方差分析
- 格式:docx
- 大小:17.05 KB
- 文档页数:2
方差分析方差分析是比较多个总体的均值是否相等,但本质上它所研究的是变量之间的关系。
在研究一个(或多个)分类型自变量与一个数值型因变量之间的关系时,方差分析就是其中的只要方法之一。
一、方差分析引论假设需要检验4个总体的均值分别为4321,,,μμμμ,如果用一般假设检验方法,如t 检验,一次只能研究两个样本,要检验4个总体的均值是否相等,需要做6次检验,如果在0.05的置信水平下检验,每次检验犯第Ⅰ类错误的概率都是0.05,检验完成时,犯第Ⅰ类错误的概率会大于0.05,即连续作6次检验第Ⅰ类错误的概率为6)1(1α--=0.265,而置信水平则会降低到0.735(即695.0)。
随着增加个体显著性检验的次数,偶然因素导致差别的可能性也会增加(并非均值真的存在差别)。
而方差分析方法则是同时考虑所有的样本,因此排除了错误累计的概率,从而避免拒绝一个真实的原假设。
1、方差分析及其有关术语方差分析:就是通过检验各总体均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。
例1:为了对几个行业的服务质量进行评价,消费者协会在零售业、旅游业、航空公司、家电制造业分别抽取了不同的企业作为样本。
其中零售业7家,旅游业抽取6家,航空公司抽取5家,家电制造业抽取5家。
最后统计出最近一年中消费者对总共23家企业投诉的次数。
如下表所示。
消费者对四个行业的投诉次数行业零售业 旅游业 航空业 家电制造业57 68 31 44 66 39 49 51 49 29 21 65 40 45 34 77 34 56 40 58 53 51 44要分析四个行业之间的服务质量是否有显著差异,实际上就是要判断“行业”对“投诉次数”是否有显著影响,做出这种判断最终被归结为检验这四个行业被投诉次数的均值是否相等。
在方差分析中,要检验的对象称为因素或因子。
因素不同的表现称为水平或处理。
每个因子水平下得到的样本数据称为观测值。
在例1中,“行业”是要检验的对象,称为“因素”或“因子”;零售业,旅游业,航空公司,家电制造业是行业这一因素的具体表现,称为“水平”或“处理”;在每个行业下得到的样本数据(被投诉次数)称为观测值。
第九章方差分析前面介绍了两个样本均数比较的t检验,那么多个样本均数的比较应该采用什么方法?方差分析(analysis of variance, ANOV A)是20世纪20年代发展起来的一种统计方法,由英国著名统计学家R.A.Fisher提出,又称F检验,是通过对数据变异的分析来推断两个或多个样本均数所代表总体均数是否有差别的一种统计学方法。
本章首先介绍方差分析的基本思想和应用条件,然后结合研究设计类型分别介绍各类方差分析方法。
第一节方差分析的基本思想和应用条件一、方差分析的基本思想方差分析的基本思想是把全部观察值间的变异按设计类型的不同,分解成两个或多个组成部分,然后将各部分的变异与随机误差进行比较,以判断各部分的变异是否具有统计学意义。
例9.1 为研究大豆对缺铁性贫血的恢复作用,某研究者进行了如下实验:选取已做成贫血模型的大鼠36只,随机等分为3组,每组12只,分别用三种不同的饲料喂养:不含大豆的普通饲料、含10%大豆饲料和含15%大豆饲料。
喂养一周后,测定大鼠红细胞数(×1012/L),试分析喂养三种不同饲料的大鼠贫血恢复情况是否不同?表9.1 喂养三种不同饲料的大鼠红细胞数(×1012/L)普通饲料10%大豆饲料15%大豆饲料合计X 4.78 4.65 6.80 4.65 6.92 5.913.984.447.284.04 6.167.51 3.445.997.51 3.776.677.743.65 5.298.194.91 4.707.154.795.058.185.316.01 5.534.055.677.795.16 4.688.03in12 12 12 36 (n)i X ∑ 52.53 66.23 87.62 206.38(X ∑)i X4.385.52 7.30 5.73 (X ) 2i X ∑ 234.2783373.2851647.73121255.2946(2X ∑)表9.1按完全随机设计获得的36个数据(X )中包含以下三种变异: 1. 总变异 36只大鼠喂养一周后测定红细胞数X 各不相同,即X 与总均数X 不同,这种变异称为总变异(total variation)。
什么是方差分析关键信息项:1、方差分析的定义2、方差分析的目的3、方差分析的应用场景4、方差分析的类型5、方差分析的步骤6、方差分析的结果解读7、方差分析的局限性8、方差分析与其他统计方法的比较11 方差分析的定义方差分析(Analysis of Variance,简称 ANOVA)是一种用于比较两个或多个总体均值是否存在显著差异的统计方法。
它通过分析数据的变异来源,来判断不同因素对观测变量的影响程度。
111 基本原理方差分析基于总体方差可以分解为各个因素所引起的方差之和的原理。
通过比较不同因素水平下的组间方差和组内方差,来确定因素对观测变量的影响是否显著。
112 数学模型一般来说,方差分析的数学模型可以表示为:观测值=总体均值+因素效应+随机误差。
12 方差分析的目的其主要目的是检验不同水平的因素对因变量的均值是否有显著影响。
121 探究因素的作用确定哪些因素对观测结果有重要影响,哪些因素的影响可以忽略不计。
122 比较不同处理的效果例如在实验研究中,比较不同实验处理条件下的结果是否存在显著差异。
13 方差分析的应用场景131 农业科学用于比较不同种植方法、施肥量、品种等对农作物产量的影响。
132 医学研究分析不同药物剂量、治疗方案对患者康复效果的差异。
133 工业生产研究不同生产工艺、原材料对产品质量的作用。
134 社会科学例如在心理学、教育学中,比较不同教学方法、教育环境对学生成绩或心理状态的影响。
14 方差分析的类型141 单因素方差分析只考虑一个因素对观测变量的影响。
142 双因素方差分析同时考虑两个因素的交互作用对观测变量的影响。
143 多因素方差分析涉及多个因素及其交互作用对观测变量的综合影响。
15 方差分析的步骤151 提出假设包括零假设(各总体均值相等)和备择假设(至少有两个总体均值不相等)。
152 计算统计量根据数据计算组间平方和、组内平方和等,进而得到 F 统计量。
153 确定显著性水平通常设定为 005 或 001 等。
方差分析(Analysis of variance,简称ANOVA)为资料分析中常见的统计模型,主要为探讨连续型(Continuous)资料型态之因变量(Dependent variable)与类别型资料型态之自变量(Independent variable)的关系,当自变项的因子中包含等于或超过三个类别情况下,检定其各类别间平均数是否相等的统计模式,广义上可将T检定中变异数相等(Equality of variance)的合并T检定(Pooled T-test)视为是方差分析的一种,基于T检定为分析两组平均数是否相等,并且采用相同的计算概念,而实际上当方差分析套用在合并T检定的分析上时,产生的F值则会等于T检定的平方项。
方差分析依靠F-分布为机率分布的依据,利用平方和(Sum of square)与自由度(Degree of freedom)所计算的组间与组内均方(Mean of square)估计出F值,若有显著差异则考量进行事后比较或称多重比较(Multiple comparison),较常见的为Scheffé's method、Tukey-Kramer method与Bonferroni correction,用于探讨其各组之间的差异为何。
在方差分析的基本运算概念下,依照所感兴趣的因子数量而可分为单因子方差分析、双因子方差分析、多因子方差分析三大类,依照因子的特性不同而有三种型态,固定效应方差分析(fixed-effect analysis of variance)、随机效应方差分析(random-effect analysis of variance)与混合效应方差分析(Mixed-effect analaysis of variance),然而第三种型态在后期发展上被认为是Mixed model的分支,关于更进一步的探讨可参考Mixed model
的部份。
方差分析优于两组比较的T检定之处,在于后者会导致多重比较(multiple comparisons)的问题而致使第一型错误(Type one error)的机会增高。
因此比较多组平均数是否有差异则是方差分析的主要命题。
在统计学中,方差分析(ANOVA)是一系列统计模型及其相关的过程总称,其中某一变量的方差可以分解为归属于不同变量来源的部分。
其中最简单的方式中,方差分析的统计测试能够说明几组数据的平均值是否相等,因此得到两组的t测试。
在做多组双变量t测试的时候,错误的几率会越来越大,特别是I型错误。
因此,方差分析只在二到四组平均值的时候比较有效。
背景和名称[
方差分析(ANOVA)是一种特殊形式的统计假设测试,广泛应用于实验数据的分析中。
统计假设测试是一种根据数据进行决策的方法。
测试结果(通过原假设进行计算)如果不仅仅是因为运气,则在统计学上称为显著。
统计显著的结果(当可能性的p值小于临界的“显著值”)则可以推翻原假设。
在方差分析的经典应用中,原假设是假设所有数据组都是整体测试对象的完全随机抽样。
这说明所有方法都有相同效果(或无效果)。
推翻原假设说明不同的方法,会得到不同的效果。
在操作中,假设测试限定I类型错误(假阳性导致的假科学论断)达到某一具体的值。
实验者也希望II型错误(假阴性导致的缺乏科学发现)有限。
II型错误受到多重因素作用,例如取样范围(很可能与试验成本有关),相关度(当实验标准高的时候,忽视发现的可能性也大)和效果范围(当对一般观察者来说效果明显,II型错误发生率就低)。
ANOVA的模式型态[编辑]
方差分析分为三种型态:
固定效应模式(Fixed-effects models)[编辑]
用于方差分析模型中所考虑的因子为固定的情况,换言之,其所感兴趣的因子是来自于特定的范围,例如要比较五种不同的汽车销售量的差异,感兴趣的因子为五种不同的汽车,反应变量为销售量,该命题即限定了特定范围,因此模型的推论结果也将全部着眼在五种汽车的销售差异上,故此种状况下的因子便称为固定效应。
随机效应模式(Random-effects models)[编辑]
不同于固定效应模式中的因子特定性,在随机效应中所考量的因子是来自于所有可能的母群体中的一组样本,因子方差分析所推论的并非着眼在所选定的因子上,而是推论到因子背后的母群体,例如,借由一间拥有全部车厂种类的二手车公司,从所有车厂中随机挑选5种车厂品牌,用于比较其销售量的差异,最后推论到这间二手公司的销售状况。
因此在随机效应模型下,研究者所关心的并非局限在所选定的因子上,而是希望借由这些因子推论背后的母群体特征。
混合效应模式(Mixed-effects models)[编辑]
此种混合效应绝对不会出现在单因子方差分析中,当双因子或多因子方差分析同时存在固定效应与随机效应时,此种模型便是典型的混合型模式。