中考数学正反比例一次函数
- 格式:docx
- 大小:17.00 KB
- 文档页数:4
【中考数学复习】一次函数与反比例函数知识提要初中代数中涉及的函数有:一次函数(包括正比例函数)、反比例函数、二次函数.每种函数一般从下面四个方面研究:定义,图象,性质,求解析式.本讲研究一次函数和反比例函数.一、一次函数1、定义:函数)0(≠+=k b kx y 称为一次函数,若0=b 则称函数为正比例函数.2、图象:一次函数是过点(0,b )和点(kb -,0)的直线.当b=0时的正比例函数)0(≠=k kx y 是过原点的一条直线,若k 与b 的符号不同,则直线经过的象限也不同,如图所示:3、性质:当0>k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小.(此性质为一次函数的单调性)另外,正比例函数关于原点O 中心对称4、求解析式:求一次函数的解析式,一般需要两个条件,求出表达式b kx y +=中的k 及b 的值,常用待定系数法来求一次函数.而正比例函数的解析式只需要一个条件.二、反比例函数1、定义:形如)0(≠=k x k y 形式称为反比例函数,定义域为0≠x 的所有实数.2、图象:反比例图象为双曲线,如图所示:3、性质:反比例函数x k y =在0>k 且0>x 时,函数值y 随x 的增大而减小;在0>k 且0<x 时,函数值y 随x 的增大而减小.即:当0>k 时,反比例函数x k y =分布在一、三象限,在每个象限内,y 随x 的增大而减小,如图(1)所示.当0<k 时,反比例函数xk y =分布在二、四象限,在每个象限内,y 随x 的增大而增大,如图(2)所示.反比例函数x k y =图象上的点关于原点O 成中心对称的.当0>k 时,函数的图象关于直线x y =成轴对称;当0<k 时,函数的图象关于直线x y -=成轴对称.4、求解析式:反比例函数的解析式,只需要一个条件,求出xk y =)0(≠k 中的k 即可.在解决有关一次函数及反比例函数的问题时,常运用数形结合及分类讨论的思想方法.待定系数法是研究函数表达式的基本方法,同时紧密结合图象寻求思路,是处理这类问题的重要方法.例1、已知正比例函数x y =和)0(>=a ax y 的图象与反比例函数xky =(k>0)的图象在第一象限内分别相交于A 、B 两点,过A 、B 作x 轴的垂线,垂足分别为C 、D ,设△AOC 和△BOD 的面积分别为1S 、2S ,则1S 与2S 的大小关系怎样?例2、两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示,点1P ,2P ,3P ,…2005P 在反比例函数x y 6=图象上,它们的横坐标分别是1x ,2x ,3x ,…2005x ,纵坐标分别是1,3,5,…,共2005个连续奇数,过点1P ,2P ,3P ,…2005P 分别作y 轴的平行线,与xy 3=的图象交点依次是)(111y x Q ,,)(222y x Q ,,)(333y x Q ,,…)(200520052005y x Q ,,则_________2005=y .例3、平面直角坐标系内有A (2,-1)、B (3,3)两点,点P 是y 轴上一动点,求P 到A 、B 距离之和最小时的坐标.例4、已知一次函数的图象经过点(2,2),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的解析式.例5、已知A (-2,0)、B (4,0),点P 在直线221+=x y 上,若△PAB 是直角三角形,求点P 的坐标.例6、已知两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供两个方面的信息,如图所示,请根据图中提供的信息,求:(1)第2年全县生产甲鱼的只数及甲鱼池的个数;(2)到第6年,这个县的甲鱼养殖规模比第1年是扩大了还是缩小了,请说明理由.例7、如图,已知C 、D 是双曲线xm y =在第一象限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(11y x ,)、(22y x ,),连接OC 、OD.(1)求证:111y m y OC y +<<;(2)若α=∠=∠AOD BOC ,31tan =α,10=OC ,求直线CD 的解析式.(3)在(2)的条件下,双曲线是否存在一点P ,使POD POC S S ∆∆=?若存在,求出P 点坐标;若不存在,请说明理由.例8、有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若20分钟后只放水不进水,求多长时间能将水放完?例9、为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图),观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为__________,自变量x 的取值范围是___________;药物燃烧后y 关于x 的函数关系式为____________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?例10、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表所示:家电名称空调器彩电冰箱工时/个213141产值/千元432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)练习1、已知0≠abc 并且p b a c a c b c b a =+=+=+而直线p px y +=一定通过()A 第一、二象限B 第二、三象限C 第三、四象限D 第一、四象限2、函数kx y =和)0(<=k x k y 在同一坐标系中的图象是()3、一次函数b kx y +=过点)(11y x ,和)(22y x ,,且0>k ,b<0,当210x x <<时,有()A 21y b y >>B 21y b y <<C b y y <<<210D 012<<<y b y 4、若点(-2,1y ),(1,2y ),(2,3y )在反比例函数x y 21=的图象上,则下列结论正确的是()A 123y y y >>B 312y y y >>C 132y y y >>D 321y y y >>5、反比例函数x k y =的图象是轴对称图形,它的一条对称轴是下列正比例函数图象中的()A kxy -=B x k y =C x k k y =D kxy =6、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有()A 4个B 5个C 6个D 7个7、如图,正比例函数x y 3=的图象与反比例函数xk y =(0>k )的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…20S ,则__________2021=+++S S S .8、不论k 为何值,解析式0)11()3()12(=--+--k y k x k 表示函数的图象都经过一定点,则这个定点是_________.9、如图所示,直线l 和双曲线x k y =(0>k )交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP.设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则321S S S 、、的大小关系是______________.10、甲、乙两车出发后再同一条公路行驶,行驶路程与时间的关系如图所示,那么可以知道:(1)出发行驶在前面的车是_________,此时两车相隔_________;(2)两车的速度分别为甲:___________千米/小时,乙:_________千米/小时,经过___________小时,快车追上慢车;(3)甲、乙两车均行驶600千米时各用的时间分别是:甲用_________小时,乙用__________小时.11、如图,函数221+-=x y 的图象交y 轴于M ,交x 轴于N ,MN 上两点A ,B 在x 轴上射影分别为11B A 、,若411>+OB OA ,则A OA 1∆的面积1S 与B OB 1∆的面积2S 的大小关系是_____________.12、已知非负数x 、y 、z 满足323=++z y x ,433=++z y x ,则z y x w 423+-=的最大值为_________,最小值为__________.13、在直角坐标系中,有四个点:A (-8,3),B (-4,5),C (0,n ),D (m ,0),当四边形ABCD 的周长最短时,求nm 的值.14、设直线1)1(=++y k kx (k 是自然数)与两坐标轴所围成的图形的面积为1S ,2S ,…,2000S .求200021S S S +++ 的值.15、如图(1),已知直线m x y +-=21与反比例函数xk y =的图象在第一象限内交于A 、B 两点(点A 在点B 的左侧),分别于x 、y 轴交于C 、D ,AE ⊥x 轴于E.(1)若OE·CE=12,求k 的值;(2)如图(2),作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,5=EF ,52=AB ,P 是x 轴正半轴上一点,且△PAB 是以P 为直角顶点的等腰直角三角形,求P 点的坐标.(1)(2)16、已知直线62+-=-k y x 和143+=+k y x ,若它们的交点在第四象限内.(1)求k 的取值范围;(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线62+-=-k y x 上,求使△PAO 为等腰三角形的点P 的坐标.17、A 市、B 市和C 市分别有某种机器10台、10台和8台,现决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机器到D 市、E 市的运费分别为200元和800元,从B 市调运一台机器到D 市、E 市的运费分别为300元和700元,从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器全部调运完毕后,求总运费w (元)关于x (台)的函数式,并求w 的最大值和最小值;(2)设从A 市调x 台到D 市,从B 市调y 台到D 市,当28台机器全部调运完毕后,用x ,y 表示总运费w (元),并求w 的最大值和最小值.18、直线133+-=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,其中∠BAC=90°.如果第二象限内有一点P (a ,21),使△ABP 的面积和△ABC 的面积相等,求a 的值.文式思维教育,传播知识,分享快乐19、如图,在直角坐标系中,点1O 的坐标为(1,0),⊙1O 与x 轴交于原点O 和点A ,又点B 、C 的坐标分别为(-1,0),(0,b ),且30<<b ,直线l 是过B 、C 点的直线.(1)当点C 在线段OC 上移动时,过点1O 作l D O 直线⊥1,交l 于D ,若a S S CBO BOC=∆∆1,试求b a 与的函数关系式及a 的取值范围.20、某仓储系统有20条输入传送带、20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(a ),每条输出传送带每小时出库的货物流量如图(b ),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(c ),则在0时至2时有多少条输入传送带在工作?在4至5时有多少条输入传送带和输出传送带在工作?。
一、一次函数的定义及性质一次函数是形如y=ax+b的函数,其中a和b是常数,且a≠0。
一次函数是一种简单的线性函数,它的图像是一条直线。
一次函数的性质包括:定义域是整个实数集,值域是整个实数集,图像是一条直线,直线的斜率为a,截距为b。
二、反比例函数的定义及性质反比例函数是形如y=k/x的函数,其中k是常数,且k≠0。
反比例函数的值域为整个实数集,定义域为除去x=0的整个实数集。
反比例函数的性质包括:定义域是除去x=0的整个实数集,值域是整个实数集,图像是一个双曲线,曲线的渐近线为x=0和y=0。
三、解一次函数的实际问题解一次函数的实际问题包括:1.求解一次函数的解析式:已知一次函数的两个点,可以利用点斜式求解解析式。
例如,已知点P(1,3)和Q(2,5),求一次函数的解析式。
解:设求解的一次函数为y=ax+b,代入P和Q的坐标得到两个方程:a+b=3和2a+b=5、解这个方程组,可以得到a=2和b=1,因此一次函数的解析式为y=2x+12.求解一次函数的零点:求解一次函数的零点,即求解函数关于x的解析式中,y=0时对应的x值。
例如,求解函数y=2x+1的零点。
解:将函数关于x的解析式设置为0,得到2x+1=0。
解这个方程,可以得到x=-1/2、因此,函数y=2x+1的零点为x=-1/2四、解反比例函数的实际问题解反比例函数的实际问题包括:1.求解反比例函数的解析式:已知反比例函数的其中一个点,可以利用该点求解解析式。
例如,已知点P(2,4),求解反比例函数的解析式。
解:设求解的反比例函数为y=k/x,代入点P的坐标得到方程4=k/2、解这个方程,可以得到k=8、因此,反比例函数的解析式为y=8/x。
2.求解反比例函数的零点:求解反比例函数的零点,即求解函数关于x的解析式中,y=0时对应的x值。
例如,求解函数y=8/x的零点。
解:将函数关于y的解析式设置为0,得到8/x=0。
因为分母不能为0,所以反比例函数没有零点。
德 旺 教 育 周 末 教 案授课人 文老师 学科 数学 授课时间 2012.5.13 年级初三正比例、反比例、一次函数〖知识点〗 正比例函数及其图像、一次函数及其图像、反比例函数及其图像〖大纲要求〗1.理解正比例函数、一次函数、反比例函数的概念;2.理解正比例函数、一次函数、反比例函数的性质;3.会画出它们的图像;4.会用待定系数法求正比例、反比例函数、一次函数的解析式内容分析1、一次函数(1)一次函数及其图象如果y=kx+b (K ,b 是常数,K ≠0),那么,Y 叫做X 的一次函数。
特别地,如果y=kx (k 是常数,K ≠0),那么,y 叫做x 的正比例函数一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线(2)一次函数的性质当k>0时y 随x 的增大而增大,当k<0时,y 随x 的增大而减小。
2、反比例函数(1) 反比例函数及其图象如果)0,(≠=k k xk y 是常数,那么,y 是x 的反比例函数。
反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象(2)反比例函数的性质当K>0时,图象的两个分支分别在一、二、三象限内,在每个象限内, y 随x 的增大而减小;当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y 随x 的增大而增大。
3.待定系数法先设出式子中的未知数,再根据条件求出未知系数,从而写出这个式子的方法叫做待定系数法可用待定系数法求一次函数、二次函数和反比例函数的解析式〖考查重点与常见题型〗1. 考查正比例函数、反比例函数、一次函数的定义、性质,有关试题常出现在选择题中2. 综合考查正比例、反比例、一次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题3. 用待定系数法求正比例,反比例,一次函数的解析式,有关习题出现的频率很高,类型有中档解答题和选拔性的综合题4. 利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点。
正比例函数、一次函数、反比例函数的性质及图象一、正比例函数性质和图象:概念:一般地,形如 (k是常数,且k≠0 )的函数,叫做正比例函数。
当k>0时,图象过象限; y随x的增大而。
当k<0时,图象过象限; y随x的增大而。
二、一次函数的性质和图象:概念:一般地,形如y=kx+b(k,b是常数,且k≠0 )的函数,叫做一次函数。
图像和性质:①k>0,b>O,则图象过象限②k>0,b<0,则图象过象限当k>0时, y随x的增大而。
③k<0,b>0,则图象过象限④k<0,b<0,则图象过象限当k<0时, y随x的增大而。
三、反比例函数性质和图象:1.定义:形如(k为常数,k≠0)的函数称为反比例函数。
其他形式2.图像:反比例函数的图像是双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
3.性质:当k>0时双曲线的两支分别位于,在每个象限内y值随x值的增大而减小。
当k<0时双曲线的两支分别位于,在每个象限内y值随x 值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
练习题1、若y =(m -1)x22m -是正比例函数,则m 的值为( ) A 、1 B 、-1C 、1或-1D 、2或-2 2、下列函数中,一次函数为( )A 、25y x = B .25y x =-1 C .245y x = D .25y x=-3、下列函数中,反比例函数是( )A 、y=x+1B 、y=C 、=1D 、3xy=24、正比例函数y=kx (k ≠0)函数值y 随x 的增大而增大,则y=kx+k 的图象大致是( )5、直线443--=x y 与两坐标轴围成的三角形面积是( ) A 3 B 4 C 12 D 66、函数y 1=kx 和y 2=的图象如图,自变量x 的取值范围相同的是( )7、若点A(x1,1)、B(x2,2)、C(x3,-3)在双曲线上,()A、x1>x2>x3B、x1>x3>x2C、x3>x2>x1D、x3>x1>x28、已知一次函数y=ax+b图象在一、二、三象限,则反比例函数y=的函数值随x的增大而__________。
一次函数(y=kx+b)1.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0, b)。
[1]2.当b=0时,一次函数变为正比例函数。
当然正比例函数为特殊的一次函数。
[1]3.对于正比例函数,y除以x的商是一定数(x≠0)。
对于反比例函数,x与y的积是一定数。
4.在两个一次函数表达式中:•当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;•当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;•当两个一次函数表达式中的k不相同,b也不相同时,则这两个一次函数的图像相交;•当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);•当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。
[1]5.直线y=kx+b的图象和性质与k、b的关系如下表所示:k>0,b>0经过第一、二、三象限k>0,b<0经过第一、三、四象限k>0,b=0经过第一、三象限【k>0时,图象从左到右上升,y随x的增大而增大】k<0b>0经过第一、二、四象限k<0,b<0经过第二、三、四象限K<0,b=0经过第二、四象限【k<0图象从左到右下降,y随x的增大而减小】一. 定义型例1.已知函数是一次函数,求其解析式。
解:由一次函数定义知,,,故一次函数的解析式为y=-6x+3。
注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。
如本例中应保证m-3≠0。
二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2,-1),求这个函数的解析式。
解: 一次函数的图像过点(2, -1),,即k=1。
故这个一次函数的解析式为y=x-3。
变式问法:已知一次函数y=kx-3,当x=2时,y=-1,求这个函数的解析式。
三. 两点型例3.已知某个一次函数的图像与x 轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。
一次、反比例、二次函数一、正比例函数和一次函数1、正比例函数:形如y=kx(k 是常数,k≠0)的函数叫做正比例函数。
2、一次函数的概念:如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
3、一次函数的性质:一般地,一次函数b kx y +=有下列性质:(1)当k>0时,y 随x 的增大而增大(2)当k<0时,y 随x 的增大而减小(3)必过点:(0,b )和(-kb ,0) (4)|k|越大,图象越接近于y 轴,|k|越小,图象越接近于x 轴.(5)k 为直线的斜率:1212tan x x y y k --==α , b 为直线在y 轴上的截距 4、直线方程:一般式:一般直线方程 ax+by+c=0两点式:由直线上两点确定的直线的两点式方程,简称两点式:点斜式:知道一点与斜率)(11x x k y y -=- 斜截式:斜截式方程,简称斜截式: y =kx +b (k ≠0)截距式:由直线在x 轴和y 轴上的截距确定的直线的截距式方程,简称截距式:1=+by a x 5、设两条直线分别为,1l :11y k x b =+ 2l :22y k x b =+(1)、若两直线平行,则有1212//l l k k ⇔=且12b b ≠。
(2)、若两直线垂直,则有12121l l k k ⊥⇔⋅=-(3)、若两直线重合:k 1=k 2且b 1=b 26、点P (x 0,y 0)到直线 ax+by+c=0 的距离是7、两点间距离公式:点A 坐标为(x 1,y 1)点B 坐标为(x 2,y 2),则AB 间的距离即线段AB 的长度为()()221221y y x x -+-8、中点坐标公式:若A ),(11y x 、B ),(22y x ,而 M 是AB 的中点,则M 点的坐标为(212x x + , 212y y +) 二、反比例函数1、反比例函数的概念:一般地,函数xk y =(k 是常数,k ≠0)叫做反比例函数。
函数知识点总结一,一次函数基本知识点:若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数。
特别的,当b=0时,一次函数就成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数。
k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;b表示直线y=kx+b(k≠0)与y轴交点的纵坐标。
4,待定系数法求解析式方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。
☆已知是直线或一次函数可以设y=kx+b(k≠0);☆若点在直线上,则可以将点的坐标代入解析式构建方程。
1、若函数y=3x+b经过点(2,-6),求函数的解析式2、直线y=kx+b的图像经过A(3,4)和点B(2,7),5,与坐标轴的交点坐标以及函数之间的交点坐标1、 直线经过(1,2)、(-3,4)两点,求直线与坐标轴的交点坐标及坐标轴围成的图形的面积。
2,已知函数y1=3x+b 经过点(2,-6),y2=2x+1,求2个函数的交点坐标。
二,反比例函数知识要点:1、一般地,形如 y =xk( k 是常数, k = 0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式: (A )y =xk(k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1(k ≠0)2、反比例函数的图象和性质: 知识要点:1、形状:图象是双曲线。
2、位置:(1)当k>0时,双曲线分别位于第__ ______象限内;(2)当k<0时, 双曲线分别位于第________象限内。
3、增减性:(1)当k>0时,_________________,y 随x 的增大而________;(2)当k<0时,_________________,y 随x 的增大而______。
总结:(1) 点 M(x,y) 是双曲线上任意一点,则矩形OPMQ 的面积是M P *M Q = ︳x ︱︳y ︱= ︳xy ︱ (2) M P= ︳x ︱, O P=︳y ︱ ;S △MPO =21MP* OP=21︳x ︱︳y ︱ =21︳xy ︱题型:1.函数y 1=x (x ≥0),y 2=4x (x >0)的图象如图所示,下列结论:① 两函数图象的交点坐标为A (2,2); ② 当x >2时,y 2>y 1;③ 直线x =1分别与两函数图象交于B 、C 两点,则 线段BC 的长为3;④ 当x 逐渐增大时,y 1的值随着x 的增大而增大,y 2的 值随着x 的增大而减小. 则其中正确的是()A .只有①②B .只有①③C .只有②④D .只有①③④2,如图,直线y x m =+与双曲线ky x =相交于A (2,1)、B(1)求m 及k 的值;(2)不解关于x 、y的方程组,,y x m k y x =+⎧⎪⎨=⎪⎩直接写出点B 的坐标;(3)直线24y x m =-+经过点B 吗?请说明理由.3.,如图,四边形OABC 是面积为4的正方形,函数ky x =(x >0)的图象经过点B .(1)求k 的值;(2)将正方形OABC 分别沿直线AB 、BC 翻折,得到正方形MABC′、MA′BC .设线段MC′、NA′分别与函数ky x =(x >0)的图象交于点E 、F ,求线段EF 所在直线的解析式.三,二次函数知识点:1,一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果(k ,b 是常数,k 0),那么y 叫做x 的一次函数。
b kx y +=≠特别地,当一次函数中的b 为0时,(k 为常数,k 0)。
这时,y 叫做x 的正比例函b kx y +=kx y =≠数。
2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b )的直线;正比例函数的图像是经过原点(0,0)的b kx y +=kx y =直线一次函数(1)一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系.①直线经过第一、二、三象限(直线不经过第四象限);②直线经过第一、三、四象限(直线不经过第二象限);③直线经过第一、二、四象限(直线不经过第三象限);④直线经过第二、三、四象限(直线不经过第一象限正比例函数4、正比例函数的性质一般地,正比例函数有下列性质:kx y =(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大;(2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。
反比例函数(1)反比例函数如果(k 是常数,k ≠0),那么y 叫做x 的反比例函数.xky =(2)反比例函数的图象反比例函数的图象是双曲线.(3)反比例函数的性质①当k >0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y 随x 的增大而减小.②当k <0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y 随x 的增大而增大.③反比例函数图象关于直线y =±x 对称,关于原点对称.(4)k 的两种求法①若点(x 0,y 0)在双曲线上,则k =x 0y 0.xky =②k 的几何意义:若双曲线上任一点A (x ,y ),AB ⊥x 轴于B ,则S △AOB x k y =||||2121y x AB OB ⋅=⨯=.||21k =(5)正比例函数和反比例函数的交点问题若正比例函数y =k 1x (k 1≠0),反比例函数,则)0(22=/=k x ky 当k 1k 2<0时,两函数图象无交点;当k 1k 2>0时,两函数图象有两个交点,坐标分别为由此可知,正).,(),,(21122112k k k kk k k k --反比例函数的图象若有交点,两交点一定关于原点对称.1.定义:一般地,如果是常数,,那么叫做的一元二次函数.c b a c bx ax y ,,(2++=)0≠a y x 2.二次函数的性质2ax y =(1)抛物线的顶点是原点,对称轴是轴.2ax y =)(0≠a y (2)函数的图像与的符号关系:2ax y =a ①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点0>a ⇔⇔0<a ⇔⇔3.二次函数 的图像是对称轴平行于(包括重合)轴的抛物线.c bx ax y ++=2y 4.二次函数用配方法可化成:的形式,其中.c bx ax y ++=2()k h x a y +-=2ab ac k a b h 4422-=-=,5.抛物线的三要素:开口方向、对称轴、顶点.c bx ax y ++=2①决定抛物线的开口方向:a 当时,开口向上;当时,开口向下;越小,抛物线的开口越大,越大,抛物线的开口越0>a 0<a a a 小。
1、正比例函数一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.正比例函数的图像经过(0,0 )和(1,k)的一条直线2、一次函数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次(x的指数是1)函数.当b=0时,y=kx+b即y=kx,所以正比例函数是特殊的一次函数.一次函数的图象经过(0,b)和两点的一条直线3、直线y=kx+b的图象和性质与k、b的关系如下表所示:b>0 b<0 b=0经过第一、二、三象限经过第一、三、四象限经过第一、三象限k>0图象从左到右上升,y随x的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<0图象从左到右下降,y随x的增大而减小5、正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).6、直线l1:y1=k1x+b1与l2:y2=k2x+b2的位置关系当k1≠k2时,l1与l2相交,交点是(0,b)7、反比例函数(1)定义:一般地,形如x k y =(k 为常数,o k ≠)的函数称为反比例函数。
xk y =还可以写成kx y =1- 8、反比例函数的图像是双曲线轴对称图形(对称轴是x y =或x y -=)9、反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xk y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。
10、反比例函数性质如下表:k 的取值图像所在象限 函数的增减性 o k >一、三象限 在每个象限内,y 值随x 的增大而减小 o k <二、四象限 在每个象限内,y 值随x 的增大而增大练习 (1)若函数y=(k +1)x +k 2-1是正比例函数,则k 的值为( )A .0B .1C .±1D .-1(3)当m=_______时,函数是一次函数.(4).函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )(5)一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。
第14课正比例反比例一次函数一、正比例关系的一次函数正比例关系是指两个变量之间的关系成比例关系,即一个变量的增加或减少导致另一个变量以相同的比例增加或减少。
正比例关系可以用一次函数进行表示。
假设变量x和变量y之间存在正比例关系,那么可以表示为:y=kx,其中k是比例系数,表示y和x之间的比例关系。
以实例来说明:例1:家庭的水费与用水量成正比,当用水量为10立方米时,水费为50元,如果用水量增加到20立方米,求此时的水费。
解:由题目可知,水费与用水量成正比。
设水费为y,用水量为x,则有y=kx。
当x=10时,y=50,可以得到一个方程:50=k*10,解得k=5、所以此时的比例系数为5、用水量增加到20立方米时,此时的水费为y=5*20=100元。
例2:商品的单价是50元/件,如果购买3件该商品,需要支付多少钱?解:由题目可知,商品的单价与购买数量成正比。
设购买数量为x,支付金额为y,则有y=kx。
购买3件商品时,此时的单价是50元/件,可以得到一个方程:3*k=50,解得k=50/3、所以此时的比例系数为50/3、购买3件商品需要支付的金额为y=(50/3)*3=50元。
对于正比例关系的一次函数,我们可以根据已知的条件,求解未知的变量的值。
二、反比例关系的一次函数反比例关系是指两个变量之间的关系成反比例关系,即一个变量的增加或减少导致另一个变量以相反的比例增加或减少。
反比例关系可以用一次函数进行表示。
假设变量y和x之间存在反比例关系,那么可以表示为:y=k/x,其中k是比例系数,表示y和x之间的反比例关系。
以实例来说明:例3:工人的工作效率与完成工作所需时间成反比,一些工人需要10小时完成一项工作,那么如果他的工作效率提高到原来的2倍,他只需要多长时间完成同样的工作?解:由题目可知,工作效率与完成工作所需时间成反比。
设工作效率为y,完成工作所需时间为x,则有y=k/x。
当x=10时,y=1,可以得到一个方程:1=k/10,解得k=10。
中考数学正反比例一次函数
第14 课正比例、反比例、一次函数
〖知识点〗
正比例函数及其图像、一次函数及其图像、反比例函数及其图像
〖大纲要求〗
1.理解正比例函数、一次函数、反比例函数的概念;
2.理解正比例函数、一次函数、反比例函数的性质;
3.会画出它们的图像;
4.会用待定系数法求正比例、反比例函数、一次函数的解析式
内容分析
1、一次函数
(1)一次函数及其图象
如果y=kx+b(K,b 是常数,K≠0),那幺,Y 叫做X 的一次函数。
特别地,如果y=kx(k 是常数,K≠0),那幺,y 叫做x 的正比例函数
一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线
(2)一次函数的性质
当k>0 时y 随x 的增大而增大,当k0 时,图象的两个分支分别在一、二、三象限内,在每个象限内,y 随x 的增大而减小;
当K-2 (B)m0 时,y 随x 的增大而
7.如果直线y=2x+m 不经过第二象限,那幺实数m 的取值范围是
8.若双曲线y=(m-1)x-1 在第二、四象限,则m 的取值范围是9.已知直线y=x+b被两坐标轴截取的线段长为5,求此直线函数解析。