2018届宁德市普通高中毕业班第二次质量检查试卷(文)含答案
- 格式:doc
- 大小:202.80 KB
- 文档页数:5
2018届宁德市普通高中毕业班第二次质量检查试卷文科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:先化简集合B,再求得解.详解:由题得,所以.故答案为:C点睛:本题主要考查集合的化简和交集,意在考查学生对这些基础知识的掌握能力.2. 复数A. B. C. D.【答案】A【解析】分析:利用复数的除法法则化简即得解.详解:由题得.故答案为:A点睛:本题主要考查复数的除法运算,意在考查学生对这些知识的掌握能力.3. 下图是具有相关关系的两个变量的一组数据的散点图和回归直线,若去掉一个点使得余下的个点所对应的数据的相关系数最大,则应当去掉的点是A. B. C. D.【答案】B【解析】分析:利用相关系数的定义性质分析得解.详解:因为相关系数的绝对值越大,越接近1,则说明两个变量的相关性越强.因为点E到直线的距离最远,所以去掉点E,余下的个点所对应的数据的相关系数最大.点睛:本题主要考查回归直线和相关系数,相关系数的绝对值越大,越接近1,则说明两个变量的相关性越强.4. 下列曲线中,既关于原点对称,又与直线相切的曲线是A. B. C. D.【答案】D【解析】分析:先利用函数的奇偶性排除B,C,再求D选项的切线方程得解.详解:因为曲线关于原点对称,所以函数是奇函数.对于选项B,因为,所以它是偶函数,不是奇函数,故排除B.对于选项C,由于函数的定义域为,定义域不关于原点对称,所以不是奇函数,故排除C.对于选项D,,设切点为,则因为,所以或,当时,切线方程为.故答案为:D点睛:(1)本题主要考查函数的奇偶性和求曲线的切线方程,意在考查学生对这些基础知识的掌握能力. (2)与曲线的切线有关(切点未知)的问题,一般先设切点,再利用导数的几何意义求切线的斜率,再根据切点在切线和曲线上,求出切点,最后写出切线的方程.5. 若,满足约束条件则的最小值是A. B. C. D.【答案】B【解析】分析:先作出不等式组对应的平面区域,再利用数形结合分析得到的最小值.详解:不等式组对应的平面区域如图所示:因为z=4x-y,所以y=-4x-z,直线的纵截距为-z,当直线经过点C时,纵截距-z最大值时,z最小.联立方程组得C.故的最小值为.故答案为:B点睛:(1)本题主要考查线性规划问题,意在考查学生对这些基础知识的掌握能力和数形结合的能力.(2) y=-4x-z,直线的纵截距为-z,当直线经过点C时,纵截距-z最大值时,z最小.不要理解为纵截距最小,则z 最小,一定看纵截距这个函数的单调性.对这一点,学生要理解掌握并灵活运用.6. 已知等差数列满足,,则A. B. C. D.【答案】C【解析】分析:先根据已知求出或,再求得解.详解:由题得,,所以或,当时,当时,故答案为:C点睛:(1)本题主要考查等差数列的基本量的计算和通项公式,意在考查学生对这些基础知识的掌握能力和基本的运算能力.(2)等差数列中,如果,则,注意这个性质的灵活运用.7. 如下图所示,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的表面积为A. B. C. D.【答案】B【解析】分析:首先通过三视图找到几何体原图,进一步求出几何体的表面积.详解:根据三视图,该几何体是边长为2的正方体,在右前方切去一个边长为1的正方体,则表面积没有变化.故S=6•2•2=24.故答案为:B点睛:(1)本题主要考查三视图和几何体的表面积的计算,意在考查学生对这些基础知识的掌握能力和空间想象能力. (2)得到几何体原图后,逐一计算出表面积也可以,但是观察到,虽然是正方体切去了一个小正方体,但是几何体的表面积没有变,提高了解题效率,意在考查学生的空间想象能力和观察能力.8. 将周期为的函数的图象向右平移个单位后,所得的函数解析式为A. B.C. D.【答案】A【解析】分析:先化简f(x),再求出w的值,再求平移后的函数解析式得解.详解:由题得,因为函数的周期是所以所以.将函数f(x)向右平移个单位后,所得的函数解析式为,故答案为:A点睛:(1)本题主要考查三角函数解析式的求法,考查函数图像的变换,意在考查学生对这些基础知识的掌握能力.(2) 把函数的图像向右平移个单位,得到函数的图像, 把函数的图像向左平移个单位,得到函数的图像,简记为“左加右减”.9. 过抛物线的焦点作一倾斜角为的直线交抛物线于,两点(点在轴上方),则A. B. C. D.【答案】C【解析】分析:设先求出的关系,再求的值得解.详解:设由题得由题得,所以所以.故答案为:C10. 已知若函数只有一个零点,则实数的值为A. B. C. D.【答案】B【解析】分析:先求出分段函数的每一段的单调性,从而得到函数的单调性,再利用函数的单调性转化为只有一个解,最后利用二次函数的图像性质得解.详解:由题得函数在都是增函数,由于-1+1=ln(-1+2)=0,所以是单调增函数,因为函数只有一个零点,所以只有一个零点,因为是单调增函数,所以只有一个解,所以只有一个解.所以故答案为:B点睛:解答本题关键有两点,其一是分析出函数的单调性,先利用复合函数的单调性得到函数在都是增函数,再根据端点值得到函数是单调增函数,其二是将命题转化为只有一个解.对于函数的零点问题常用的是图像法.11. 将一个内角为且边长为的菱形沿着较短的对角线折成一个二面角为的空间四边形,则此空间四边形的外接球的半径为A. B. C. D.【答案】D【解析】分析: 首先把平面图形转换为空间图形,进一步利用球的中心和勾股定理的应用求出结果.详解: 如图所示:菱形ABCD的∠A=60°,沿BC折叠,得到上图,则E、F分别是△ABC和△BCD的中心,球心O为△ABC和△BCD的过中心的垂线的交点,则:OE=OF=1,EC=2,利用勾股定理得:故答案为:D点睛: (1)本题主要考查空间几何体的外接球问题,考查二面角,意在考查学生对这些基础知识的掌握能力及空间想象能力. (2)解答本题的关键是找到球心,由于E、F分别是△ABC和△BCD的中心,所以球心O为△ABC 和△BCD的过中心的垂线的交点.12. 记为数列的前项和,满足,,若对任意的恒成立,则实数的最小值为A. B. C. D.【答案】C【解析】分析:根据数列{a n}求解S n,利用不等式的性质求解.详解:由a1=,2a n+1+3S n=3(n∈N*),则2a n+3S n﹣1=3.两式相减,可得2a n+1﹣2a n+3a n=0,即.∵a1=,∴a n==3•2﹣n.那么S n==1.∴≤S n.要使对任意的n∈N*恒成立.根据勾勾函数的性质,当S n=时,取得最大值为∴实数M的最小值为.故答案为:C点睛:(1)本题考查了等差数列与等比数列的通项公式及其前n项和公式,意在考查了学生对这些基础知识的掌握能力及推理能力与计算能力.(2)解答本题的一个关键是求的范围,由于S n=1,所以奇数项都大于1,单调递减,偶数项都小于1,单调递增.所以最大,最小.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知两个单位向量,,且,则,的夹角为_______.【答案】【解析】分析:直接把两边平方,再展开即得的夹角.详解:由题得故的夹角为.故答案为:点睛:本题主要考查向量的数量积及向量的运算,考查向量的夹角,意在考查学生对这些基础知识的掌握能力及基本的运算能力.14. 已知点是以,为焦点的双曲线上的一点,且,则的周长为______.【答案】【解析】分析:根据题意,由双曲线的标准方程可得a、b的值,由双曲线的定义可得||PF1|﹣|PF2||=2a=2,又由|PF1|=3|PF2|,计算可得|PF1|=3,|PF2|=1,又由|F1F2|=2c=2,由三角形的周长公式计算可得答案.详解:根据题意,双曲线C的方程为x2﹣y2=1,则a=1,b=1,则c=,则||PF1|﹣|PF2||=2a=2,又由|PF1|=3|PF2|,则|PF1|=3,|PF2|=1,又由c=,则|F1F2|=2c=2,则△PF1F2的周长l=|PF1|+|PF2|+|F1F2|=4+2;故答案为:4+2点睛:(1)本题主要考查双曲线的简单几何性质,考查双曲线的定义,意在考查学生对这些基础知识的掌握能力. (2)在圆锥曲线种,只要看到焦半径就要联想到曲线的定义分析解答,这是一个解题技巧,学生要掌握.15. 我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在《张丘建算经》中给出一个解不定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的数量分别为,,,则鸡翁、鸡母、鸡雏的数量即为方程组的解.其解题过程可用框图表示如下图所示,则框图中正整数的值为______.【答案】4【解析】分析:由得y=25﹣x,结合x=4t,可得框图中正整数m的值.详解:由得:y=25﹣x,故x必为4的倍数,当x=4t时,y=25﹣7t,由y=25﹣7t>0得:t的最大值为3,故判断框应填入的是t<4?,即m=4,故答案为:4点睛:本题考查的知识点是程序框图,根据已知分析出y与t的关系式及t的取值范围,是解答的关键.16. 已知定义在上的函数满足且,若恒成立,则实数的取值范围为______.【答案】【解析】分析:求出f(x)的解析式为f(x)=e x,结合函数图象即可得出a的范围.详解:∵>0,∴f(x)为增函数,∴f(f(x)﹣e x)=1,∴存在唯一一个常数x0,使得f(x0)=1,∴f(x)﹣e x=x0,即f(x)=e x+x0,令x=x0可得+x0=1,∴x0=0,故而f(x)=e x,∵f(x)≥ax+a恒成立,即e x≥a(x+1)恒成立.∴y=e x的函数图象在直线y=a(x+1)上方,不妨设直线y=k(x+1)与y=e x的图象相切,切点为(x0,y0),则,解得k=1.∴当0≤a≤1时,y=e x的函数图象在直线y=a(x+1)上方,即f(x)≥ax+a恒成立,:故答案为:[0,1].点睛:本题解答的关键有两个,其一是根据已知条件求出f(x)=e x,其二是数形结合分析e x≥a(x+1)恒成立.重点考查学生的分析推理能力和数形结合的能力.三、解答题:本大题共6小题,满分70分.解答须写出文字说明证明过程和演算步骤.17. 的内角,,的对边分别为,,,且.(1)求角的大小;(2)若,求边上高的长.【答案】(1);(2)【解析】分析:(1)先利用正弦定理边化角得到,求出A的大小.(2)先利用余弦定理求c,再利用直角三角函数求边上高的长.详解:(1)由正弦定理有,,,(2)由余弦定理有:,或(舍去)点睛:(1)本题主要考查正弦定理、余弦定理解三角形,意在考查学生对这些基础知识的掌握能力及分析转化能力.(2)数学的解题必须严谨,在得到后,不能简单两边同时除以sinC,必须说明,才能同时除以sinC.在有的地方容易出错.18. 为响应绿色出行,某市在推出“共享单车”后,又推出“新能源租赁汽车”.每次租车收费的标准由两部分组成:①里程计费:1元/公里;②时间计费:元/分.已知陈先生的家离上班公司公里,每天上、下班租用该款汽车各一次.一次路上开车所用的时间记为(分),现统计了50次路上开车所用时间,在各时间段内频数分布情况如下表所示将各时间段发生的频率视为概率,一次路上开车所用的时间视为用车时间,范围为分.(1)估计陈先生一次租用新能源租赁汽车所用的时间不低于分钟的概率;(2)若公司每月发放元的交通补助费用,请估计是否足够让陈先生一个月上下班租用新能源租赁汽车(每月按天计算),并说明理由.(同一时段,用该区间的中点值作代表)【答案】(1);(2)见解析【解析】分析:(1)利用对立事件的概率公式求陈先生一次租用新能源租赁汽车的时间不低于30分钟的概率.(2)比较每个月的费用和元的大小,即得解.详解:(1)设“陈先生一次租用新能源租赁汽车的时间不低于30分钟”的事件为则所求的概率为所以陈先生一次租用新能源租赁汽车的时间不低于30分钟的概率为.(2)每次开车所用的平均时间为每次租用新能源租赁汽车的平均费用为每个月的费用为,因此公车补贴够上下班租用新能源分时租赁汽车.点睛:本题主要考查对立事件的概率,考查平均值的计算等知识,意在考查学生对这些基础知识的掌握能力及分析能力.19. 如图,在四棱锥中,,,,.(1)求证:;(2)若,,为的中点.(i)过点作一直线与平行,在图中画出直线并说明理由;(ii)求平面将三棱锥分成的两部分体积的比.【答案】(1)见解析;(2)见解析,【解析】分析: (1)取中点,连接,,先证明面,再证明.(2) (i)取中点,连接,,则,即为所作直线,证明四边形为平行四边形即得证.(ii)先分别计算出两部分的体积,再求它们的比.详解:(1)证明:(1)取中点,连接,,为中点,又,为中点,又,面又面,(2)(i)取中点,连接,,则,即为所作直线,理由如下:在中、分别为、中点,且又,且,四边形为平行四边形.(ii),,,面又在中,,,又,面,.:(1)本题主要考查空间平行垂直位置关系的证明,考查空间几何体体积的计算,意在考查学生对这些基础知识的掌握能力和空间想象转化能力.(2)对于空间平行垂直位置关系的证明有几何法和向量法两种方法,空间几何体体积的计算有公式法、割补法和体积变换法三种方法.20. 已知椭圆的离心率为,四个顶点所围成的四边形的面积为.(1)求椭圆的方程;(2)已知点,斜率为的直线交椭圆于,两点,求面积的最大值,并求此时直线的方程.【答案】(1);(2)或【解析】分析:(1)根据已知列出方程组解方程组即得椭圆的方程.(2) 设直线的方程为,,再求面积的最大值得到t的值,即得直线的方程.详解:(1),,又,联立①②得.椭圆方程为.(2)由(1)得椭圆方程为,依题意,设直线的方程为,,点到直线的距离为,联立可得,显然,,当且仅当时,即时取等号,,此时直线的方程为或.点睛:(1)本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,意在考查学生对这些基础知识的掌握能力及分析推理能力和计算能力. (2)解答本题的关键是得到后如何求函数的最大值,本题是利用基本不等式求的最大值,简洁明了,解题效率高.21. 已知函数.(1)讨论的单调性;(2)若函数有三个零点,证明:当时,.【答案】(1)见解析;(2)见解析【解析】分析:(1)先求导,再对a分类讨论得到的单调性.(2)先转化函数有三个零点得到,再利用分析法和导数证明.详解:(1)令,则或,当时,,在上是增函数;当时,令,得,,所以在,上是增函数;令,得,所以在上是减函数当时,令,得,,所以在,上是增函数;令,得,所以在上是减函数综上所述:当时,在上是增函数;当时,在,上是增函数,在上是减函数.当时,在,上是增函数,在上是减函数.(2)由(1)可知:当时,在上是增函数,函数不可能有三个零点;当时,在,上是增函数,在上是减函数.的极小值为,函数不可能有三个零点当时,,要满足有三个零点,则需,即当时,要证明:等价于要证明即要证:由于,故等价于证明:,证明如下:构造函数令,函数在单调递增,函数在单调递增,∴.22. 在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的参数方程为(为参数).(1)求曲线的直角坐标方程和曲线的极坐标方程;(2)当变化时设的交点的轨迹为,若过原点,倾斜角为的直线与曲线交于点,求的值.【答案】(1),;(2)1【解析】分析:(1)直接代极坐标公式化极坐标为直角坐标,利用三角恒等式消参得到的直角坐标方程,再化为极坐标方程.(2)利用直线参数方程t的几何意义求求的值.详解:(1)由:,得,即,曲线化为一般方程为:,即,化为极坐标方程为:.(2)由及,消去,得曲线的直角坐标方程为.设直线的参数方程为(为参数),与联立得,即,故,,∴.点睛:(1)本题主要考查直角坐标、极坐标和参数方程的互化,考查直线参数方程t的几何意义,意在考查学生对这些基础知识的掌握能力及运算能力. (2) 直线参数方程中参数的几何意义是这样的:如果点在定点的上方,则点对应的参数就表示点到点的距离,即.如果点在定点的下方,则点对应的参数就表示点到点的距离的相反数,即.(2)由直线参数方程中参数的几何意义得:如果求直线上两点间的距离,不管两点在哪里,总有.23. 已知实数x, y满足.(1)解关于x的不等式;(2)若,证明:【答案】(1);(2)9【解析】分析:(1)先消去y,再利用零点分类讨论法解绝对值不等式.(2)利用基本不等式证明.详解:(1),当时,原不等式化为,解得,∴;当时,原不等式化为,∴;当时,原不等式化为,解得,∴;综上,不等式的解集为.(2)且,.当且仅当时,取“=”.点睛:(1)本题主要考查零点讨论法解绝对值不等式,考查不等式的证明,意在考查学生对这些基础知识的掌握能力和分类讨论能力.(2)第(2)的关键是常量代换,,常量代换之后才方便利用基本不等式证明.。
2018年宁德市普通高中毕业班质量检测理科综合能力测试本试卷共16页。
共300分。
注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在在答题卡上。
写在试题卷上无效。
3.考试结束,考生必须将试题卷和答题卡一并交回。
可能用到的相对原子质量:H—1 C—12 O—16 Cl—35.5 Mg—24第Ⅰ卷(选择题共126分)一、选择题:本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项符合题目要求的。
1. 下列关于人体肝细胞的叙述错误的是A. 肝细胞内广阔的膜面积为多种酶提供了大量的附着位点B. 肝细胞膜上既有胰岛素受体又有胰高血糖素受体C. 肝细胞癌变可通过检测血清中甲胎蛋白含量初步鉴定D. 水分子可以逆相对含量梯度通过水通道蛋白进入肝细胞2. 下图为绿色植物部分物质和能量转换过程的示意图,下列叙述正确的是A. 过程①发生在叶绿体中,过程③发生在线粒体中B. 过程①产生NADH,过程③消耗NADPHC. 若叶肉细胞中过程②速率大于过程③,则植物干重增加D. 过程③中A TP的合成与放能反应相联系,过程④与吸能反应相联系3. 关于线粒体的起源,科学家提出了一种解释:原始需氧细菌被一种真核生物细胞吞噬,并进化为宿主细胞内专门进行细胞呼吸的细胞器。
以下证据不支持这一观点的是A. 线粒体能像细菌一样进行分裂增殖B. 线粒体的多数蛋白质由核DNA指导合成C. 线粒体的内膜与细菌细胞膜成分相似D. 线粒体内存在环状DNA4. 科研人员将铁皮石斛的带芽茎段经植物组织培养得到原球茎,并探究6-BA与2,4-D诱导原球茎增殖的最适浓度组合,实验结果如下图。
【参考答案】一、选择题1.C2. A3. B4. D5.B6.C7. B 8. A 9. C 10. B 11. D 12.C二、填空题13.2π3 14. 15.4 16.01a ≤≤三、解答题17. 解:(1)由正弦定理有:sin sin (sin cos )B A C C =+sin sin()sin cos cos sin =+=+B A C A C A C ,cos sin sin sin A C A C ∴=,0πsin 0,<<∴≠c C ,cos sin A A ∴=,tan 1A ∴=0π<<Aπ4∴=A ;(2)π13,4===a b A由余弦定理有:2222cos a b c bc A =+-,2450c c ∴--=,5c ∴=或1c =-(舍去),sin BD c A ∴=5==.18解:(1)设“陈先生一次租用新能源租赁汽车的时间不低于30分钟”的事件为A则所求的概率为1219()1()15025P A P A =-=-=,所以陈先生一次租用新能源租赁汽车的时间不低于30分钟的概率为1925.(2)每次开车所用的平均时间为122882253545553550505050⨯+⨯+⨯+⨯=,每次租用新能源租赁汽车的平均费用为1120.1235=16.2⨯+⨯,每个月的费用为16.2222=712.8⨯⨯,712.8<800,因此公车补贴够上下班租用新能源分时租赁汽车.19. (1) 证明:取BD中点O,连接AO,PO,AB AD=,O为BD中点AO BD∴⊥又PB PD=,O为BD中点PO BD∴⊥又AO PO O=BD∴⊥面PAO,又PA⊂面PAOPA BD∴⊥;(2)解:(i)取PD中点F,连接CF,EF,则//CF BE,CF即为所作直线l, 理由如下:在PAD∆中E、F分别为PA、PD中点//EF∴AD,且112EF AD==又//AD BC,112BC AD==//EF BC∴且=EF BC∴四边形BCFE为平行四边形.//CF BE∴,(ii)PA AB⊥,PA BD⊥,AB BD B= PA∴⊥面ABD,又在ABD∆中,2AB AD==,BD=,222AB AD BD+=AB AD∴⊥又PA AB⊥,PA AD A= AB∴⊥面PAD,方法一:112232P ACDV-=⨯⨯⨯D11(12)232C AEFD V -=⨯⨯+=,P ECF V -∴=,13P ECF C AEFD V V --∴= , 方法二:在PAD ∆中,EF 为中位线14PEFPAD S S ∆∆∴=,113143PEF C PEFC PAD PAD SAB V V S AB∆--∆⨯⨯∴==⨯⨯,1=3P ECFC AEFD V V --∴. 方法三:12EF AD =113143PEC F PEC D PAC PAC SEFV V S AD∆--∆⨯⨯∴==⨯⨯,1=3P ECF C AEFDV V --∴.20. 解:(1)22221+=x y ab ,1422∴=⨯==S ab ab ∴ab ①又2e=②,联立①②得1a b ==.∴椭圆方程为2212x y +=.(2)由(1)得椭圆方程为2212x y +=,依题意,设直线l 的方程为2y x t =+,1122(,),(,)B x y C x y , 点12A (,)到直线l :2y x t =+的距离为d ,联立22212y x t x y =+⎧⎪⎨+=⎪⎩,,可得2298(22)0x tx t ++-=,显然12212890,229t x x t x x ⎧+=-⎪⎪∆>⎨-⎪=⎪⎩, BD ∴=d ∴==,1122ABD S BD d ∆∴=⨯=290->t 22(9)2-+∴=t t d t ,∴当且仅当292t =时,即t =,max ()ABD S ∆∴=,此时直线l的方程为420x y ++或420x y +-.21. 解:(1)2()36=3(2f x x ax x x a '=--) , 令()0f x '=,则=0x 或=2x a ,当0a =时,'()0f x ≥,()f x 在R 上是增函数; 当0a >时,令'()0f x >,得0x <,2x a >,所以()f x 在(,0)-∞,(2,)a +∞上是增函数; 令'()0f x <,得02x a <<,所以()f x 在(0,2)a 上是减函数, 当0a <时,令'()0f x >,得2x a <,0x >,所以()f x 在(,2)a -∞,(0,)+∞上是增函数; 令'()0f x <,得20a x <<,所以()f x 在(2,0)a 上是减函数. 综上所述:当0a =时,()f x 在R 上是增函数;当0a >时,()f x 在(,0)-∞,(2,)a +∞上是增函数,在(0,2)a 上是减函数. 当0a <时,()f x 在(,2)a -∞,(0,)+∞上是增函数,在(2,0)a 上是减函数.(2)由(Ⅰ)可知:当0a =时,()f x 在R 上是增函数,∴函数()f x 不可能有三个零点; 当0a <时,()f x 在(,2)a -∞,(0,)+∞上是增函数,在(2,0)a 上是减函数. ∴()f x 的极小值为(0)=40f >,∴函数()f x 不可能有三个零点 当0a >时,3min ()(2)44f x f a a ==-,要满足()f x 有三个零点,则需3440a -<,即1a >当0x >时,要证明:2()6()e >-a f x a a 等价于要证明2min ()6()e >-af x a a即要证: 32446()e ->-a a a a由于1a >,故等价于证明:231e 2++<a a a a ,证明如下:法1:构造函数2()3e 222((1,))=---∈+∞a g a a a a a()(33)e 24'=+--a g a a a令()(33)e 24=+--a h a a a()(63)40a h a a e '=+->,∴函数()h a 在(1,)+∞单调递增 min ()(1)6e 60∴==->h a h ,∴函数()g a 在(1,)+∞单调递增 min ()(1)3e 60∴==->g a g ,231e 2∴++≤aa a a∴2()6()e >-a f x a a .法2:构造函数()e 1((1,))=--∈+∞a g a a a ,∵()e 10'=->a g a ,∴函数()g a 在(1,)+∞单调递增,∴e 1>+a a , ∴2233e (1)(1)(1)22-++>+-++a a a a a a a a ,231e (1)(1)(2)022-++>-+>a a a a a a ,∴2()6()e >-a f x a a .22.解法一:(1)由1C :2(4cos )4r ρρθ-=-,得224cos 4r ρρθ-+=,即222440x y x r +-+-=,曲线2C 化为一般方程为:222(4)3x y r -+=,即2228163x y x r +-+=,化为极坐标方程为:228cos 1630r ρρθ-+-=.(2)由22244x y x r +-+=及2228163x y x r +-+=,消去2r , 得曲线3C 的直角坐标方程为2222x y x +-=.设直线l的参数方程为1,2x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),与2222x y x +-=联立得2213244t t t +-=,即220t t --=,故121t t +=,1220t t =-<, ∴121OA OB t t -=+=.解法二:(1)同解法一;(2)由224cos 4r ρρθ-+=及228cos 1630r ρρθ-+-=,消去2r ,得曲线3C 的极坐标方程为22cos 20()ρρθρ--=∈R . 将θπ=3代入曲线3C 的极坐标方程,可得220ρρ--=,故121ρρ+=,1220ρρ=-<, 故121OA OB ρρ-=+=.23.解法一:(1)1,x y +=|2||1|5x x ∴-++≤,当2x ≥时,原不等式化为215x -≤,解得3x ≤,∴23x ≤≤;当12x -≤<时,原不等式化为215x x -++≤,∴12x -≤<;当1x <-时,原不等式化为215x -+≤,解得2x ≥-, ∴21x -≤<-;综上,不等式的解集为{}23x x -≤≤.(2)1,x y +=且0,0x y >>,2222222211()()(1)(1)x y x x y y x y x y +-+-∴--=⋅ 222222xy y xy x x y ++=⋅222222()()y y x x x x y y =++225xyy x =++.59≥=. 当且仅当12x y ==时,取“=”.解法二:(1)同解法一;(2)1,x y +=且0,0x y >>,2222221111(1)(1)x y x y x y --∴--=⋅ 22(1)(1)(1)(1)x x y yx y +-+-=⋅22(1)(1)x yy x x y ++=⋅1x y xyxy +++=21xy =+2219()2x y≥+=+ 当且仅当12x y ==时,取“=”.。
2018届宁德市普通高中毕业班第二次质量检查试卷理 科 数 学本试卷分第I 卷和第II 卷两部分.第I 卷1至2页,第II 卷3至5页,满分150分. 考生注意:1.答题前,考生务必将自己的姓名、准考号填写在答题卡上.考生要认真核对答题卡上粘贴的“姓名、准考证号、考试科目”与考生本人准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷和答题卡一并交回 .第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i1iz =+的共轭复数z 在复平面内对应的点位于 A .第一象限 B .第二象限 345C .第三象限 D .第四象限2.已知集合}{1A x x =≥-,1,2x B y y x A ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎭⎩,则A B =IA .}{12x x -≤≤B .}{2x x ≥C .}{02x x <≤ D .∅3.某几何体的三视图如图所示,若该几何体的体积为2,则图中x 的值为 A .1 B 2C 3D 64.设,x y 满足约束条件12324x y x ≤-≤⎧⎨≤≤⎩,,则目标函数2z x y =-的最大值为A .72 B .92 C .132D .152 5.将函数1sin()24y x π=+图象上各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y f x =的图象,则函数()4y f x 3π=+的一个单调递增区间是 A .(,0)2π-B .(0,)2π2俯视图正视图2x x xC .(,)2ππD .3(,2)2ππ6.在如图所示的正方形中随机投掷10000个点,则落入由曲线C(曲线C 为正态分布(2,1)N 的密度曲线)与直线0,x =1x = 及0y =围成的封闭区域内点的个数的估计值为(附:若X2(,)N μσ,则()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=,(33)0.9974P X μσμσ-<<+=)A .2718B .1359C .430D .2157. 已知F 是抛物线2:2(0)C y px p =>的焦点,P 是C 上的一点,Q 是C 的准线上一点.若ΔPQF 是边长为2的等边三角形,则该抛物线的方程为A .28y x =B .26y x =C .24y x =D .22y x = 8.已知锐角,αβ满足sin 2cos αα=,1cos()7αβ+=,则cos β的值为 A .1314 B .1114C 53D 39.已知O 是坐标原点,12,F F 分别是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,过左焦点1F 作斜率为12的直线,与其中一条渐近线相交于点A .若2||||OA OF =,则双曲线C 的离心率e 等于 A .54B .53C 3D .210.世界著名的百鸡问题是由南北朝时期数学家张丘建撰写的《张丘建算经》中的一个问题:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母雏各几何?张丘建是数学史上解决不定方程解的第一人.用现则不定方程为代方程思想,可设,,x y z 分别为鸡翁、鸡母、鸡雏的数量,53100,3100.z x y x y z ⎧++=⎪⎨⎪++=⎩如图是体现张丘建求解该问题思想的框图,则方框中①,②应填入的是A .3?t <,257y t =-B .3?t ≤,257y t =-C .5?t <,255y t =-D .5?t ≤,255y t =- 11.底面边长为6的正三棱锥的内切球半径为1,则其外接球的表面积为A .49πB .36πC .25πD .16π12.设函数()ln()f x x k =+,()e 1x g x =-.若12()()f x g x =,且12x x -有极小值1-,则实数k 的值是A .1-B .2-开始1t =4x t=100z x y=--,,x y z 输出1t t =+结束是否①②Oyx1C .0D .22018届宁德市普通高中毕业班第二次质量检查试卷理 科 数 学第II 卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答. 在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分. 13.边长为2的正三角形ABC 中,12AD DC =,则BD AC ⋅=___________. 14.()22344(1)x x x -++的展开式中,3x 的系数是___________.(用数字填写答案)15.B 村庄在A 村庄正西10km ,C 村庄在B 村庄正北3km .现在要修一条从A 村庄到C 村庄的公路,沿从A 村庄到B 村庄的方向线路报价是800万元/km ,沿其他线路报价是1000万元/km ,那么修建公路最省的费用是___________万元. 16.在ABC ∆中,D 为边BC 上的点,且满足2DAC π∠=,1sin 3BAD ∠=.若13ABD ADC S S ∆∆=, 则C ∠的余弦值为___________.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(12分)已知数列{}n a 的前n 项和为n S ,12a =,132n n S a +=-.(1)求数列{}n a 的通项公式; (2)设2log n n b a =,若4(1)n n n c b b =+,求证:123n c c c +++<.18.(12分)为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过40分时,按0.12元/分计费;超过40分时,超出部分按0.20元/分计费.已知张先生家离上班地点15公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间t (分)是一个随机变量.现统计了50次路上开车花费时间,在各时间段内的频数分布情况如下表所示:将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为(]20,60分. (1)写出张先生一次租车费用y (元)与用车时间t (分)的函数关系式;(2)若张先生一次开车时间不超过40分为“路段畅通”,设ξ表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求ξ的分布列和期望;(3)若公司每月给1000元的车补,请估计张先生每月(按22天计算)的车补是否足够上、下班租用新能源分时租赁汽车?并说明理由.(同一时段,用该区间的中点值作代表)19.(12分)如图,四棱锥P ABCD -中,底面ABCD 为梯形,//AB DC ,112BC DC AB ===. O 是AB 的中点,PO ⊥底面ABCD .O 在平面PAD上的正投影为点H ,延长PH 交AD 于点E . (1)求证: E 为AD 中点;(2)若90ABC ∠=,2PA =BC 上确定一点G ,使得HG //平面PAB ,并求出OG 与面PCD 所成角的正弦值.20.(12分)已知椭圆2222:1(0)x y M a b a b+=>>的左、右顶点分别为,A B ,上、下顶点分别为,C D .OHEDCBAP若四边形ADBC 的面积为4,且恰与圆224:5O x y +=相切. (1)求椭圆M 的方程;(2) 已知直线l 与圆O 相切,交椭圆M 于点,P Q ,且点,A B 在直线l 的两侧.设APQ ∆的面积为1S ,BPQ ∆的面积为2S ,求12S S -的取值范围.21.(12分)已知函数221()()ln ()2f x x x x ax a =++∈R ,曲线()y f x =在1x =处的切线与直线210x y +-=垂直.(1)求a 的值,并求()f x 的单调区间;(2)若λ是整数,当0x >时,总有2211()(3)ln 24f x x x x x λλ-+->+,求λ的最大值. 请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.做答时请写清题号. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2(4cos )4r ρρθ-=-,曲线2C 的参数方程为43cos ,3sin x r y r θθ⎧=+⎪⎨=⎪⎩(θ为参数). (1)求曲线1C 的直角坐标方程和曲线2C 的极坐标方程;(2)当r 变化时,设1,C 2C 的交点M 的轨迹为3C .若过原点O ,倾斜角为3π的直线l 与曲线3C 交于点,A B ,求OA OB -的值.23.[选修4—5:不等式选讲](10分)已知实数x , y 满足1x y +=.(1)解关于x 的不等式225x x y -++≤;(2)若,0x y >,证明:2211119x y ⎛⎫⎛⎫--≥ ⎪ ⎪ ⎪⎝⎭⎝⎭2018年宁德市普通高中毕业班质量检查 数学(理科)试题参考答案及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解法不同,可根据试题的主要考查内容比照评分标准指定相应的评分细则.二、对计算题,当考生的解答在某一部分解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基础知识和基本运算,每小题5分,满分60分.1.D 2.C 3.A 4.D 5.C 6.B 7.D 8.C 9.B 10.B 11.A 12.D二、填空题:本题考查基础知识和基本运算,每小题5分,满分20分.13.23- 14.8 15.9800 166三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.17.本小题主要考查数列及数列求和等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,满分12分.解:(1)由题设132n n S a +=-, 当2n ≥时,132n n S a -=-,两式相减得13n n n a a a +=-,即14n n a a += . …………………2分又1a =2,1232a a =-,可得28a =, ∴214a a =. ………………………………3分 ∴数列{}n a 构成首项为2,公比为4的等比数列,∴121242n n n a --=⨯=. ………………………………5分 (没有验证214a a =扣一分)(2)∵212log 221n n b n -==-,………………………………6分442(1)(21)2(21)n n n c b b n n n n===+-⋅-⋅(*n ∈N ), ………………7分∴2n ≥时,22111(21)(22)(1)1n c n n n n n n n n=<==--⋅-⋅-⋅- , ………9分∴1231111112()()()12231n c c c c n n ++++≤+-+-++-- …………10分13n=- ………………………………11分3<. ………………………………12分解法二:(1)同解法一;(2)∵212log 221n n b n -==-,………………………………6分442(1)(21)2(21)n n n c b b n n n n===+-⋅-⋅(*n ∈N ), ………………7分∵2n ≥时,211n n -≥+,∴22112()(21)(1)1n c n n n n n n =≤=--⋅+⋅+ , ………9分 ∴123111122()()23+1n c c c c n n ⎡⎤++++≤+-++-⎢⎥⎣⎦…………10分112221n ⎛⎫=+- ⎪+⎝⎭ ………………………………11分3<. ………………………………12分解法三:(1)同解法一;(2)∵212log 221n n b n -==-,………………………………6分442(1)(21)2(21)n n n c b b n n n n===+-⋅-⋅(*n ∈N ), ………………7分 ∴2n ≥时,22112()(21)(1)1n c n n n n n n=≤=--⋅-⋅- , ………8分∴1231234511112()()561n c c c c c c c c c n n ⎡⎤++++≤+++++-++-⎢⎥-⎣⎦…………10分 1212112231514455n ⎛⎫=+++++- ⎪⎝⎭ …………………………11分619223630n<+-<. ………………………………12分18.本小题主要考查频率分布表、平均数、随机变量的分布列及数学期望等基础知识,考查运算求解能力、数据处理能力、应用意识,考查分类与整合思想、必然与或然思想、化归与转化思想.满分12分. 解法一:(1)当2040t <≤时,0.1215y t =+ ………………………………1分当4060t <≤时,0.12400.20(40)150.211.8y t t =⨯+-+=+. ………………………………2分 得:0.1215,2040,0.211.8,4060t t y t t +<≤⎧=⎨+<≤⎩………………………………3分(2)张先生租用一次新能源分时租赁汽车,为“路段畅通”的概率2182505P +==……4分 ξ可取0,1,2,3.03032327(0)55125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,2132354(1)55125P C ξ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ 2232336(2)55125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,3033238(3)55125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ξ的分布列为……………7分27543680123 1.2125125125125E ξ=⨯+⨯+⨯+⨯= ……………………………8分或依题意2(3,)5B ξ,23 1.25E ξ=⨯= ……………………………8分(3)张先生租用一次新能源分时租赁汽车上下班,平均用车时间21820102535455542.650505050t =⨯+⨯+⨯+⨯=(分钟),……………10分每次上下班租车的费用约为0.242.611.820.32⨯+=(元). ……………11分 一个月上下班租车费用约为20.32222894.081000⨯⨯=<,估计张先生每月的车补够上下班租用新能源分时租赁汽车用. ………………12分解法二:(1)(2)同解法一;(3)张先生租用一次新能源分时租赁汽车上下班,平均租车价格为2182010(150.1225)(150.1235)(11.80.245)(11.80.255)20.51250505050+⨯⨯++⨯⨯++⨯⨯++⨯⨯=(元)……………10分一个月上下班租车费用约为20.512222902.5281000⨯⨯=<……………11分估计张先生每月的车补够上下班租用新能源分时租赁汽车用. ………………12分19.本小题主要考查空间直线与直线、直线与平面的位置关系及直线与平面所成的角等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.满分12分. 解法一:(1)连结OE .2,AB O =是AB 的中点,1CD =, OB CD ∴=,//AB CD ,∴ 四边形BCDO 是平行四边形, 1OD ∴=.………………1分PO ⊥平面ABCD ,AD ⊂平面ABCD , PO AD ∴⊥,………………2分 O 在平面PAD 的正投影为H , OH ∴⊥平面PAD ,OH AD ∴⊥.………………3分又OH PO O =,AD ∴⊥平面POE ,AD OE ∴⊥,………………4分 又1AO OD ==,E ∴是AD 的中点. ………………5分 (2)90ABC ∠=,//OD BC ,OD AB ∴⊥,OP ⊥平面ABCD ,∴以O 为原点,,,OD OB OP 分别为,,x y z 轴的正方向建立空间直角坐标系O xyz -,………………6分(0,0,0)O ∴,(0,0,1)P ,(1,1,0)C ,(1,0,0)D ,2PA =,OP AB ⊥, 221PO PA AO ∴-OA OD OP ∴==,∴H ∴是ADP ∆的的外心, 2AD PD AP ==H ∴是ADP ∆的的重心,OHEDCBAPOH OP PH ∴=+23OP PE =+111(,,)333=-.………………8分设BG BC λ=,(,1,0)OG BC OB λλ∴=+=,141(,,)333GH OH OG λ∴=-=--,又(1,0,0)OD =是平面PAB 的一个法向量,且//HG 平面PAB , 0GH OD ∴⋅=,103λ∴-=,解得13λ=,1(,1,0)3OG ∴=,………………9分设(,,)n x y z =是平面PCD 的法向量,(1,0,1)PD =-,(0,1,0)CD =-,0,0,n PD n CD ⎧⋅=⎪∴⎨⋅=⎪⎩ 即0,0,x z y -=⎧⎨=⎩ 取1,x =则1,0z y ==,(1,0,1)n ∴=.………………11分cos ,||||n PGn PG n PG ⋅∴<>=⋅1531029==⋅, ∴直线OG 与平面PCD 所成角的正弦值为5………………12分 解法二:(1)同解法一;(2)过H 作HM EO ⊥,交EO 于点M ,过点M 作//GM AB ,分别交,OD BC 于,Q G ,则//HG 平面PAB ,………………6分 证明如下://,MG AB AB ⊂平面,PAB MG ⊄平面PAB ,//MG ∴平面PABPO ⊥平面ABCD ,EO ⊂平面ABCD ,PO EO ∴⊥, ∴在平面POD 中,//PO MH ,PO ⊂平面,PAB HM ⊄平面PAB , //MH ∴平面PABMG MH M =,∴平面//MHG 平面PABGH ⊂平面MHG ,//HG ∴平面PAB .………………7分2,OM PH OM ME HE =∴=, 21,3BG OQ ∴===………………8分 在OD 上取一点N ,使23ON =, 10CN OG ∴==,………………9分 作NT PD ⊥于T ,连结CT .∵,CD OD ⊥,CD OP OD OP O ⊥=,CD ∴⊥平面POD , NT CD ∴⊥,TNQ PAB CD E HOMGPD CD D =, NT ∴⊥平面PCD ,NCT ∴∠就是OG 与平面PCD 所成的角. ………………10分DN DPNT PO =, 32NT ∴,………………11分 532sin 10NT OTN CN ∴∠===, 即直线OG 与平面PCD 5………………12分解法三:(1)同解法一.(2)过E 作//EQ AB ,交BC 于点Q ,连结PQ ,过H 作//HM EQ 交PQ 于点M , 过点M 作//GM PB ,交BC 于G ,连结HG , 则//HG 平面PAB ,………………6分 证明如下://,MG PB PB ⊂平面,PAB MG ⊄平面PAB ,//MG ∴平面PAB同理://MH 平面PABMG MH M =,∴平面//MHG 平面PAB .GH ⊂平面MHG ,//HG ∴平面PAB ,………………7分2BG PM PHGQ MQ HE∴===, E 是AD 的中点,∴Q 是BC 的中点,1133BG BC ∴==,………………8分取PD 的中点N ,连结ON ,再连结OG 并延长交DC 的延长线于点T ,连结NT , OP OD =,N 是PD 中点,ON PD ∴⊥,OB OD ⊥,,OB OP OD OP D ⊥=,OB ∴⊥平面POD OB ON ∴⊥,//OB CD ,ON CD ∴⊥,PD CD D =, ON ∴⊥平面PCD ,OTN ∴∠就是OG 与平面PCD 所成的角.BG OBGC CT=, 2CT ∴=, 2210OT OD DT ∴+122ON DP =………………11分 252sin 10ON OTN OT ∴∠===即直线OG 与平面PCD 5.………………12分 20.本题主要考查直线、椭圆、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力,满分12分. 解法一:(1)根据题意,可得:TNG MQ OHEDCB AP221224,211225a b ab a b ⎧⨯⨯=⎪⎪⎨⎪=+⎪⎩即222,5ab a b =⎧⎨+⎪⎩,………………………………………………………2分 解得2,1.a b =⎧⎨=⎩………………………………………………………4分∴椭圆M 的方程为2214x y +=.………………………………………………………5分(2)设:l x my n =+,(2,2)n ∈-,直线l 与圆O 相切,得5=,即224(1)5m n +=,………………………………6分 从而[)20,4m ∈.又1121(2)2S n y y =+-,2121(2)2S n y y =--,∴1212121(2)(2)2S S n n y y n y y -=⨯--+⋅-=⋅-.………………………………7分将直线l 的方程与椭圆方程联立得222(4)240m y mny n +++-=, 显然0∆>.设11(,)P x y ,22(,)Q x y ,得12224mny y m +=-+,212244n y y m-=+. (8)∴22221212121244()()4=m ny y y y y y y y +---+-.∴2222221216444218116555m m n m m m S S n ++-++⋅+-===242891+58+16m m m +, 当20m =时,1285S S -=;………………………………10分当2(0,4)m ∈时,12222289891+1+21655168+28S S m m m m-=+⋅+,………………………………11分且1285S S ->.综上,128,25S S ⎡⎫-∈⎪⎢⎣⎭.………………………………12分解法二:(1)同解法一;(2)当直线l 的斜率不存在时,由对称性,不妨设:5l x =,此时直线l 与椭圆的交点为(55,1218(2)(225555S S ⎡⎤-=+-=⎢⎥⎣⎦. 直线l 的斜率存在时,设:l y kx b =+,由直线l 与圆O 相切,得5=,即224(1)5k b +=. 又点,A B 在直线l 的两侧,∴(2)(2)0k b k b +-+<,2240b k -<,∴224(1)405k k +-<,解得12k >或12k <-.点,A B 分别到直线l 的距离为1d =2221k b d k+=+将直线l 的方程与椭圆方程联立得222(14)8440k x kbx b +++-=,显然0∆>.设11(,)P x y ,22(,)Q x y ,得122814kbx x k +=-+,21224414b x x k-⋅=+.…………………………………7分 ∴22222212121244111()4=1k b PQ k x kx x x x k +-=+-++-+………………………8分 ∴121212S S d d AB -=-⋅222222214411211k b k b k b k k k-+++-+++22441k b b +-= 22441k b b +-=2224(1)4414(1)55k k k ++-+=22228(1)(116)5(14)k k k +++ 242481171651816k k k k ++=++2242289891121518165816k k k k k=++++++, 且1285S S ->.综上,128,25S S ⎡⎫-∈⎪⎢⎣⎭.…………………………………………………………………………12分21.本小题主要考查导数的几何意义、导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想等.满分12分. 解法一: (1)函数()f x 的定义域是(0,)+∞,1()(1)ln (2)12f x x x a x '=++++,……………………………………………………………1分依题意可得, (1)1f '=, 12122a ∴++=,14a ∴= .……………………………………………………………………2分 ()(1)ln (1)f x x x x '∴=+++=(1)(ln 1)x x ++令()0f x '=,即(1)(ln 1)0x x ++=,10,x x >∴=,……………………………………3分 ()f x ∴的单调递增区间是1(,)e +∞,单调递减区间为1(0,)e .………………………………5分(2)由(Ⅰ)可知, 2211()()ln 24f x x x x x =++,2211()(3)ln 24f x x x x x λλ∴-+->+ln 31x x x x λ-⇔>+,………………………………6分 设ln 3()1x x xh x x -=+, ∴只要min ()h x λ>,……………………………………………7分2(1ln 3)(1)(ln 3)()(1)+-+--'=+x x x x x h x x22ln (1)x xx -+=+,…………………………………………………………………8分令()2ln u x x x =-+, 1()10u x x'∴=+> ()u x ∴在(0,)+∞上为单调递增函数, (1)10u =-<, (2)ln 20=>u∴存在0(1,2)x ∈,使0()0u x =,……………………………………………………9分当0(,)x x ∈+∞时,()0u x >,即()0h x '>, 当0(0,)x x ∈时,()0u x <,即()0h x '<, ()h x ∴在0x x =时取最小值,且000min 0ln 3()1-=+x x x h x x ,………………………………10分又0()0u x =, 00ln 2x x ∴=-, 000min 00(2)3()1--∴==-+x x x h x x x ,……………………………………………………11分00(1,2),(2,1)x x ∈∴-∈--又min ()h x λ<,max 2Z λλ∈∴=-. …………………………………………………………………12分解法二:(1)同解法一.(2)由(1)可知, 2211()()ln 24f x x x x x =++2211()(3)ln 24f x x x x λλ∴-+->+ln 30x x x x λλ⇔--->.…………………………6分 设()ln 3g x x x x x λλ=---,∴只要min ()0g x >,………………………………………7分 则()1ln 3g x x λ'=+--ln 2x λ=--令()0g x '=,则ln 2x λ=+,2x e λ+∴=.…………………………………………………8分 当2(0,)x e λ+∈时,()0g x '<,()g x 单调递减;当2(,)x e λ+∈+∞时,()0g x '>,()g x 单调递增,2min ()()g x g e λ+∴=222(2)3e e e λλλλλλ+++=+---2e λλ+=--.…………………………9分 设2()h e λλλ+=--,则()h λ在R 上单调递减,………………………………………10分 (1)10,(2)120h e h -=-+<-=-+>,………………………………………………11分 0(2,1)λ∴∃∈--,使0()0h λ=,max 2Z λλ∈∴=- . …………………………………………………………………12分22.选修44-;坐标系与参数方程本小题考查直线和圆的极坐标方程、参数方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想等. 满分10分.解法一:(1)由1C :2(4cos )4r ρρθ-=-, 得224cos 4r ρρθ-+=,即222440x y x r +-+-=, ………………………………………………………2分 曲线2C 化为一般方程为:222(4)3x y r -+=,即2228163x y x r +-+=,………4分 化为极坐标方程为:228cos 1630r ρρθ-+-=.………………………………5分(2)由224cos 4r ρρθ-+=及228cos 1630r ρρθ-+-=,消去2r ,得曲线3C 的极坐标方程为22cos 20()ρρθρ--=∈R . …………………………………………………7分将θπ=3代入曲线3C 的极坐标方程,可得220ρρ--=,…………………8分 故121ρρ+=,1220ρρ=-<,…………………………………………………9分 故121OA OB ρρ-=+=.…………………………………………………10分 (或由220ρρ--=得0)1)(2(=+-ρρ得1,221-==ρρ,…………………9分 故211-=-=OA OB …………………………………………………10分) 解法二:(1)同解法一;(2)由22244x y x r +-+=及2228163x y x r +-+=,消去2r ,得曲线3C 的直角坐标方程为2222x y x +-=. ………………………………………………………………7分设直线l 的参数方程为1,23x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),………………………………8分与2222x y x +-=联立得2213244t t t +-=,即220t t --=,………………………………………………………………9分故121t t +=,1220t t =-<,∴121OA OB t t -=+=.……………………………………………………10分 (或由220t t --=得,,0)1)(2(=+-t t 得1,221-==t t ,∴211-=-=OA OB .……………………………………………………10分)23.选修45-:不等式选讲本小题考查绝对值不等式、基本不等式的解法与性质等基础知识,考查运算求解能力、推理论证能力,考查分类与整合思想、化归与转化思想等. 满分10分. 解法一:(1)1,x y +=|2||1|5x x ∴-++≤,………………………………………1分当2x ≥时,原不等式化为215x -≤,解得3x ≤,∴23x ≤≤;………………………………………………2分 当12x -≤<时,原不等式化为215x x -++≤,∴12x -≤<;………………………………………………3分 当1x <-时,原不等式化为215x -+≤,解得2x ≥-,∴21x -≤<-;………………………………………………4分 综上,不等式的解集为{}23x x -≤≤..……………………5分 (2)1,x y +=且0,0x y >>,2222222211()()(1)(1)x y x x y y x y x y +-+-∴--=⋅……………7分222222xy y xy x x y ++=⋅222222()()y y x x x x y y=++225x y y x=++………………………………8分 2259x yy x≥⋅=. 当且仅当12x y ==时,取“=”. ………………………………10分解法二:(1)同解法一;(2)1,x y +=且0,0x y >>,2222221111(1)(1)x y x y x y--∴--=⋅………………………………6分 22(1)(1)(1)(1)x x y y x y +-+-=⋅22(1)(1)x y y x x y ++=⋅………………………………7分 1x y xyxy+++=………………………………8分21xy =+2219()2x y ≥+=+当且仅当12x y ==时,取“=”. ………………………………10分。
2018年5月宁德市普通高中毕业班质量检查文科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至9页,第Ⅱ卷10至16页。
共300分。
考生注意:1.答题前,考生务必先将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷本卷共35小题,每小题4分,共计140分。
在每小题列出的四个选项中,只有一项是最符合题目要求的。
黄山短尾猴栖息地依赖于植物的物候期,其海拔范围随季节变化有明显的差异。
图1示意黄山短尾猴各季节栖息地的海拔范围与林带的关系(图中Ⅰ、Ⅱ、Ⅲ、Ⅳ代表四个季节黄山短尾猴活动的海拔范围)。
读图回答1-3题。
图11.图中Ⅲ所代表的季节是A.春季B.夏季C.秋季D.冬季2.短尾猴食物供给最丰富的林带是A.常绿阔叶林B.常绿落叶阔叶混交林C.落叶阔叶林D.山地矮林3.当地旅游活动可能对短尾猴造成的影响是A.食物种类变少B.主要活动空间变小C.患病率下降D.觅食时间变长20世纪80年代,广东是我国第一产糖大省。
1993年之后,广西甘蔗种植面积和产糖量跃居全国第一,但与产糖大国巴西相比甘蔗生产机械化程度低,生产成本高。
据此回答4-5题。
4.20世纪90年代初,广东蔗糖产量减少的主要原因是A.劳动力价格上涨B.消费市场的萎缩C.经济水平的提高D.农业生产结构的调整5.多年来限制广西甘蔗生产机械化水平提高的主要原因是A.家庭联产承包责任制B.耕作技术落后C.经济落后,资金不足D.劳动力素质低我国西南地区峰丛洼地面积广布,其中甘房弄洼地是世界上最深最陡的峰丛洼地。
该洼地深530米,面积约2.35平方公里,底部的小块圆形平地上生活着几户村民。
2018年宁德市普通高中毕业班第二次质量检查数学(文科)试卷本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.本卷满分150分,考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清楚,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,U =R 集合{}1,2,3A =,{}3,4,5B =,下图中阴影部分所表示的集合为A .{}3 B .{}1,2 C .{}4,5 D .{}1,2,3,4,5 2.复数2()i z m m m =++(m ∈R ,i 为虚数单位)是纯虚数,则实数m 的值为A .0或1-B .0C .1-D .1 3.“1a =”是“直线10ax y ++=与0ax y -=互相垂直”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 4.右图中几何体为正方体的一部分,则以下图形不可能...图之一的是,,(n x x ++-A .B .C .D .5.已知函数32 0,()2 0,x x f x x x x ⎧-≤⎪=⎨+>⎪⎩若()8f a =,则a =A .2-B .2C .2±D .2或4-6.已知,m n 是不重合的直线,,αβ是不重合的平面,则下列命题正确的是A .若,//m n αα⊂,则//m nB .若//,//m m αβ,则//αβC .若,m m αβ⊥⊥,则//αβD .若,//n m n αβ=,则//m α且//m β 7.阅读如图所示的程序框图,运行相应的程序 则输出的结果是A. B .0C 8.在区间[1,6]上随机取一实数x ,使得2[2,4]x ∈A .16 B .15 C .13D .259.函数()sin ()f x x x x =-∈R 的部分图像可能是A .B .C .D .10.设二元一次不等式组2,1,220,y x x y ≤⎧⎪≤⎨⎪+-≥⎩所表示的平面区域为M ,O 为坐标原点,P M ∈,则OP 的取值范围是 A . B . C . D .2] 11. 已知函数()sin()(0,)2f x A x ωϕωϕπ=+><,y =)(x f的部分图像如右图,则()2f π=A .B .1-C .D .12-12. 已知,A B 为单位圆O 上的点,点P 在劣弧AB 上(不包括端点),且3AOB π∠=,OP xOA yOB =+,则下列结论不恒成立....的是A .2223x y +≥B .x y +≤C .11x y +≤.13xy ≤第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题卡的相应位置.13.已知平面向量(1)(22)x ==-,,,a b ,若//a b ,则实数x 的值为 . 14.为调查学生的身高与饮食习惯的关系,某中学将高三同学的身高(单位:厘米)数据绘制成频率分布 直方图(如图).现采用分层抽样的方法从中选取40 名进行调查,则身高在[160,170]内的学生中应选取的 人数为 .15.若抛物线28y x =的焦点到双曲线22221(0,0)x y a b a b-=>>则双曲线的离心率为 .16.定义“sh 2x x e e x --=,x ∈R ”为双曲正弦函数,“ch 2x xe e x -+=,x ∈R ”为双曲余弦函数,它们与正、余弦函数有某些类似的性质,如:sh()sh ch ch sh x y x y x y +=⋅+⋅、22(ch )(sh )1x x -=等.请你再写出一个类似的性质:ch()x y += .三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 中,23a = ,4618a a +=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:12n n b b +=,并且15b a =,试求数列{}n b 的前n 项和n S . 18.(本小题满分12分)ABC ∆中,已知3BC =,3A π∠=,设B x ∠=,ABC ∆的周长为()f x . (Ⅰ)求()f x 的表达式;(Ⅱ)当x 为何值时()f x 最大,并求出()f x 的最大值.19.(本小题满分12分)(Ⅰ)设y 关于x 的回归直线方程为ˆˆybx a =+.现根据表中数据已经正确计算出了b 的值为1.6,试求a 的值,并估计该厂6月份的产量(计算结果精确到1).(Ⅱ)质检部门发现该厂1月份生产的游艇存在质量问题,要求厂家召回;现有一旅游公司曾向该厂购买了今年前两个月....生产的游艇2艘,求该旅游公司有游艇被召回的概率.20.(本小题满分12分)如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 、E 分别为11A B 、1AA 的中点,点F在棱AB 上,且14AF AB =.(Ⅰ)求证://EF 平面1BDC ;(Ⅱ)在棱AC 上是否存在一个点G ,使得平面EFG 将 三棱柱分割成的两部分体积之比为1:15,若存在,指出 点G 的位置;若不存在,说明理由. 21.(本小题满分12分)已知函数()21)ln f x ax a x b =--+(. (Ⅰ)若()f x 在点((1,(1))f )处的切线方程为y x =,求实数a b 、的值;A 1A(Ⅱ)当12a >时,研究()f x 的单调性; (Ⅲ)当1a =时,()f x 在区间1(,)e e上恰有一个零点,求实数b 的取值范围.22.(本小题满分14分)平面直角坐标系中,已知圆O :221x y +=过椭圆Γ:22221(0)x y a b a b+=>>的右焦点F 和上顶点.(Ⅰ) 求椭圆Γ的方程;(Ⅱ)设A 为圆O 上任意一点,连结OA 并延长到B,使OB ,过点B 作x 轴的垂线l ,再过点A 作l 的垂线,垂足为C ,求证:点C 在椭圆Γ上;(Ⅲ)过点F 的直线交椭圆于,M N 两点,过点M 作直线2x =的垂线,垂足为P ,试问直线PN 是否恒过定点,若是,求出定点的坐标;若不是,说明理由.2018年宁德市普通高中毕业班质量检查 数学(文科)试题参考答案及评分标准说明:一、本解答指出了每题要考察的主要知识和能力,并给出了一种或几种解法供参考,x如果考生的解法与本解法不同,可根据试题的主要考察内容比照评分标准指定相应的评分细则。
地理参考答案1.B2. A 3 .B 4 .D 5 .A 6 .D 7 .D 8 .B 9 .C 10. A 11.C36.(1)与现有铁路并行,可以充分利用原有设施,降低施工难度和建设成本;减少对国家公园保护区的二次破坏;连接城市多,沿线运输需求量大;线路短,降低建设成本,节省运营时间。
(6分)(2)地势起伏较大(相对高度大);断裂发育,地质条件复杂;干季淡水缺乏,雨季降水多;(沿线火山灰土分布广泛,土壤疏松,遇水软化)地基不稳;野生动物,蚊虫侵袭。
(言之有理,酌情给分)(3)电气化双轨铁路投资大,肯尼亚经济落后,资金不足;肯尼亚电力工业薄弱,电力供应不足;双轨铁路占地面积大,征地困难,对生态环境的破坏大;客货运输需求较小,单轨内燃机系统已能满足运输需求。
(6分)(4)铁路修建过程中,混凝土使用量大,进口粉煤灰费用高,该技术的运用有利于降低铁路修建成本;当地火山灰资源丰富,该技术的应用有利于将资源优势转化成经济优势;火山灰的开采有利于促进相关产业发展,促进就业。
(6分)37(1)主要分布在我国西部山地、高原地区;随海拔上升其数量先增加后减少;迎风坡数量多于背风坡;阳坡数量多于阴坡。
(6分)(2)垫状点地梅生存的地区海拔高,大气稀薄;大气对太阳辐射削弱少,白天太阳辐射强,垫状点地梅吸收的太阳辐射能多,温度高;贴伏于地表的垫状结构保温作用强,而且有利于抵御寒风,减少热量交换;由于大气中二氧化碳、水汽等的含量少,吸收地面辐射少,气温低;晚上保温作用弱,热量容易丧失,气温降低得更多。
(10分)(3)加快岩石风化,促进土壤的形成;留住水分和热量,改善生物的生存环境;提高当地生物多样性。
(6分)选修43旅游地理(10分)合理控制游客数量;开发精品旅游项目和线路,提高旅游产品附加值(充分合理开发当地的旅游资源);提高基础设施和接待能力;加强对旅游产业和环境的监管;加强宣传教育,提高游客环境保护意识;鼓励当地民众参与开发特色民宿等旅游项目;划分湖岸商业旅游活动区和当地居民生活区。
2018届宁德市普通高中毕业班第二次质量检查理科综合物理试题参考答案及评分细则本细则供阅卷评分时参考,考生若写出其它正确解法,可参照评分标准给分。
一、选择题:本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.C 15.B 16.C 17.A 18.D 19.CD 20.AC 21.AB 二、实验题:本题共2小题,第22题6分,第23题9分,共15分。
22.(6分) (1)AC (2分,选对1个得1分,选对2个得2分,有选错的得0分) (2)3.88 (2分)(3)AB(2分,选对1个得1分,选对2个得2分,有选错的得0分) 23.(9分) (2)① 50.0(2分)180(2分,填179、181同样给2分) ② 75.0 (2分,填74.6、75.4同样给2分) ③ 无(2分)④ 在保证电表安全的情况下,适当增大滑动变阻器R 3的输出电压;使用灵敏度更高的灵敏电流计 (1分,写出一条即可,其他合理答案同样给分。
)三、计算题:本题共2小题,第24题12分,第25题20分,共32分。
24.(12分)(1)物块达到稳定速度v 时有,mg T F ==安① (2分) BLv E = ② (1分) rR EI +=③ (1分) BIL F =安④ (2分) 解得:22L B r R mg v )(+=⑤ (1分) (2)mgv P =总⑥ (2分) 总P rR RP R +=⑦ (2分) 解得:2222L B Rg m P R =⑧ (1分)评分参考:第(1)得分点7分,第(2)得分点5分。
其他正确解法参照给分。
25.(20分)(1)A 球从水平位置摆到最低点,则221v m gL m A A = ① (2分) 解得:m/s 40=v② (2分)(2)A 与B 发生弹性碰撞,则B B A A A v m v m v m +=0③ (1分) 2220212121BB A A A v m v m v m += ④ (1分) 解得:0=A v ,m 4=B v⑤ (2分)B 上升至最大高度过程,B 、C 系统水平方向动量守恒C C B B B v m m v m )(+=⑥ (1分)B 、C 系统机械能守恒m B C C B B B gh m v m m v m ++=22)(2121 ⑦ (1分) 解得:s m 1=C v ,m 6.0=m h⑧ (2分)(3)B 从最高点又摆至最低点过程CC B B C C B v m v m v m m '+'=+)( ⑨ (1分) 2222121)(21CC B B m B C C B v m v m gh m v m m '+'=++ ⑩ (1分)解得:s m 2-='B v ,s m 2='Cv○11 (2分) 则B 在最低点时有Lv v m g m T CB BB 2)('-'=- ○12 (2分) 解得:N 30=T○13 (1分) 由牛顿第三定律可得球对绳子的拉力为30 N(1分)评分参考:第(1)得分点4分,第(2)得分点8分;第(3)得分点8分。
2018年宁德市普通高中毕业班质量检查语文本试卷分五大题,共12页。
满分150分,考试时间150分钟。
一、古代诗文阅读(27分)(一)默写常见的名句名篇(6分)1.补写出下列名旬名篇中的空缺部分。
(6分)(1)佩缤纷其繁饰兮,__________________________。
(屈原《离骚》)(2) _________________________,朝不虑夕。
(李密《陈情表》)(3)复道行空,_________________________?(杜牧《阿房宫赋》)(4)今年欢笑复明年,_________________________。
(白居易《琵琶行》)(5) _________________________,自缘身在最高层。
(王安石《登飞来峰》)(6)夕阳西下,_________________________。
(马致远《天净沙·秋思》)(二)文言文阅读(1 5分)阅读下面的文言文,完成2~5题。
上万侍郎书[明]归有光居京师,荷蒙垂盼。
念三十余年故知,殊不以地望逾绝而少变。
而大臣好贤乐善、休休有容之度,非今世之所宜有也!有光是以亦不自嫌外,以成盛.德高谊之名,令海内之人见之。
有光晚得一第,受命出宰百里①,才不逮.志,动与时忤。
然一念为民,不敢自堕于冥冥之中,拊循劳徕②,使鳏寡不失其职。
发于诚然,鬼神所知。
使在建武之世,宜有封侯爵赏之望。
今被挫诎③如此,良.可悯恻。
流言朋兴,从而信之者十九,小民之情,何以能自达于朝廷?赖阁下桑梓连壤,所闻所见,独深知而信之。
时人以有光徒读书无用,又老大,不能与后来英俊驰骋。
妄自测疑,不待问而自以为甄别已有定论矣。
夫监郡之于有司之贤不肖,多从意度;又取信于所使咨访之人。
只如不睹其人之面,望其影而定其长短妍丑,亦无当矣。
如又加以私情爱憎,又如所谓流言者,使伯夷、中徒狄复生于今,亦不免于世之尘垢,非饿死抱石,不能自明也。
夫士之所负者气耳。
于其气之方盛,自以古人之功业不足为;其稍歉,则犹欲比肩于今人;其又歉,则视今人已不可及矣。
2018届宁德市普通高中毕业班第二次质量检查试卷
文 科 数 学
本试卷分第I 卷和第II 卷两部分.第I 卷1至3页,第II 卷4至6页,满分150分. 考生注意:
1.答题前,考生务必将自己的准考证、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.
3.考试结束,监考员将试题卷和答题卡一并交回.
第I 卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是
符合题目要求的.
1.已知集合{}2,1,0,1A =--,{}
2|20B x x x =+-<,则A B =I
A .{}0
B .{}0,1
C .{}1,0-
D .{}2,1,0,1-- 2.复数
2i
1i
-=+ A .1i -- B .1+i - C .1+i D .1i -
3.右图是具有相关关系的两个变量的一组数 据的散点图和回归直线,若去掉一个点使 得余下的5个点所对应的数据的相关系数最 大,则应当去掉的点是
A .D
B .E
C .F
D .A
4.下列曲线中,既关于原点对称,又与直线1y x =+相切的曲线是 A .3y x = B .25
4
y x =+
C .ln 2y x =+
D .14y x =-
5.若x ,y 满足约束条件10,20,2,x y x y x +-≥⎧⎪
-≥⎨⎪≤⎩
则4z x y =-的最小值是
A .
43 B .7
3
C .7
D .9
6.已知等差数列{}n a 满足3514a a +=,2633a a =,则17a a =
A .33
B .16
C .13
D .12 7.如右图所示,网格纸上小正方形的边长为1,粗线画出的是某
几何体的三视图,则此几何体的表面积为
A .25
B .24
C .23
D .22 8.将周期为π
的函数ππ
())cos()(0)
66f x x x ωωω+++> 的图象向右平移π
3个单位后,所得的函数解析式为
A .π2sin(2)3y x =-
B .2cos(2)3
y x π
=-
C .2sin 2y x =
D .2π
2cos(2)3
y x =-
9.过抛物线24y x =的焦点F 作一倾斜角为3
π
的直线交抛物线于A ,B 两点(A 点在x 轴
上方),则
AF BF
=
A .2
B .
5
2
C .3
D .4 10.已知ln(2),1,()1
,1,x x f x x x x +≥-⎧⎪
=⎨-<-⎪⎩
若函数2(2)(2)y f x f x k =--+只有一个零点,则实数k 的值为
A .4
B .3
C .2
D .1
11.将一个内角为3π
且边长为2
π
的空间四
边形,则此空间四边形的外接球的半径为
A
B .2
C .3 D
12.记n S 为数列{}n a 的前n 项和,满足13
2
a =
,1233()n n a S n *++=∈N ,若2n n S M S +≤
对任意的n *∈N 恒成立,则实数M 的最小值为 A
. B .176 C .41
12
D .4
2018届宁德市普通高中毕业班第二次质量检查试卷
文 科 数 学
第II 卷
注意事项:
用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效. 本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. 二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.已知两个单位向量a ,b
,且|2|-a b a ,b 的夹角为_______. 14.已知点P 是以1F ,2F 为焦点的双曲线22:1C x y -=上的一点,且12=3PF PF ,
则12PF F ∆的周长为______.
15.我国南北朝时期的数学家张丘建是世界数学史上解决不
定方程的第一人,他在《张丘建算经》中给出一个解不 定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母
一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母 雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的 数量分别为x ,y ,z ,则鸡翁、鸡母、鸡雏的数量即
为方程组53100,
3
100z x y x y z ⎧
++=⎪⎨⎪++=⎩的解.其解题过程可用框图 表示如右图所示,则框图中正整数m 的值为 ______. 16.已知定义在R 上的函数()f x 满足()0f x '>且
(()e )1x f f x -=,若()f x ax a ≥+恒成立,则实数a 的取值范围为______.
三、解答题:本大题共6小题,满分70分.解答须写出文字说明证明过程和演算步骤. 17.(12分)
ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且(sin cos )b a C C =+.
(1)求角A 的大小;
(2)若a b =,求AC 边上高BD 的长. 18.(12分)
为响应绿色出行,某市在推出“共享单车”后,又推出“新能源租赁汽车”.每次租车收费的标准由两部分组成:①里程计费:1元/公里;②时间计费:0.12元/分.已知陈先生的家离上班公司12公里,每天上、下班租用该款汽车各一次.一次路上开车所用的时间记为t (分),现统计了50次路上开车所用时间,在各时间段内频数分布情况如下表所示:
将各时间段发生的频率视为概率,一次路上开车所用的时间视为用车时间,范围为
[)20,60分.
(1)估计陈先生一次租用新能源租赁汽车所用的时间不低于30分钟的概率; (2)若公司每月发放800元的交通补助费用,请估计是否足够让陈先生一个月
上下班租用新能源租赁汽车(每月按22天计算),并说明理由.(同一时 段,用该区间的中点值作代表)
19.(12分)
如图,在四棱锥P ABCD -中,//AD BC ,
22AB AD BC ===,PB PD =
,PA =.
(1)求证:PA BD ⊥;
(2)若PA AB ⊥
,BD =,E 为PA 的中点.
(i )过点C 作一直线l 与BE 平行,在图中画出
直线l 并说明理由;
(ii )求平面BEC 将三棱锥P ACD -分成的两部分体积的比. 20.(12分)
已知椭圆22
22:1(0)x y C a b a b
+=>>,四个顶点所围成的四边形的面积
为
(1)求椭圆C 的方程;
(2)已知点12A (,),斜率为2的直线l 交椭圆C 于B ,D 两点,求ABD ∆
面积的最大值,并求此时直线l 的方程.
21.(12分)
已知函数32()34()f x x ax a =-+∈R . (1)讨论()f x 的单调性;
(2)若函数()f x 有三个零点,证明:当0x >时,2()6()e a f x a a ≥-.
请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.做答时请写清题号.
22.(10分)选修4—4:坐标系与参数方程
在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的
极坐标方程为2
(4cos )4r ρρθ-=-,曲线2C 的参数方程为4cos ,
sin x y θθ
⎧=+⎪⎨=⎪⎩(θ为参数).
(1)求曲线1C 的直角坐标方程和曲线2C 的极坐标方程;
(2)当r 变化时设1,C 2C 的交点M 的轨迹为3C ,若过原点O ,倾斜角为
3
π
的直线l 与曲线3C 交于点,A B ,求OA OB -的值.
23.(10分)选修4—5:不等式选讲
已知实数x ,y 满足1x y +=.
(1)解关于x 的不等式225x x y -++≤; (2)若,0x y >,证明:2
2
11(1)(
1)9x y --≥。