纵坐标表示离出发地的距离,要求时间,则需要把点P的纵坐标先求出;从图中看出,点P的纵坐标与点B的纵坐标相等,而点B在线段BC上,BC对应的函数关系可通过待定系数法求解,点B的横坐标已知,则纵坐标可求.【解答】解:(1)设乙车所行使路程y与时间x的函数关系式为y=k1x+b1,把(2,0)和(10,480)代入,得,解得:,故y与x的函数关系式为y=60x﹣120;(2)由图可得,交点F表示第二次相遇,F点的横坐标为6,此时y=60×6=120=240,则F点坐标为(6,240),故两车在途中第二次相遇时它们距出发地的路程为240千米;(3)设线段BC对应的函数关系式为y=k2x+b2,把(6,240)、(8,480)代入,得,解得,故y与x的函数关系式为y=120x﹣480,则当x=4.5时,y=120×4.5﹣480=60.可得:点B的纵坐标为60,∵AB表示因故停车检修,∴交点P的纵坐标为60,把y=60代入y=60x﹣120中,有60=60x﹣120,解得x=3,则交点P的坐标为(3,60),∵交点P表示第一次相遇,∴乙车出发3﹣2=1小时,两车在途中第一次相遇.【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从坐标系中提取信息的能力,是道综合性较强的代数应用题,对学生能力要求比较高.25.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KQ:勾股定理;LI:直角梯形.【分析】(1)由四边形是ABCD正方形,易证得△CBE≌△CDF(SAS),即可得CE=CF;(2)首先延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,易证得∠ECF=∠BCD=90°,又由∠GCE=45°,可得∠GCF=∠GCE=45°,即可证得△ECG≌△FCG,继而可得GE=BE+GD;(3)首先过C作CG⊥AD,交AD延长线于G,易证得四边形ABCG为正方形,由(1)(2)可知,ED=BE+DG,即可求得DG的长,设AB=x,在Rt△AED中,由勾股定理DE2=AD2+AE2,可得方程,解方程即可求得AB的长,继而求得直角梯形ABCD的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…(7分)∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…(8分)∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…(9分)∴AB=12.=(AD+BC)•AB=×(6+12)×12=108.∴S梯形ABCD即梯形ABCD的面积为108.…(10分)【点评】此题考查了正方形的性质与判定、全等三角形的判定与性质、直角梯形的性质以及勾股定理等知识.此题综合性较强,难度较大,注意掌握辅助线的作法是解此题的关键,注意数形结合思想与方程思想的应用.26.【考点】HF:二次函数综合题.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x﹣1,求得BD=2﹣=于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)设直线AC的解析式为y=kx+b,与x轴交于D,把A(1,1),C(﹣1,﹣3)的坐标代入得,解得:,∴y=2x﹣1,当y=0,即2x﹣1=0,解得:x=,∴D(,0),∴BD=2﹣=∴△ABC 的面积=S △ABD +S △BCD =××1+××3=3;(3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x |,MN=|﹣x 2+2x |,由(2)知,AB=,BC=3,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有=或=, ①当=时, ∴=,即|x ||﹣x +2|=|x |,∵当x=0时M 、O 、N 不能构成三角形,∴x ≠0,∴|﹣x +2|=,∴﹣x +2=±,解得x=或x=,此时N 点坐标为(,0)或(,0); ②当或=,时, ∴=,即|x ||﹣x +2|=3|x |,∴|﹣x +2|=3,∴﹣x +2=±3,解得x=5或x=﹣1,此时N 点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.。
2022-2023学年度第二学期初三年级模拟考试(数学)一.选择题(共10小题,满分30分,每小题3分)1.cos 60︒的值等于()A.12B.2C.32D.12.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B. C. D.3.下列计算错误的是()A .2a a a ⋅= B.23a a a+= C.()235a a = D.314a a a -÷=4.在一个不透明的布袋中装有50摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A .15个B.20个C.30个D.35个5.如图,点A ,B ,C 是O 上的三个点,若76AOB ∠=︒,则C ∠的度数为()A.76°B.38°C.24°D.33°6.把二次函数221y x x =++先向右平移2个单位长度,再向上平移1个单位长度,新二次函数表达式变为()A.()232y x =++ B.()212y x =-+ C.()211y x =-+ D.()231y x =+-7.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件,能使菱形ABCD 成为正方形的是()A.AC BD =B.AC BD ⊥C.AD AB =D.AC 平分DAB∠8.如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是 AB 的中点,连接AC 、BC ,则图中阴影部分面积是()A.43π- B.23π-C.43πD.23π9.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和cy x=的图象为()A. B. C. D.10.如图,已知△ABC 中,AB=10,AC=8,BC =6,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为()A.3B.4C.4.8D.5二.填空题(共5小题,满分15分,每小题3分)11.抛物线y =2(x -3)2+1的顶点坐标为_______.12.在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,AC=6,BC=8,CD=_______.13.图①是伸缩折叠不锈钢晾衣架的实物图,图②是它的侧面示意图,AD 和CB 相交于点O ,点A 、B 之间的距离为1.2米,AB CD ∥,根据图②中的数据可得C 、D 之间的距离为__________米.14.如图,点A ,C 为函数()0ky x x=<图象上的两点,过A ,C 分别作AB x ⊥轴,CD x ⊥轴,垂足分别为B ,D ,连接OA ,AC ,OC ,线段OC 交AB 于点E ,且点E 恰好为OC 的中点.当AEC △的面积为34时,k 的值为______.15.如图,在矩形ABCD 中,点E 为BC 上一点,8EB =,4AB =,连接AE ,将ABE 沿AE 所在的直线翻折,得到AB E ' ,B E '交AD 于点F ,将AB E ' 沿B E '所在的直线翻折,得到A B E '' ,A E '交AD 于点G ,GEGA '的值为______.三.解答题(共7小题,满分55分)16.计算:tan 602sin 3012cos 45︒+︒+-︒.17.先化简,再求值:23224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,在﹣2,0,1,2四个数中选一个合适的代入求值.18.11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x 值为,参加调差的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有万人.19.某电商在抖音平台上对红富士苹果进行直播销售.已知苹果的成本价为6元/千克,如果按10元/千克销售,每天可卖出160千克.通过调查发现,每千克苹果售价增加1元,日销售量减少20千克.(1)为保证每天利润为700元,商家想尽快销售完库存,每千克售价应为多少元?(2)售价为多少元时,每天的销售利润最大,最大是多少?20.如图,在ABC 中,AC BC =BC 为直径作O ,交AC 于点F ,过C 点作CD AC ⊥交AB 延长线于点D ,E 为CD 上一点,且EB ED =.(1)求证:BE 为O 的切线;(2)若2,tan 2AF A ==,求BE 的长.21.在平面直角坐标系中,若两点的横坐标不相等,纵坐标互为相反数,则称这两点关于x 轴斜对称.其中一点叫做另一点关于x 轴的斜对称点.如:点()()4,2,1,2--关于x 轴斜对称.在平面直角坐标系xOy 中,点A 的坐标为()2,1.(1)下列各点中,与点A 关于x 轴斜对称的是______(只填序号);①()3,1-,②()2,1-,③()2,1-,④()1,1--.(2)若点A 关于x 轴的斜对称点B 恰好落在直线31y kx k =++上,AOB 的面积为3,求k 的值;(3)抛物线21y x bx =--上恰有两个点M 、N 与点A 关于x 轴斜对称,抛物线的顶点为D ,且DMN 为等腰直角三角形,则b 的值为______.22.如图,抛物线22y ax bx =++经过点()1,0A -,()4,0B ,交y 轴于点C ;(1)求抛物线的解析式(用一般式表示);(2)点D 为y D 使23ABC ABD S S =△△?若存在请直接给出点D 坐标;若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45︒,与抛物线交于另一点E ,求BE 的长.2022-2023学年度第二学期初三年级模拟考试(数学)一.选择题(共10小题,满分30分,每小题3分)1.cos 60︒的值等于()A.12B.2C.32D.1【答案】A 【解析】【分析】根据特殊角的三角函数的特殊值,即可求解本题.【详解】cos60︒=12.故选A.【点睛】主要考查特殊角的三角函数值的记忆则准确性,很基础.2.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A. B. C. D.【答案】A 【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A .【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.3.下列计算错误的是()A.2a a a ⋅=B.23a a a+= C.()235a a = D.314a a a -÷=【答案】C 【解析】【分析】根据同底数幂的乘法、合并同类项、幂的乘方、负整数指数幂逐项判断即可得.【详解】解:A 、2a a a ⋅=,则此项正确,不符合题意;B 、23a a a +=,则此项正确,不符合题意;C 、()236aa =,则此项错误,符合题意;D 、313341a a a a a aa -==⋅=÷÷,则此项正确,不符合题意;故选:C .【点睛】本题考查了同底数幂的乘法、合并同类项、幂的乘方、负整数指数幂,熟练掌握各运算法则是解题关键.4.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个【答案】D 【解析】【分析】利用频率估计概率得到摸到黄球的概率为0.3,根据概率公式计算即可.求出黄球的个数,即可求解.【详解】解:∵摸到黄球的频率稳定在0.3左右∴黄球的个数为500.315⨯=∴布袋中白球可能有501535-=故选:D【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.如图,点A ,B ,C 是O 上的三个点,若76AOB ∠=︒,则C ∠的度数为()A.76°B.38°C.24°D.33°【答案】B 【解析】【分析】根据同弧所对的圆周角等于圆心角的一半,即可求得.【详解】解:∵点A ,B ,C 是O 上的三个点,76AOB ∠=︒,∴11763822︒∠=∠=⨯︒=C AOB ,故选:B .【点睛】本题考查圆周角定理的运用,解题的关键是根据同弧所对的圆周角等于圆心角的一半解答.6.把二次函数221y x x =++先向右平移2个单位长度,再向上平移1个单位长度,新二次函数表达式变为()A.()232y x =++ B.()212y x =-+ C.()211y x =-+ D.()231y x =+-【答案】C 【解析】【分析】将原二次函数整理为用顶点式表示的形式,根据二次函数的平移可得新抛物线的表达式.【详解】解:()22211y x x x =++=+,先向右平移2个单位长度得到的函数表达式为:()212y x =+-,即()21y x =-,再向上平移1个单位长度后,所得图象的函数表达式为()211y x =-+,故选:C .【点睛】本题考查了二次函数图象与几何变换.讨论二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.7.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件,能使菱形ABCD 成为正方形的是()A.AC BD =B.AC BD ⊥C.AD AB =D.AC 平分DAB∠【答案】A 【解析】【分析】根据菱形的性质及正方形的判定来添加合适的条件.【详解】解:要使菱形成为正方形,只要菱形满足以下条件之一即可,(1)有一个内角是直角,(2)对角线相等.即90ABC ∠=︒或AC BD =.故选:A【点睛】本题比较容易,考查特殊四边形的判定,解题的关键是根据菱形的性质及正方形的判定解答.8.如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是 AB 的中点,连接AC 、BC ,则图中阴影部分面积是()A.43π- B.23π-C.43πD.23π【答案】A 【解析】【详解】连接OC ,过O 作OM ⊥AC 于M ,∵∠AOB =120°,C 是 AB 的中点,∴∠AOC =∠BOC =60°,∵OA =OB =OC =2,∴△ABC 、△BOC 是等边三角形,∴AC =BC =OA =2,AM =1,∴△BOC 的边AC 上的高是=∴阴影部分的面积是22602160212236023602ππ⨯⨯-⨯--⨯=43π-故选:A.9.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和cy x=的图象为()A. B. C. D.【答案】C 【解析】【分析】根据二次函数y=ax 2+bx+c (a≠0)的图象可以得到a <0,b >0,c <0,由此可以判定y=ax+b 经过一、二、四象限,双曲线cy x=在二、四象限.【详解】根据二次函数y=ax 2+bx+c (a≠0)的图象,可得a <0,b >0,c <0,∴y=ax+b 过一、二、四象限,双曲线cy x=在二、四象限,∴C 是正确的.故选C .【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.10.如图,已知△ABC 中,AB=10,AC=8,BC =6,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为()A.3B.4C.4.8D.5【答案】D 【解析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC 为直角三角形,又因DE 为AC 边的中垂线,可得DE ⊥AC ,AE=CE=4,所以DE 为三角形ABC 的中位线,即可得DE=12BC =3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.二.填空题(共5小题,满分15分,每小题3分)11.抛物线y =2(x -3)2+1的顶点坐标为_______.【答案】(3,1)【解析】【分析】由抛物线解析式可求得答案.【详解】根据二次函数的性质,由顶点式直接得出顶点坐标为(3,1).故答案是(3,1).【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在()2y a x h k =-+中,对称轴为直线x =h ,顶点坐标为(h ,k ).12.在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,AC=6,BC=8,CD=_______.【答案】3.【解析】【详解】试题分析:如图,过点D 作DE ⊥AB 于E ,∵∠C=90°,AC=6,BC=8,∴10==,∵AD 平分∠CAB ,∴CD=DE ,∴S △ABC =12AC•CD+12AB•DE=12AC•BC ,即12×6•CD+12×10•CD=12×6×8,解得CD=3.考点:1.角平分线的性质,2.勾股定理13.图①是伸缩折叠不锈钢晾衣架的实物图,图②是它的侧面示意图,AD 和CB 相交于点O ,点A 、B 之间的距离为1.2米,AB CD ∥,根据图②中的数据可得C 、D 之间的距离为__________米.【答案】0.96【解析】【分析】根据相似三角形对应高的比等于相似比,即可求解.【详解】解:∵AB CD ∥,∴DCO ABO ∠=∠,CDO BAO ∠=∠,∴CDO BAO ∽△△,∴0.81CD AB =,∵ 1.2AB =,∴0.81.21CD =,解得:0.96CD =,故答案为:0.96.【点睛】本题主要考查了相似三角形的判定和性质,解题的关键是掌握相似三角形对应高的比等于相似比.14.如图,点A ,C 为函数()0k y x x=<图象上的两点,过A ,C 分别作AB x ⊥轴,CD x ⊥轴,垂足分别为B ,D ,连接OA ,AC ,OC ,线段OC 交AB 于点E ,且点E 恰好为OC 的中点.当AEC △的面积为34时,k 的值为______.【答案】2-【解析】【分析】根据三角形的中线的性质求出AEO △的面积,根据相似三角形的性质求出1OCD S =△,根据反比例函数系数k 的几何意义解答即可.【详解】解:∵点E 为OC 的中点,∴AEO △的面积AEC =△的面积34=,∵点A ,C 为函数()0k y x x =<图象上的两点,∴ABO CDO S S = ,∴34AEO CDBE S S ==四边形△,∵AB x ⊥轴,CD x ⊥轴,∴EB CD ∥,∴OEB OCD ∽△△,∴212OEB OCD S S ⎛⎫= ⎪⎝⎭△△,∴1OCD S =△,则112xy =-,∴2k xy ==-.故答案为:2-.【点睛】本题考查的是反比例函数系数k 的几何意义、相似三角形的性质,掌握反比例函数系数k 的几何意义、相似三角形的面积比等于相似比的平方是解题的关键.15.如图,在矩形ABCD 中,点E 为BC 上一点,8EB =,4AB =,连接AE ,将ABE 沿AE 所在的直线翻折,得到AB E ' ,B E '交AD 于点F ,将AB E ' 沿B E '所在的直线翻折,得到A B E '' ,A E '交AD 于点G ,GE GA '的值为______.【答案】56【解析】【分析】根据折叠的性质和矩形的性质可得EF AF =,设EF AF x ==,则8B F x '=-,在Rt ABE △中,利用勾股定理可得5EF AF ==,3B F '=,从而得到3tan 4B F B AF AB ''∠==',过点G 作GH EB ⊥'于点H ,则GH A B ''∥,可得EG EH A G B H ='',HGF B AF ∠=∠',从而得到3tan tan 4FH B AF HGF GH '∠=∠==,可设3,4HF m GH m ==,在Rt A B E ''△中,可得1tan 2GH GEH EH ∠==,从而得到8EH m =,再由8B E '=,可得4011EH =,4811B H '=,即可求解.【详解】解:由折叠的性质得:4A B AB AB '''===,A E AE '=,8B E BE '==,AEB AEB A EB '''∠=∠=∠,90AB E A B E B '''∠=∠=∠=︒,在矩形ABCD 中,BC AD ∥,∴AEB EAG ∠=∠,∴AEF EAG FEG ∠=∠=∠,∴EF AF =,在Rt ABE △中,AE ==设EF AF x ==,则8B F x '=-,在Rt AB F '△中,222AF AB B F ''=+,∴()22248x x =+-,解得:5x =,即5EF AF ==,3B F '=,∴3tan 4B F B AF AB ''∠==',如图,过点G 作GH EB ⊥'于点H ,则GH A B ''∥,∴EG EH GA B H='',HGF B AF ∠=∠',∴3tan tan 4FH B AF HGF GH '∠=∠==,可设3,4HF m GH m ==,在Rt A B E ''△中,41tan 82A B A EB B E ''''∠===',∴1tan 2GH GEH EH ∠==,∴8EH m =,∵EH FH B F B E ''++=,∴8338m m ++=,解得:511m =,∴4011EH =,4811B H FH B F ''=+=,∴4051148611EG EH A G B H ===''.故答案为:56【点睛】本题主要考查了解直角三角形,矩形和折叠问题,平行线分线段成比例,勾股定理等知识,灵活做辅助线构造直角三角形是解题的关键.三.解答题(共7小题,满分55分)16.计算:tan 602sin 3012cos 45︒+︒+-︒.【解析】【分析】把特殊角的三角函数值代入进行计算,即可得到答案.【详解】解:tan 602sin 3012cos 45︒+︒+-︒)12122=⨯+-⨯11=-=【点睛】本题考查了特殊角三角函数值的混合运算,熟记特殊角的三角函数值是解题关键.17.先化简,再求值:23224x x x x x x ⎛⎫-÷⎪-+-⎝⎭,在﹣2,0,1,2四个数中选一个合适的代入求值.【答案】28x +,10.【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x =1代入计算即可求出值.【详解】解:原式=()()()()2322422x x x x x x x x +---⋅-+=()()()()()242222x x x x x x x+-+⋅-+=2(x +4)=2x +8当x =-2,0,2时,分式无意义当x =1时,原式=10.【点睛】本题主要考查了分式的化简和代入求值,关键是代入的时候要根据分式有意义的条件选择合适的值代入.18.11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x 值为,参加调差的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有万人.【答案】(1)20%;400;见解析(2)72°(3)1.34【解析】÷即可求出总人数,用【分析】(1)根据看1本书的人数为40人,所占的百分比为10%,4010%100%10%25%45%---即可得x的值,用总人数乘以x的值,即可得到3本以上的人数,即可补全统计图;(2)用x的值乘以360︒,即可得到圆心角;(3)用6.7万乘以三本以上的百分比,即可解答.【小问1详解】÷(人,解:4010%=400x=---100%10%25%45%=20%⨯(人,故答案为:20%,400;如图所示;【小问2详解】⨯︒︒,解:20%360=72故答案为:72︒;【小问3详解】⨯(人,解:6700020%=13400故答案为:1.34.【点睛】本题主要考查了条形图与扇形图的综合应用,解决此类问题关键是注意图形有机结合,综合分析获取正确信息.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.某电商在抖音平台上对红富士苹果进行直播销售.已知苹果的成本价为6元/千克,如果按10元/千克销售,每天可卖出160千克.通过调查发现,每千克苹果售价增加1元,日销售量减少20千克.(1)为保证每天利润为700元,商家想尽快销售完库存,每千克售价应为多少元?(2)售价为多少元时,每天的销售利润最大,最大是多少?【答案】(1)11元(2)售价为12元时,每天的销售利润最大,最大是720元【解析】【分析】(1)设每千克售价应为x 元,根据“如果按10元/千克销售,每天可卖出160千克,每千克苹果售价增加1元,日销售量减少20千克”列出方程,即可求解;(2)设每千克售价应为m 元,每天的销售利润为W 元,根据题意,列出函数的关系式,结合二次函数的性质,即可求解.【小问1详解】解:设每千克售价应为x 元,根据题意得:()()61602010700x x ---=⎡⎤⎣⎦,解得:1211,13x x ==,∵商家想尽快销售完库存,∴11x =,答:每千克售价应为11元;【小问2详解】解:设每千克售价应为m 元,每天的销售利润为W 元,根据题意得:()()()22616020102048021602012720W m m m m m =---=-+-=--+⎡⎤⎣⎦,∵200-<,∴当12m =时,W 的值最大,最大值为720,答:售价为12元时,每天的销售利润最大,最大是720元.【点睛】本题考查了一元二次方程的应用以及二次函数的应用,解题的关键是:找准等量关系,正确列出一元二次方程和二次函数的解析式,利用二次函数的性质求最值.20.如图,在ABC 中,AC BC =BC 为直径作O ,交AC 于点F ,过C 点作CD AC ⊥交AB 延长线于点D ,E 为CD 上一点,且EB ED =.(1)求证:BE 为O 的切线;(2)若2,tan 2AF A ==,求BE 的长.【答案】(1)见解析(2)154【解析】【分析】(1)根据等腰三角形的性质得∠A =∠ABC ,∠D =∠EBD ,根据等腰三角形的性质得到∠A =∠ABC ,∠D =∠DBE ,推出∠CBE =90°,于是得到结论;(2)连接BF ,根据圆周角定理得到BF ⊥AC ,根据三角函数的定义得到BF =4,设CF =x ,列出关于x 的方程并求解,再根据相似三角形的判定和性质定理即可得到结论.【小问1详解】证明:∵AC =BC ,EB =ED∴∠A =∠ABC ,∠D =∠EBD∵CD ⊥AC∴∠A +∠D =90°∴∠ABC +∠EBD =90°∴∠CBE =90°∵BC 是⊙O 的直径.∴BE 是⊙O 的切线.【小问2详解】解:连接BF∵BC 是⊙O 的直径.∴∠BFC =∠BFA =90°在Rt △ABF 中,tan A =22BF BFAF =∴BF =4设CF =x ,则AC =BC =x +2在Rt △BCF 中,222BC CF BF =+即222(2)4x x +=+∴x =3∴CF =3,BC=5∵∠ACB =∠AFB =90°∴BF ∥CD∴∠1=∠2又∵∠CFB =∠EBC =90°∴△CFB ∽△EBC ∴FC FB BE BC =∴345BE =∴BE =154【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,勾股定理,圆周角定理,正确地作出辅助线是解题的关键.21.在平面直角坐标系中,若两点的横坐标不相等,纵坐标互为相反数,则称这两点关于x 轴斜对称.其中一点叫做另一点关于x 轴的斜对称点.如:点()()4,2,1,2--关于x 轴斜对称.在平面直角坐标系xOy 中,点A 的坐标为()2,1.(1)下列各点中,与点A 关于x 轴斜对称的是______(只填序号);①()3,1-,②()2,1-,③()2,1-,④()1,1--.(2)若点A 关于x 轴的斜对称点B 恰好落在直线31y kx k =++上,AOB 的面积为3,求k 的值;(3)抛物线21y x bx =--上恰有两个点M 、N 与点A 关于x 轴斜对称,抛物线的顶点为D ,且DMN 为等腰直角三角形,则b 的值为______.【答案】(1)①④(2)27-或25(3)2±【解析】【分析】(1)根据关于x 轴纵对称的点的定义即可得到答案;(2)根据关于x 轴纵对称的点的定义,设(),1B x -,画出图形,分0x >,0x <进行讨论即可;(3)根据成纵对称的点的定义,可知这两个点的纵坐标为1-,再令1y =-,则211x bx --=-,可得点M 的坐标为()0,1-,点(),1N b -,然后根据DMN 为等腰直角三角形,可得222MN DM =,可得到关于b 的方程,即可求解【小问1详解】解:∵点A 的坐标为()2,1,∴与点A 关于x 轴斜对称的是()3,1-和()1,1--;故答案为:①④【小问2详解】解:根据题意可设(),1B x -,①如图1,当0x >时,AOB AOM BOMAMNB S S S S =--梯形△△△()11112212132222x x x =+⨯-⨯⨯-=+=.解得:4x =.∴()4,1B -.∴4311k k ++=-.解得:27k =-.如图2,当0x <时AOB ABM BON AONMS S S S =--梯形△△△()()()1111221122132222x x x =-⨯-⨯⨯--⨯+⨯=--=.解得:8x =-.∴()8,1B --.∴8311k k -++=-.解得:25k =.∴综上所述:27k =-或25.【小问3详解】解:∵2224124b b y x bx x +⎛⎫=--=-- ⎪⎝⎭,∴抛物线的对称轴为直线2b x =,抛物线的顶点为24,24b b ⎛⎫+- ⎪⎝⎭,令0x =,1y =-,∵点M ,N 与点A 关于x 轴斜对称,∴点M ,N 的纵坐标为1-,令1y =-,则211x bx --=-,解得:120,x x b ==,∴点M 的坐标为()0,1-,点(),1N b -,∵DMN 为等腰直角三角形,∴DM DN =,且22222MN DM DN DM =+=,∴222222414b b b ⎥⎛⎫+-+ ⎡⎤⎛⎫=+⎢⎥ ⎪⎪⎣⎭⎭⎢⎦⎝⎝,解得:2b =±或0(舍去),即b 的值为2±.故答案为:2±【点睛】本题属于新定义题,是一次函数与几何图形,二次函数与一元二次方程的综合,难度较大,解题的关键是理解新定义,并能灵活运用所学知识进行解答.22.如图,抛物线22y ax bx =++经过点()1,0A -,()4,0B ,交y 轴于点C ;(1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使23ABC ABD S S =△△?若存在请直接给出点D 坐标;若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45︒,与抛物线交于另一点E ,求BE 的长.【答案】(1)213222y x x =-++(2)点D 的坐标为()1,3或()2,3或()5,3-(3)()5,3-【解析】【分析】(1)由,A B 的坐标,利用待定系数法可求得抛物线的解析式;(2)由条件可求得D 到x 轴的距离,即可求得D 的纵坐标,代入抛物线可求得D 点坐标;(3)由条件可证的BC AC ⊥,设直线AC 和BE 交于点F ,过F 作FM x ⊥轴于点M ,则可得BF BC =,利用平行线分线段成比例可求得F 的坐标,利用待定系数法可求得直线BE 的解析式,联立直线BE 和抛物线解析式可求得E 点坐标.【小问1详解】解:由题意得:20,16420,a b a b -+=⎧⎨++=⎩解得1,23,2a b ⎧=-⎪⎪⎨⎪=⎪⎩∴213222y x x =-++.【小问2详解】如答1,连接AC .依题意知:5AB =,2OC =.∴1152522ABC S AB OC =⋅=⨯⨯=△.∵23ABC ABD S S =△△,∴315522ABD S =⨯=△.设213,222D m m m ⎛⎫-++ ⎪⎝⎭(0m >),∵11522ABD D AB y S ==△,∴211315522222m m ⨯⨯-++=,当2132322m m -++=时,解得121,2m m ==;当2132322m m -++=-时,解得32m =-(舍去),45m =.综上所述,点D 的坐标为()1,3或()2,3或()5,3-;【小问3详解】如图2,过C 点作CF BC ⊥,交BE 于点F ,过点F 作y 轴的垂线交y 轴于点H,∵45CBF ∠=︒,90BCF ∠=︒,∴CF CB =.∵90BCF ∠=︒,90FHC ∠=︒,∴90HCF BCO ∠+∠=︒,90HCF HFC ∠+∠=︒,即HFC OCB ∠=∠.在CHF 和BOC 中,∵,,,CHF COB HFC OCB FC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS CHF BOC ≌.∴()2,6F ,设BE 的解析式为y kx c =+,将()()4,0,2,6B F 代入y kx c =+,得4026k c k c +=⎧⎨+=⎩,解得312k c =-⎧⎨=⎩,∴BE 的解析式为312y x =-+.联立2132,22312,y x x y x ⎧=-++⎪⎨⎪=-+⎩解得:15=x ,24x =(舍去),故点E 的坐标为()5,3-.【点睛】本题为二次函数的综合应用,涉及待定系数法,三角形面积,全等三角形的判定和性质,函数图象的交点,等腰直角三角形的性质,方程思想及分类讨论思想等知识.。
柳州市初三中考数学第一次模拟试卷【含答案】一、选择题(每小题3分,共30分) 1.实数2019的相反数是( ) A .2019B .-2019C .12019D .−120192.下面几个平面图形中为左侧给出圆锥俯视图的是( )A .B .C .D .3.将6120 000用科学记数法表示应为( ) A .0.612×107B .6.12×106C .61.2×105D .612×1044.函数中,自变量x 的取值范围是( ) A .x >5B .x <5C .x≥5D .x≤55.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.下列运算正确的是( ) A .a2+a3=a5 B .(2a3)2=2a6 C .a3•a4=a12 D .a5÷a3=a2 7.有一组数据:1,2,3,6,这组数据的方差是( )A .2.5B .3C .3.5D .48.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm2,则较大多边形的面积为( ) A .9cm2B .16cm2C .56cm2D .24cm29.某件商品原价为1000元,连续两次都降价x%后该件商品售价为640元,则下列所列方程正确的是( ) A .1000(1-x%)2=640B .1000(1-x%)2=360C.1000(1-2x%)=640 D.1000(1-2x%)=36010.下列关于二次函数y=2(x-3)2-1的说法,正确的是()A.对称轴是直线x=-3B.当x=3时,y有最小值是-1C.顶点坐标是(3,1)D.当x>3时,y随x的增大而减小二、填空题(每小题4分,共16分)11.一元二次方程x2+3x=0的解是12.如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为130°.13.一次函数y=kx+b的图象如图所示,若y>0,则x的取值范围是14.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=3,CE=5,则该矩形的周长为.三、解答题(共54分)15.(1)计算:10 120192|3tan3022018π-︒⎛⎫⎛⎫--++⎪ ⎪⎝⎭⎝⎭;(2)解不等式组:3122(1)5x x x ->⎧⎨+<+⎩16.解方程:22111xx x +=-- 17.某商场为了方便顾客使用购物车,将自动扶梯由坡角30°的坡面改为坡度为1:3的坡面.如图,BD 表示水平面,AD 表示电梯的铅直高度,如果改动后电梯的坡面AC 长为米,求改动后电梯水平宽度增加部分BC 的长.(结果保留整数,≈1.4≈1.7)18.某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调査.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调査得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,样本容量为 80 ,请补全条形统计图;(2)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到三种信号灯的可能性相同,求小明在两个路口都遇到绿灯的概率.(请用“画树状图”或“列表”的方法写出分析过程)19.如图,一次函数y=k1x+b (k1≠0)与反比例函数y=kx (k2≠0)的图象交于A (-1,-4)和点B (4,m )(1)求这两个函数的解析式;(2)已知直线AB 交y 轴于点C ,点P (n ,0)在x 轴的负半轴上,若△BCP 为等腰三角形,求n 的值.20.如图1,以Rt△ABC的直角边BC为直径作⊙O,交斜边AB于点D,作弦DF交BC于点E.(1)求证:∠A=∠F;(2)如图2,连接CF,若∠FCB=2∠CBA,求证:DF=DB;(3)如图3,在(2)的条件下,H为线段CF上一点,且12FHHC=,连接BH,恰有BH⊥DF,若AD=1,求△BFE的面积.一、填空题(每小题4分,共20分)21.已知,则x2+2x=22.点P(2,17)为二次函数y=ax2+4ax+5图象上一点,其对称轴为l,则点P关于l的对称点的坐标为23.如图所示的图案(阴影部分)是这样设计的:在△ABC中,AB=AC=2cm,∠ABC=30°,以A为圆心,以AB为半径作弧BEC,以BC为直径作半圆BFC,则图案(阴影部分)的面积是.(结果保留π)24.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m,使关于x的方程3111mxx x-=--有正整数解的概率为.25.如图,点P 在第一象限,点A 、C 分别为函数y=kx (x >0)图象上两点,射线PA 交x 轴的负半轴于点B ,且P0过点C ,12PA AB,PC=CO ,若△PAC 的面积为2534,则k= .二、解答题(共30分) 26.某种蔬菜每千克售价y1(元)与销售月份x 之间的关系如图1所示,每千克成本y2(元)与销售月份x 之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x 之间满足的函数表达式,并直接写出x 的取值范围; (2)求出y2与x 之间满足的函数表达式;(3)设这种蔬菜每千克收益为w 元,试问在哪个月份出售这种蔬菜,w 将取得最大值?并求出此最大值.(收益=售价-成本)27.(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B=∠C=∠EDF=a .△BDE 与△CFD 相似吗?请说明理由; (2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD=2.①如图2,当点D 在线段BC 上时,求AEAF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.28.如图1,以点A(-1,2)、C(1,0)为顶点作Rt△ABC,且∠ACB=90°,tanA=3,点B位于第三象限(1)求点B的坐标;(2)以A为顶点,且过点C的抛物线y=ax2+bx+c(a≠0)是否经过点B,并说明理由;(3)在(2)的条件下(如图2),AB交x轴于点D,点E为直线AB上方抛物线上一动点,过点E作EF⊥BC于F,直线FF分别交y轴、AB于点G、H,若以点B、G、H为顶点的三角形与△ADC相似,求点E的坐标.参考答案及试题解析1. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.3. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求范围.【解答】解:根据题意得:x-5≥0解得:x≥5故选:C.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5. 【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6. 【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a3)2=4a6,故此选项错误;C、a3•a4=a7,故此选项错误;D、a5÷a3=a2,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.7. 【分析】先求平均数,再代入公式S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],计算即可.【解答】解:x=(1+2+3+6)÷4=3,S2=14[(1-3)2+(2-3)2+(3-3)2+(6-3)2]=3.5.故选:C.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8. 【分析】根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.【解答】解:∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm2,∴较大多边形的面积为9cm2,故选:A.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.9. 【分析】等量关系为:原价×(1-下降率)2=640,把相关数值代入即可.【解答】解:∵第一次降价后的价格为1000×(1-x%),第二次降价后的价格为1000×(1-x%)×(1-x%)=1000×(1-x%)2,∴方程为1000(1-x%)2=640.故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10. 【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:由二次函数y=2(x-3)2-1可知:开口向上,顶点坐标为(3,-1),当x=3时有最小值是-1;对称轴为x=3,当x≥3时,y随x的增大而增大,当x<3时,y随x的增大而减小,故A、C、D错误,B正确,故选:B.【点评】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性.11. 【分析】提公因式后直接解答即可.【解答】解:提公因式得,x(x+3)=0,解得x1=0,x2=-3.故答案为0,-3.【点评】本题考查了解一元二次方程--因式分解法,要根据方程特点选择合适的方法.12. 【分析】根据平行线的性质由AB∥CD得到∠FEB=∠C=50°,然后根据邻补角的定义得到∠AEF=180°-∠BEF=180°-50°=130°.【解答】解:∵AB∥CD,∴∠FEB=∠C=50°,∴∠AEF=180°-∠BEF=180°-50°=130°.故答案为:130°.【点评】本题考查了平行线的性质以及邻补角的定义.解决问题的关键是掌握:两直线平行,同位角角相等.13. 【分析】直接利用一次函数图象与x轴的交点得出y>0时x的取值范围.【解答】解:如图所示:y>0,则x的取值范围是:x<-2.故答案为:x<-2.【点评】此题主要考查了一次函数的性质,正确利用数形结合分析是解题关键.14. 【分析】连接EA,如图,利用基本作图得到MN垂直平分AC,根据线段垂直平分线的性质得到EA=EC=5,然后利用勾股定理计算出AD,从而得到矩形的周长.【解答】解:连接EA,如图,由作法得MN垂直平分AC,∴EA=EC=5,在Rt△ADE中,,所以该矩形的周长=4×2+8×2=24.故答案为24.【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的性质.15. 【分析】(1)根据实数的混合计算解答即可;(2)分别解出两不等式的解集,再求其公共解.【解答】解:(1)原式=2(231 ---+=1(2)()312215 xx x-+⎧⎨+⎩>①<②解①得:x>1解②得:x<3∴不等式组的解集为:1<x<3【点评】此题考查解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16. 【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论求解可得.【解答】解:方程两边都乘以(x+1)(x-1),得:2+(x+1)(x-1)=x(x+1),解得:x=1,检验:x=1时,(x+1)(x-1)=0,则x=1是分式方程的增根,所以分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17. 【分析】根据题意可得:AD:CD=1:3,然后根据AD、CD的长度,然后在△ABD中求出BD的长度,最后BC=CD-BD即可求解.【解答】解:由题意得,AD :CD=1:3, 设AD=x ,CD=3x ,则AC ===, 解得:x=6,则AD=6,CD=18, 在△ABD 中, ∵∠ABD=30°,∴则≈8(m ).答:改动后电梯水平宽度增加部分BC 的长约为8米.【点评】本题考查了坡度和坡角的知识,解答本题的关键是根据题意构造直角三角形,利用三角函数的知识求解. 18. 【分析】(1)根据自行车的人数和所占的百分比求出总人数,再用总人数乘以步行所占的百分比求出步行的人数,从而补全统计图;(2)画树状图列出所有等可能结果和小明在两个路口都遇到绿灯的情况数,然后根据概率公式计算可得. 【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人), 则样本容量为80;步行的人数有80×20%=16(人),补图如下:故答案为:80;(2)画树状图如下:由树状图知,共有9种等可能结果,其中两个路口都遇到绿灯的结果数为1,所以两个路口都遇到绿灯的概率为19.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 19. 【分析】(1)先将点A 坐标代入反比例函数解析式中求出k2,进而求出点B 坐标,最后将点A ,B 坐标代入一次函数解析式中,即可得出结论;(2)利用两点间的距离公式表示出BC2=32,CP2=n2+9,BP2=(n-4)2+1,再分三种情况利用两腰相等建立方程求解即可得出结论.【解答】解:(1)∵点A (-1,4)在反比例函数y=2k x (k2≠0)的图象上,∴k2=-1×(-4)=4,∴反比例函数解析式为y=4x ,将点B (4,m )代入反比例函数y=4x 中,得m=1,∴B (4,1), 将点A (-1,-4),B (4,1)代入一次函数y=k1x+b 中,得11441k b k b -⎨+⎩+-⎧==, ∴113k b ⎩-⎧⎨==, ∴一次函数的解析式为y=x-3;(2)由(1)知,直线AB 解析式为y=x-3, ∴C (0,-3), ∵B (4,1),P (n ,0),∴BC2=32,CP2=n2+9,BP2=(n-4)2+1, ∵△BCP 为等腰三角形, ∴①当BC=CP 时, ∴32=n2+9,∴②当BC=BP 时,32=(n-4)2+1, ∴③当CP=BP 时,n2+9=(n-4)2+1, ∴n=1(舍), 即:满足条件的n 为.【点评】此题是反比例函数综合题,主要考查了待定系数法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.20. 【分析】(1)连接CD,由BC为直径可知CD⊥AB,根据同角余角相等可知∠A=∠BCD,根据BD BD=,可得∠F=∠BCD,从而证明结论.(2)连接OD、OF,易得∠OBD=∠ODB,由∠BDF=∠FCB=2∠CBA可得∠FDO=∠ODB,进而可证△BOD≌△FOD,即可得到DF=DB.(3)取CH中点M,连接OM,所以OM是△BHC的中位线,OM∥BH,又BH⊥DF,由垂径定理可知FN=DN,设FH=x,则FC=3x,OD=OC=OB=2x,设∠CBA=α,则∠CBD=∠DCA=α,由勾股定理可知x,继而得出tanα,由AD=1,即可计算CD、BD、BF、BG、EF长,再求三角形面积即可.【解答】(1)证明:连接CD,∵BC为直径,∴∠CDB=90°,∴∠A+∠DCA=90°,∵∠C=90°,∴∠BCD=∠A,∵BD BD=,∴∠F=∠BCD,∴∠F=∠A.(2)连接OD、OF,∵OB=OD=OF ,∴∠OBD=∠ODB ;∠ODF=∠OFD , ∵BF BF =,∴∠BDF=∠FCB=2∠CBA ,∴∠OBD=∠ODB=∠ODF=∠OFD , 又∵OD=OD ,∴△BOD ≌△FOD (AAS ), ∴DF=DB .(3)取CH 中点M ,连接OM ,交FD 于N 点,设∠CBA=α,则∠CBD=∠DCA=α,∵HM=MC ,BO=CO ,∴ON ∥BH ,OM=12BH ,∵BH ⊥FD , ∴FN=DN , ∵CD CD =,∴∠DBO=∠DFC ,由(2)得∠OBD=∠ODF , 在△ODN 和△MFN 中,DFC ODF FN DNONM MNF ∠∠∠⎧⎪⎪⎩∠⎨===,△ODN ≌△MFN (ASA ), ∴FM=OD ,设FH=x ,则FC=3x ,OD=OC=OB=2x ,∴在Rt △BFC中,BF =, ∵BH ⊥FD ,∠BFH=90°,∴∠FBH=∠CFD=α,∴tan α==,∴1tan tan DA CD DADCA α===∠∴7tan CD BD FD CBD ====∠,∴BC === ∴x=2, ∴BF=2, ∴BG=,∵OD ∥FC ,∴32FC EF OD ED ==, ∴EF=FD ×35=215,S △BEF=12125=. 【点评】本题是一道有关圆的几何综合题,难度较大,主要考查了圆周角定理,三角形中位线定理、全等三角形性质及判定,相似三角形的判断和性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形,利用角相等解三角形.21. 【分析】根据完全平方公式即可求出答案.【解答】解:∵,∴,∴(x+1)2=3,∴x2+2x+1=3,∴x2+2x=2,故答案为:2【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.22. 【分析】首先根据二次函数的解析式求得其对称轴,然后写出该点关于对称轴的对称点的坐标即可.【解答】解:二次函数y=ax2+4ax+5的对称轴为x=-42aa=-2,∴点点P(2,17)关于l的对称点的坐标为(-6,17),故答案为:(-6,17).【点评】本题考查了二次函数的性质,解题的关键是求得二次函数的对称轴,难度不大.23. 【分析】由图可知:图案的面积=半圆CBF的面积+△ABC的面积-扇形ABC的面积,可根据各自的面积计算方法求出图案的面积.【解答】解:∵S扇形ACB=120443603ππ⨯=,S半圆CBF= 2131,1222ABCSππ⨯==⨯=所以图案面积=S半圆CBF+S△ABC-S扇形ACB=234cm236πππ⎛+=+⎝,故答案为:6π【点评】本题主要考查了扇形和三角形的面积计算方法.不规则图形的面积通常转化为规则图形的面积的和差.24. 【分析】解方程3111mxx x-=--得41xm=+,当m=1时,该方程有正整数解,据此依据概率公式求解可得.【解答】解:解方程3111mxx x-=--,得:41xm=+,当m=1时,该方程有正整数解,所以使关于x的方程3111mxx x-=--有正整数解的概率为15,故答案为:1 5.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.25. 【分析】作PQ⊥x轴于Q,AM⊥x轴于M,CN⊥x轴于N,根据平行线分线段成比例定理表示出A、C、P的坐标,然后S△PAC=S梯形APQM-S梯形AMNC-S梯形PQNC,列式计算即可.【解答】解:作PQ⊥x轴于Q,AM⊥x轴于M,CN⊥x轴于N,∴PQ∥AM∥CN,∴21,32 AM AB CN OCPQ PB PQ OP====,设PQ=n,∴21,32 AM n CN n==,∵点A、C分别为函数y=kx(x>0)图象上两点,∴3221,,,232k kA n C nn n⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,∴ON=2k n,∴OQ=2ON=4k n,∴P(4kn,n),∵S△PAC=S梯形APQM-S梯形AMNC-S梯形PQNC,∴12431212311235 23223222224 k k k k k n n n n n nn n n n n⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+--+--+⋅=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,整理得,7k=35, 解得k=5. 故答案为5.【点评】本题考查了反比例图象上点的坐标特征,图象上点的坐标适合解析式. 26. 【分析】(1)利用待定系数法求y1与x 之间满足的函数表达式,并根据图1写出自变量x 的取值范围;(2)利用顶点式求y2与x 之间满足的函数表达式;(3)根据收益=售价-成本,列出函数解析式,利用配方法求出最大值. 【解答】解:(1)设y1=kx+b , ∵直线经过(3,5)、(6,3),3563k b k b ⎨+⎩+⎧==,解得:273k b -⎧⎪⎨⎪⎩==, ∴y1=-23x+7(3≤x≤6,且x 为整中学数学一模模拟试卷一、选择题(每小题3分,共30分) 1.实数2019的相反数是( ) A .2019B .-2019C .12019D .−120192.下面几个平面图形中为左侧给出圆锥俯视图的是( )A .B .C .D .3.将6120 000用科学记数法表示应为( ) A .0.612×107B .6.12×106C .61.2×105D .612×1044.函数中,自变量x 的取值范围是( ) A .x >5B .x <5C .x≥5D .x≤55.下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.6.下列运算正确的是()A.a2+a3=a5 B.(2a3)2=2a6 C.a3•a4=a12D.a5÷a3=a27.有一组数据:1,2,3,6,这组数据的方差是()A.2.5 B.3 C.3.5 D.48.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm2,则较大多边形的面积为()A.9cm2 B.16cm2 C.56cm2 D.24cm29.某件商品原价为1000元,连续两次都降价x%后该件商品售价为640元,则下列所列方程正确的是()A.1000(1-x%)2=640 B.1000(1-x%)2=360C.1000(1-2x%)=640 D.1000(1-2x%)=36010.下列关于二次函数y=2(x-3)2-1的说法,正确的是()A.对称轴是直线x=-3B.当x=3时,y有最小值是-1C.顶点坐标是(3,1)D.当x>3时,y随x的增大而减小二、填空题(每小题4分,共16分)11.一元二次方程x2+3x=0的解是12.如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为130°.13.一次函数y=kx+b的图象如图所示,若y>0,则x的取值范围是14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=3,CE=5,则该矩形的周长为 .三、解答题(共54分)15.(1)计算:1120192|3tan 3022018π-︒⎛⎫⎛⎫--++ ⎪⎪⎝⎭⎝⎭; (2)解不等式组:3122(1)5x x x ->⎧⎨+<+⎩16.解方程:22111xx x +=-- 17.某商场为了方便顾客使用购物车,将自动扶梯由坡角30°的坡面改为坡度为1:3的坡面.如图,BD 表示水平面,AD 表示电梯的铅直高度,如果改动后电梯的坡面AC 长为米,求改动后电梯水平宽度增加部分BC 的长.(结果保留整数,≈1.4≈1.7)18.某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调査.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调査得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,样本容量为 80 ,请补全条形统计图;(2)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到三种信号灯的可能性相同,求小明在两个路口都遇到绿灯的概率.(请用“画树状图”或“列表”的方法写出分析过程)19.如图,一次函数y=k1x+b (k1≠0)与反比例函数y=kx (k2≠0)的图象交于A (-1,-4)和点B (4,m )(1)求这两个函数的解析式;(2)已知直线AB 交y 轴于点C ,点P (n ,0)在x 轴的负半轴上,若△BCP 为等腰三角形,求n 的值.20.如图1,以Rt △ABC 的直角边BC 为直径作⊙O ,交斜边AB 于点D ,作弦DF 交BC 于点E .(1)求证:∠A=∠F ;(2)如图2,连接CF ,若∠FCB=2∠CBA ,求证:DF=DB ;(3)如图3,在(2)的条件下,H 为线段CF 上一点,且12FH HC,连接BH ,恰有BH ⊥DF ,若AD=1,求△BFE 的面积.一、填空题(每小题4分,共20分)21.已知,则x2+2x=22.点P (2,17)为二次函数y=ax2+4ax+5图象上一点,其对称轴为l ,则点P 关于l 的对称点的坐标为23.如图所示的图案(阴影部分)是这样设计的:在△ABC 中,AB=AC=2cm ,∠ABC=30°,以A 为圆心,以AB 为半径作弧BEC ,以BC 为直径作半圆BFC ,则图案(阴影部分)的面积是 .(结果保留π)24.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m ,使关于x 的方程3111mx x x -=--有正整数解的概率为 . 25.如图,点P 在第一象限,点A 、C 分别为函数y=kx (x >0)图象上两点,射线PA 交x轴的负半轴于点B ,且P0过点C ,12PA AB =,PC=CO ,若△PAC 的面积为2534,则k= .二、解答题(共30分)26.某种蔬菜每千克售价y1(元)与销售月份x 之间的关系如图1所示,每千克成本y2(元)与销售月份x 之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x 之间满足的函数表达式,并直接写出x 的取值范围;(2)求出y2与x 之间满足的函数表达式;(3)设这种蔬菜每千克收益为w 元,试问在哪个月份出售这种蔬菜,w 将取得最大值?并求出此最大值.(收益=售价-成本)27.(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B=∠C=∠EDF=a .△BDE 与△CFD 相似吗?请说明理由;(2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD=2.①如图2,当点D 在线段BC 上时,求AEAF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.28.如图1,以点A (-1,2)、C (1,0)为顶点作Rt △ABC ,且∠ACB=90°,tanA=3,点B 位于第三象限(1)求点B 的坐标;(2)以A 为顶点,且过点C 的抛物线y=ax2+bx+c (a≠0)是否经过点B ,并说明理由;(3)在(2)的条件下(如图2),AB 交x 轴于点D ,点E 为直线AB 上方抛物线上一动点,过点E 作EF ⊥BC 于F ,直线FF 分别交y 轴、AB 于点G 、H ,若以点B 、G 、H 为顶点的三角形与△ADC 相似,求点E 的坐标.参考答案及试题解析1. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.3. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求范围.【解答】解:根据题意得:x-5≥0解得:x≥5故选:C.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5. 【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6. 【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a3)2=4a6,故此选项错误;C、a3•a4=a7,故此选项错误;D、a5÷a3=a2,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.7. 【分析】先求平均数,再代入公式S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],计算即可.【解答】解:x=(1+2+3+6)÷4=3,S2=14[(1-3)2+(2-3)2+(3-3)2+(6-3)2]=3.5.故选:C.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8. 【分析】根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.【解答】解:∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm2,∴较大多边形的面积为9cm2,故选:A.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.9. 【分析】等量关系为:原价×(1-下降率)2=640,把相关数值代入即可.【解答】解:∵第一次降价后的价格为1000×(1-x%),第二次降价后的价格为1000×(1-x%)×(1-x%)=1000×(1-x%)2,∴方程为1000(1-x%)2=640.故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10. 【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:由二次函数y=2(x-3)2-1可知:开口向上,顶点坐标为(3,-1),当x=3时有最小值是-1;对称轴为x=3,当x≥3时,y随x的增大而增大,当x<3时,y随x的增大。
2023年九年级数学中考模拟试题一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中最小的数是()A.2B.0C.D.﹣22.(3分)世界卫生组织2022年4月9日公布的最新数据显示,全球累计新冠确诊病例达5.17亿,数据“5.17亿”可用科学记数法表示为()A.5.17×109B.5.17×108C.0.517×1010D.0.517×109 3.(3分)在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.6个B.15个C.12个D.13个4.(3分)已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1B.5x+1C.﹣13x﹣1D.13x+15.(3分)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是()A.B.C.D.6.(3分)已知9m=3,27n=4,则32m+3n=()A.1B.6C.7D.127.(3分)方程组的解是()A.B.C.D.8.(3分)下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个9.(3分)如图,某校劳动实践课程试验园地是长为20m,宽为18m的矩形,为方便活动,需要在园地中间开辟一横两纵共三条等宽的小道.如果园地余下的面积为306m2,则小道的宽为多少?设小道的宽为xm,根据题意,可列方程为()A.(20﹣2x)(18﹣x)=306B.(20﹣x)(18﹣2x)=306C.20×18﹣2×18x﹣20x+x2=306D.20×18﹣2×20x﹣18x+x2=30610.(3分)如图,已知正方形ABCD的边长为4,E是AB边延长线上一点,BE=2,F是AB边上一点,将△CEF沿CF翻折,使点E的对应点G落在AD边上,连接EG交折痕CF于点H,则FH的长是()A.B.C.1D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)已知一个多边形每一个外角都是60°,则它是边形.12.(3分)在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值是.13.(3分)已知x=1是关于的一元二次方程x2+mx+3=0的一个根,则m=.14.(3分)一大门的栏杆如图所示,杆BA垂直于地面AE于A,杆CD平行于地面AE,已知AB=1米,BC=2.4米,∠BCD=150°,则此时杆CD到地面AE的距离是米.15.(3分)如图,弧AB所对圆心角∠AOB=90°,半径为4,点C是OB中点,点D弧AB上一点,CD绕点C逆时针旋转90°得到CE,则AE的最小值是.三.解答题(共7小题,满分55分)16.计算:.17.解方程:x2﹣4x﹣12=0.18.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图.(1)填空:样本容量为,a=;(2)把频数分布直方图补充完整;(3)老师准备从E类学生中随机抽取2人担任广播体操领队.已知E类学生中有2名男生,1名女生,求恰好选中1名男生和1名女生的概率.19.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O的直线DE∥BC,分别交AB、AC于点D、E.(1)求证:DE=BD+CE.(2)若AD=3,BD=CE=2,求BC的值.20.如图,在平面直角坐标系中,直线y=ax+b与y轴正半轴交于A点,与反比例函数交于点B(﹣1,4)和点C,且AC=4AB,动点D在第四象限内的该反比例函数上,且点D在点C左侧,连接BD、CD.(1)求点C的坐标;(2)若S△BCD=5,求点D的坐标.21.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小李在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如表:A款玩偶B款玩偶进货价(元/个)2015销售价(元/个)2518(1)第一次小李以1650元购进了A,B两款玩偶共100个,求两款玩偶各购进多少个?(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共100个,应如何设计进货方案才能获得最大利润,最大利润是多少?22.如图,在矩形ABCD中,点E是BC边上一点,且AD=DE,以AB为半径作⊙A,交AD边于点F,连接EF.(1)求证:DE是⊙A的切线;(2)若AB=2,BE=1,求AD的长;(3)在(2)的条件下,求tan∠FED.23.如图,△ABC中,CD⊥AB于点D,CD=BD,点E在CD上,DE=DA,连接BE.(1)求证:BE=CA;(2)延长BE交AC于点F,连接DF,求∠CFD的度数;(3)过点C作CM⊥CA,CM=CA,连接BM交CD于点N,若BD=12,AD=4,直接写出△NBC的面积.24.已知,如图,抛物线y=ax2+bx﹣8与x轴交于A、B两点,与y轴交于点C,OA=6,OB=,点P为x轴下方的抛物线上一点.(1)求抛物线的函数表达式;(2)连接AP、CP,求四边形AOCP面积的最大值;(3)是否存在这样的点P,使得点P到AB和AC两边的距离相等,若存在,请求出点P 的坐标;若不存在,请说明理由.。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -172.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A 主视图不变B. 俯视图不变C 左视图不变D. 三种视图都不变3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B. 59C. 62D. 644.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 235.下列运算正确是() A. 428a a a ⋅= B. 221a a -= C. 2222a a a -+= D. ()325x x =6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 23C. 33D.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C. 60D. 709.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A. B. C. D. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11.5_.12.如图,在正六边形ABCDEF 中,CAD ∠的度数为____.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC 交于,E F 两点,且,A C 两点在轴上,点的坐标为()2,4,则点的坐标为_____.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()1082 3.146012cos π-⎛⎫+⎭- ⎪⎝︒. 16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.20.如图1所示的是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.2 1.414,31(.732≈≈,最后结果取整数)21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -17【答案】A【解析】【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】|﹣7|=7.故选A.【点睛】本题考查了绝对值的性质①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A. 主视图不变B. 俯视图不变C. 左视图不变D. 三种视图都不变【答案】C【解析】【分析】分别得到将正方体A移动前后的三视图,依次即可作出判断.【详解】将正方体放到正方体的上面后,主视图改变,左视图不变,俯视图改变.故选:C .【点睛】此题主要考查立体组合体的三视图,熟练画立体图形的三视图是解题关键.3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B 59C. 62D. 64【答案】B【解析】【分析】先根据平行线的性质求出62,BOE ∠=︒再根据邻补角求得118,COE ∠=︒然后根据角平分线即可求解.【详解】解:∵DE AB∴62,BOE B ∠=∠=︒∴118,COE ∠=︒∵OF 是COE ∠的角平分线∴1∠=59︒故选:B【点睛】此题主要考查平行线的性质、邻补角的性质和角平分线的定义,熟练掌握性质定理是解题关键. 4.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 23【答案】C直接把()2,3-代入(0)y kx k =≠即可求解.【详解】解:把()2,3-代入(0)y kx k =≠ 解得:3k 2=-故选:C【点睛】此题主要考查待定系数法求正比例函数解析式中的参数k ,正确理解函数的图象和性质是解题关键. 5.下列运算正确的是()A. 428a a a ⋅=B. 221a a -=C. 2222a a a -+=D. ()325x x =【答案】C【解析】【分析】直接根据同底数幂的乘法法则、合并同类项法则和幂的乘方法则即可求解.【详解】解:A. 426a a a ⋅=,此选项错误B. 22a a -=-,此选项错误C. 2222a a a -+=,此选项正确D. ()326x x =,此选项错误 故选:C【点睛】此题主要考查同底数幂的乘法法则、合并同类项法则和幂的乘方法则,熟练掌握法则是解题关键. 6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 3C. 33D.【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键. 8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C 60D. 70【答案】C【解析】【分析】根据同弧所对的圆心角等于圆周角的2倍,可得出∠B=25︒,然后根据三角形的内角和为180︒即可求解.【详解】解:∵50AOC ∠=︒,∴∠B=25︒,∵35C ∠=︒,∠ADB=∠CDO ,∴A ∠+∠B=∠C+∠AOC ,即∠A=355025︒+︒-︒=60︒,故选:C .【点睛】此题主要考查同弧所对的圆心角与圆周角之间的关系及三角形的内角和,熟练掌握性质是解题关键.9.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.【答案】B【解析】【分析】设AEF S x =△,根据相似三角形的面积比等于相似比的平方,得出4BCF Sx =,求出x 即可解答. 【详解】解:∵AD ∥BC ,是矩形ABCD 中AD 边的中点,∴AEF ~CBF ,设AEF S x =△,那么4BCF Sx =, ∵2ABF S =, ∴()1x 2422x +=+, 解得:x 1=,∴325CDEF S x =+=四边形,故选:B.【点睛】此题主要考查相似三角形的相似比与面积比之间的关系,灵活运用关系是解题关键. 10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A.B. C. D. 【答案】B【解析】【分析】由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =,根据当3x ≥时,随的增大而增大,得到0,a >且1x ≤时,随的增大而减小,再根据当20x -≤≤时,的最大值为,得到当2x =-时,28110a a ++=,求出1a =,那么2(1)1y x =-+关于轴对称的抛物线为()211y x =++,即可求解. 【详解】解:由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =.当3x ≥时,随的增大而增大,0,a ∴>且1x ≤时,随的增大而减小.当20x -≤≤时,的最大值为10,当2x =-时,28110,a a ++= 1a 或9a =-(舍去),2222()11y x x x ∴=-+=-+关于轴对称的抛物线为()211,y x =++函数()211y x =++在23x -≤≤内的最大值在3x =处取得,最大值为17,y =故选.【点睛】此题主要考查二次函数的性质,熟练掌握二次函数的图象和性质是解题关键. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11._.【答案】2【解析】【分析】估算得出所求即可.【详解】解:∵459,∴23<<,2,故答案为:2.【点睛】此题主要考查无理数的估算,熟练掌握估算方法是解题关键.12.如图,在正六边形ABCDEF中,CAD∠的度数为____.【答案】30【解析】【分析】根据正六边形得到∠ABC=∠BCD=∠CDE=120︒,AB=BC=CD,进而得到∠ACB=30,∠ACD=90︒,∠ADC=60︒,即可求解.【详解】解:在正六边形ABCDEF中,∠ABC=∠BCD=∠CDE=120︒,AB=BC,∴∠ACB=30,∠ACD=90︒,∠ADC=60︒,∴∠CAD=30,故答案为:30.【点睛】此题主要考查正六边形的性质,灵活运用性质是解题关键.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于,E F两点,且,A C两点在轴上,点的坐标为()2,4,则点的坐标为_____.【答案】4 6,3⎛⎫ ⎪⎝⎭【解析】【分析】先根据待定系数法求得8y x =,再根据OA=6即可求解. 【详解】解:令y k x =,E (2,4), ∴k=8,即8y x=, ∵OA =OC+AC =2+4=6,∴F(6,43), 故答案为:46,3⎛⎫ ⎪⎝⎭.【点睛】此题主要考查待定系数法求反比例函数解析式,然后根据函数解析式确定点的坐标,熟练掌握待定系数法是解题关键.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.【答案】2212+【解析】【分析】BFA'的周长=FA'+BF+BA'=AF+BF+BA'=AB+BA'=10+BA',推出当BA'最小时,BFA'的周长最小,由此即可求解.【详解】解:如图,作BH AD ⊥于点,连接BP ,∵10,16,60AB AD A ==∠=︒,8,5PA AH ==,853PH ∴=-=, 5BH =PB ∴===由翻折可知'8,'PA PA FA FA ===,'BFA ∴的周长''''10'FA BF BA AF BF BA AB BA BA =++=++=+=+, 当'BA 的长度最小时,'BFA 的周长最小,''BA PB PA ∴≥-,'8BA ∴≥,'BA ∴的最小值为8,'BFA ∴的周长的最小值为1082+=.故答案为:2.【点睛】此题主要考查平行四边形的性质,翻折不变性,勾股定理,含30度直角三角形的性质等,灵活运用性质是解题关键.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()103.146012cos π-⎛⎫+⎭- ⎪⎝︒. 【答案】12-【解析】【分析】 根据负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值即可求解.【详解】解:原式12412=-++ 12=- 【点睛】此题主要考查负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值,熟练掌握法则是解题关键.16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 【答案】a【解析】【分析】 根据分式的加减乘除混合运算法则即可求解.【详解】解:原式()()()()()22211122111111a a a a a a a a a a a a a -+--+-÷=⋅=-++--. 【点睛】此题主要考查分式的加减乘除运算,熟练掌握运算法则是解题关键.17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)【答案】见解析【解析】【分析】作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【详解】解:如图,作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【点睛】此题主要考查旋转的性质,尺规作图,正确理解作图依据是解题关键.18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .【答案】见解析【解析】【分析】根据//FD AC ,得到ACB DFE ∠=∠,再根据BF CE =,得到BC EF =,加上AC FD =,得到ACB DFE △≌△,进而得到B E ∠=∠,即可证明.【详解】证明://FD AC ,ACB DFE ∴∠=∠,BF CE =,BF FC CE FC ∴+=+BC EF ∴=.,AC FD =,ACB DFE ∴≌,B E ∴∠=∠//∴.AB DE【点睛】此题主要考查全等三角形的判定和性质、平行线的性质和判定,灵活运用判定定理和性质定理是解题关键.19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.【答案】(1)见解析;(2)5天,6天;(3)600人【解析】【分析】(1)根据9天和9天以上的3人,占5,可求得总人数为60人,求出8天的人数即可补全条形统计图;(2)根据众数和中位数的概念即可求解.(3)先求出7天、8天、9天和9天以上的人数的比例,再用样本估计总体即可求解.÷=(人),【详解】解:()135%60----=(人),6024121536补全统计图如图所示:()2参加”网络自习室”自主学习天的人数最多,所以众数是天;60人中,按照参加”网络自习室”自主学习的天数从少到多排列,第人和人都是天,所以中位数是天; ()15633150060060++⨯=(人) 答:估计全校初三可能有600名学生参加”网络的自习室”自主学习的天数不少于天.【点睛】此题主要考查条形统计图与扇形统计图的综合应用,众数、中位数和用样本估计总体,正确理解概念是解题关键.20.如图1所示是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.231.732≈≈,最后结果取整数)【答案】37米【解析】【分析】根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米,在'Rt PO B 中,'90,'60PO B PBO ∠=︒∠=︒,得到3''3O B P =,在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,得到''O D O P =,进而得到3''1'15BD O D O B O P ⎛=-== ⎝⎭米,'35.4931O P =≈-米,最后根据''OP OO O P =+即可求解.【详解】解:根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米.在'Rt PO B 中,'90,'60,PO B PBO ∠=︒∠=︒3''3O B P ∴= 在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,''O D O P ∴=, 3''1'153BD O D O B O P ⎛∴=-=-= ⎝⎭米,'35.49O P ∴=≈米,''37.09OP OO O P ∴=+=米37≈米,答:”天下第一灯”的高度约为37米.【点睛】此题主要考查解直角三角形的应用,正确地构造直角三角形和解直角三角形是解题关键. 21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.【答案】(1) 4.65137.7y x =-;(2)3300m【解析】【分析】(1)根据实际问题列出函数表达式即可.(2)先判断用水量在哪一阶梯,再计算.详解】解:()()1 3.80162 4.65162y x =⨯+-,即 4.65137.7y x =-.()2由()1知,当162275x <≤时, 4.65137.7,y x =-当275x =时,1141.05y =.1141.051320.55y =<,该户居民2019年的年用水量在3275m 以上,终端水价为7.18元/3m .当275x >时,()1141.057.18275,y x =+-即7.18 833.45,y x =-7.18 833.451320.55,x∴-=解得300x=.答:该户居民2019年的年用水量为3300m.【点睛】此题主要考查根据实际问题列函数解析式,找出实际问题中的等量关系是解题关键.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.【答案】(1)图表见解析,14;(2)不公平,理由见解析【解析】【分析】(1)先用列表法列出所有可能的结果,再求概率.(2)比较两种结果的概率即可求解.【详解】解:()1列表如下从表格可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有种,所以两人抽取相同数字的概率为1 4()2不公平.从()1中表格可以看出,两人抽取数字和为的倍数的结果有种,两人抽取数字和为的倍数的结果有种, 所以甲获胜的概率为38,乙获胜的概率为31633816> 甲获胜的概率大,游戏不公平.【点睛】此题主要考查列表法或画树状图法求概率,正确理解概率的概念是解题关键.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 【答案】(1)相切,理由见解析;(2)35【解析】【分析】(1)连接BD ,根据90BAD ∠=︒,得出点在BD 上,即BD 是直径,进而得到90BCD ∠=︒,90DEC CDE ∠+∠=︒,再根据DEC BAC ∠=∠,得出90BAC CDE ∠+∠=︒,由同弧所对的圆周角相等,得到90BDC CDE ∠+∠=︒,即可求证.(2)根据90BAF BDE ∠=∠=︒,得到90F ABC FDE ADB ∠+∠=∠+∠=,由AB AC =,得到A ABC CB =∠∠,再根据ADB ACB ∠=∠,得到,ABC ADB F EDF ∠=∠∠=∠,进而得到6DE EF ==,再根据4,90CE BCD =∠=︒,得到2290,25DCE CD DE CE ∠=︒=-=90,BDE CD BE ∠=︒⊥,得到CDECBD ,最后根据对应边成比例即可求解. 【详解】解:()1DE 与O 相切.理由:如图,连接BD .90,BAD ∠=︒点在BD 上,即BD 是直径,90BCD ∴∠=︒,90DEC CDE ∴∠+∠=︒.,DEC BAC ∠=∠90BAC CDE ∴∠+∠=︒.,BAC BDC ∠=∠90,BDC CDE ∴∠+∠=︒90,BDE ∴∠=︒即BD DE ⊥.点在O 上,DE ∴是O 的切线.()290BAF BDE ∠=∠=︒.90F ABC FDE ADB ∴∠+∠=∠+∠=.,AB AC =ABC ACB ∴∠=∠.,ADB ACB ∠=∠,,ABC ADB F EDF ∴∠=∠∠=∠6.DE EF ∴==4,90CE BCD =∠=︒,2290,2 5.DCE CD DE CE ∴∠=︒=-=90,BDE CD BE ∠=︒⊥,,CDE CBD ∴ CD BD CE DE ∴= O ∴的直径256354BD ⨯== 【点睛】此题主要考查圆周角定理,勾股定理,切线的判定和相似三角形的判定及性质,熟练掌握判定定理和性质定理是解题关键.24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.【答案】(1)2y x 2x 3=-++;(2)点M 的坐标为17,24⎛⎫-⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭【解析】【分析】(1)利用待定系数法即可解决问题; (2)根据223tan 3m m MG MBA BG m-++∠==-,1tan 2BE BDE DE ∠==,由∠MBA=∠BDE ,构建方程即可解决问题.【详解】解:()1把点()()3,0,0,3B C 代入2,y x bx c =-++ 得到930,3,b c c -++=⎧⎨=⎩解得2,3,b c =⎧⎨=⎩抛物线的解析式为2y x 2x 3=-++.()2如图,作MG x ⊥轴于点,G 连接,BM 则90MGB ∠=︒.()2,23,M m m m -++223,3,MG m m BG m ∴=-++=-2233m m MG tan MBA BG m-++∴∠==- ()222314y x x x =-++=--+,顶点的坐标为()1,4 DE x ⊥∵轴,90,4,1DEB DE OE ∴∠=︒==()3,0B ,2BE ∴=12BE tan BDE DE ∴∠== ,MBA BDE ∠=∠223132m m m -++∴=-当点M 在轴上方时223132m m m -++=- 解得112m =-,23m =(舍弃), 17,24M ⎛⎫∴- ⎪⎝⎭当点M 在轴下方时,223132m m m -++=-- 解得123,32m m ==-(舍弃),点39,24M ⎛⎫-- ⎪⎝⎭综上所述,满足条件的点M 的坐标为17,24⎛⎫- ⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭ 【点睛】此题主要考查待定系数法求二次函数解析式和利用三角函数解直角三角形,熟练掌握二次函数的性质是解题关键.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.【答案】[问题发现]25;[问题解决]①出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②总造价的最小值为160010元,出口距直线OB 的距离为36665-米 【解析】【分析】 [问题发现]PAB 的底边一定,面积最大也就是P 点到AB 的距离最大,故当OP AB ⊥时底边AB 上的高最大,再计算此时PAB 面积即可.[问题解决]①根据四边形CODE 面积=CDO CDE S S +,求出CDE S △最大时即可,然后作'E H OB ⊥,证明COD OHE ',利用相似三角形的性质求出E H '即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE ,求CE+QE 的最小值问题,然后利用相似三角形性质和勾股定理求解即可.【详解】解:[问题发现]:如图1,点运动至半圆中点时,底边AB 上的高最大,即' 5.P O r ==此时PAB △的面积最大,最大值为1105252⨯⨯=; [问题解决]①如图2,连接,CD 作OG CD ⊥,垂足为,G 延长OG 交AB 于点,则此时CDE △的面积最大.12,4,OA OB AC D ===为OB 的中点,8,6OC OD ∴==,在Rt COD 中,10, 4.8CD OG ==,'12 4.87.2GE ∴=-=,四边形CODE 面积的最大值为1168107.26022CDO CDE SS '+=⨯⨯+⨯⨯=, 作',E H OB ⊥垂足为, ''90,'90,E OH OE H E OH ODC ∠+∠=︒∠+∠='OE H ODC ∴∠=∠.又'90COD E HO ∠=∠=︒,CODOHE '∴, ''OD E H CD OE ∴= 6'1012E H ∴= '7.2E H ∴=,出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②铺设小路CE 和DE 的总造价为()2004002002.CE DE CE DE +=+如图3,连接,OE 延长OB 到点,Q 使12BQ OB ==,连接EQ在EOD △与QOE 中,EOD QOE =∠,且12OD OE OE OQ ==, ,EOD QOE ∴故2,QE DE =2CE DE CE QE ∴+=+,问题转化为求CE QE +的最小值,连接,CQ 交AB 于点,此时CE QE +取得最小值为CQ .在Rt COQ 中,8,24CO OQ ==,810CQ ∴= 故总造价的最小值为10作',E H OB ⊥垂足为,连接'OE .设',E H x =则3QH x =.在'Rt E OH 中,222'OH HE OE '+=,()22224312,x x ∴-+= 解得13666x -=,23666x +=舍去), 总造价的最小值为10OB 的距离为36665-米. 【点睛】此题考查圆的综合问题,涉及圆的基本性质,相似三角形的判定和性质,勾股定理等知识,综合程度较高,需要灵活运用知识,解题关键是:利用对称或相似灵活地将折线和转化为线段长,从而求折线段的最值.。
初三数学中考模拟试题注意事项:1.本试卷满分150分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1. 3的平方根是 ( )A .9BC.D.2. 用代数式表示“a 与b 的2倍的差的平方”,正确的是 ( )A .22()a b -B .2(2)a b -C .22a b -D .2(2)a b -3.下列运算正确的是 ( )A .3412x x x =B .623(6)(2)3x x x -÷-=C .23a a a -=-D .22(2)4x x -=-4.下列图形中既是轴对称图形又是中心对称图形的是 ( )5.不等式组2110x x >-⎧⎨-⎩,≤的解集是 ( )A .12x >-B .12x <-C .1x ≤D .112x -<≤6. 为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012a a a ,其中012a a a 、、均为0或1,传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是 ( ) A .11010 B .10111 C .01100 D .000117.在2009年的三八妇女节,第一学习小组为了解本地区大约有多少中学生知道自己母亲的生日,随机调查了100个中学生,结果其中只有30个学生知道自己母亲的生日.对于这个关于数据收集与处理的问题,下列说法正确的是 ( )A .调查的方式是普查B .本地区约有30%的中学生知道自己母亲的生日C .样本是30个中学生D .本地区约有70个中学生不知道自己母亲的生日 8.如图所示,△ABC 中,点P 、Q 、R 分别在AB 、BC 、CA 边上,且13AP AB =,14BQ BC =,15CR CA =,已知阴影△PQR 的面积是192cm ,则△ABC 的面积是 ( )A. 38B. 42.8C. 45.6D. 47.5二、填空题(本大题共有10小题,每小题3分,共30分.请把结果直接填在题中的横线上.) 9.分解因式:22a a +=.10.温家宝总理在第十一届全国人民代表大会第一次会议上作政府工作报告,指出过去五年我国城镇居民人均可支配收入已由2002年7703元增加到2007年13786元,13789这个数据用科学记数法表示为 . 11.已知圆锥的底面直径为4cm ,其母线长为3cm ,则它的侧面积为 2cm . 12.若正比例函数y kx =的图象经过点(2,-4),则k 的值为.13.在体育中考项目跳绳的训练中,小明5次试跳的成绩是(单位:个):68,94,95,88,95,则小明试跳成绩的平均数是 个.14.多边形的每个外角的度数都等于40°,则这个多边形的边数为 .15.将一副学生用三角板按如图所示的方式放置.若AE ∥BC ,则∠AFD 的度数是 .A .B .C .D .B 第8题16.如图,⊙O 中,OB ⊥AC ,∠A =40°,则∠C = . 17.学校举行“五月歌会”,需要从包括小明在内的5名候选者中随机抽取2名同学做节目主持人,那么恰好抽到小明的概率是 .18.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _.三、解答题(本大题共有10小题,共96分,解答需写出必要的文字说明、演算步骤或证明过程.) 19.解答下列各题(本题有2小题,第(1),(2)小题每题4分,共8分.)⑴计算:(1-)2009-(π-3)0+2312-+.⑵先化简,再求值:2121111a a a a -⎛⎫-÷⎪+-+⎝⎭,其中1a =. 20.(本小题满分8分)如图,矩形ABCD 中,点E 是BC 上一点,AD =DE ,AF ⊥DE ,垂足为F . 求证:AF =AB .21.(本小题满分8分)如图,将一个转盘3等份,并在每一份内注上“红、蓝、黄”标记. 小明和小亮用这个转盘进行“配紫色”游戏. 游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明赢,否则小亮赢.⑴若仅转动转盘两次,两次转出的颜色恰好配成紫色,则该事件属于 事件;(填“必然”或“随机”) ⑵你认为谁获胜的概率大?请通过“画树状图”或“列表”的方法加以分析说明.第15题第16题 第18题E D C B A F22.(本小题满分8分)为切实减轻中小学生课业负担、全面实施素质教育,某中学对本校学生课业负担情况进行调查. 在本校随机抽取若干名学生进行问卷调查,发现被抽查的学生中,每天完成课外作业时间,最长不足120分钟,没有低于40分钟的,且完成课外作业时间低于60分钟的学生数占被调查人数的10%.现将抽查结果绘制成了一个不完整的频数分布直方图,如图所示.⑴这次被抽查的学生有 人; ⑵请补全频数分布直方图;⑶被调查这些学生每天完成课外作业时间的中位数在 组(填时间范围); ⑷若该校共有3600名学生,请估计该校大约有多少名学生每天完成课外作业时间在80分钟以上(包括80分钟). (改编)23.(本小题满分10分)如图,AB 为⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,已知∠D =30°. ⑴求∠A 的度数;⑵若点F 在⊙O 上,CF ⊥AB ,垂足为E ,CF =34,求图中阴影部分的面积. (自编)24. 先阅读下面材料,然后解答问题:(本小题满分10分) 【材料一】:如图⑴,直线l 上有1A 、2A 两个点,若在直线l 上要确定一点P ,且使点P 到点1A 、2A 的距离之和最小,很明显点P 的位置可取在1A 和2A 之间的任何地方,此时距离之和为1A 到2A 的距离.如图⑵,直线l 上依次有1A 、2A 、3A 三个点,若在直线l 上要确定一点P ,且使点P 到点1A 、2A 、3A 的距离之和最小,不难判断,点P 的位置应取在点2A 处,此时距离之和为1A 到3A 的距离. (想一想,这是为什么?)不难知道,如果直线l 上依次有1A 、2A 、3A 、4A 四个点,同样要确定一点P ,使它到各点的距离之和最小,则点P 应取在点2A 和3A 之间的任何地方;如果直线l 上依次有1A 、2A 、3A 、4A 、5A 五个点,则相应点P 的位置应取在点3A 的位置.【材料二】:数轴上任意两点a 、b 之间的距离可以表示为a b -.【问题一】:若已知直线l 上依次有点1A 、2A 、3A 、……、25A 共25个点,要确定一点P ,使它到已知各点的距离之和最小,则点P 的位置应取在 ;若已知直线l 上依次有点1A 、2A 、3A 、……、50A 共50个点,要确定一点P ,使它到已知各点的距离之和最小,则点P 的位置应取在 .【问题二】:现要求112397x x x x x x +++-+-+-++- 的最小值,根据问题一的解答思路,可知当x 值为 时,上式有最小值为 . (改编)图⑴图⑵32l12l125. (本小题满分10分)如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲、乙两辆汽车分别从B 、C 两地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙两车到A 地的距离1y 、2y (千米)与行驶时间 x (时)的关系如图②所示.根据图象进行以下探究:⑴请在图①中标出 A 地的位置,并作简要的文字说明; ⑵求图②中M 点的坐标,并解释该点的实际意义.⑶在图②中补全甲车的函数图象,求甲车到 A 地的距离1y 与行驶时间x 的函数关系式.⑷A 地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.(根据南京2008中考题改编) 26.(本小题满分10分)已知抛物线2y ax bx =+(a ≠0)的顶点在直线112y x =--上,且过点A (4,0). ⑴求这个抛物线的解析式;⑵设抛物线的顶点为P ,是否在抛物线上存在一点B ,使四边形OP AB 为梯形?若存在,求出点B 的坐标;若不存在,请说明理由.⑶设点C (1,-3),请在抛物线的对称轴确定一点D ,使AD CD -的值最大,请直接写出点D 的坐标. (自编)27.(本小题满分12分)定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径. ⑴如图1,损矩形ABCD ,∠ABC =∠ADC =90°,则该损矩形的直径是线段 .⑵在线段AC 上确定一点P ,使损矩形的四个顶点都在以P 为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由. 友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(改编)y (千米) x (时)乙甲 图②图① A BCD图1⑶如图2,,△ABC 中,∠ABC =90°,以AC 为一边向形外作菱形ACEF ,D 为菱形ACEF 的中心,连结BD ,当BD 平分∠ABC 时,判断四边形ACEF 为何种特殊的四边形?请说明理由. 若此时AB =3,BD=BC 的长. (自编)28.(本小题满分12分)已知在梯形ABCD 中,AB ∥DC ,且AB =40cm ,AD =BC =20cm ,∠ABC =120°.点P 从点B 出发以1cm/s 的速度沿着射线BC 运动,点Q 从点C 出发以2cm/s 的速度沿着线段CD 运动,当点Q 运动到点D 时,所有运动都停止. 设运动时间为t 秒.⑴如图1,当点P 在线段BC 上且△CPQ ∽△DAQ 时,求t 的值;⑵在运动过程中,设△APQ 与梯形ABCD 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出自变量t 的取值范围;EFDBA 图2 图1Q P D CB A 备用图A BCD A B初三数学中考模拟试题试题参考答案及评分说明一、精心选一选:(每小题3分,共24分)1. D2. B3. C4. D5. D6. B7. B8. C 二、细心填一填:(每空3分,共30分)9. (2)a a + 10. 46.96610⨯ 11. 6π 12. -2 13. 88 14. 9 15. 75° 16. 10° 17.2518. . 三、认真答一答:(本大题共有10题,共96分)19. 解答下列各题:(本题有2小题,第⑴、⑵小题每题4分,共8分)⑴解:原式=-1-1+2分)4分) ⑵解:原式=2212(1)11a a a a a --⎛⎫-⨯+⎪--⎝⎭=212(1)1a a a a --+⨯+-=11a -……(3分)…………………………………………………………………(4分)20.(本小题满分8分)∵AF ⊥DE ,∴∠AFB =90°. ………………………………………………………………(1分)∵在矩形ABCD 中,AD ∥BC ,∠C =90°,∴∠ADF =∠DEC ,………………………(3分) ∴AFB =∠C =90°…………………………………………………………………………(4分) ∵AD =DE ,∴△ADF ≌△DEC ,……………………………………………………………(7分) ∴AF =AB .…………………………………………………………………………………(8分) 21.(本小题满分8分)⑴随机;……………………………………………………………………(2分) ⑵列表如下:第一次 第二次红 黄 蓝 红 红红 黄红 蓝红 黄 红黄 黄黄 蓝黄 蓝红蓝黄蓝蓝蓝或树状图由表或图可知,共有9种可能的结果,其中同色或配成紫色的结果出现5次,∴P (小明赢)=59, P (小亮赢)=49,∴P (小明赢)>P (小亮赢) ,∴小明获胜的概率大.蓝蓝蓝黄蓝红黄黄黄红红黄红红结 果红黄蓝蓝黄红红黄蓝第二次蓝黄红第一次评分说明:列表正确或画对树状图得3分,两个概率每求对一个得1分,比较后得出结论再得1分. 22.(本小题满分8分)解:⑴这次被抽查的学生有50人;⑵如图所示;⑶中位数在80至100分钟这一小组内;⑷由样本知,每天完成课外作业时间在80分钟以上(包括80分钟)的人数有35人,占被调查人数的3575010=,故全校学生中每天完成课外作业时间在80分钟以上(包括80分钟)的人数约有73600252010⨯=人.评分说明:第(1)小题正确得2分,第(2)画图正确得2分,第(3)小题答对得2分;第(4)小题比例算对得1分,最后得出结论得1分. 23.(本小题满分10分)⑴解:连结OC ,∵CD 切⊙O 于点C ,∴∠OCD =90°. ………………………………(1分) ∵∠D =30°,∴∠COD =60°. …………………(2分) ∵OA =OC ,∴∠A =∠ACO =30°. ………………(4分)⑵∵CF ⊥直径AB , CF =34,∴CE=(5分) ∴在Rt △OCE 中,OE =2,OC =4. ……………………(6分)∴2BOC 60483603S ππ⨯扇形==,EOC 122S ⨯⨯ =.…………………………(8分)∴EOC BOC S S S π 阴影扇形8=-=-3(10分)24. 先阅读下面材料,然后解答问题:(本小题满分10分)问题一:点13A 处 …………(3分) 点25A 和26A 之间的任何地方 ………(6分) 问题二:48 …………(8分) 1225 ………(10分)25. (本小题满分10分)⑴A 地位置如图所示.使点A 满足AB ∶AC =2∶3 . ……………………………… (2分)⑵乙车的速度150÷2=75千米/时,9075 1.2÷=,∴M (1.2,0) ………………(3分) 所以点 M 表示乙车 1.2 小时到达 A 地.…(4分) ⑶甲车的函数图象如图所示. …………(5分)当01x ≤≤时,16060y x =-+;…………(6分)当1 2.5x <≤时,16060y x =-. …………(7分) ⑷由题意得606015606015x x -≤⎧⎨-+≤⎩,得3544x ≤≤; 759015759015x x -+≤⎧⎨-≤⎩,得715x ≤≤.∴514x ≤≤…………………………………………………………………………(9分) ∴两车同时与指挥中心通话的时间为51144-=小时. …………………………(10分)26.(本小题满分10分)⑴∵抛物线过点(0,0)、(4,0),∴抛物线的对称轴为直线2x =. ………………………………………………………(1分)∵顶点在直线112y x =--上, ∴顶点坐标为(2,-2). …………………………(3分) 故设抛物线解析式为2(2)2y a x =--, ∵过点(0,0),∴12a =,∴抛物线解析式为2122y x x =-………………………(5分) ⑵当AP ∥OB 时,如图,∠BOA =∠OAP =45°,过点B 作BH ⊥x 轴于H ,则OH =BH . 设点B (x ,x ),故2122x x x =-,解得x =6或x =0(舍去)…………………………(6分) ∴B (6,6). …………………………………………………………………………(7分)当OP ∥AB 时,同理设点B (4-x ,x )故21(4)2(4)2x x x =---,解得x =6或x =0(舍去),∴B (-2,6) .……(8分) ⑶D (2,-6).………………………………………………………………………………(10分)27.(本小题满分12分)解:⑴AC ;…………………………………………………………………………………(1分)⑵作图如图;…………………………………………………………………………(3分)∵点P 为AC 中点,∴PA =PC =12AC. ∵∠ABC =∠ADC =90°,∴BP =DP =12AC ,∴PA =PB =PC =PD ,…………(4分)∴点A 、B 、C 、D 在以P 为圆心,12AC 为半径的同一个圆上. ………………(5分)⑶解:∵菱形ACEF ,∴∠ADC =90°AE =2AD ,EC =2CD ,∴四边形ABCD 为损矩形,∴由⑵可知,点A 、B 、C 、D 在同一个圆上. ……………………………………(7分)∵ AM 平分∠BAD ,∴∠ABD =∠CBD =45°,∴ AD CD=,∴AD =CD , ∴四边形ACEF 为正方形. ………………………………………………………(9分) ∵点BD 平分∠ABC ,BD=D 到AB 、BC 的距离h 为4,∴122ABD S AB h AB =⨯= =6. 1322ABC S AB BC BC =⨯= , 122BDC S BC h BC =⨯= ,2ACD ACEF 111444S S AC BC 2正方形===(+9),∵ABC ADC ABCD S S S 四边形=+,∴14BC 2(+9)+32BC =6+2BC ,∴BC =5或BC =-3(舍去),∴BC =5. ……………………………………………(12分)28.(本小题满分12分)解:⑴如图1,分别过点作AM ⊥CD 于M ,BN ⊥CD 于N ,∵BC =20,∠C =180°-∠ABC =60°,∴CN =10=DM ,BN=CD =60.∵△CPQ ∽△DAQ ,∴CP CQDA DQ=, ∴20220602t tt=--,∴110t =,260t =(不合题意), ∴t =10.…………………(5分)图1 图2⑵当点P 在线段BC 上时,如图2,过P 作FG ⊥CD 于G ,交AB 延长线于F. ∴PF,PG)t -,∴12ABP S AB PF =⨯=,1(20)2CPQ S CQ PG t =⋅=- , H 图1QPD CB A M N图1QPD CB AF GADQ CPQ ABP ABCD S S S S S = 梯形---=1602)2t ⨯(-(20)t --220400)t t -+. (020t <≤)………(8分)当点P 在线段BC 的延长线上时,如图3,过P 作PH ⊥AB 于H ,则设AP 与CD 交于点E ,∵EC PC AB PB=,∴40800t EC t -=, ∴QE =CQ -CE =2240800t t t-+.∴y =310800402212⨯+-⨯tt t =tt t )40020(3102+-. (2030t <≤) ………………………………………(12分)。