初二数学因式分解出题 - 三次多项式
- 格式:xls
- 大小:58.50 KB
- 文档页数:2
北师大版八年级数学下册第4章《因式分解》单元测试题一.选择题(共8小题,满分24分,每小题3分)1.将多项式x﹣x3因式分解正确的是()A.x(1﹣x2)B.x(x2﹣1)C.x(1+x)(1﹣x)D.x(x+1)(x﹣1)2.多项式a2﹣25与a2﹣5a的公因式是()A.a+5B.a﹣5C.a+25D.a﹣253.下列各式中,不能用平方差公式因式分解的是()A.﹣a2﹣4b2B.﹣1+25a2C.﹣9a2D.1﹣a44.下列各式中,能用完全平方公式分解因式的个数是()(1)x2﹣4;(2)x2+6x+9;(3)4x4﹣2x2+;(4)x2+4xy+2y2A.1个B.2个C.3个D.4个5.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2+4x﹣2=x(x+4)﹣2C.x2﹣4=(x+2)(x﹣2)D.x2﹣4+3x=(x+2)(x﹣2)+3x6.将对x2+mx+n分解成(x﹣7)(x+2),则m,n的值为()A.5,﹣14B.﹣5,14C.5,14D.﹣5,﹣14 7.如果(x+4)(x﹣3)是x2﹣mx﹣12的因式,那么m是()A.7B.﹣7C.1D.﹣18.计算(﹣2)100+(﹣2)99的结果是()A.2B.﹣2C.﹣299D.299二.填空题(共7小题,满分28分,每小题4分)9.把多项式m3﹣81m分解因式的结果是.10.在实数范围内分解因式:m4﹣2m2=.11.分解因式:a2﹣9b2+2a﹣6b=.12.已知x2+4mx+16能用完全平方公式因式分解,则m的值为.13.已知a、b满足a+b=5,ab2+a2b=10,则ab的值是.14.若x2+x﹣1=0,那么代数式x3+2x2﹣7的值是.15.232﹣1可以被10和20之间某两个整数整除,则这两个数是.三.解答题(共7小题,满分48分)16.把下列多项式分解因式:(1)x3﹣9x;(2)2a2+4ab+2b217.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4918.已知a+b=,ab=﹣,求代数式a3b+2a2b2+ab3的值.19.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.20.待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解:x3﹣1.因为x3﹣1为三次多项式,若能因式分解,则可以分解成一个一次多顶式和一个二次多项式的乘积.故我们可以猜想x3﹣1可以分解成(x﹣1)(x2+ax+b),展开等式右边得:x3+(a﹣1)x2+(b﹣a)x﹣b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a﹣1=0,b﹣a=0,﹣b=﹣1可以求出a=1,b=1.所以x3﹣1=(x﹣1)(x2+x+1).(1)若x取任意值,等式x2+2x+3=x2+(3﹣a)x+s恒成立,则a=;(2)已知多项式x3+2x+3有因式x+1,请用待定系数法求出该多项式的另一因式.21.阅读以下材料,根据阅读材料提供的方法解决问题【阅读材料】对于多项式x3﹣5x2+x+10,我们把x=2代入多项式,发现x=2能使多项式的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后代入,就可以把多项式x3﹣5x2+x+10因式分解.【解决问题】(1)求式子中m、n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x3+5x2+8x+4.22.拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)则图③可以解释为等式:.(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a2+7ab+2b2,并通过拼图对多项式3a2+7ab+2b2因式分解:3a2+7ab+2b2=.(拼图图形画在方框内)(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的两边长(x>y),结合图案,指出以下关系式:①xy=;②x+y=m;③x2﹣y2=m•n;④x2+y2=其中正确的关系式为.(4)试着用剪拼图形的方法由几何图形的面积来证明:a2﹣b2=(a+b)(a﹣b).参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选:C.2.解:多项式a2﹣25=(a+5)(a﹣5)与a2﹣5a=a(a﹣5)的公因式是:a﹣5.故选:B.3.解:不能用平方差公式分解的是﹣a2﹣4b2.故选:A.4.解:(1)x2﹣1是两项,不能用完全平方公式,故此选项不符合题意;(2)x2+6x+9,符合完全平方公式;故此选项符合题意.(3)4x4﹣2x2+符合完全平方公式;故此选项符合题意;(4)x2+4xy+2y2不符合完全平方公式;故此选项不符合题意.故选:B.5.解:A、(x+2)(x﹣2)=x2﹣4,是整式的乘法运算,故此选项错误;B、x2+4x﹣2=x(x+4)﹣2,不符合因式分解的定义,故此选项错误;C、x2﹣4=(x+2)(x﹣2),是因式分解,符合题意.D、x2﹣4+3x=(x+2)(x﹣2)+3x,不符合因式分解的定义,故此选项错误;故选:C.6.解:∵将对x2+mx+n分解成(x﹣7)(x+2),∴m=﹣7+2=﹣5,n=﹣7×2=﹣14,故选:D.7.解:∵(x+4)(x﹣3)是x2﹣mx﹣12的因式,∴(x+4)(x﹣3)=x2﹣mx﹣12=x2+x﹣12,故﹣m=1,解得:m=﹣1.故选:D.8.解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299,故选:D.二.填空题(共7小题,满分28分,每小题4分)9.解:m3﹣81m=m(m2﹣81)=m(m+9)(m﹣9).故答案为:m(m+9)(m﹣9).10.解:m4﹣2m2=m2(m2﹣2)=m2(m+)(m﹣).故答案为:m2(m+)(m﹣).11.解:a2﹣9b2+2a﹣6b,=(a2﹣9b2)+(2a﹣6b),=(a+3b)(a﹣3b)+2(a﹣3b),=(a﹣3b)(a+3b+2).12.解:∵关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,∴m=±2,故答案为:±2.13.解:∵ab2+a2b=10,∴ab(b+a)=10,∵a+b=5,∴ab=2,故答案为:2.14.解:∵x2+x﹣1=0,∴x2+x=1∴x3+2x2﹣7=x(x2+x)+x2﹣7=x+x2﹣7=1﹣7=﹣6故答案为:﹣6.15.解:原式=(216+1)(216﹣1)=(216+1)(28+1)(24+1)(24﹣1)=(216+1)(28+1)×17×15.则这两个数是15和17.故答案是:15和17.三.解答题(共7小题)16.解:(1)x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3);(2)2a2+4ab+2b2=2(a2+2ab+b2)=2(a+b)2.17.解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.18.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,∵a+b=,ab=﹣,∴原式=ab(a+b)2=﹣×()2=﹣3,即代数式a3b+2a2b2+ab3的值是﹣3.19.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c或a=b=c,∴△ABC的形状是等腰三角形或等边三角形.20.解:(1)∵x2+2x+3=x2+(3﹣a)x+3,∴3﹣a=2,a=1;故答案为:1;(2)设x3+2x+3=(x+1)(x2+ax+3)=x3+(a+1)x2+(a+3)x+3,a+1=0,解得a=﹣1,多项式的另一因式是x2﹣x+3.21.解:(1)在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5;(2)把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,用上述方法可求得:a=4,b=4,所以x3+5x2+8x+4=(x+1)(x2+4x+4)=(x+1)(x+2)2.22.解:(1)图③可以解释为等式:(a+2b)(2a+b)=2a2+ab+4ab+2b2=2a2+5ab+2b2故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.(2)拼图如图⑤所示:3a2+7ab+2b2=(3a+b)(a+2b);故答案为:(3a+b)(a+2b);(3)∵m2﹣n2=4xy∴①正确;∵x+y=m∴②正确;∵x+y=m,x﹣y=n∴(x+y)(x﹣y)=mn,即x2﹣y2=mn,∴③正确;∵m2+n2=(x+y)2+(x﹣y)2=2x2+2y2=2(x2+y2);∴④正确.故答案为:①②③④.(4)剪拼图形如图⑥、⑦;把图⑥中的阴影沿虚线三次剪下来,拼成如图⑦所示的梯形,∴这个梯形的上底长为2b,下底长为2a,高为(a﹣b),∴S阴影(梯形)=(2a+2b)(a﹣b)=(a+b)(a﹣b),∵图⑥中的S阴影=a2﹣b2,∴a2﹣b2=(a+b)(a﹣b).。
华师大版—初二数学因式分解知识点及经典例题详解初二数学——分解因式一、 考点、热点分析整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
(一)常见形式:(1)平方差公式:22()()a b a b a b -=+-(2)完全平方公式:2222()a ab b a b ±+=±(3)立方差公式:3322()()a b a b a ab b -=-++(4)立方和公式:3322()()a b a b a ab b +=+-+(5)十字相乘法(十字相乘法是适用于二次三项式的因式分解的方法.)①二次三项式:把多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 、 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式.在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式.在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式.②十字相乘法的依据和具体内容它的一般规律是:(1)对于二次项系数为1的二次三项式q px x ++2,如果能把 常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以 运用公式))(()(2b x a x ab x b a x ++=+++分解因式.这种方法的特征是“拆常数项,凑一次项”.注意:公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =⋅21,c c c =⋅21,且b c a c a =+1221, 那么运用c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”.如:)45)(2(86522-+=-+x x y xy x(6)分组分解法:在多项式am+ an+ bm+ bn 中,这四项没有公因式,所以不能用提取公因式法, 再看它又不能用公式法或十字相乘法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法 分别分解因式.即:原式=(am +an)+(bm+ bn) =a(m+ n)+b(m +n)这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn) =a(m+ n)+b(m+ n) =(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.(二)因式分解一般要遵循的步骤:(1)先考虑能否提公因式;(2)再考虑能否运用公式或十字相乘法;(3)最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.口 诀:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.二、典型例题分解因式:1.m²(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a²+b²+c²)-a3bc+2ab²c²;5.(x²-2x)²+2x(x-2)+1;6.(x-y)²+12(y-x)z+36z²;7.x²-4ax+8ab-4b²;8.(ax+by)²+(ay-bx)²+2(ax+by)(ay-bx);9.(1-a²)(1-b²)-(a²-1)²(b²-1)²;10.(x+1)²-9(x-1)²;11.x 3n +y 3n ;12.(x +y)3+125;13.8(x +y)3+1;(1)1522--x x (2)2265y xy x +-(3)3522--x x (4)3832-+x x四、课后练习一、选择题1.下列分解因式正确的是( )A . ﹣a+a 3=﹣a (1+a 2)B . 2a ﹣4b+2=2(a ﹣2b )C . a 2﹣4=(a ﹣2)2D . a 2﹣2a+1=(a ﹣1)22.若实数a、b满足a+b=5,a2b+ab2=﹣10,则ab的值是()A.﹣2 B.2C.﹣50 D.503.把x3﹣2x2y+xy2分解因式,结果正确的是()A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)24.把a2﹣2a﹣1分解因式,正确的是()A.a(a﹣2)﹣1 B.(a﹣1)2C.D.5.(﹣8)2006+(﹣8)2005能被下列数整除的是()A.3B.5C.7D.96.若(1﹣2x+y)是4xy﹣4x2﹣y2﹣m的一个因式,则m的值为()A.4B.1C.﹣1 D.07.若481x2+2x﹣3可因式分解成(13x+a)(bx+c),其中a、b、c均为整数,则下列叙述正确的是()A.a=1 B.b=468 C.c=﹣3 D.a+b+c=398.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b,c的值为()A.b=3,c=﹣1 B.b=﹣6,c=2 C.b=﹣6,c=﹣4 D.b=﹣4,c=﹣69.如果x2+3x﹣3=0,则代数式x3+3x2﹣3x+3的值为()A.0B.﹣3 C.3D.二.填空题10.在实数范围内因式分解:x3﹣2x2y+xy2= _________ .11.分解因式:2x2+2x+= _________ .12.分解因式:﹣x3+2x2﹣x= _________ .13.分解因式:x(x﹣1)﹣3x+4= _________ .14.将多项式a3﹣6a2b+9ab2分解因式得_________ .三.解答题15.已知x=y+4,求代数式2x2﹣4xy+2y2﹣25的值.16.计算:(1)(x+y)2﹣y(2x+y)﹣8x]÷2x;(2)已知:m﹣n=4,m2﹣n2=24,求(m+n)3的值.(3)已知﹣2x3m+1y2n与7x n﹣6y﹣3﹣m的积与x4y是同类项,求m2+n的值.(4)先化简,再求值:(﹣2a4x2+4a3x3﹣a2x4)÷(﹣a2x2),其中a=,x=﹣4.17.证明:四个连续自然数的积再加上1,一定是一个完全平方数.。
提升课堂托辅中心初二数学因式分解精选100题2013年1月25日一、选择题1.下列各式中从左到右的变形,是因式分解的是( )A (a +3)(a -3)=a 2-9B x 2+x -5=(x -2)(x +3)+1C a 2b +ab 2=ab (a +b ) (D)x 2+1=x (x +x1) 2.下列各式的因式分解中正确的是( )A -a 2+ab -ac = -a (a +b -c )B 9xyz -6x 2y 2=3xyz (3-2xy )C 3a 2x -6bx +3x =3x (a 2-2b ) D21xy 2+21x 2y =21xy (x +y ) 3.把多项式m 2(a -2)+m (2-a )分解因式等于( )(A)(a -2)(m 2+m ) (B)(a -2)(m 2-m ) (C)m (a -2)(m -1) (D)m (a -2)(m+1) 4.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +45.下列多项式中,不能用完全平方公式分解因式的是( )(A)412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D)13292+-n n 6.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )(A)4x (B)-4x (C)4x 4 (D)-4x 4 7.下列分解因式错误的是( )(A)15a 2+5a =5a (3a +1) (B)-x 2-y 2= -(x 2-y 2)= -(x +y )(x -y )(C)k (x +y )+x +y =(k +1)(x+y ) (D)a 3-2a 2+a =a (a -1)2 8.下列多项式中不能用平方差公式分解的是( )(A)-a 2+b 2 (B)-x 2-y 2 (C)49x 2y 2-z 2 (D)16m 4-25n 2p 29.下列多项式:①16x 5-x ;②(x -1)2-4(x -1)+4;③(x +1)4-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )(A)①② (B)②④ (C)③④ (D)②③ 10.两个连续的奇数的平方差总可以被 k 整除,则k 等于( ) (A)4 (B)8 (C)4或-4 (D)8的倍数11下列各式中从左到右的变形属于分解因式的是( )A a(a +b -1)=a 2+ab -aB a 2 –a -2=a(a -1)-2C -4 a 2+9b 2=(-2a +3b)(2a +3b)D . 2x +1=x(2+1/x) 12下列各式分解因是正确的是( )A .x 2y +7xy +y=y(x 2+7x)B . 3 a 2b +3ab +6b=3b(a 2+a +2)C . 6xyz -8xy 2=2xyz(3-4y)D . -4x +2y -6z=2(2x +y -3z) 13下列多项式中,能用提公因式法分解因式的是( )A . x 2-yB . x 2+2xC . x 2+y 2D .x 2-xy +y 2 14 2(a -b)3-(b - a)2分解因式的正确结果是( )A . (a -b)2(2a -2b +1)B . 2(a -b)(a -b -1)C . (b -a)2(2a -2b -1)D . (a -b)2(2a -b -1) 15下列多项式分解因式正确的是( )A . 1+4a -4a 2=(1-2a)2B . 4-4a +a 2=(a -2)2C . 1+4x 2=(1+2x)2D .x 2+xy +y 2=(x +y)2 16 运用公式法计算992,应该是( )A .(100-1)2B .(100+1)(100-1)C .(99+1)(99-1)D . (99+1)217 多项式:①16x 2-8x ;②(x -1)2 -4(x -1)2;③(x +1)4-4(x +1)2+4x 2 ④-4x 2-1+4x 分解因式 结果中含有相同因式的是( )A.①和②B.③和④C.①和④D.②和③18无论x、y取何值,x2+y2-2x+12y+40的值都是()A.正数B.负数C.零D.非负数19下列正确的是()A.x2+y2=(x+y)(x-y) B.x2-y2=(x+y)(x-y)C.-x2+y2=(-x+y)(-x-y) D.-x2-y2=-(x+y)(x-y)二、填空题20.分解因式:m3-4m= .21.已知x+y=6,xy=4,则x2y+xy2的值为.22.将x n-y n分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为.23.若ax2+24x+b=(mx-3)2,则a= ,b= ,m= .24.根据图形面积关系,不连其他线,便可以得到一个分解因式的公式是.25多项式-9x2y+36xy2-3xy提公因式后的另一个因式是___________;26把多项式-x4+16分解因式的结果是_____________;27已知xy=5,a-b=3,a+b=4,则xya2-yxb2的值为_______________;28若x2+2mx+16是完全平方式,则m=______;(第24题图) 29分解因式:-x2+4x-4= ;30 +3mn+9n2=( +3n)2;31若x+y=1则1/2x2+xy+1/2y2= ;三、因式分解32. -24x3-12x2+28x 33. 6(m-n)3-12(n-m)2 34.3(a-b)2+6(b-a)35. 18(a+b)3-12b(b-a)236. (2a+b)(2a-3b)-3a(2a+b) 37.(x2+6x)2-(2x-4)238. 9(m+n)2-(m-n)239. (2x+3y)2-1 40. 9(a-b)2-16(a+b)2 41. (x+y)2-16(x-y)2 42. -16x4+81y4 43.3ax2-3ay244.2x3-8x 45. 7x2-63 46. (a2+b2)2-4a2b247. (m +n)2-6(m +n)+9 48. (3)(a -b)2-2(a -b)+1; 49. 4xy 2-4x 2y -y 350. -x 2-4y 2+4xy 51. 25)(10)(2++++y x y x ; 52. 4224817216b b a a +-;53. (a 2+4)2-16a 2 54. -4x 3+16x 2-26x 56. 21a 2(x -2a )2-41a (2a -x )357. 56x 3yz+14x 2y 2z -21xy 2z 2 58. mn(m -n)-m(n -m) 59. -41(2a -b )2+4(a -21b )260. 4xy –(x 2-4y 2) 61. -3ma 3+6ma 2-12ma 62. a 2(x -y )+b 2(y -x )63. 23)(10)(5x y y x -+- 64. 32)(12)(18b a b a b --- 65. –2x 2n -4x n66. )(6)(4)(2a x c x a b a x a ---+- 67. 4416n m - 68.22)(16)(9n m n m --+;69. 21ax 2y 2+2axy +2a 70. (x 2-6x )2+18(x 2-6x )+81 71. 24)4)(3)(2)(1(-++++x x x x72.9x 2-y 2-4y -4 73.22414y xy x +-- 74.811824+-x x75. 2ax a b ax bx bx -++--2 76.1235-+-x x x 77. )()()(23m n n m n m +--+78. 3)2(2)2(222-+-+a a a a 79. 2222224)(b a b a c ---四.特殊的因式分解 80.),(3127123且均为自然数n m b a a nn m n m >--- 81.13112121132-+-+-+++n n n n n n y x y x y x五.用简便方法计算:82. 57.6×1.6+28.8×36.8-14.4×80 83. 13.731175.231178.193117⨯-⨯+⨯84. 39×37-13×34 85)1011)(911()311)(211(2232----六.解答题86若n m y x -=))()((4222y x y x y x +-+,求m ,n 的值87已知,01200520042=+++++x x x x 求2006x 的值88若6,422=+=+y x y x 求xy 的值89已知312=-y x ,2=xy ,求 43342y x y x -的值。
三次三项式如何分解因式三次三项式是一个数学概念,指的是一个三次方程的三项式形式。
它可以通过因式分解的方式进行简化,使得计算和理解变得更加容易。
本文将介绍如何分解因式为三次三项式,并解释其应用和意义。
一、什么是三次三项式?三次三项式是指一个三次方程的三项式形式,即由三个单项式相加或相减而成的多项式。
其一般形式为:ax^3 + bx^2 + cx + d其中a、b、c、d为实数系数,x为未知数。
二、如何分解因式为三次三项式?要将一个三次方程分解为三次三项式,需要根据方程的特征和公式进行因式分解。
下面以一个具体的例子来说明。
例1:将方程x^3 + 3x^2 + 3x + 1分解为三次三项式。
解:由于方程的系数为1,我们可以猜测方程的根为1。
通过带入计算,我们可以发现x=1是方程的一个解。
因此,我们可以将方程进行因式分解:(x-1)(x^2 + 4x + 1)其中(x-1)是方程的一个因式,而(x^2 + 4x + 1)是剩余项。
剩余项可以继续进行因式分解,得到最终的三次三项式。
三、三次三项式的应用和意义三次三项式在数学中具有重要的应用和意义。
它可以用于解决各种实际问题,例如物理、工程、经济等领域的计算和建模。
1. 物理应用:三次三项式可以用于描述物体的运动、变化和力学性质。
通过对物理方程进行因式分解,可以简化计算和分析过程,提高解题效率。
2. 工程应用:在工程中,三次三项式常用于建模和优化问题。
通过分解因式,可以得到问题的关键因素和变量,进而进行系统分析和设计。
3. 经济应用:在经济学中,三次三项式可以用于描述经济变量之间的关系和趋势。
通过对经济方程进行因式分解,可以揭示经济规律和趋势,提供决策依据。
四、总结三次三项式是一个重要的数学概念,它可以通过因式分解的方式进行简化和优化。
通过对三次方程进行分解,可以得到问题的关键因素和变量,进而进行计算、分析和建模。
三次三项式在物理、工程、经济等领域都有广泛的应用和意义,对于解决实际问题和提高计算效率具有重要作用。
初二数学因式分解测试题刘锦珍一、选择题:1. 多项式15x 3y 4m 2-35x 4y 2m 2+20x 3ym 的各项公因式是( ) A 5x 3y B 5x 3ym C 5x 3m D5x 3m 2y2. 下列从左到右的变形中是因式分解的是( )A (a+b)2=a 2+2ab+b 2B x 2-4x+5=(x-2x)2+1C x 2-5x-6=(x+6)(x-1)D x 2-10x+25=(x-5)23. 若多项式x 2+kxy+9y 2是一个完全平方式,则k 的值为( )A 6B 3C -6D -6或64. 把多项式a 2+a-b 2-b 用分组分解法分解因式不同的分组方法有( )A 1种B 2种C 3种D 4种 5. 多项式a 2+b 2, x 2-y 2, -x 2-y 2, -a 2+b 2中,能分解因式的有( )A 4个B 3个C 2个D 1个 6. 如果多项式x 2-mx -15能分解因式,则m 的值为( )A 2或-2B 14或-14C 2或-14D ±2或±14 7. 下列各多项式中不含有因式 (x-1) 的是( )A x 3-x 2-x+1B x 2+y-xy-xC x 2-2x-y 2+1D (x 2+3x)2-(2x+2)2 8. 若22)(81814181x a a a +=+-则x 为( ) A 1 B -1 C 21D -29. 若多项式4ab -4a 2-b 2-m 有一个因式为(1-2a+b )则m 的值为( )A 0B 1C -1D 410. 如果 (a 2+b 2-3) (a 2+b 2) -10 = 0那么a 2+b 2的值为( ) A -2 B 5 C 2 D -2或5 二、分解下列各式:1、- m 2 – n 2 + 2mn + 12、(a + b)3d – 4(a + b)2cd+4(a + b)c 2d3. (x + a)2 – (x – a)24. 143812+-m m5. –x 5y – xy +2x 3y6. x 6 – x 4 – x 2 + 17. (x +3) (x +2) +x 2 – 9 8. (x –y)3 +9(x – y) –6(x – y)29. (a 2 + b 2 –1 )2 – 4a 2b 2 10. (ax + by)2 + (bx – ay)2三、简便方法计算:1.200120022001555- 2. 19961995199519931995219952323-+-⨯-四、化简求值:1. 2ax 2 – 8axy + 8ay 2 – 2a2. 已知:a 2 – b 2 – 5=0 c 2 – d 2 – 2 =0其中x –2 y =1 a=3 求:(ac + bd)2 – (ad + bc)2的值五、观察下列分解因式的过程: 分解因式的方法,叫做 配方法。
专题3因式分解(共41题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x -B .()221x x +C .()221x x -D .()221x x +【答案】A【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.2.(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+C .()()122y y -+D .()()212y y -+【答案】A【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【点睛】本题考查利用平方差公式进行因式分解,是重要考点,难度较易,掌握相关知识是解题关键. 3.(2021·贵州铜仁市·中考真题)下列等式正确的是( )A .3tan452-+︒=-B .()5510x xy x y ⎛⎫÷= ⎪⎝⎭C .()2222a b a ab b -=++D .()()33x y xy xy x y x y -=+- 【答案】D【分析】依据绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,逐项计算即可.【详解】 A. 3tan45314-+︒=+=,不符合题意B. ()55555105y y y x xy x y x ⎛⎫÷=⨯⎪= ⎝⎭,不符合题意 C. ()2222a b a ab b -=-+,不符合题意D. ()()3322()x y xy xy x y xy x y x y -=-=+-,符合题意 故选D .【点睛】本题考查了绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,解决本题的关键是牢记公式与定义.4.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B .【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题5.(2021·四川成都市·中考真题)因式分解:24x -=__________.【答案】(x+2)(x-2)【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-6.(2021·云南中考真题)分解因式:34x x -=______.【答案】x (x +2)(x ﹣2).【详解】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用;因式分解.7.(2021·山东临沂市·中考真题)分解因式:2a 3﹣8a=________.【答案】2a (a+2)(a ﹣2)【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()()222a 8a 2a a 4=2a a+2a 2-=--.8.(2021·广西柳州市·中考真题)因式分21x -= .【答案】(1)(1)x x +-.【详解】原式=(1)(1)x x +-.故答案为(1)(1)x x +-.考点:1.因式分解-运用公式法;2.因式分解.9.(2021·浙江宁波市·中考真题)分解因式:23x x -=_____________.【答案】x(x -3)【详解】直接提公因式x 即可,即原式=x (x -3).10.(2021·江苏宿迁市·中考真题)分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1).【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).11.(2021·浙江丽水市·中考真题)分解因式:24m -=_____.【答案】(2)(2)m m +-【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.12.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____.【答案】(a +1)2【分析】直接利用完全平方公式分解.【详解】a 2+2a +1=(a +1)2.故答案为()21+a .【点睛】此题考查了因式分解—运用公式法,熟练掌握完全平方公式是解本题的关键.13.(2021·吉林长春市·中考真题)分解因式:22a a +=_____.【答案】22(2)a a a a +=+【分析】直接提公因式法:观察原式22a a +,找到公因式a ,提出即可得出答案.【详解】 22(2)a a a a +=+.【点睛】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.14.(2021·江苏连云港市·中考真题)分解因式:2961x x ++=____.【答案】(3x +1)2【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x +1)2,故答案为:(3x +1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.15.(2021·江苏苏州市·中考真题)因式分解221x x -+=______.【答案】()21x -【分析】直接利用乘法公式分解因式得出答案.【详解】解:221x x -+=(x ﹣1)2.故答案为:(x ﹣1)2.【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.16.(2021·浙江台州市·中考真题)因式分解:xy -y 2=_____.【答案】y (x -y )【分析】根据提取公因式法,即可分解因式.【详解】解:原式= y (x -y ),故答案是:y (x -y ).【点睛】本题主要考查分解因式,掌握提取公因式法分解因式,是解题的关键.17.(2021·江西中考真题)因式分解:224x y -=______.【答案】(2)(2)x y x y +-【分析】直接利用平方差公式分解即可.【详解】解:224(2)(2)x y x y x y -=+-.故答案为:(2)(2)x y x y +-.【点睛】本题考查了分解因式-公式法,熟练掌握平方差公式的结构特征是解题的关键.18.(2021·甘肃武威市·中考真题)因式分解:242m m -=___________.【答案】()22m m -【分析】先确定242m m -的公因式为2m ,再利用提公因式分解因式即可得到答案.【详解】解:()24222.m m m m -=- 故答案为:()22m m -【点睛】本题考查的是提公因式分解因式,掌握公因式的确定是解题的关键.19.(2021·湖北黄石市·中考真题)分解因式:322a a a -+=______.【答案】()21a a -.【分析】观察所给多项式有公因式a ,先提出公因式,剩余的三项可利用完全平方公式继续分解.【详解】解:原式()221a a a =-+, ()21a a =-,故答案为:()21a a -.【点睛】本题考查了用提公因式法和公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,有公因式要先提公因式,再考虑运用公式法分解,注意一定要分解到无法分解为止.20.(2021·四川泸州市·)分解因式:244m -=___________.【答案】()()411m m +-.【分析】先提取公因式4,再利用平方差公式分解即可.【详解】解:()()()224441411m m m m -=-=+-. 故答案为:()()411m m +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.(2021·四川乐山市·中考真题)因式分解:249a -=________.【答案】(23)(23)a a -+【分析】此多项式可直接采用平方差公式进行分解.【详解】解:22249(2)3a a -=-=(23)(23)a a -+.故答案为:(23)(23)a a -+.【点睛】本题考查了公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.22.(2021·江苏无锡市·中考真题)分解因式:328x x -=_________.【答案】2x (x +2)(x -2)【分析】先提取公因式2x ,再利用平方差公式分解即可得.【详解】解:原式=2x (x 2-4)=2x (x +2)(x -2);故答案为:2x (x +2)(x -2).【点睛】本题主要考查了因式分解,解题的关键是掌握提公因式法和平方差公式.23.(2021·广西来宾市·中考真题)分解因式:224a b -=______.【答案】()()22a b a b +-【分析】利用平方差公式进行因式分解即可.【详解】解:224a b -=()222a b -=()()22a b a b +-.故答案为()()22a b a b +-.【点睛】本题考查了因式分解.熟练掌握平方差公式是解题的关键.24.(2021·浙江绍兴市·中考真题)分解因式:221x x ++= ___________ .【答案】2(1)x +【分析】根据完全平方公式因式分解即可.【详解】解:221x x ++=2(1)x +故答案为:2(1)x +.【点睛】此题考查的是因式分解,掌握利用完全平方公式因式分解是解决此题的关键. 25.(2021·湖北恩施土家族苗族自治州·中考真题)分解因式:2a ax -=__________.【答案】()()11a x x +-【分析】利用提公因式及平方差公式进行因式分解即可.【详解】解:()()()22111a ax a x a x x -=-=+-;故答案为()()11a x x +-.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.26.(2021·山东菏泽市·中考真题)因式分解:322a a a -+-=______.【答案】2(1)a a --【分析】先提取公因式,后采用公式法分解即可【详解】∴322a a a -+-=-a 22)1(a a -+=2(1)a a --故答案为: 2(1)a a --.【点睛】本题考查了因式分解,熟记先提取公因式,后套用公式法分解因式是解题的关键. 27.(2021·湖北十堰市·中考真题)已知2,33xy x y =-=,则322321218x y x y xy -+=_________.【答案】36【分析】先把多项式因式分解,再代入求值,即可.【详解】∴2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键. 28.(2021·湖南长沙市·中考真题)分解因式:22021x x -=______.【答案】(2021)x x -【分析】利用提公因式法进行因式分解即可得. 【详解】解:22021(2021)x x x x -=-, 故答案为:(2021)x x -. 【点睛】本题考查了利用提公因式法进行因式分解,熟练掌握提公因式法是解题关键. 29.(2021·湖南株洲市·中考真题)因式分解:264x xy -=__________. 【答案】()232x x y - 【分析】直接提出公因式2x 即可完成因式分解. 【详解】解:()264232x xy x x y -=-;故答案为:()232x x y -. 【点睛】本题考查了提公因式法进行因式分解,解决本题的关键是找到它们的公因式,提出公因式后再检查分解是否彻底即可,本题为基础题,考查了学生对基础知识的掌握与运用. 30.(2021·陕西中考真题)分解因式:3269x x x ++=______. 【答案】()23x x + 【分析】题目中每项都含有x ,提取公因式x ;先提取公因式,再用完全平方公式即可得出答案. 【详解】()322269(69)3x x x x x x x x ++=+++=故答案为()23x x +. 【点睛】本题考查了整式的因式分解,提公因式法和公式法,熟练掌握提公因式法分解因式、完全平方公式法分解因式是解题关键.31.(2021·湖南岳阳市·中考真题)因式分解:221x x ++=______. 【答案】()21x +. 【详解】解:()22211x x x ++=+.故答案为:()21x +. 【点睛】此题考查了运用公式法因式分解,熟练掌握完全平方公式是解答此题的关键. 32.(2021·湖南邵阳市·中考真题)因式分解:23xy x -=______. 【答案】()()x y x y x -+ 【分析】提公因式与平方差公式相结合解题. 【详解】解:2322()()()xy x x y x x y x y x -=-=-+, 故答案为:()()x y x y x -+. 【点睛】本题考查因式分解,涉及提公因式与平方差公式,是重要考点,难度较易,掌握相关是解题关键. 33.(2021·四川眉山市·中考真题)分解因式:3x y xy -=______. 【答案】()()11xy x x +- 【分析】先利用提公因式法提出公因式xy ,再利用平方差公式法进行变形即可. 【详解】解:()()()32111x y xy xy x xy x x -=-=+-;故答案为:()()11xy x x +-. 【点睛】本题考查了提公因式法和公式法(平方差公式)进行的因式分解的知识,解决本题的关键是牢记因式分解的特点和基本步骤,分解的结果是几个整式的积的形式,结果应分解到不能再分解为止,即分解要彻底,本题易错点是很多学生提公因式后以为分解就结束了,因此要对结果进行检查. 34.(2021·湖南衡阳市·中考真题)因式分解:239a ab -=__________. 【答案】()33a a b - 【分析】利用提取公因式法因式分解即可 【详解】解:()23933a ab a a b -=-故答案为: ()33a a b - 【点睛】本题考查提取公因式法因式分解,熟练掌握因式分解的方法是关键 35.(2021·北京中考真题)分解因式:2255x y -=______________. 【答案】()()5x y x y +- 【分析】根据提公因式法及平方差公式可直接进行求解. 【详解】解:()()()22225555x y x y x y x y -=-=+-;故答案为()()5x y x y +-. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键. 36.(2021·浙江温州市·中考真题)分解因式:2218m -=______. 【答案】()()233m m +- 【分析】原式提取2,再利用平方差公式分解即可. 【详解】 解:2218m -=2(m 2-9) =2(m +3)(m -3).故答案为:2(m +3)(m -3). 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 37.(2021·黑龙江绥化市·中考真题)在实数范围内分解因式:22ab a -=_________.【答案】(a b b .【分析】利用平方差公式22()()a b a b a b -=+-分解因式得出即可. 【详解】 解:22ab a - =2(2)a b -=(a b b故答案为:(a b b .【点睛】此题主要考查了利用平方差公式22()()a b a b a b -=+-分解因式,熟练应用平方差公式是解题关键.三、解答题38.(2021·黑龙江大庆市·中考真题)先因式分解,再计算求值:328x x -,其中3x =. 【答案】()()222+-x x x ,30 【分析】先利用提公因式法和平方差公式进行因式分解,再代入x 的值即可. 【详解】解:()()()322824222x x x x x x x -=-=+-,当3x =时,原式235130=⨯⨯⨯=. 【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.39.(2021·黑龙江齐齐哈尔市·中考真题)(1)计算:()201 3.144cos4512π-⎛⎫-+-+︒- ⎪⎝⎭.(2)因式分解:3312xy xy -+.【答案】(1)6(2)3(2)(2)xy y y -+- 【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可; (2)先提取公因式,再利用平方差公式分解因式即可. 【详解】(1)解:原式4141)2=++⨯-411=++6=+(2)解:原式23(4)xy y =--3(2)(2)xy y y =-+-【点睛】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键.40.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4 【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∴2x y -=,∴1121y x x y xy xy---===,∴2xy =-,∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.41.(2021·重庆中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”. 例如6092129=⨯,21和29的十位数字相同,个位数字之和为10,609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10,234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .【答案】(1)168不是“合和数”,621是“合和数,理由见解析;(2)M 有1224,1221,5624,5616. 【分析】(1)首先根据题目内容,理解“合和数”的定义:如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,再判断168,621是否是“合和数”;(2)首先根据题目内容,理解“合分解”的定义.引进未知数来表示A 个位及十位上的数,同时也可以用来表示B .然后整理出:()()()P M G M Q M =,根据能被4整除时,通过分类讨论,求出所有满足条件的M .【详解】 解:(1)168不是“合和数”,621是“合和数”. 1681214=⨯,2410+≠,168∴不是“合和数”,6212327=⨯,十位数字相同,且个位数字3710+=, 621∴是“合和数”.(2)设A 的十位数字为m ,个位数字为n (m ,n 为自然数,且39m ≤≤,19n ≤≤), 则10,1010A m n B m n =+=+-.∴()10210,()()(10)210P M m n m n m Q M m n m n n =+++-=+=+-+-=-. ∴()()21054()2105P M m m G M k Q M n n ++====--(k 是整数).39m ≤≤,8514m ∴≤+≤,k 是整数,58m ∴+=或512m +=,∴当58m +=时,5851m n +=⎧⎨-=⎩或5852m n +=⎧⎨-=⎩, 36341224M ∴=⨯=或3733=1221M =⨯.∴当512m +=时,51251m n +=⎧⎨-=⎩或51253m n +=⎧⎨-=⎩, 76745623M ∴=⨯=或78725616M =⨯=.综上,满足条件的M 有1224,1221,5624,5616. 【点睛】本题考查了新定义问题,解题的关键是:首先要理解题中给出的新定义和会操作题目中所涉及的过程,结合所学知识去解决问题,充分考察同学们自主学习和运用新知识的能力.。
因式分解的基本方法中考要求例题精讲一、十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解二、分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.一、十字相乘【例 1】分解因式:⑴256x x ++ ⑵256x x -+⑶276x x ++ ⑷276x x -+【解析】 ⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --【巩固】 分解因式:268x x ++【解析】268(2)(4)x x x x ++=++【巩固】 分解因式:278x x +-【解析】278(8)(1)x x x x +-=+-【例 2】分解因式:2376a a --【解析】2376(32)(3)a a a a --=+-【巩固】 分解因式:2383x x --【解析】 2383(31)(3)x x x x --=+-【巩固】 分解因式:25129x x +-【解析】25129(3)(53)x x x x +-=+-【巩固】 分解因式:42730x x +-【解析】4222730(3)(10)x x x x +-=-+【巩固】 分解因式:2273320x x --【解析】2273320(94)(35)x x x x --=+-【例 3】分解因式:212x x +-【解析】221212(3)(4)x x x x x x +-=-++=+-+【巩固】 分解因式:2612x x -+-【解析】22612(612)(23)(34)x x x x x x -+-=-+-=-+-【例 4】分解因式:2214425x y xy +-【解析】2214425(16)(9)x y xy x y x y +-=--【巩固】 分解因式:22672x xy y -+【解析】22672(2)(32)x xy y x y x y -+=--【巩固】 分解因式:22121115x xy y --【解析】22121115(35)(43)x xy y x y x y --=-+【例 5】分解因式:⑴2()4()12x y x y +-+-;⑵2212()11()()2()x y x y x y x y +++-+-【解析】 ⑴把x y +看作一个整体,利用十字相乘法分解即可.2()4()12(2)(6)x y x y x y x y +-+-=+++-⑵将,x y x y +-看作整体,则原式[][]4()()3()2()(53)(5)x y x y x y x y x y x y =++-++-=++.【巩固】 分解因式:257(1)6(1)a a ++-+【解析】[][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+【巩固】 分解因式:2(2)8(2)12a b a b ---+【解析】[][]2(2)8(2)12(2)2(2)6(22)(26)a b a b a b a b a b a b ---+=----=----【例 6】分解因式:1a b c ab ac bc abc +++++++【解析】 把a 视为未知数,其它视为参数。
初中因式分解50题及答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.因式分解(1)22363ax axy ay +﹣(2)()44m m -+.2.(1)计算:()3222x x x ⋅⋅- (2)计算:()()3223x x +-(3)因式分解:32x xy -(4)因式分解:244a b ab b -+3.(1)计算:2(3)(2)(4)(4)a a a a -+-+-;(2)分解因式:229()4()a x y b y x -+-;4.因式分解:244x y xy y -+.5.因式分解(1)22312x y -;(2)29124m m -+.6.分解因式:(1)22x xy xy -+(2)()222224a b a b +- (3)()()269x y x y ---+7.因式分解:(1)39x x -(2)244m m -+-8.分解因式(1)21236x x -+;(2)32312a ab -.9.因式分解(1)224a a -(2)22169mn m n -+10.因式分解(1)()222224x y x y +- (2)22369xy x y y --11.分解因式(1)3228a ab -.(2)()()269b a a b ---+.12.分解因式:(1)2269m n n -+-(2)()226(2)714x y x x y x x y +++--. 13.分解因式:22944a ab b -+-.14.因式分解:(1)3223242x y x y xy -+-;(2)()()222211a b b b -+-.15.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;16.在实数范围内分解下列因式:(1) 4265y y -+;(2) 211x -;(3) 23-+a ;(4)252x -.17.分解因式∶(1)26mx my -;(2)222510m mn n -+(3)()()229a x y b y x -+-.18.把下列多项式分解因式.(1)329a ab -;19.分解因式:(1)22364m n -(2)22(()())x x y x y x y x ----+.20.分解因式(1)216x -(2)3a a -(3)24(2)4(2)1a b a b +-++;(4)2221y y x ++-21.将下列各式因式分解:(1)24xy xy -.(2)4224816x x y y -+.(3)()()222x x y y x -+-.22.因式分解:(1)()()2222x a y a -+-(2)()()22211216x x x x -+-+ 23.因式分解:()()22254a x y b y x -+-.24.分解因式(1)32x xy -(2)(2)(4)1x x +++25.分解因式:(1)323812a b ab c +(2)22344ab a b b --.26.分解因式.(1)2()4()a x y y x -+-;(2)()222221664x y x y +-. 27.分解因式(2)22()()x a x b +--(3)22(32)(27)x x --+28.分解因式:(1)2344x x x --;(2)2(2)(3)(2)x y x y x y -+--;(3)22222()4x y x y +-.29.分解因式:(1)22338124a b ab a b -+-(2)()()24a x y y x -+-30.分解因式2812x x -+:.31.分解因式:()()229x y z x y z -++--.32.因式分解(直接写出结果)(1)2()()y x y x y ---=_________;(2)41x -=_____________;(3)2(1)4x x +-=____________.33.把下列各式分解因式:(1)()()26a x y b y x ---;(2)()()2221619y y ---+ 34.分解因式:(1)2961x x ++(2)322321218x y x y xy -+35.分解因式:()()()111xy x y xy ++++36.因式分解(1)3x y xy -;(2)()()21449x y x y -+++-.37.分解因式:(1)22363a ab b -+-;(2)()()2294a x y b y x -+-.38.因式分解:(1)24ab a -;(2)()()22258516x x +--+. 39.分解因式:(1)29x -(2)222050x x -+40.分解因式:2(()9)x m n n m -+-41.把下列各式因式分解:(1)323812a b ab c +;(2)2231212x xy y -+;(3)()()229+4a x y b y x --;(4)44x y -+;(5)292)(2a x y x y +--.42.因式分解(1)22862ab a b ab -+-; (2)214x x -+;(3)()22214x x +-. 43.把下列各式因式分解:(1)()222416a a +-. (2)()()229m n m n +--.(3)222232448a x a x a -+-.44.分解因式(1)2221a b a --+;(2)3-a b ab .45.分解因式:(1)2ax a -;(2)2363x y xy y -+.46.把下列多项式分解因式:(1)34x x -(2)2292a b ab +-+47.因式分解(1)32m mn(2)22288x xy y -+48.因式分解:(1)29x -;(2)232a a a -+;(3)()()22258516x x +--+. 49.分解因式:223242x y xy y ++.50.分解因式:(1)321510x x +;(2)269x y xy y -+;(3)22()4()a x y b y x -+-.参考答案:1.(1)()23-a x y(2)()22m -【分析】(1)先提公因式,再运用完全平方公式即可作答;(2)先去括号,再运用完全平方公式即可作答.【详解】(1)223-63ax axy ay +()2232a x xy y =-+()23a x y =-; (2)()44m m -+244m m =-+()22m =-.【点睛】本题考查因式分解,用到了提公因式法与公式法,解题的关键是注意如果多项式的各项含有公因式,必须先提公因式.2.(1)98x -(2)2656x x --(3)()()x x y x y +-(4)()22b a -【分析】(1)根据积的乘方,同底数幂的乘法运算法则计算即可;(2)根据多项式乘多项式的法则计算即可;(3)先提取公因式,再利用平方差公式分解因式;(4)先提取公因式,再利用完全平方公式分解因式;【详解】(1)解:原式()268x x x =⋅⋅- 98x =-;(2)解:原式26946x x x =-+-2656x x =--;(3)解:原式()22x x y =-()()x x y x y =+-;(4)解:原式()244b a a =-+ ()22b a =-. 【点睛】本题考查了积的乘方,同底数幂的乘法,多项式乘多项式,综合提公因式和公式法分解因式,熟练掌握运算法则是解题的关键.3.(1)23228a a --(2)()()()3232x y a b a b -+-【分析】(1)先去括号,再合并同类项即可;(2)先提取公因式,然后利用平方差公式分解即可.【详解】解:(1)原式()22221216a a a =----22221216a a a =---+23228a a =--;(2)原式()()2294a x y b x y =---()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题主要考查整式的乘法以及乘法公式,因式分解,掌握因式分解的方法,整式运算的法则是解题的关键.4.2(21)y x -【分析】先提取y ,再根据公式法分解因式即可.【详解】原式2(441)y x x =-+2(21)y x =-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 5.(1)()()322x y x y +-(2)()232m -【分析】(1)先提取公因式,再用平方差公式;(2)用完全平方公式.【详解】(1)解:22312x y -()2234x y =- ()()322x y x y =+-(2)29124m m -+()2232322m m =-⨯⨯+ ()232m =-【点睛】本题主要考查了公式法与提公因式法因式分解;熟练掌握平方差公式与完全平方公式的特征是解题的关键.6.(1)()21x y -(2)()()22a b a b +-(3)()23x y --【分析】(1)先提取公因式x ,再利用完全平方公式进行因式分解即可;(2)先利用平方差公式分解为()()222222a b ab a b ab +++-,再利用完全平方公式分解因式即可;(3)把()x y -看作整体利用完全平方公式进行因式分解即可.【详解】(1)22x xy xy -+()212x y y =-+()21x y =-.(2)()222224a b a b +-()()222222a b ab a b ab =+++-()()22a b a b =+-. (3)()()269x y x y ---+ ()23x y =--.【点睛】此题考查了因式分解,注意因式分解要彻底,熟练掌握因式分解并灵活选择方法是解题的关键.7.(1)()()33x x x +-;(2)()22m --.【分析】(1)先提取公因式x ,再用平方差公式继续分解;(2)先提取公因式1-,再用完全平方公式继续分解.【详解】(1)解:()3299x x x x -=- ()()33x x x =+-;(2)解:244m m -+-()244m m =--+()22m =--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 8.(1)()26x -(2)()()322a a b a b -+【分析】(1)式利用完全平方公式分解即可;(2)先提取公因式,再利用平方差公式分解即可.【详解】(1)解:21236x x -+22266x x =-⨯⋅+()26x =-(2)解:32312a ab - ()2234a a b =-()2232a a b ⎡⎤=-⎣⎦()()322a a b a b =-+【点睛】本题考查了提公因式法与公式法的综合运用,灵活选择合适的因式分解方法是解本题的关键.9.(1)()22a a -(2)()231mn -【分析】(1)直接提取公因式2a 即可得到答案;(2)利用完全平方公式分解因式即可.【详解】(1)解:224a a -()22a a =-;(2)解:22169mn m n -+()231mn =-.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.10.(1)()()22x y x y +-(2)()23y x y --【分析】(1)先利用平方差公式因式分解,再利用完全平方公式进行因式分解,即可求解;(2)先提公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:()222224x y x y +- ()()222222x y xy x y xy =+++-()()22x y x y =+-(2)解:22369xy x y y --()2296y x xy y =--+()23y x y =--【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.11.(1)()()222a a b a b +-(2)()23a b --【分析】(1)先提出公因式2a ,再用平方差公式进行求解即可,(2)先将()()269b a a b ---+转化为()()269a b a b ---+,再利用完全平方公式进行求解即可.【详解】(1)3228a ab - ()2224a a b =-()()222a a b a b =+-(2)()()269b a a b ---+()()269a b a b =---+()23a b =-- 【点睛】本题主要考查因式分解,解题的关键是掌握因式分解的方法——提公因式法和公式法,要注意分解要彻底.12.(1)()()33m n m n +--+(2)()()()271x y x x ++-【分析】(1)通过添括号,将2269m n n -+-转化为()2269m n n --+,再利用平方差公式进行分解因式即可求解.(2)将()226(2)714x y x x y x x y +++--转化为()()226(2)72x y x x y x x y +++-+,先提出公因式,再利用十字相乘法进行分解因式即可求解.【详解】(1)2269m n n -+-()2269m n n =--+()223m n =-- ()()33m n m n =+--+(2)()226(2)714x y x x y x x y +++--()()226(2)72x y x x y x x y =+++-+()()2267x y x x =++-()()()271x y x x =++-【点睛】本题考查分解因式的方法,解题的关键是掌握提公因式法,公式法和十字相乘法. 13.()()3232a b a b +--+【分析】先将多项式分组为()22944a ab b --+,再分别利用完全平方公式和平方差公式分解即可.【详解】解:22944a ab b -+-()22944b a a b =--+()292a b =--()()3232a b a b =+---⎡⎤⎡⎤⎣⎦⎣⎦()()3232a b a b =+--+.【点睛】本题考查了因式分解-分组分解,熟练掌握完全平方公式和平方差公式,能根据多项式特点进行适当分组是解题关键.14.(1)()22xy x y --(2)()()()()11a b a b b b ++--【分析】(1)先提取公因式2xy -,再利用完全平方公式继续分解即可;(2)先对原式变形,再利用平方差公式进行分解即可.【详解】(1)解:原式()2222xy x xy y =--+()22xy x y =--;(2)解:原式()()222211a b b b =--- ()()2221b a b =--()()()()11a b b b b a =++--.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:∶提公因式法;∶公式法;∶十字相乘法;∶分组分解法.因式分解必须分解到每个因式都不能再分解为止.15.(1)()24bc a c -(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.【详解】(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点睛】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.16.(1)()()(11y y y y +-(2)(x x(3)(2a(4)【分析】(1)原式先利用十字相乘法分解后,再利用平方差公式“()()22a b a b a b -=+-”分解即可;(2)原式利用平方差公式分解即可;(3)原式利用完全平方公式“()2222a ab b a b ±+=±”分解即可;(4)原式利用平方差公式分解即可.【详解】(1)解:原式()()2215y y --= ()()(11y y y y =+-;(2)解:原式22x =- (x x =;(3)解:原式(2a =;(4)解:原式=. 【点睛】本题考查了在实数范围内因式分解,掌握因式分解的方法是解决本题的关键. 17.(1)()23-m x y(2)()25m n -(3)()()()33x y a b a b +--【分析】(1)直接提公因式2m 即可分解;(2)利用完全平方公式分解即可;(3)先提公因式x y -,再利用平方差公式分解.【详解】(1)解:26mx my - ()23m x y =-;(2)222510m mn n -+()25m n =-;(3)()()229a x y b y x -+- ()()229a b x y =--()()()33y a b a b x +-=-【点睛】本题考查的是因式分解,在解答此类题目时要注意乘法公式的运用.18.(1)()()33a a b a b -+(2)23(2)x y -【分析】(1)先提公因式,再用公式法分解因式即可;(2)先提公因式,再用公式法分解因式即可.【详解】(1)解:329a ab -()229a a b =- ()()33a a b a b =-+;(2)解:2231212x xy y -+()22344x xy y =-+23(2)x y =-. 【点睛】本题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.19.(1)()()433m n m n +-(2)()()21x y x --【分析】(1)直接根据平方差公式因式分解即可得到答案;(2)先提取公因式,再利用完全平方公式分解即可得到答案.【详解】(1)解:原式22(6)(2)m n =- ()()6262m n m n =+-()()433m n m n =+-;(2)解:原式22(())()x x y x y x x y =--+-+()()221x y x x =--+()()21x y x =--.【点睛】本题考查因式分解,解题的关键是熟练掌握有公因式先提取公因式,再看符不符合公式,利用公式法分解.20.(1)()()44x x +-(2)()()11a a a +-(3)()2421a b +-(4)()()11y x y x -+--【分析】(1)根据平方差公式进行因式分解即可求解;(2)先提公因式a ,然后根据平方差公式进行因式分解即可求解;(3)根据完全平方公式进行因式分解即可求解;(4)先分组,然后根据完全平方公式与平方差公式因式分解即可求解.【详解】(1)解:216x - ()()44x x =+-;(2)解:3a a -()21a a =-()()11a a a =+-;(3)解:24(2)4(2)1a b a b +-++()2221a b =+-⎡⎤⎣⎦()2421a b =+-; (4)2221y y x ++-()2221y y x ++-=()221y x =-- ()()11y x y x =-+--.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.21.(1)(4)xy y -(2)22(2)(2)x y x y -+(3)2()(1)(1)x y x x --+【分析】(1)提取公因式即可.(2)先利用完全平方公式进行因式分解,再利用平方差公式进行因式分解.(3)先提取公因式,再把剩下的部分提取2后,按照平方差公式展开.【详解】(1)解:原式(4)xy y =-(2)解:原式()22222224(4)x x y y =-⋅⋅+ 222(4)x y =-22(2)(2)x y x y =-+(3)解:原式2()(22)x y x =--2()2(1)x y x =-⋅⋅-2()(1)(1)x y x x =--+【点睛】本题考查的是因式分解,解题的关键是要识别出可以使用平方差公式和完全平方公式之处,分解彻底.22.(1)()()()2a x y x y -+- (2)412x ⎛⎫- ⎪⎝⎭【分析】(1)先变形,然后提取公因式,再利用平方差公式因式分解即可;(2)利用完全平方公式进行因式分解即可.【详解】(1)解∶原式()()2222x a y a =---()()222a x y =--()()()2a x y x y =-+-;(2)解:原式2214x x ⎛⎫=-+ ⎪⎝⎭2212x ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 412x ⎛⎫=- ⎪⎝⎭. 【点睛】本题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.()(52)(52)x y a b a b --+【分析】将()y x -变形为()x y --,提取公因式,运用平方差公式即可求解.【详解】解:()()22254a x y b y x -+-()()22254a x y b x y =---()22(254)x y a b =--()(52)(52)x y a b a b =--+.【点睛】本题主要考查因式分解,掌握提取公因式,乘法公式进行因式分解是解题的关键. 24.(1)()()x x y x y +-(2)2(3)x +【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【详解】(1)解:原式22()()()x x y x x y x y =-=+-;(2)解:原式269x x =++2(3)x =+.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25.(1)()22423ab a bc +;(2)()22--b a b .【分析】(1)提取公因式24ab ,即可求解;(2)先提取公因式b -,再利用完全平方公式继续分解即可.【详解】(1)解:323812a b ab c +()22423ab a bc =+;(2)解:22344ab a b b --()2244b ab a b =--++ ()22b a b =--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 26.(1)()()()22a a x y +--(2)()()2244x y x y +-【分析】(1)原式提取公因式,再利用平方差公式分解;(2)原式利用平方差公式变形,再利用完全平方公式分解.【详解】(1)解:2()4()a x y y x -+- ()()24a x y =--()()()22a a x y =+--;(2)解:()222221664x y x y +- ()()2222168168x y xy x y xy =+++-()()2244x y x y =+-【点睛】此题考查了因式分解—提公因式法,以及公式法,熟练掌握因式分解的方法是解本题的关键.27.(1)()2xy x y -(2)()()2x a b a b +-+(3)()()519x x +-【分析】(1)先提取公因式,再用完全平方公式分解;(2)用平方差公式分解即可;(3)先用平方差公式分解,再提取公因式.【详解】(1)32232x y x y xy -+()222xy x xy y =-+()2xy x y =- (2)22()()x a x b +--[][]()()()()x a x b x a x b =++-+--()()x a x b x a x b =++-+-+()()2x a b a b =+-+(3)22(32)(27)x x --+[][](32)(27)(32)(27)x x x x =-++--+()()32273227x x x x =-++---()()559x x =+-()()519x x =+-【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解答本题的关键.因式分解常用的方法有:∶提公因式法;∶公式法;∶十字相乘法;∶分组分解法.28.(1)2(2)x x --(2)5(2)y x y -(3)22()()x y x y +-【分析】(1)先提公因式x -,再利用完全平方公式即可;(2)先提公因式(2)x y -,再合并同类项即可;(3)先利用平方差公式,再利用完全平方公式进行计算即可.【详解】(1)解:(1)原式2(44)x x x =--+2(2)x x =--;(2)解:原式(2)[(3)(2)]x y x y x y =-+--(2)(32)x y x y x y =-+-+5(2)y x y =-;(3)解:原式22222()4x y x y =+-2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.29.(1)()22423ab a b a b --+(2)()()()22x y a a -+-【分析】(1)提取4ab -,即可求解;(2)提取()x y -,再根据平方差公式继续分解即可求解.【详解】(1)解:22338124a b ab a b -+-()22423ab a b a b --+=;(2)解:()()24a x y y x -+-()()24x y a =-- ()()()22x y a a =-+-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 30.()()26x x --【分析】根据十字相乘法,进行因式分解即可.【详解】解:()()281226x x x x -+=--.【点睛】本题考查因式分解.熟练掌握十字相乘法因式分解,是解题的关键.31.()()4222x y z x y z ++++【分析】利用平方差公式先将原式进行分解因式得到()()422244x y z x y z ++++,再提取公因式2即可得到答案.【详解】解:()()229x y z x y z -++-- ()()()()33x y z x y z x y z x y z =+++--++---⎡⎤⎡⎤⎣⎦⎣⎦()()333333x y z x y z x y z x y z =+++--++-++()()422244x y z x y z =++++()()4222x y z x y z =++++.【点睛】本题主要考查了分解因式,正确利用平方差公式将原式分解成()()422244x y z x y z ++++是解题的关键.32.(1)()(2)x y y x --(2)()21(1)(1)x x x ++-(3)2(1)x -【分析】(1)提取公因式()x y -;(2)利用平方差公式分解;(3)先展开多项式,再利用完全平方公式.【详解】(1)解:原式()[1()]x y x y =---()(1)x y x y =--+;故答案为:()(1)x y x y --+;(2)解:原式22(1)(1)x x =+-2(1)(1)(1)x x x =++-;故答案为:2(1)(1)(1)x x x ++-;(3)解:原式2214x x x =++-221x x =-+2(1)x =-.故答案为:2(1)x -.【点睛】本题考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.33.(1)()()23a b x y +-(2)()()2222+-y y【分析】(1)利用提取公因式法分解因式;(2)利用完全平方公式和平方差公式分解因式.【详解】(1)解:()()26a x y b y x --- ()()26a x y b x y =-+-()()26a b x y =+-()()23a b x y =+-;(2)解:()()2221619y y ---+ ()2213y =-- ()2222y =- ()()2222y y =+-.【点睛】本题考查因式分解,属于基础题,掌握提取公因式法和公式法是解题的关键. 34.(1)()231+x(2)()223xy x y -【分析】(1)利用完全平方公式进行因式分解,即可求解;(2)先提出公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:2296131x x x ; (2)解:322321218x y x y xy -+22269xy x xy y()223xy x y =-.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.35.(1)(1)xy x xy y ++++【分析】先展开原式,得()()11xy xy x y xy +++++,令1xy a +=,式子变形为:()2xy a x y a xy a ax ay +++=+++,再根据十字相乘法,即可.【详解】()()()()()11111xy x y xy xy xy x y xy ++++=+++++,令1xy a +=,∶()()()111xy x y xy ++++()xy a x y a =+++2xy a ax ay =+++()2a a x y xy =+++()()a x a y =++,把1xy a +=代入()()a x a y ++,∶()()()()11a x a y xy x xy y ++=++++,∶()()()()()11111xy x y xy xy x xy y ++++=++++.【点睛】本题考查因式分解的知识,解题的关键是把1xy +看成一个整体,熟练掌握因式分解-十字相乘法的运用.36.(1)()()11xy x x -+(2)()27x y -+-【分析】(1)先提取公因式,再用平方差公式展开即可(2)直接用完全平方公式即可【详解】(1)解:3x y xy -()21xy x =-()()11xy x x =-+(2)解:()()21449x y x y -+++-()()21449x y x y ⎡⎤=-+-++⎣⎦ ()27x y =-+-【点睛】本题考查了用平方差公式和完全平方公式因式分解,熟练掌握公式是解决问题的关键37.(1)()23a b --;(2)()()()3232x y a b a b -+-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可;(2)先提公因式,再利用平方差公式分解因式,即可.【详解】(1)解:原式()2232a ab b =--+ ()23a b =--;(2)解:原式()()2294a x y b x y =--- ()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题考查了因式分解,掌握提公因式与公式法分解因式是解题的关键. 38.(1)()()22a b b +-(2)()()2233+-x x【分析】(1)先提取公因式a ,再利用平方差公式分解因式即可;(2)利用完全平方公式和平方差公式分解因式即可.【详解】(1)解:24ab a -()24a b =-()()22a b b =+-;(2)解:()()22258516x x +--+ ()2254x ⎡⎤=--⎣⎦ ()229x =- ()()2233x x =+-. 【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.39.(1)()()33x x +-;(2)225x -().【分析】(1)根据平方差公式直接分解因式;(2)先题公因式,在用完全平方差公式分解.【详解】(1)解:29x -()()33x x =+-;(2)222050x x -+()221025x x =-+225x =-(). 【点睛】本题考查因式分解,熟练运用提公因式法和公式法进行因式分解是解题的关键. 40.()()()33m n x x -+-【分析】先提公因式()m n -,然后根据平方差公式因式分解即可求解.【详解】解:2(()9)x m n n m -+-()()29x m n m n =---()()29m n x =--()()()33m n x x =-+-.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.41.(1)224(23)ab a bc +(2)23(2)x y -(3)()(32)(32)x y a b a b -+-(4)()()()22x y x y y x ++-(5)(2)(31)(31)x y a a ++-【分析】(1)原式提取公因式即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式变形后,提取公因式,再利用平方差公式分解即可;(4)原式利用平方差公式分解即可;(5)原式变形后,提取公因式,再利用平方差公式分解即可.【详解】(1)解:原式224(23)ab a bc =+;(2)解:原式223(44)x xy y =-+23(2)x y =-;(3)解:原式229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-;(4)解:原式()()2222x y y x =+-()()()22x y x y y x =++-;(5)解:原式292)(2)(a x y x y =+-+22)(91)(x y a =+-(2)(31)(31)x y a a =++-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解决本题的关键.42.(1)()2431ab b a --+(2)212x ⎛⎫- ⎪⎝⎭ (3)()()2211x x +-【分析】(1)提取公因式2ab -进行分解因式即可;(2)利用完全平方公式分解因式即可;(3)利用平方差公式和完全平方公式分解因式即可.【详解】(1)解:22862ab a b ab -+-()2431ab b a =--+ (2)解:214x x -+212x ⎛⎫=- ⎪⎝⎭; (3)解:()22214x x +- ()()221212x x x x =+++-()()2211x x =+-. 【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.43.(1)()()2222a a +-(2)()()422m n m n ++(3)()2234a x --【分析】(1)首先利用平方差公式分解因式,然后利用完全平方公式分解因式;(2)首先利用平方差公式分解因式,然后利用提公因式法分解因式;(3)首先利用提公因式法分解因式,然后利用完全平方公式分解因式.【详解】(1)()222416a a +- ()()224444a a a a =+++-()()2222a a =+-;(2)()()229m n m n +-- ()()3333m n m n m n m n =++-+-+()()4224m n m n =++()()422m n m n =++;(3)222232448a x a x a -+-()223816a x x =--+()2234a x =--. 【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.44.(1)())11(a b a b -+--(2)()()11ab a a +-【分析】(1)根据平方差公式和完全平方公式,分解因式即可;(2)先提公因式,然后用平方差公式分解因式即可.【详解】(1)解:2221a b a --+2221a a b =-+-()221a b =-- ()()11a b a b -+--=;(2)解:3-a b ab()21ab a =-()()11ab a a =+-.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握平方差公式和完全平方公式. 45.(1)()()11a x x +-(2)()231y x -【分析】(1)首先提取公因式,再利用平方差公式,即可分解因式;(2)首先提取公因式,再利用完全平方公式,即可分解因式.【详解】(1)解:2ax a -()21a x =- ()()11a x x =+-(2)解:2363x y xy y -+()2321y x x =-+()231y x =-【点睛】本题考查了因式分解的方法,熟练掌握和运用因式分解的方法是解决本题的关键. 46.(1)()()22-+x x x ;(2)()()33a b a b +++-.【分析】(1)先提取公因式,再利用平方差公式即可得到结果;(2)原式利用完全平方公式与平方差公式分解即可得到结果.【详解】(1)解:34x x - ()24x x =-()()22x x x =-+;(2)解:2292a b ab +-+()2229a b ab =++-()29a b =+- ()()33a b a b =+++-.【点睛】此题考查了因式分解,提公因式法和运用公式法,熟练掌握完全平方公式是解本题的关键.47.(1)()()m m n m n -+(2)22(2)x y -【分析】(1)提取公因式m ,运用平方差公式即可得;(2)提取公因数2,运用完全平方公式即可得.【详解】(1)解:原式=22()m m n -=()()m m n m n -+;(2)解:原式=222(44)x xy y -+=22(2)x y -.【点晴】本题考查了因式分解,解题的关键是掌握因式分解,平方差公式,完全平方公式. 48.(1)()()33x x +-(2)21a a -()(3)()()2233x x +-【分析】(1)直接运用平方差公式因式分解即可;(2)先提取有公因式,然后运用完全平方公式进行因式分解即可;(3)先提取有公因式,然后运用完全平方公式,再运用完全平方公式进行因式分解即可.【详解】(1)解:29x - ()()33x x =+-,(2)解:232a a a -+=212a a a -+()=21a a -()(3)解:()()22258516x x +--+ =()()22258516x x ---+=()2254x -- ()()2233x x =+- 【点睛】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.49.()22y x y +【分析】先提出公因式,再利用完全平方公式进行因式分解,即可求解.【详解】解:223242x y xy y ++()2222y x xy y =++()22y x y =+ 【点睛】本题考查了提取公因式与公式法分解因式,熟练掌握因式分解的方法是解题的关键.50.(1)()2532x x +(2)()23y x -(3)()()()22x y a b a b -+-【分析】(1)直接提取公因式即可求解;(2)先提取公因式y ,然后利用完全平方公式分解因式即可;(3)先提取公因式x y -,然后利用平方差公式分解因式即可.【详解】(1)321510x x + ()2532x x =+(2)269x y xy y -+()269y x x =-+()23y x =-(3)22()4()a x y b y x -+-22()4()a x y b x y =--- ()22()4x y a b =--()()()22x y a b a b =-+-【点睛】本题主要考查了因式分解,解题的关键是熟知因式分解的方法.。
初中数学因式分解训练题型1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y27.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.因式分解:(1)2x3﹣4x2y3+6x2y2 (2)3a2﹣27 (3)(x+2y﹣z)2﹣(x﹣2y+z)2 (4)﹣4a2x2+8ax﹣49.把下列各式分解因式:(1)3a(x﹣y)﹣5b(y﹣x)(2)a4﹣1 (3)﹣b3+4ab2﹣4a2b.10.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+111.分解因式:(1)x2(x﹣y)+(y﹣x)(2)4(a+b)2﹣(2a﹣3b)212.分解因式:a2﹣4a+4﹣b225.分解因式:a2﹣b2﹣2a+113.分解因式:(1)﹣4+x2(2)﹣4x2y+4xy2﹣y3(3)9(a﹣b)2﹣4(a+b)2(4)3a2+bc﹣3ac﹣ab14.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+115.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.答案与评分标准二.解答题(共16小题)13.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8考点:提公因式法与公式法的综合运用。