第九章 激光快速成形技术
- 格式:ppt
- 大小:1.58 MB
- 文档页数:46
激光快速成型技术综述1、激光快速成型的基本原理激光快速成型技术的原理是用CAD生成的三维实体模型,通过分层软件分层、每个薄层断面的二维数据用于驱动控制激光光束,扫射液体、粉末或薄片材料,加工出要求形状的薄层,逐层积累形成实体模型。
传统的工业成形技术中大部分遵循材料去除法这一方法的,如车削、铣削、钻削、磨削、刨削;另外一些是采用模具进行成形,如铸造、冲压。
而激光快速成形却是采用一种全新的成形原理——分层加工、迭加成形。
而激光快速成型技术快速制造出的模型或样件可以直接用于新产品设计验证、功能验证、工程分析、市场订货一级企业的决策等,缩短新产品开发周期,降低研发成本,提高企业竞争力。
激光快速成型又分为以下几类:(1) 光固化立体造型(SL—Stereolithography,orSLA)将计算机控制下的紫外激光按预定零件各分层截面的轮廓为轨迹对液态光敏树脂逐点扫描,被扫描的树脂薄层产生光聚合反应固化形成零件的一个截面, 再敷上一层新的液态树脂进行扫描加工,如此重复直到整个原型制造完毕[3]。
这种方法的特点是精度高、表面质量好,能制造形状复杂、特别精细的零件,不足是设备和材料昂贵,制造过程中需要设计支撑。
(2) 分层实体制造(LOM—Laminated Object Manufacturing)LOM工艺是根据零件分层得到的轮廓信息用激光切割薄材,将所获得的层片通过热压装置和下面已切割层粘合,然后新的一层纸再叠加在上面,依次粘结成三维实体。
LOM主要特点是设备和材料价格较低,制件强度较好、精度较高。
Helisys公司研制出多种LOM工艺用的成型材料,可制造用金属薄板制作的成型件,该公司还开发基于陶瓷复合材料的LOM工艺。
(3) 选择性激光烧结(SLS —Se1ected Laser Sintering)SLS是采用激光有选择地分层烧结固体粉末,并使烧结成型的固化层层层叠加生成所需形状的零件。
其整个工艺过程包括CAD模型的建立及数据处理、铺粉、烧结以及后处理等。
磐纹科技快速成型制造过程的应用介绍
○快速成型工艺加工流程、设备及应用技术:
激光快速成型设备性能介绍
○激光快速成型系统技术描述RS 系列工艺原理图
SL (stereolithography )是机械、激光、光化学、软
件、控制技术的结晶。
基于光敏树脂受紫外光照射凝固
的原理,计算机控制激光逐层扫描固化液槽中的光敏树
脂。
每一层固化的截面是由零件的三维CAD 模型软件分
层得到,直至最后得到光敏树脂实物原型。
特点:
激光快速成型技术支持带有STL 接口的所有三维造型软
件,如:Pro/E ,UG ,Solidworks ,Catia
* 能制造任意复杂程度的三维模型
* 工艺过程全自动,CAD 数据驱动
* 无须特殊工装和工具
* 能制作非常精细的细节、薄壁
* 高精度,误差达到±0.1%,薄壁件可实现最小壁厚0.3mm
* 成型表面质量高
实物 三维扫瞄 三维重建
设计意图
及概念
二维图纸
3D CAD Catia UG Pro-E Solidwork 等RS 系列激光快
速成型机* 快速原型 快速模具* (真空注型工艺等) 样件/中、小批量生产 设计/装配验证
塑料产品
金属精密铸造
金属消失铸造
逆向工程(反求)*
SLA激光快速成型机的应用案例
冰箱拖板原型件电磁阀原型件
前灯灯罩原型件(抛光可达全透明)手机装配组件原型件
发动机进气歧管原型件
来源:磐纹科技(上海)有限公司提供专业全面的3D打印服务
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。
激光快速成型技术原理1. 引言激光快速成型技术(Laser Rapid Prototyping,简称Laser RP)是一种通过激光熔化或固化材料来逐层构建三维实体的制造技术。
它可以直接从计算机辅助设计(CAD)模型中生成物理模型,无需任何模具或切削工具。
激光快速成型技术的出现,极大地改变了传统制造业的生产方式,为产品研发与制造提供了一种快速、高效、灵活的解决方案。
本文将详细解释激光快速成型技术的基本原理,包括激光熔化成型(Selective Laser Melting,简称SLM)和激光固化成型(Stereolithography,简称SLA)两种常见的激光快速成型技术原理。
2. 激光熔化成型(SLM)原理激光熔化成型是一种通过激光熔化金属粉末来逐层构建金属实体的技术。
其基本原理如下:2.1 扫描路径规划在激光熔化成型过程中,首先需要根据CAD模型生成切片数据,然后使用计算机算法进行扫描路径规划。
扫描路径规划决定了激光在每一层的照射顺序,以及每个点的激光功率和照射时间。
2.2 激光照射在激光熔化成型过程中,使用高能量密度的激光束照射金属粉末,使其迅速熔化。
激光束的功率和照射时间会根据扫描路径规划的要求进行调整,以确保金属粉末被完全熔化。
2.3 层间粘结在每一层金属粉末被熔化后,需要等待熔融池冷却并凝固,形成一层固态金属。
然后,在下一层金属粉末上重复上述过程,直到构建出完整的三维实体。
每一层之间通过熔融池的凝固来实现粘结,确保构建出的实体具有足够的强度。
2.4 支撑结构在激光熔化成型过程中,由于构建过程是逐层进行的,上层的熔化金属会渗入到下层的固态金属中。
为了避免上层结构的变形和下层结构的破坏,通常需要添加支撑结构。
支撑结构可以提供支撑力和热传导,以保持构建过程的稳定性和精度。
2.5 后处理完成激光熔化成型后,需要进行后处理。
后处理包括去除支撑结构、表面处理、热处理等。
去除支撑结构通常需要机械或化学方法,以保持构建物表面的平整度和光洁度。
激光快速成型技术原理激光快速成型技术(Laser Rapid Prototyping,LRP)是一种以激光为能源源,通过逐层熔化或固化材料,实现三维实物快速制造的先进制造技术。
它是在计算机辅助设计(CAD)的基础上,利用计算机数控技术、激光技术和材料科学等多学科的综合应用。
激光快速成型技术的原理主要包括建模、切片、成型三个步骤。
首先是建模。
在激光快速成型技术中,首先需要进行三维模型的建立。
通常使用计算机辅助设计软件进行建模,将设计好的三维模型输入到激光快速成型设备中。
建模过程需要考虑到设计的形状、尺寸、结构等因素,以及材料的特性和制造工艺的要求。
接下来是切片。
在建模完成后,需要将三维模型切片成多个薄层。
切片过程是将三维模型分解为一系列的二维层,每一层都是一个横截面的投影。
切片的精度和层数的选择会直接影响到最终成型件的质量和精度。
最后是成型。
成型过程中,通过控制激光束的扫描轨迹和功率密度,将激光束照射到材料表面,使其局部熔化或固化。
当一层材料完成后,工作台会相应下降一层,然后再次进行激光照射,逐层累积,最终完成整个成型过程。
激光快速成型技术可以使用多种材料,如金属、塑料、陶瓷等,可以制造出具有复杂形状和内部结构的实物。
激光快速成型技术基于激光熔化或固化材料的原理,具有以下优点:激光快速成型技术具有高度的制造自由度。
通过激光束的精确控制,可以实现各种复杂形状的制造,包括内部空腔、薄壁结构等。
这种自由度对于一些特殊形状的零件制造非常有优势。
激光快速成型技术具有高精度和高质量。
激光束的直径非常小,可以实现微米级别的精度。
而且激光束的能量密度非常高,可以使材料迅速熔化或固化,从而得到高质量的成型件。
激光快速成型技术具有快速制造速度。
相比传统的制造方法,激光快速成型技术可以大大缩短制造周期,提高生产效率。
这对于一些小批量、个性化的生产要求非常适用。
激光快速成型技术还具有材料利用率高、减少了加工工序、降低了生产成本等优点。
磐纹科技快速成型制造过程的应用介绍
○快速成型工艺加工流程、设备及应用技术:
激光快速成型设备性能介绍
○激光快速成型系统技术描述RS 系列工艺原理图
SL (stereolithography )是机械、激光、光化学、
软件、控制技术的结晶。
基于光敏树脂受紫外光照射凝
固的原理,计算机控制激光逐层扫描固化液槽中的光敏
树脂。
每一层固化的截面是由零件的三维CAD 模型软件
分层得到,直至最后得到光敏树脂实物原型。
特点:
激光快速成型技术支持带有STL 接口的所有三维造型软
件,如:Pro/E ,UG ,Solidworks ,Catia
* 能制造任意复杂程度的三维模型
* 工艺过程全自动,CAD 数据驱动
* 无须特殊工装和工具
* 能制作非常精细的细节、薄壁
* 高精度,误差达到±0.1%,薄壁件可实现最小壁厚0.3mm * 成型表面质量高
实物 三维扫瞄 三维重建
设计意图
及概念
二维图纸
3D CAD Catia UG Pro-E Solidwork 等RS 系列激光快
速成型机* 快速原型 快速模具* (真空注型工艺等) 样件/中、小批量生产 设计/装配验证
塑料产品
金属精密铸造
金属消失铸造
逆向工程(反求)*
SLA激光快速成型机的应用案例
冰箱拖板原型件电磁阀原型件
前灯灯罩原型件(抛光可达全透明)手机装配组件原型件
发动机进气歧管原型件
来源:磐纹科技(上海)有限公司提供专业全面的3D打印服务如有侵权请联系告知删除,感谢你们的配合!。
金属粉末激光快速成形技术罗建兵2011031214金属粉末激光快速成形技术介绍金属粉末的激光快速成型技术是集计算机辅助设计、激光熔覆、快速成型于一体的先进制造技术, 是传统加工成形方法的重要补充。
本篇文章主要介绍了金属粉末激光快速成形的原理、装置组成及最新研究进展, 并对其发展前景进行了展望。
快速成型技术(RP, Rapid Prototyping ) 是从1987 年开始发展起来的一种先进制造技术。
该技术最初用来制造铸造用模型, 后来发展到制造原型零件,主要用于模型或零件的直观检验, 其关键是要求形状准确, 而对其力学性能没有太高的要求, 所采用的成型材料主要有液体光敏树脂、蜡、纸等替代材料。
目前, 美国、日本、德国已相继开发出多种快速成型技术, 如液体光敏树脂固化、熔融沉积成型、实体叠层制造、分层固化、选择性激光烧结、3D 喷射印刷等技术。
该技术在无需任何硬质工模具的情况下, 可直接从计算机三维设计制造出实体零件, 在机械制造等众多领域已得到广泛应用。
近年来, 快速成型技术有了新的发展, 已开始在金属材料、陶瓷材料的制备上得到应用, 其主要目标是快速制造出满足使用性能的致密的金属零件。
传统的快速成型方法成型金属零件时, 多采用树脂包覆的金属粉末作为原材料, 通过激光扫描使树脂熔化将金属粉末固结在一起; 也可采用喷射粘结剂的方法将松散的金属粉末粘结成型。
在成型后要经过脱粘、浸渗塑料、低熔点金属或铜来加强, 可制成镶块用在塑料注射模和压铸模中。
如脱粘后经热等静压处理也可制成致密金属零件, 但难以保证零件的尺寸精度。
目前, 金属零件的快速成型方法主要有间接激光烧结、直接激光烧结和液滴喷射沉积, 其中直接激光烧结技术是目前快速制备致密金属零件的主要技术。
1 基本原理金属粉末快速成形技术的基本原理,是先由CAD软件产生零件实体模型,然后由分层软件对CAD 实体模型按照一定的厚度进行分层切片处理,获取各截面的几何信息,然后根据切片轮廓设计出扫描轨迹,并将其转化成NC 工作台的运动指令。
激光迅速成形技术最新展开及应用前言激光迅速成形(LaserRapidPrototyping:LRP是将CAD、CAM、CNC、激光、精美伺服驱动和新资料等先进技术集成的一种崭新制造技术。
与传统制造方法对比拥有:原型的复制性、交换性高;制造工艺与制造原型的几何形状没关;加工周期短、本钱低,一般制造花费降低50%,加工周期缩短70%以上;高度技术集成,实现设计制造一体化。
近期展开的LRP主要有:立体光造型(SLA技术;选择性激光烧结(SLS技术;激光熔覆成形(LCF技术;激光近形(LENS技术;激光薄片叠层制造(LOM技术;激光引发热应力成形(LF技术及三维印刷技术等。
激光迅速成形最新技术立体光造型(SLA技术SLA技术又称光固化迅速成形技术,其原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫描,被扫描地区的树脂薄层(约十分之几毫米产生光聚合反应而固化,形成部件的一个薄层。
工作台下移一个层厚的距离,以便固化好的树脂表面再敷上一层新的液态树脂,进行下一层的扫描加工,这样频频,直到整个原型制造完成。
因为光聚合反应是鉴于光的作用而不是鉴于热的作用,故在工作时只要功率较低的激光源。
别的,因为没有热扩散,加上链式反应能够很好地控制,能保证聚合反应不发生在激光点以外,因此加工精度高,表面质量好,原资料的利用率靠近100%,能制造形状复杂、精美的部件,效率高。
关于尺寸较大的部件,那么可采纳先分块成形而后粘接的方法进行制作。
美国、日本、德国、比利时等都投入了大批的人力、物力研究该技术,其实不停有新产品问世。
我国西安交通大学也研制成功了立体光造型机LPS600A。
当前,全球有10多家工厂生产该产品。
选择性激光烧结(SLS技术SLS技术与SLA技术很相像,不过用粉末原料取代了液态光聚合物,并以必定的扫描速度和能量作用于粉末资料。
该技术拥有原资料选择宽泛、剩余资料易于清理、应用范围广等长处,合用于原型及功能部件的制造。